Intersecting families in the alternating group and direct product of symmetric groups

Cheng Yeaw Ku
Department of Mathematics, California Institute of Technology
Pasadena, CA 91125, USA
cyk@caltech.edu.

Tony W. H. Wong
Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
tonywhwong@yahoo.com.hk.
Submitted: Oct 27, 2006; Accepted: Mar 6, 2007; Published: Mar 15, 2007
Mathematics Subject Classification: 05D99

Abstract

Let S_{n} denote the symmetric group on $[n]=\{1, \ldots, n\}$. A family $I \subseteq S_{n}$ is intersecting if any two elements of I have at least one common entry. It is known that the only intersecting families of maximal size in S_{n} are the cosets of point stabilizers. We show that, under mild restrictions, analogous results hold for the alternating group and the direct product of symmetric groups.

1 Introduction

Let $S_{n}($ or $\operatorname{Sym}([n]))$ denote the symmetric group on the symbol-set $[n]=\{1, \ldots, n\}$. Throughout, the product (or composition) of two permutations $g, h \in S_{n}$, denoted by $g h$, will always mean 'do h first followed by g '. We say that a family $I \subseteq S_{n}$ of permutations is intersecting if $\{x: g(x)=h(x)\} \neq \emptyset$ for every $g, h \in I$, i.e. the Hamming distance $d_{H}(g, h)=|\{x: g(x) \neq h(x)\}| \leq n-1$ for every $g, h \in I$. In a setting of coding theory, Deza and Frankl [5] studied extremal problems for permutations with given maximal or minimal Hamming distance. Among other results, they proved that if I is an intersecting family in S_{n} then $|I| \leq(n-1)$!. Recently, Cameron and $\mathrm{Ku}[4]$ showed that equality holds if and only if $I=\left\{g \in S_{n}: g(x)=y\right\}$ for some $x, y \in[n]$, i.e. I is a coset of a point stabilizer. This can also be deduced from a more general theorem of Larose and Malvenuto [8] about Kneser-type graphs.

Theorem 1.1 ([5], [4], [8]) Let $n \geq 2$ and I be an intersecting family in S_{n}. Then $|I| \leq(n-1)$!. Moreover, equality holds if and only if $I=\left\{g \in S_{n}: g(x)=y\right\}$ for some $x, y \in[n]$.

Here we extend the study of intersecting families of S_{n} to that of the alternating group A_{n} and the direct product of symmetric groups $S_{n_{1}} \times \cdots \times S_{n_{q}}$. We say that a family $I \subseteq A_{n}$ (or respectively $I \subseteq S_{n_{1}} \times \cdots \times S_{n_{q}}$) is intersecting if $\{x: g(x)=h(x)\} \neq \emptyset$ for any $g, h \in I$ (or respectively if, for every $\left(g_{1}, \ldots, g_{q}\right),\left(h_{1}, \ldots, h_{q}\right) \in I$, we have $\left\{x: g_{i}(x)=h_{i}(x)\right\} \neq \emptyset$ for some i). Our main results characterize intersecting families of maximal size in these groups.

Theorem 1.2 Let $n \geq 2$ and I be an intersecting family in A_{n}. Then $|I| \leq(n-1)!/ 2$. Moreover, if $n \neq 4$, then equality holds if and only if $I=\left\{g \in A_{n}: g(x)=y\right\}$ for some $x, y \in[n]$.

The following example shows that the condition $n \neq 4$ in Theorem 1.2 is necessary for the case of equality: $\{(1,2,3,4),(1,3,4,2),(2,3,1,4)\}$ (we use the notation $\left(a_{1}, \ldots, a_{n}\right)$ to denote the permutation that maps i to a_{i}).

Theorem 1.3 Let $2 \leq m \leq n$ and I be an intersecting family in $\operatorname{Sym}\left(\Omega_{1}\right) \times \operatorname{Sym}\left(\Omega_{2}\right)$, $\Omega_{1}=[m], \Omega_{2}=[n]$. Then $|I| \leq(m-1)!n!$. Moreover, for $m<n$ such that $(m, n) \neq(2,3)$, equality holds if and only if $I=\{(g, h): g(x)=y\}$ for some $x, y \in \Omega_{1}$, while for $m=n$ such that $(m, n) \neq(3,3)$, equality holds if and only if $I=\{(g, h): g(x)=y\}$ for some $x, y \in \Omega_{1}$ or $I=\{(g, h): h(x)=y\}$ for some $x, y \in \Omega_{2}$.

