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Abstract
In this paper we address the problem of design-
ing an interruptible system in a setting in which
n problem instances, all equally important, must
be solved. The system involves scheduling execu-
tions of contract algorithms (which offer a trade-
off between allowable computation time and qual-
ity of the solution) in m identical parallel proces-
sors. When an interruption occurs, the system must
report a solution to each of the n problem instances.
The quality of this output is then compared to the
best-possible algorithm that has foreknowledge of
the interruption time and must, likewise, produce
solutions to all n problem instances. This extends
the well-studied setting in which only one problem
instance is queried at interruption time. We pro-
pose a schedule which we prove is optimal for the
case of a single processor. For multiple processors,
we show that the quality of the schedule is within a
small factor from optimal.

1 Introduction
A designer of real-time systems should anticipate the situa-
tion in which there are limitations on the available execution
time. Applications such as medical diagnosis systems, au-
tomated trading systems and game-playing programs require
that the system may be queried at any time during its exe-
cution, at which point a solution must be reported. Anytime
algorithms occur precisely in such settings, namely when a
computationally difficult problem is addressed under uncer-
tain running time availability. Such algorithms will produce
an output whose quality improves as a function of the avail-
able computation time. Anytime algorithms were introduced
by [Horvitz, 1987; 1988] and [Dean and Boddy, 1988] and
arise in central AI problems such as heuristic search, and
planning under uncertainty.

[Russell and Zilberstein, 1991] distinguish between two
main classes of anytime algorithms. On one hand, the class of
interruptible algorithms consists of algorithms that can be in-
terrupted at any point during their execution, and can always
report their current (albeit not necessarily optimal) solution.
On the other hand, the class of contract algorithms consists
of algorithms which specify the exact amount of allowable

computation time as part of their input. Such algorithms must
terminate their execution before a meaningful solution can be
produced. Interruptible algorithms offer more flexibility; in
contrast, contract algorithms are typically much easier to de-
sign, implement and maintain.

A “black-box” method for converting any contract algo-
rithm to its interruptible version consists of running a se-
quence of executions of the contract algorithm, of increasing
execution times. More precisely, in the most general setting,
we are presented with a set P of n problem instances which
we want to solve, and a system of m identical processors on
which we can schedule this sequence of contract algorithms.
The goal is to devise an efficient schedule, that is a strategy
that assigns each execution of a contract algorithm to a spe-
cific processor. In the standard setting, upon an interruption,
a query for a problem in P is issued. The algorithm must then
report the solution of the (completed) contract algorithm with
the longest execution time for the queried problem. Naturally,
these “lengths” or durations of completed contracts should be
as large as possible, since the longer the execution time, the
better the quality of the solution returned by the contract al-
gorithm (and thus by the interruptible system as well).

The standard performance measure for a schedule of con-
tract algorithms is the acceleration ratio. Informally, the
measure describes the multiplicative increase in processor
speed required for the schedule to compensate for the lack
of knowledge of the interruption time. More formally, let lp,t
denote the length of the largest contract for problem p com-
pleted by time t in the schedule. The acceleration ratio is
then defined as supt maxp∈P t

lp,t
. This measure compares

the quality of the solution returned by the schedule (that is,
the quantity lp,t) to an ideal, optimal algorithm that knows
the interruption t in advance and dedicates a single processor
in order to run a contract of length t for problem p.

Simulating interruptible algorithms by means of schedules
of contract algorithms has been a topic of extensive study.
[Russell and Zilberstein, 1991] were the first to present such
an explicit simulation. For the case of one problem instance
and a single processor, they provided a schedule based on it-
erative doubling of contract lengths for which the correspond-
ing interruptible algorithm has acceleration ratio at most four.
[Zilberstein et al., 1999] showed that in this case the sched-
ule is optimal, in the sense that no other schedule of better
acceleration ratio exists.