The following examples show that the conditions $(m, n) \neq(2,3),(3,3)$ in Theorem 1.3 are necessary for the case of equality:

- $J_{23}=\{((1,2),(2,3,1)),((1,2),(1,2,3)),((1,2),(3,1,2)),((2,1),(2,1,3)),((2,1)$, $(3,2,1)),((2,1),(1,3,2))\}$.
- $J_{33}=\{((1,3,2),(1,2,3)),((2,1,3),(1,2,3)),((2,1,3),(1,3,2)),((2,1,3),(2,1,3))$, $((2,1,3),(3,2,1)),((2,3,1),(1,2,3)),((2,3,1),(2,3,1)),((2,3,1),(3,1,2)),((3,1,2)$, $(1,3,2)),((3,1,2),(2,1,3)),((3,1,2),(3,2,1)),((3,2,1),(1,2,3))\}$.
For the direct product of finitely many symmetric groups, we prove
Theorem 1.4 Let $2 \leq n_{1}=\cdots=n_{p}<n_{p+1} \leq \cdots \leq n_{q}, 1 \leq p \leq q$. Let $G=$ $S_{n_{1}} \times \cdots \times S_{n_{q}}$ be the direct product of symmetric groups $S_{n_{i}}$ acting on $\Omega_{i}=\left\{1, \ldots, n_{i}\right\}$. Suppose I is an intersecting family in G. Then

$$
|I| \leq\left(n_{1}-1\right)!\prod_{i=2}^{q} n_{i}!
$$

Moreover, except for the following cases:

- $n_{1}=\cdots=n_{p}=2<n_{p+1}=3 \leq n_{p+2} \leq \cdots \leq n_{q}$ for some $1 \leq p<q$,
- $n_{1}=n_{2}=3 \leq n_{3} \leq \cdots \leq n_{q}$,
- $n_{1}=n_{2}=n_{3}=2 \leq n_{4} \leq \cdots \leq n_{q}$,
equality holds if and only if $I=\left\{\left(g_{1}, \ldots, g_{q}\right): g_{i}(x)=y\right\}$ for some $i \in\{1, \ldots, p\}$, $x, y \in \Omega_{i}$.

The following examples show that the conditions for the case of equality are necessary:

- $S_{n_{1}} \times \cdots \times S_{n_{p-1}} \times J_{23} \times S_{n_{p+2}} \times \cdots \times S_{n_{q}}$ where $n_{1}=\cdots=n_{p-1}=2$,
- $J_{33} \times S_{n_{3}} \times \cdots \times S_{n_{q}}$,
- $J_{222} \times S_{n_{4}} \times \cdots \times S_{n_{q}}$,
where $J_{23} \subseteq S_{2} \times S_{3}$ and $J_{33} \subseteq S_{3} \times S_{3}$ are defined above and $J_{222} \subseteq S_{2} \times S_{2} \times S_{2}$ is given by
$\{((1,2),(1,2),(1,2)),((1,2),(2,1),(2,1)),((1,2),(1,2),(2,1)),((2,1),(1,2),(2,1))\}$.
In Section 2, we deduce Theorem 1.2 from a more general result by following an approach similar to [8], except that we utilize GAP share package GRAPE to establish the base cases needed for induction.

In Section3, we prove a special case of Theorem 1.4, namely when $n_{i}=n \geq 4$ for all $1 \leq i \leq q$. This is also a special case of a more general problem of determining independent sets of maximal size in tensor product of regular graphs, see [3] and [9] for recent interests in this area. For similar problems in extremal set theory, we refer the reader to [1] and [6].

In Section 4, we first prove Theorem 1.3, followed by a proof of Theorem 1.4.
We shall require the following tools from the theory of graph homomorphisms. Recall that a clique in a graph is a set of pairwise adjacent vertices, while an independent set is a set of pairwise non-adjacent vertices. For a graph Γ, let $\alpha(\Gamma)$ denote the size of the largest independent set in Γ. For any two graphs Γ_{1} and Γ_{2}, a map ϕ from the vertex-set of Γ_{1}, denoted by $V\left(\Gamma_{1}\right)$, to the vertex-set $V\left(\Gamma_{2}\right)$ is a homomorphism if $\phi(u) \phi(v)$ is an edge of Γ_{2} whenever $u v$ is an edge of Γ_{1}, i.e. ϕ is an edge-preserving map.

Proposition 1.5 (Corollary 4 in [4]) Let C be a clique and A be an independent set in a vertex-transitive graph on n vertices. Then $|C| \cdot|A| \leq n$. Equality implies that $|C \cap A|=1$.

The following fundamental result of Albertson and Collins [2], also known as the 'NoHomomorphism Lemma', will be useful.

Proposition 1.6 Let Γ_{1} and Γ_{2} be graphs such that Γ_{2} is vertex transitive and there exists a homomorphism $\phi: V\left(\Gamma_{1}\right) \rightarrow V\left(\Gamma_{2}\right)$. Then

$$
\begin{equation*}
\frac{\alpha\left(\Gamma_{1}\right)}{\left|V\left(\Gamma_{1}\right)\right|} \geq \frac{\alpha\left(\Gamma_{2}\right)}{\left|V\left(\Gamma_{2}\right)\right|} \tag{1}
\end{equation*}
$$

Furthermore, if equality holds in (1), then for any independent set I of cardinality $\alpha\left(\Gamma_{2}\right)$ in $\Gamma_{2}, \phi^{-1}(I)$ is an independent set of cardinality $\alpha\left(\Gamma_{1}\right)$ in Γ_{1}.

2 Intersecting families in the alternating group

Throughout, A_{n} denotes the group of all even permutations of $[n]$. Let $\Gamma\left(A_{n}\right)$ be the graph whose vertex-set is A_{n} such that two vertices g, h are adjacent if and only if they
do not intersect, i.e. $g(x) \neq h(x)$ for all $x \in[n]$. Clearly, left multiplication by elements of A_{n} is a graph automorphism; so $\Gamma\left(A_{n}\right)$ is vertex-transitive. By Proposition 1.5, the bound in Theorem 1.2 is attained provided there exists a clique of size n in $\Gamma\left(A_{n}\right)$, i.e. a Latin square whose rows are even permutations. Indeed, such a Latin square can be constructed as follows: consider the cyclic permutations $(1,2, \ldots, n),(n, 1,2, \ldots, n-1)$, $\ldots,(2,3, \ldots, n, 1)$. If n is odd then these permutations form the rows a Latin square as desired. If n is even then exactly half of these permutations are odd. Now, interchange the entries containing the symbols $n-2$ and n in these odd permutations. Together with the remaining even ones, they form a desired Latin square.

It remains to prove the case of equality of Theorem 1.2. It is feasible, by using GAP [7], to establish Theorem 1.2 for $n=2,3,5,6,7$. For $n \geq 8$, we shall deduce Theorem 1.2 from the more general Theorem 2.1. The inductive argument in our proof is similar to [8] which we reproduce here for the convenience of the reader, except that we verify our base cases (see Lemma 2.4 and Lemma 2.5) with the help of a computer instead of proving them directly by hand, as in Lemma 4.5 of [8].

Define $A_{n}\left(b_{1}, \ldots, b_{r}\right)=\left\{g \in A_{n}: \exists u \in\{0,1, \ldots, n-1\}\right.$ such that $g(i+u)=b_{i} \quad \forall i=$ $1, \ldots, r\}$ where $i+u$ is in modulo n. For example, $A_{5}(1,2,3)$ consists of all even permutations of the form $(1,2,3, *, *),(*, 1,2,3, *),(*, *, 1,2,3),(3, *, *, 1,2),(2,3, *, *, 1)$.

Theorem 2.1 For $n \geq 8$, let I be an intersecting family of maximal size in $A_{n}\left(b_{1}, \ldots, b_{r}\right)$ where $1 \leq r \leq n-5$. Then $I=I_{p}^{q} \cap A_{n}\left(b_{1}, \ldots, b_{r}\right)$ for some $p, q \in\{1, \ldots, n\}$ where $I_{p}^{q}=\left\{g \in A_{n}: g(p)=q\right\}$.

Lemma 2.2 Let $\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)$ denote the subgraph of $\Gamma\left(A_{n}\right)$ induced by $A_{n}\left(b_{1}, \ldots, b_{r}\right)$. Then, for $1 \leq r \leq n-3$,
(i) $\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)$ contains a clique of size n;
(ii) the graphs $\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)$ and $\Gamma\left(A_{n}\right)(1, \ldots, r)$ are isomorphic, under an isomorphism which preserves the independent sets of the form $I_{p}^{q} \cap \Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)$.
(iii) $\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)$ is vertex-transitive.

Proof. (i) Let $\left\{b_{1}, \ldots, b_{n}\right\}=[n]$. The construction is similar to that given above for the graph $\Gamma\left(A_{n}\right)$. Indeed, choose an even permutation w such that $w(i)=b_{i}$ for all $1 \leq i \leq n$ (the existence of such a permutation is guaranteed by the condition $n-r \geq 3$) and let $W=\left\{w, w c, w c^{2}, \ldots, w c^{n-1}\right\}$ where $c=(n, 1,2, \ldots, n-1)$. If n is odd then W is the desired clique; otherwise $w c^{i}$ is odd if and only if i is odd. For these odd permutations, interchange the entries containing b_{n-2} and b_{n} so that they become even. Together with the even permutations in W, they are now as required.
(ii) Let $h \in A_{n}$ such that $h\left(b_{i}\right)=i$ for all $1 \leq i \leq r$. Then the map $g \mapsto h g$ is the required isomorphism.
(iii) Let $g, h \in \Gamma\left(A_{n}\right)(1, \ldots, r)$. Suppose $g(i)=h(j)=1$ for some $i, j \in\{1, \ldots, n\}$. Express g and h as $g^{\prime}(n, 1,2, \ldots, n-1)^{i-1}$ and $h^{\prime}(n, 1,2, \ldots, n-1)^{j-1}$ respectively such that g^{\prime} and h^{\prime} are permutations fixing $1, \ldots, r$. Then the map $\phi: \Gamma\left(A_{n}(1, \ldots, r)\right) \rightarrow$
$\Gamma\left(A_{n}(1, \ldots, r)\right)$ given by $w \mapsto h^{\prime} g^{\prime-1} w(n, 1,2, \ldots, n-1)^{j-i}$ is a graph automorphism sending g to h.

Lemma 2.3 Let $r \leq n-4$. If I is an independent set of $\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)$ of maximal size then $I \cap \Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}, b_{r+1}\right)$ is an independent set of $\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}, b_{r+1}\right)$ of maximal size.