[Zilberstein et al., 1999] addressed the generalization of
multiple problem instances (assuming a single available pro-
cessor), and [Bernstein et al., 2002] studied the generaliza-
tion in which contracts for a single problem instance must be
scheduled on a set of multiple processors. For both cases,
optimal schedules are derived. [Bernstein et al., 2003] ad-
dressed the problem in its full generality, namely the setting
in which n problem instances are given and the schedule is
implemented on m processors. In particular, they showed an
upper bound of n

m (m+n
n )

m+n
m on the acceleration ratio; in ad-

dition, they showed that the schedule is optimal for the class
of cyclic schedules. The latter is a somewhat restricted, but
still very rich and intuitive class of schedules. This restriction
was removed by [López-Ortiz et al., 2006], who showed that
this acceleration ratio is indeed optimal among all possible
schedules. More recently, Angelopoulos et al. [Angelopou-
los et al., 2008] studied the setting in which interruptions are
soft deadlines (instead of absolute ones), in the sense that the
algorithm is allowed an additional window of time. Within
this window, the algorithm may have the opportunity to com-
plete the execution of a contract, or inititate a new one.

The central observation that motivates our work is that
the acceleration ratio becomes problematic, as a performance
measure, when at interruption time the algorithm is required
to return a solution to all n problems in P instead of only to
a specific queried problem. This arises, for instance, in sys-
tems that involve parallel executions of different heuristics
(and at interruption time, the best heuristic is chosen). A sim-
ilar setting has been considered in the context of portfolios of
algorithms: see, e.g., the work of [Gomes and Selman, 2001].
Another example is a medical diagnostic system which must
perform concurrent evaluations for a number of medical is-
sues. Here, the decision of the expert may very well have to
take into account all such evaluations.

In particular, suppose that n > m, and for the purposes of
illustrating our argument, say that n� m. Note that it is not
feasible for any ideal, optimal algorithm (that is, an algorithm
with advance knowledge of the interruption time t) to sched-
ule n contracts of length t tom processors, since n > m. In a
sense, if we applied the acceleration ratio to this domain, we
would compare the performance of an interruptible algorithm
which is expected to make progress on all n problems to an
algorithm which only makes optimal progress on at most m:
such a comparison is simply not fair. This shortcoming was
noticed by [Zilberstein et al., 2003], who defined the accel-
eration ratio for the case of n problems and one processor as
supt maxp∈P

t/n
lp,t

. This measure describes then an even dis-
tribution of the processor time among the n problem instances
for the optimal (offline) schedule.

In this paper we address the problem of designing inter-
ruptible algorithms using schedules of executions of contract
algorithms, assuming that m identical processors are avail-
able, and n problem instances, all equally significant must
be solved. We begin by considering measures alternative to
the acceleration ratio (Section 2), and we propose the defi-
ciency of a schedule as our measure of choice. In Section 3
we present a schedule whose deficiency is very small and
rapidly decreasing in the ratio n/m (in contrast, the accel-

eration ratio of every schedule is known to approach infinity
when n/m → ∞). Moreover, for the case of a single pro-
cessor (m = 1), we prove in Section 4 that our schedule is
optimal.

Due to space limitations, throughout the paper we omit (or
only sketch) certain technical proofs.

2 Problem formulation and comparison of
measures

Consider an (infinite) schedule X of executions of contract
algorithms (also called contracts). For an interruption time t
we denote by l(X, p, t) the length of the longest contract for
problem p ∈ P which is finished by time t in X (or simply
lp,t whenX is implied from context). We make the canonical
assumption that at interruption time at least one contract per
problem has already completed its execution.

We need to formalize the question: what is the best way
to exploit the available resources (i.e., processors), in order
to solve the set of problems P ? Towards this end, consider a
schedule Y , which, in contrast to X , is finite: more precisely,
Y schedules n distinct contracts, one for each problem in P
(if Y schedules more than one contract per problem, than we
can transform Y to a schedule Y ′ which is at least as good
as Y by keeping only the largest contract per problem that
appears in Y ). Each contract in Y is scheduled in one of the
m processors inM . We require that Y is feasible with respect
to t, in the sense that the makespan of Y , namely the total sum
of contract lengths on the most loaded processor used by Y
does not exceed t. Let Yt denote the class of all schedules
Y with the above properties. We will be calling Y an offline
solution since it relies on advance knowledge of t.

Having defined Yt, we need a measure of how a sched-
ule Y ∈ Yt compares to X , which will also dictate which
is the best schedule in Yt compared to X . First observe that
the acceleration ratio is not an appropriate measure for our
setting, since under it the optimal offline schedule Y for in-
terruption t dedicates all its resources to the contract that is
worked on the least by X while failing to produce an answer
for all other problems. This results in a large acceleration
ratio which however does not truly reflect the quality of X
(effectively, the optimal solution “cheats” by ignoring all but
one problem instances, which is not acceptable in our setting).

Another alternative would be to compare the smallest con-
tract completed by X to the smallest contract completed by
Y , by time t. We will need some preliminary definitions first.
Let StX denote the set {l(X, pi, t)|i ∈ [1, . . . , n]}, and let
StX(i) denote the i-th smallest element of StX . Similarly, for
Y ∈ Yt let StY denote the set of n contracts in Y , and StY (i)
be the i-th smallest contract in Y , respectively (ties are re-
solved arbitrarily).

Formally, we define the performance ratio of X with re-
spect to Y at time t as:

perf(X,Y, t) =
mini StY (i)
mini StX(i)

=
mini StY (i)
StX(1)

. (1)

The performance ratio of X at time t is then defined as
perf(X, t) = maxY perf(X,Y, t) where Y is a feasible



schedule. Lastly, the performance ratio of X is then defined
as perf(X) = supt perf(X, t).

The first observation is that under this measure there exists
an “optimal” offline schedule in which all contracts have the
same length: here, by “optimal” we mean a schedule Y ∈
Yt against which the performance ratio of X is maximized.
Indeed given any offline schedule Y , consider any schedule
Y ′ such that the length of all its contracts is mini StY (i). Note
that such a feasible Y ′ exists, since all contracts in Y are
at least that long, and Y itself is feasible. Then it follows
from the definition that perf(X,Y, t) = perf(X,Y ′, t). We
can show a close relationship of the performance ratio to the
acceleration ratio for the standard setting (namely when we
seek the solution only to the queried problem).

Lemma 1. There is a schedule X such that for any arbitrary
interruption time t

perf(X, t) =

 n
m

(
m+n
n

)m+n
m for m ≥ n

n
m

1
dn/me

(
m+n
n

)m+n
m for m < n

Furthermore, X is optimal with respect to this measure.

Proof. Consider first the case m ≥ n, then an optimal offline
schedule consists of executing one contract of length t per
problem, each on its own processor and hence perf(X, t) =

t
mini SX(i) . Note then that perf(X) = supt perf(X, t) is pre-
cisely the definition of the acceleration ratio, for which the
results of Bernstein et al. and López-Ortiz et al. show the

optimal value of n
m

(
m+n
n

)m+n
n .

On the other hand, if m < n then every offline schedule
Y is such that there exists at least one processor in which at
least dn/me contracts are scheduled. As argued earlier, there
exists an optimal offline schedule in which all contracts have
the same length. It follows then that there is an optimal offline
schedule with contract lengths equal to t/dn/me. Therefore,
perf(X, t) = t/dn/me

mini SX(i) and perf(X) = supt perf(X, t) can
then be described as 1

dn/me times the expression of the accel-
eration ratio, and the lemma follows. Note that for the case
of one processor and n problems, this matches the measure
proposed by [Zilberstein et al., 2003], as mentioned in the
introduction.

Interestingly, we can show that under this refined measure,
the schedule in the proof of Lemma 1 is very efficient.

Lemma 2. The performance ratio of the schedule of Lemma 1
is bounded by 2e, if n > m, and by 4 , if n ≤ m.