Proof. Applying Lemma 2.2 to $\Gamma_{1}=\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r+1}\right)$ and $\Gamma_{2}=\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)$, we have the inclusions

$$
K_{n} \hookrightarrow \Gamma_{1} \hookrightarrow \Gamma_{2} \hookrightarrow \Gamma\left(A_{n}\right)
$$

so that

$$
\frac{1}{n} \geq \frac{\alpha\left(\Gamma_{1}\right)}{\left|V\left(\Gamma_{1}\right)\right|} \geq \frac{\alpha\left(\Gamma_{2}\right)}{\left|V\left(\Gamma_{2}\right)\right|} \geq \frac{\alpha\left(\Gamma\left(A_{n}\right)\right)}{\left|V\left(\Gamma\left(A_{n}\right)\right)\right|}=\frac{1}{n} .
$$

The result follows from Proposition 1.6.
Lemma 2.4 Let $n \geq 8$ and $r=n-5$. Decompose $A_{n}(1, \ldots, r)$ into $B_{n}(u)=\{g \in$ $\left.A_{n}(1, \ldots, r): g(1+u)=1\right\}, u=0,1, \ldots, n-1$.
Suppose $I \subseteq C_{n}=B_{n}(0) \cup\left(\bigcup_{u=1}^{4} B_{n}(u) \cup B_{n}(n-u)\right)$ is an intersecting family. Then $|I| \leq 60$ with equality if and only if I consists of g such that $g(p)=q$ for some $p, q \in$ $\{1, \ldots, n\}$.

Proof. It is readily checked (by using GAP) that the result holds for $8 \leq n \leq 14$. So let $n \geq 15$ and proceed by induction on n. Suppose n is odd. Let Γ_{1} denote the graph whose vertex-set V_{1} is C_{n-2} such that two vertices are adjacent if and only if they do not intersect. Similarly, Γ_{2} denotes such a graph on $V_{2}=C_{n}$. Define a map $\phi: C_{n-2} \rightarrow C_{n}$ such that if $g \in B_{n-2}(u)$ then

$$
\phi(g)(i)= \begin{cases}g(i)+2 & \text { if } 1 \leq i \leq u \\ 1 & \text { if } i=u+1 \\ 2 & \text { if } i=u+2 \\ g(i-2)+2 & \text { if } u+3 \leq i \leq n\end{cases}
$$

Since ϕ is a graph isomorphism (for $n \geq 15$) which also preserves independent sets of the form $I_{p}^{q} \cap C_{n-2}$, the result holds by induction for odd $n \geq 15$. The case for even n is similar.

Lemma 2.5 Let $n \geq 8$ and $r=n-5$. Suppose $I \subseteq A_{n}\left(b_{1}, \ldots, b_{r}\right)$ is an intersecting family. Then $|I| \leq 60$ with equality if and only if I consists of g such that $g(p)=q$ for some $p, q \in\{1, \ldots, n\}$.

Proof. By (ii) of Lemma 2.2, we assume, without loss of generality, that $A_{n}\left(b_{1}, \ldots, b_{r}\right)=$ $A_{n}(1, \ldots, r)$ and the identity $(1,2, \ldots, n) \in I$. Since every other element of I must intersect the identity element, we deduce that $I \subseteq C_{n}=B_{n}(0) \cup\left(\bigcup_{u=1}^{4} B_{n}(u) \cup B_{n}(n-u)\right)$. The result now follows from Lemma 2.4.

Proof of Theorem 2.1. We shall imitate the proof of Theorem 4.2 in [8] by Larose and Malvenuto. For the argument to work for even permutations, we require a slightly greater degree of freedom, i.e $k=n-r \geq 5$, which is assumed by the theorem. As before, we may assume that $\Gamma\left(A_{n}\right)\left(b_{1}, \ldots, b_{r}\right)=\Gamma\left(A_{n}\right)(1, \ldots, r)$. Recall that $I_{p}^{q}=\left\{g \in A_{n}: g(p)=q\right\}$.

For $r=n-5$, this is Lemma 2.5. Assuming $1 \leq r \leq n-6$, we proceed by induction on $k=n-r$.
Case I. There exists $\beta \notin\{1, \ldots, r\}$ with the property that $I \cap \Gamma\left(A_{n}\right)(1, \ldots, r, \beta)=$ $I_{p}^{q} \cap \Gamma\left(A_{n}\right)(1, \ldots, r, \beta)$ for some $q \notin\{1, \ldots, r, \beta\}$.

Let $g \in I$. Then there exists some u such that $g(i+u)=i$ for all $1 \leq i \leq r$. It is enough to show that $g(p)=q$. Now, construct another permutation $h \in I$ in the following order:
(i) set $h(p)=q$,
(ii) since $n-r \geq 6$, there are at least 5 choices of v such that $p \notin\{1+v, 2+v \ldots,(r+$ $1)+v\}$. Pick one of such v so that $v \neq u$ and $g((r+1)+v) \neq \beta$. Next, define $h(i+v)=i$ for all $1 \leq i \leq r$ and $h((r+1)+v)=\beta$.
(iii) there are at least 4 entries of h which have not yet been defined. Choose the remaining entries of h so that it is even and has no intersections with g in these entries.