Proof. In the case m ≥ n, we have

perf(X)=
(
1 +

n

m

)(
1 +

m

n

) n
m ≤ 2 · 2 = 4.

In the case m < n we have that

perf(X) ≤
(
1 +

m

n

)(
1 +

m

n

) n
m ≤ 2 · e = 2e.

In either case, perf(X) ≤ 2e.

Figure 1 shows a plot of perf(X) for n > m assuming
for simplicity that m divides n. Note how the performance
of the schedule is between 4 and e, and decreases rapidly as
n/m increases. When m ≥ n, perf(X) decreases in a similar
manner, as m/n increases, and takes values between 4 and 1.

Figure 1: Plot of function perf(X), assuming m divides n.

While the performance ratio seems a better candidate for
a measure in the context of our problem, it is far from being
the best possible choice. Note that according to this mea-
sure, every contract in the optimal offline solution may have
fixed length, namely t/dn/me. While it is guaranteed that the
smallest contract in StX indeed does not exceed t/dn/me, the
solution produced by X may be such that there exist several
contracts in StX which exceed this length. More formally,
there may exist j such that StX(j) > StY (j) for the opti-
mal offline solution Y . It then becomes difficult to argue that
the optimal offline solution Y at time t is indeed better than
the solution produced by the interruptible algorithm at time t,
even though, supposedly, Y is optimal!

The above illustrates the need for defining a further mea-
sure, one which takes into account the intuitive expectation
that “the optimal offline solution should perform better than
the interruptible algorithm on each problem”. To accomplish
this, we allow the offline solution to observe the behavior of
X at each point in time t, and then produce an appropriate
“optimal” offline solution, tailored to the specifications of our
problem. In a sense we allow the offline solution vast pow-
ers for choosing its schedule, while at the same time we still
require it to produce solutions to all problem instances. This
yields a measure which we call deficiency, and which is: i)
consistent with the requirements of the problem; and ii) pow-
erful enough, in the sense that if an algorithm performs well
with respect to the new measure, then there are very strict
guarantees about its performance.

Formally, we say that Y is at least as good as X , denoted
by Y ≥ X , if and only if StY (i) ≥ StX(i), for all i ∈ [1, n].



Then for a schedule Y ∈ Yt with Y ≥ X , we say that the
deficiency of X wrt Y for interruption t is defined as

def(X,Y, t) = min
i

StY (i)
StX(i)

(2)

The deficiency of X given t is then defined as

def(X, t) = max
Y ∈Yt,Y≥X

def(X,Y, t) (3)

We define the deficiency of X simply as

def(X) = sup
t

def(X, t) (4)

Not surprisingly, one can draw a connection between the
problem of minimizing the deficiency of a schedule, and the
problem of makespan minimization. In the latter, given m
identical processors and n jobs j1, . . . , jn, each of a certain
size (length), the objective is to assign each job to a processor
such that the maximum load among all processors, is mini-
mized. The following lemma establishes this relation.
Lemma 3. def(X, t) = t

OPT (StX)
, where OPT (StX) is the

minimum makespan for scheduling n jobs in m processors,
with job i having size (length) equal to StX(i).

For an informal interpretation of the lemma, consider the
set of the n largest contract lengths (one per problem), com-
pleted by X at time t. Then the largest d > 1 such that if
we multiply each of the n contract lengths by d, there exists
a schedule of the “blown-up” contracts in m processors that
has makespan at most t, is the deficiency of X given t.

3 A near-optimal schedule for general m
In this section we propose an exponential schedule of very
small deficiency. The overall schedule is as follows. Let b >
1 be a real number,
• problems are assigned to processors in a cyclic, round-

robin order, i.e. the ith time a processor j ∈ {0, . . .m−
1} executes a contract it does so on problem (im +
j) mod n and for a length of time bim+j .
• the sequence of contract lengths is {bi}i=0,1,2,...,
• the length of the k-th contract in this round-robin se-

quence is bk for some b > 1.
• the value b is the base of the schedule,
The remainder of this section is devoted on finding the best

value of b, i.e., the value that minimizes the deficiency of the
exponential schedule. We denote by Gk the finish time of
the k-th contract of X , in the cyclic order, whereas Lk = bk

denotes the length of the k-th contract.
The following lemma shows that it suffices to evaluate the

deficiency of any schedule (not necessarily exponential) at
interruption times right before a contract terminates. Let G−c
denote a time infinitesimally smaller than the finish time Gc
of contract c ∈ X . Recall also that OPT ({·}) denotes the
optimal makespan for a schedule of a given set of jobs in m
processors.

Lemma 4. def(X) = supc∈X
G−C

OPT (S
G
−
c

X )
.

In the context of an exponential schedule it is easy to see
that Lemma 4 becomes

def(X) = sup
k≥0

G−n+k

OPT ({Lk, . . . Ln+k−1})
(5)

where Li = bi is the length of the i-th contract in the cyclic
order.

The next lemma gives a lower bound on the optimal
makespan, which will be useful in deriving an upper bound
for the deficiency, as given by (5).

Lemma 5. OPT (Lk, . . . Ln+k−1) ≥ κ ·
bk b

n+m−1−b(n−1) mod m

bm−1 , where κ = max
{

1
2−1/m ,

bm−1
bm

}
.

Proof. We will evaluate the makespan of the well-
known greedy algorithm which schedules jobs of sizes
Lk, . . . Ln+k−1, in m identical processors numbered
0, . . .m − 1, assuming the jobs are considered in this partic-
ular order (i.e., in increasing order of size). More precisely,
the algorithm will assign each job to the machine of least cur-
rent load. It is easy to see that the decisions of the greedy
algorithm are such that the job of size Lk+i is scheduled on
processor i mod m. Moreover, the incurred makespan is de-
termined by the total load of jobs scheduled on the same pro-
cessor as job Ln+k−1, namely processor (n−1) mod m. De-
note by Gr(Lk, . . . Ln+k−1) the makespan of the greedy al-
gorithm. We obtain

Gr(Lk, . . . Ln+k−1) =
b(n−1)/mc∑

i=0

bk+mi+(n−1) mod m

= bkb(n−1) mod m

b(n−1)/mc∑
i=0

bmi

= bk
bn+m−1 − b(n−1) mod m

bm − 1
. (6)

To complete the proof, we need to argue that the greedy
scheduling policy does not achieve a makespan worse that
(1/κ) times the optimal makespan. Graham’s fundamental
theorem on the performance of the greedy scheduling pol-
icy [Graham, 1966] states that the greedy algorithm has an
approximation ratio of 2− 1/m. Moreover, we know that the
optimal makespan is at least bn+k−1, which in conjunction
with (6) yields that the greedy algorithm is also a bm/(bm−1)
approximation (for our specific instance). The lemma follows
by combining the above two approximation guarantees.

We now proceed to bound the deficiency of the exponen-
tial schedule X . It is easy to show that for exponential
schedules, Gn+k = bk+n+m−b(k+n) mod m

bm−1 . Let λ = 1/κ =

min
{

2− 1
m ,

bm

bm−1

}
. Combining with (5) and Lemma 5 we



obtain

def(X) ≤ λ · sup
k≥0

bk+n+m − b(k+n) mod m

bk(bn+m−1 − b(n−1) mod m)

= λ · sup
k≥0

bn+m − (b(k+n) mod m)/bk

bn+m−1 − b(n−1) mod m

≤ λ · bn+m

bn+m−1 − bγ
, . (7)

where γ is defined as (n− 1) mod m.
We thus seek the value of b that minimizes the RHS of (7).