Since both $g, h \in I$, we deduce that $g(p)=h(p)=q$.
By the inductive hypothesis and Lemma 2.3, it remains to consider:
Case II. For every $\beta \notin\{1, \ldots, r\}$ there exists p and $q \in\{1, \ldots, r, \beta\}$ such that $I \cap$ $\Gamma\left(A_{n}\right)(1, \ldots, r, \beta)=I_{p}^{q} \cap \Gamma\left(A_{n}\right)(1, \ldots, r, \beta)$.

By permuting and relabeling entries, we may assume that the identity $i d=(1, \ldots, n) \in$ I. Thus, $i d \in I \cap \Gamma\left(A_{n}\right)(1, \ldots, r, r+1)=I_{p}^{q} \cap \Gamma\left(A_{n}\right)(1, \ldots, r, r+1)$. Without loss of generality, we may assume that $p=q=1$ so that I now contains all even permutations which fix $1, \ldots, r, r+1$. We shall prove that $I=I_{1}^{1} \cap \Gamma\left(A_{n}\right)(1, \ldots, r)$. Suppose, for a contradiction, that there exists $g \in I$ such that $g(1) \neq 1$, i.e. $g(i+u)=i, 1 \leq i \leq r$, for some $u \neq 0$. Note that $g((r+1)+u)=\beta \neq r+1$, otherwise $g \in \Gamma\left(A_{n}\right)(1, \ldots, r+1)$, forcing $g \in I_{1}^{1} \cap \Gamma\left(A_{n}\right)(1, \ldots, r+1)$. By induction again, we have

$$
g \in I \cap \Gamma\left(A_{n}\right)(1, \ldots, r, \beta)=I_{p^{\prime}}^{q^{\prime}} \cap \Gamma\left(A_{n}\right)(1, \ldots, r, \beta)
$$

for some $q^{\prime} \in\{1, \ldots, r, \beta\}$. As above, we conclude that I contains all even permutations h such that $h(i+u)=i$ for all $1 \leq i \leq r$ and $h((r+1)+u)=\beta$. If $\beta \neq(r+1)+u$, then we can find such a permutation h which is fixed-point free, contradicting the fact that $i d \in I$. So $\beta=(r+1)+u$. Since now $\beta \notin\{1, \ldots, r, r+1\}$ and $n-r \geq 6$, we can always find an even permutation $w \in I$ which fixes all $1 \leq i \leq r+1$ but does not intersect with h, a contradiction.

3 A special case of Theorem 1.4

In this section we give the proof of a special case of Theorem 1.4, namely when all the n_{i} 's are equal to $n \geq 4$. Throughout, G denotes the direct product of q copies of the symmetric group S_{n} acting on $[n]$.

Theorem 3.1 Let $q \geq 1, n \geq 4$. Suppose I is an intersecting family of maximal size in G. Then

$$
|I|=(n-1)!n!^{q-1}
$$

Moreover, $I=\left\{\left(g_{1}, \ldots, g_{q}\right): g_{i}(x)=y\right\}$ for some $1 \leq i \leq q$ and $x, y \in[n]$.
For our purpose, it is useful to view G as a subgroup of $\operatorname{Sym}(\Omega)$, where $\Omega=\{1, \ldots, q n\}$, which preserves a partition of Ω in the following way: let Σ be the partition of Ω into equalsized subsets $\Omega_{i}=[(i-1) n+1, i n], i=1, \ldots, q$, then G consists of $g \in \operatorname{Sym}(\Omega)$ such that $\Omega_{i}^{g}=\Omega_{i}$ for each i. For example, we identify the identity element $I d=(i d, \ldots, i d) \in G$ with $(1,2, \ldots, q n) \in \operatorname{Sym}(\Omega)$. Therefore, a family $I \subseteq G$ is intersecting if and only if it is an intersecting family of $\operatorname{Sym}(\Omega)$. Moreover, for any $g \in G$ and $I \subseteq G$, we can now define $\operatorname{Fix}(g)=\{x \in \Omega: g(x)=x\}$ and $\operatorname{Fix}(I)=\{\operatorname{Fix}(g): g \in I\}$ by regarding them as permutations of Ω.

For a proof of Theorem 3.1, we shall consider the cases $4 \leq n \leq 5$ and $n \geq 6$ separately. Indeed, when $n=4,5$, the result can be deduced from the following theorem of Alon et al. [3]. Recall that the tensor product of two graphs Γ_{1} and Γ_{2}, denoted by $\Gamma_{1} \times \Gamma_{2}$, is defined as follows: the vertex-set of $\Gamma_{1} \times \Gamma_{2}$ is the Cartesian product of $V\left(\Gamma_{1}\right)$ and $V\left(\Gamma_{2}\right)$ such that two vertices $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ are adjacent in $\Gamma_{1} \times \Gamma_{2}$ if $u_{1} u_{2}$ is an edge of Γ_{1} and $v_{1} v_{2}$ is an edge of Γ_{2}. Let Γ^{q} denote the tensor product of q copies of Γ.