It is not clear how to do this analytically, since the factor
λ depends on b, and the derivative of the RHS does not
have roots that can be identified analytically. Instead, let
f(b) denote the function bn+m/(bn+m−1 − bγ). Is is easy
to show that f(b) is minimized for a value of b equal to
β = (n + m − γ)

1
n+m+γ−1 . Let ρ be such that n − 1 =

ρm + γ, then β = (m(ρ + 1) + 1)
1

m(ρ+1) . Observe also that
f(b) = 1/(b−1 − bγ−n−m) = 1/(b−1 − b−m(ρ+1)−1). Sum-
marizing, for b = β we obtain a schedule of deficiency

def(X) ≤ min
{

2− 1
m
,

βm

βm − 1

}
· 1
β−1 − β−m(ρ+1)−1

.

(8)
Figure 2 shows a plot of the deficiency of the schedule (or,

more accurately, the RHS of (8) for the interesting case where
n > m) as function of m and ρ. Note that for fixed m, the
deficiency increases as a function of n, until a point at which
it becomes relatively stable with n (this can be explained by
the factor λ that is the minimum of two functions, one of
which does not depend on n). For large m, and even larger
n, the deficiency is close to 2. From the plot, the maximum
value of deficiency is 3/8 · 55/4 ∼ 2.803.

We will now provide an analytical bound on the maximum
value of the deficiency, by showing that def(X) is at most
3.74 when n > m and at most 4 when n ≤ m. Substituting
m(ρ+ 1) with y in (8) we obtain

def(X) ≤
(

2− 1
m

)
1

(y + 1)−
1
y − (y + 1)−

y+1
y

. (9)

Using standard calculus it is straightforward to show that the
functions (y + 1)−1/y and (y + 1)−

y+1
y are increasing and

decreasing functions of y, respectively. Therefore, the de-
nominator of the RHS of (9) is an increasing function of
y = m(ρ + 1). It turns out that for n > m this upper bound
on def(X) is maximized when m = 2 and ρ = 1, hence
def(X) ≤ 3.74. When n ≤ m, the (2 − 1/m) factor van-
ishes, since the greedy schedule achieves optimal makespan
(in other words, λ = 1). In this case def(X) is at most 4.
These upper bounds are not tight as the figure below shows.
The plot shows tight numerical bounds for the plotted ranges
of n and m. The analytical method in contrast gives an exact
but not tight upper bound for all n andm. The two results dif-
fer slightly because the true exact maximum of the function
could not be found analytically.

Note that the strategy proposed in this work outperforms
known strategies proposed for other settings. For example,

the optimal schedule for the acceleration ratio of [Bernstein
et al., 2003; López-Ortiz et al., 2006] has unbounded de-
ficiency for m � n. When n > m, this schedule has
constant deficiency, but larger than ours (4.24 in the worst
case). Moreover, it is provably non-optimal for m = 1
as it does not achieve the bounds of Theorem 9 in Section
4. For a single problem and processor, Eq. (7) becomes
def(X) ≤ b2/(b − 1), which equals the acceleration ratio
of exponential schedules with base b, as expected.
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Figure 2: Plot of def(X) as a function of m and ρ.

4 Optimality for the case of a single processor
In this section we show that the exponential schedule we de-
scribed in Section 3 is optimal for the case of a single proces-
sor. Denote by X any given schedule of contracts on a single
processor. For a fixed problem p ∈ P , we will denote by
lower-case d and upper case D the lengths of consecutively
completed contracts for problem p in X , respectively. More
formally, if (pi, di) is a contract in X , then the next contract
for pi scheduled after (pi, di) will be denoted by (pi, Di).

We begin the proof by introducing some “normalization”
in the schedules. In particular, the following technical lemma
demonstrates that any schedule (hence the optimal schedule
as well) can be transformed to a schedule of no worse defi-
ciency, which also observes certain useful properties. Ideally,
we would like the resulting schedule to have as simple a struc-
ture as a cyclic (or even better, an exponential) schedule, be-
cause the analysis would then become very easy. However,
this not possible in general. Instead, we derive schedules
which although not as “canonical” as cyclic schedules, are
much more amenable to analysis than the original schedule (
which may observe no properties at all). We call the resulting
schedules normalized. Similar normalization reductions have



been applied in [López-Ortiz et al., 2006] and [Angelopoulos
et al., 2008].