Theorem 3.2 (Theorem 1.4 in [3]) Let Γ be a connected d-regular graph on n vertices and let $d=\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ be its eigenvalues. If

$$
\begin{equation*}
\frac{\alpha(\Gamma)}{n}=\frac{-\mu_{n}}{d-\mu_{n}} \tag{2}
\end{equation*}
$$

then for every integer $q \geq 1$,

$$
\frac{\alpha\left(\Gamma^{q}\right)}{n^{q}}=\frac{-\mu_{n}}{d-\mu_{n}} .
$$

Moreover, if Γ is also non-bipartite, and if I is an independent set of size $\frac{-\mu_{n}}{d-\mu_{n}} n^{q}$ in Γ^{q}, then there exists a coordinate $i \in\{1, \ldots, q\}$ and a maximum-size independent set J in Γ, such that

$$
I=\left\{\left(v_{1}, \ldots, v_{q}\right) \in V\left(\Gamma^{q}\right): v_{i} \in J\right\} .
$$

Theorem 3.3 Theorem 3.1 holds for $n=4,5$.

Proof. Let $n \in\{4,5\}$ and $\Gamma_{n}=\Gamma\left(S_{n}\right)$ be the graph whose vertex-set is S_{n} such that two vertices are adjacent if they do not intersect. It is easy to check that Γ_{n} is non-bipartite, connected and $d(n)$-regular where $d(n)$ is the number of derangements in S_{n}. In particular $d(4)=9$ and $d(5)=44$. Moreover, an independent set in Γ_{n}^{q} is an intersecting family in G. A MAPLE computation shows that the smallest eigenvalue of Γ_{4} and Γ_{5} are -3 and -11 respectively. The result now follows from Theorem 1.1 and Theorem 3.2.

We believe that relation (2) holds for $\Gamma\left(S_{n}\right)$ in general so that Theorem 3.1 follows immediately from Theorem 1.1 and Theorem 3.2. However, it seems difficult to compute the smallest eigenvalue of this graph. We conjecture the following:

Conjecture 1 Let $n \geq 2$. Then the smallest eigenvalue of $\Gamma\left(S_{n}\right)$ is $-\frac{d(n)}{n-1}$.
The rest of the proof of Theorem 3.1 is combinatorial. Our method combines ideas from [4] and an application of the 'No-Homomorphism Lemma'.

3.1 Closure under fixing operation

Let $x \in\{1, \ldots, n\}, g \in S_{n}$. We define the x-fixing of g to be the permutation $\triangleleft_{x} g \in S_{n}$ such that
(i) if $g(x)=x$, then $\triangleleft_{x} g=g$,
(ii) if $g(x) \neq x$, then

$$
\triangleleft_{x} g(y)= \begin{cases}x & \text { if } y=x \\ g(x) & \text { if } y=g^{-1}(x) \\ g(y) & \text { otherwise } .\end{cases}
$$

Note that we can apply the fixing operation to an element $g \in G$ by regarding g as an element of $\operatorname{Sym}(\Omega)$. We also say that a family $I \subseteq S_{n}$ is closed under the fixing operation if

$$
\text { for every } x \in\{1, \ldots, n\} \text { and } g \in I \text {, we have } \triangleleft_{x} g \in I \text {. }
$$

Let $D_{S_{n}}(g)=\left\{w \in S_{n}: w(i) \neq g(i) \quad \forall i=1, \ldots, n\right\}$. The authors of [4] proved the following:

Lemma 3.4 (Proposition 6 in [4]) Let $n \geq 2 k$. Then, for any $g_{1}, g_{2}, \ldots . ., g_{k} \in S_{n}$, we have $D_{S_{n}}\left(g_{1}\right) \cap D_{S_{n}}\left(g_{2}\right) \cap \ldots . \cap D_{S_{n}}\left(g_{k}\right) \neq \emptyset$.

Lemma 3.5 (Theorem 8 in [4]) Let $n \geq 6$ and $I \subseteq S_{n}$ be an intersecting family of maximal size such that the identity element $i d \in I$. Then I is closed under the fixing operation.

Lemma 3.6 (Theorem 10 in [4]) Let $S \subseteq S_{n}$ be an intersecting family of permutations which is closed under the fixing operation. Then $\operatorname{Fix}(S)$ is an intersecting family of subsets.

The proof of Lemma 3.5 given in [4] can be easily modified to yield a similar result for G. For the convenience of the reader, we include the proof below.

Proposition 3.7 Let $n \geq 6$ and $I \subseteq G$ be an intersecting family of maximal size such that $I d \in I, q \geq 1$. Then I is closed under the fixing operation.
Proof. Let \mathcal{L} denote the set of all n-subsets L of $\operatorname{Sym}(\Omega)$ such that for each i, the elements of L restricted to Ω_{i} form the rows of a Latin square of order n. Clearly, $\mathcal{L} \neq \emptyset$. By Proposition 1.5, for every $L \in \mathcal{L}$,

$$
\begin{equation*}
|L \cap I|=1 \tag{3}
\end{equation*}
$$

Assume, for a contradiction, that I is not closed under the fixing operation. Then there exists $g \in I$ such that $g(x) \neq x$ and $\triangleleft_{x} g \notin I$ for some $i \in\{1, \ldots, q\}, x \in \Omega_{i}$. Without loss of generality, we may assume that $i=x=1$ (so $\triangleleft_{1} g \notin I$) and consider the following cases:
Case I. $g(1)=2$ and $g(2)=1$.
Let $\Omega_{1}^{*}=\Omega_{1} \backslash\{1,2\}$. Consider the identity element Id restricted to Ω_{1}^{*}, denoted by $I d^{*}=\left.I d\right|_{\Omega_{*}^{*}}$, and the permutation g restricted to Ω_{1}^{*}, denoted by $g^{*}=\left.g\right|_{\Omega_{*}^{*}}$, which belong to $\operatorname{Sym}\left(\Omega_{1}^{*}\right)=G^{*}$. By Lemma 3.4, there exists $h^{*} \in D_{G^{*}}\left(I d^{*}\right) \cap D_{G^{*}}\left(g^{*}\right)$. Construct a new permutation $h^{\prime} \in G^{*}$ as follows:

$$
h^{\prime}(y)= \begin{cases}h^{*}(y) & \text { if } y \in \Omega_{1}^{*} \\ 2 & \text { if } y=1 \\ 1 & \text { if } y=2\end{cases}
$$

Applying Lemma 3.4 to each block Ω_{i} for $i=2, \ldots, q$, we find a permutation $h^{\prime \prime} \in$ $D_{G^{\prime \prime}}\left(I d^{\prime \prime}\right) \cap D_{G^{\prime \prime}}\left(g^{\prime \prime}\right)$ where $I d^{\prime \prime}=\left.I d\right|_{\Omega_{2} \cup \ldots \cup \Omega_{q}}$ and $g^{\prime \prime}=\left.g\right|_{\Omega_{2} \cup \ldots \cup \Omega_{q}}, G^{\prime \prime}=\operatorname{Sym}\left(\Omega_{2} \cup \cdots \cup \Omega_{q}\right)$. Now, define $h \in G$ by

$$
h(y)= \begin{cases}h^{\prime}(y) & \text { if } y \in \Omega_{1} \\ h^{\prime \prime}(y) & \text { otherwise }\end{cases}
$$

Then $\triangleleft_{1} g$ and h form a Latin rectangle of order $2 \times q n$ which can now be completed to an element $L \in \mathcal{L}$ (since every Latin rectangle of order $2 \times n$ on Ω_{i} can be completed to a Latin square of order n on Ω_{i}). It is readily checked that no rows of L can lie in I, contradicting (3).
Case II. $g(1)=2$ and $g(3)=1$.
Let $\Omega_{1}^{*}, I d^{*}, G^{*}$ and $h^{\prime \prime}$ be defined as above. Now define $g^{*} \in G^{*}$ by

$$
g^{*}(y)= \begin{cases}g(y) & \text { if } y \in \Omega_{1}^{*} \backslash\{3\}, \\ g(2) & \text { if } y=3 .\end{cases}
$$

By Lemma 3.4, there is a permutation $h^{*} \in D_{G^{*}}\left(I d^{*}\right) \cap D_{G^{*}}\left(g^{*}\right)$.
Construct $h^{\prime} \in \operatorname{Sym}\left(\Omega_{1}\right)$ as follows:

$$
h^{\prime}(y)= \begin{cases}2 & \text { if } y=1 \\ h^{*}(3) & \text { if } y=2 \\ 1 & \text { if } y=3 \\ h^{*}(y) & \text { otherwise }\end{cases}
$$

Again, defining $h \in G$ as above yields a contradiction.
It now follows immediately from Lemma 3.6 that

Proposition 3.8 Let $q \geq 1, n \geq 6$ and $I \subseteq G$ be an intersecting family of maximal size such that $I d \in I$. Then $\operatorname{Fix}(I)$ is an intersecting family of subsets of Ω.

3.2 Proof of Theorem 3.1

By Theorem 3.3, we may assume that $n \geq 6$. For $1 \leq i \leq n$, define $c_{(\rightarrow i)}, c_{(\leftarrow i)} \in S_{n}$ by:

$$
\begin{aligned}
& c_{(\rightarrow i)}(j)=n-i+j, 1 \leq j \leq n \\
& c_{(\leftarrow i)}(j)=i+j, 1 \leq j \leq n
\end{aligned}
$$

where the right hand side is in modulo n and 0 is written as n. In fact, we have already seen such cyclic permutations in Section 2, namely $c_{(\rightarrow 1)}=(n, 1,2, \ldots, n-1), c_{(\rightarrow i)}=c_{(\rightarrow 1)}^{i}$ for all $1 \leq i \leq n$, and $c_{(\rightarrow n)}$ is the identity. Observe that by right multiplication, $c_{(\rightarrow i)}$ acts on S_{n} by cyclicly (modulo n) moving each entry of g in i number of steps to the right. For example, if $g=(1,3,4,2,5)$, then $g c_{(\rightarrow 2)}=(2,5,1,3,4)$.