Lemma 6. For every schedule of contracts X in a single
processor, there exists a schedule X ′ such that def(X ′) ≤
def(X), and furthermore X ′ satisfies the following proper-
ties: Let (pi, di) and (pj , dj) denote two contracts inX ′, with
i 6= j. Let also Ti and Tj denote the start times of contracts
(pi, Di) and (pj , Dj) in X ′. Then

(i) If di < dj then Ti +Di < Tj +Dj , which also implies
that Ti < Tj .

(ii) If di < dj then Di < Dj .

Proof sketch. IfX is not normalized, then we can transform it
to a normalized one by defining an appropriate series of con-
tract swaps, similar to the ones of [López-Ortiz et al., 2006].
These swaps introduce the normalized proprties and do not
worsen the deficincy of the original schedule. 2

In the next step, we establish a lower bound on the defi-
ciency of any schedule, as a function of contract lengths.

Lemma 7. For any normalized schedule X for n problems
on a single processor, we have

def(X) ≥ sup
k≥0

{
k+n∑
i=0

xsi

/ n−1∑
i=0

xsk+i

}
, (10)

where Xs = (xs0, x
s
1, . . .) is the sequence of contract lengths

in X , in increasing order, and xsi := 0 if i < 0.

Proof. Suppose that at time T0, a contract C0 for problem
p0 ∈ P is about to start in X; let D0 denote the length of this
contract. Denote byCj , with j ∈ [1, n−1], the latest contract
for problem pj , which completes before time T0 inX , and by
Dj its corresponding length.

Note that the lengths of contracts which are completed by
time T0 + D0 in X are elements in the sequence Xs. In
particular, it must be that d0 = xsk for some k > 0. Let I
denote the set of indices in Xs of these lengths. We can then
say that def(X) (for an interruption right before T0 +D0) is

def(X) ≥
∑
i∈I x

s
i∑n

i=1 l(X, pi, T0 + d−0 )
=

∑
i∈I x

s
i

d0 +
∑n−1
i=1 Di

.

(11)
We will proceed by lower-bounding the numerator and upper-
bounding the denominator of (11). First, observe that the nu-
merator contains as summands all xsi which have been com-
pleted by time T0 + D0. Lemma 6 implies then that every
contract smaller than d0 = xsk has been scheduled by time
T0 + D0, and appears as a summand in the numerator. The
same lemma guarantees also that for all j ∈ [1, n−1],Dj can-
not be smaller than d0, otherwise the next contract for prob-
lem j to complete after Dj would also complete before time
T0 +D0, which would contradict the definition of Dj as the
earliest contract for problem j to finish before time T0 +D0.
Hence we conclude that the numerator contains all contract
lengths smaller than xsk, as well as at least n − 1 contract
lengths (one for each j ∈ [1, n− 1]) larger than xsk, and, last,
contains a contract length equal to D0 > d0. The smallest

values the latter n lengths can attain are then xsk+1, . . . x
s
k+n.

We thus obtain that
∑
i∈I x

s
i ≥

∑k+n
i=0 x

s
i .

We will now upper bound the denominator of (11). By def-
inition of T0, for every j 6= 0, we have Tj +Dj ≤ T0 +D0.
Hence Lemma 6 implies that dj < d0, and also Dj < D0.
We also know (as argued earlier) that Dj > d0. Let l > k be
an index such that D0 = xsl > xsk = d0. We will argue that
for every j ∈ [1, n−1], there is at most one contract for prob-
lem j of length equal to xsi , for i ∈ (k, l). Indeed, if this was
not the case, then for problem j there would exist two con-
secutive contracts (relative to problem j) of lengths greater
than d0 and smaller than D0, which contradicts Lemma 6.
We conclude that the largest values D1, . . . Dn−1 can attain
are xsk+1, . . . x

s
k+n−1, hence d0 +

∑n−1
i=1 Di ≤

∑n−1
i=0 x

s
k+i.

The lemma follows from the above bounds on the numera-
tor and the denominator of (11).

As a last main step in the proof, we will apply the follow-
ing result due to [Gal, 1980] and [Schuierer, 2001], which
provides a lower bound for the supremum of a sequence of
functionals. This result will help us relate the deficincy of
normalized schedules to the deficiency of exponential ones.
Define Ga = (1, a, a2, . . .) to be the geometric sequence in a
and X+i = (xi, xi+1, . . .) the suffix of sequence X starting
at xi.
Theorem 8 ([Schuierer, 2001],[Gal, 1980]). Let X =
(x0, x1, . . .) be a sequence of positive numbers, r an integer,
and a = limn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0,
is a sequence of functionals which satisfy

1. Fk(X) only depends on x0, x1, . . . , xk+r,

2. Fk(X) is continuous, for all xi > 0, with 0 ≤ i ≤ k+ r,

3. Fk(αX) = Fk(X), for all α > 0,

4. Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), and

5. Fk+i(X) ≥ Fk(X+i), for all i ≥ 1,
then

sup
0≤k<∞

Fk(X) ≥ sup
0≤k<∞

Fk(Ga).

Define now Fk(Xs) :=
k+n∑
i=0

xsi

/
n−1∑
i=0

xsk+i. It is easy to

show that Fk satisfies the conditions of Lemma 8. Therefore,

def(X) ≥ sup
0≤k<∞

Fk(Xs) ≥ sup
0≤k<∞

Fk(Gã)

= sup
0≤k≤∞

{
k+n∑
i=0

ai
/n−1∑

i=0

ak+i

}
.

Note that if a ≤ 1, then the above ratio tends to infinity as
k →∞. Hence, we can assume that a > 1 and obtain

def(X) ≥ sup
0≤k<∞

{
(ak+n+1 − 1)/(a− 1)
ak(an − 1)/(a− 1)

}
= sup

0≤k<∞

{
ak+n+1 − 1
ak(an − 1)

}
(a>1)
=

an+1 − a−k

an − 1
≥ an+1

an − 1
. (12)



Recall that from (7), the deficiency of the exponential
schedule of Section 3 is bounded by bn+1/(bn − 1), for a
value of b that minimizes this ratio, namely b = (n + 1)

1
n .

Comparing this expression to the lower bound of (12), we
deduce that the exponential schedule is indeed optimal.
Theorem 9. For a single processor, the optimal deficiency is
(n+1)

n+1
n

n , and is achieved by the exponential schedule.

5 Conclusion
In this paper we addressed the problem of devising interrupt-
ible algorithms in a setting in which solutions to all problem
instances are required and all problems are equally important.
Even though our proposed solutions are efficient, it would
be nevertheless interesting to know whether our schedule is
optimal for any number of processors. This appears to be
a complicated task: for general m, minimizing makespan is
NP-hard. More importantly, the known efficient makespan-
scheduling algorithms do not yield a closed-form expression
of the makespan as a function of the sizes of jobs (Graham’s
greedy algorithm is an exception to this, but it is no better
than a 2-approximation).

Another direction for further research is to consider the
generalization in which at interruption time a subset of i ≤ n
problems are queried for their solution. We are also interested
in a related setting in the context of robot searching in mul-
tiple concurrent rays. [Bernstein et al., 2003] showed impor-
tant connections between this problem and contract schedul-
ing under the acceleration ratio. Suppose, however, that in-
stead of a single target, i targets are located, at unknown posi-
tions from the common origin. We havem robots available to
explore the rays. What is the best strategy for the robots so as
to locate all targets? There are interesting parallels between
the two problems, e.g., the optimal solution in the multi-target
variant can be formulated as a makespan scheduling problem,
with job sizes a function of the distances of the targets from
the origin. We believe the results of this paper can be useful
in addressing this problem.
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