We proceed with induction on q. Let Γ^{\prime} and Γ be the graphs formed on the vertex sets $G^{\prime}=\operatorname{Sym}\left(\Omega_{1}\right) \times \cdots \times \operatorname{Sym}\left(\Omega_{q-1}\right)$ and $G=\operatorname{Sym}\left(\Omega_{1}\right) \times \cdots \times \operatorname{Sym}\left(\Omega_{q}\right)$ respectively such that two vertices are adjacent if and only if none of their entries agree. Clearly,

$$
\begin{align*}
\phi_{*}: & V\left(\Gamma^{\prime}\right) \rightarrow V(\Gamma), \\
& \left(g_{1}, \ldots, g_{q-1}\right) \mapsto\left(g_{1}, \ldots, g_{q-1}, g_{1}\right), \tag{4}
\end{align*}
$$

defines a homomorphism from Γ^{\prime} to Γ.
As before, let \mathcal{L} denote the set of all n-subsets L of $\operatorname{Sym}(\Omega)$ such that for each i, the elements of L restricted to Ω_{i} form a Latin square of order n. By Proposition 1.5, I has the right size. Also, $\frac{\alpha\left(\Gamma^{\prime}\right)}{\left|V\left(\Gamma^{\prime}\right)\right|}=\frac{\alpha(\Gamma)}{|V(\Gamma)|}$.

Now, Proposition 1.6 implies that $\phi_{*}^{-1}(I)$ is an independent set of maximal size in Γ^{\prime}. Without loss of generality, we may assume that the identity $I d=(i d, \ldots, i d) \in I$ so that, by the inductive hypothesis, we only need to consider the following cases:
Case I. $\quad \phi_{*}^{-1}(I)=\left\{\left(g_{1}, \ldots, g_{q-1}\right) \in G^{\prime}: g_{u}(z)=z\right\}=J_{z}^{z}$, for some $u \neq 1, z \in \Omega_{u}$.
Let $\Phi_{1}=\phi_{*}\left(J_{z}^{z}\right)=\left\{\left(g_{1}, \ldots, g_{q-1}, g_{1}\right) \in G: g_{u}(z)=z\right\} \subseteq I$. Clearly we can find a permutation $g_{u} \in \operatorname{Sym}\left(\Omega_{u}\right)$ with $g_{u}(z)=z$ such that $g_{u}(x) \neq x$ for all $x \neq z$. Moreover, for $i \neq u$, we can choose $g_{i} \in \operatorname{Sym}\left(\Omega_{i}\right)$ such that it has no fixed points. Therefore our choice of the permutation $g=\left(g_{1}, \ldots, g_{q-1}, g_{1}\right) \in \Phi_{1}$ fixes a unique point, namely z. It follows from Proposition 3.8 that all permutations in I must fix z.
Case II. $\phi_{*}^{-1}(I)=\left\{\left(g_{1}, \ldots, g_{q-1}\right) \in G^{\prime}: g_{1}(1)=1\right\}=J_{1}^{1}$.
As above, let $\Phi_{1}=\phi_{*}\left(J_{1}^{1}\right)=\left\{\left(g_{1}, \ldots, g_{q-1}, g_{1}\right) \in G: g_{1}(1)=1\right\} \subseteq I$. We define another homomorphism from Γ^{\prime} to Γ as follows:

$$
\begin{align*}
\phi_{* *}: & V\left(\Gamma^{\prime}\right) \rightarrow V(\Gamma) \\
& \left(g_{1}, \ldots, g_{q-1}\right) \mapsto\left(g_{1}, \ldots, g_{q-1}, g_{1} c_{(\rightarrow 1)}\right) . \tag{5}
\end{align*}
$$

By induction, there exists $i \in\{1, \ldots, q-1\}$ such that

$$
\phi_{* *}^{-1}(I)=\left\{\left(g_{1}, \ldots, g_{q-1}\right) \in G^{\prime}: g_{i}(u)=v\right\}=J_{u}^{v}
$$

for some $u, v \in \Omega_{i}$. Let

$$
\Phi_{2}=\phi_{* *}\left(J_{u}^{v}\right) \subseteq I
$$

Suppose that $i \neq 1$. Then it is easy to see that there exist permutations $g \in \Phi_{1}$, $h \in \Phi_{2}$ such that $\operatorname{Fix}\left(g^{-1} h\right)=\emptyset$, that is they do not intersect, thus contradicting the intersection property of I. Therefore it suffices to consider the following cases where u, $v \in \Omega_{1}$.
Subcase i. $\quad u \neq 1, v=1$.
Assume for a moment that $u \neq n$. Let $g=\left(g_{1}, \ldots, g_{q-1}, g_{1}\right) \in \Phi_{1}$ where $g_{1}=\left(1, a_{2}\right.$, $\left.\cdots, a_{u}, \cdots, a_{n}\right) \in \operatorname{Sym}\left(\Omega_{1}\right)$. Then there exists a permutation $h=\left(h_{1}, \ldots, h_{q-1}, h_{1} c_{(\rightarrow 1)}\right) \in$ G where $h_{1}=g_{1} c_{(\rightarrow u-1)}$ and $\operatorname{Fix}\left(g_{j}^{-1} h_{j}\right)=\emptyset$ for all $j=2, \ldots, q-1$. Obviously, $h \in \Phi_{2} \subseteq I$ and $\operatorname{Fix}\left(g_{1}^{-1} h_{1}\right)=\operatorname{Fix}\left(g_{1}^{-1} h_{1} c_{(\rightarrow 1)}\right)=\emptyset$. Hence $\operatorname{Fix}\left(g^{-1} h\right)=\emptyset$, which is a contradiction. So $u=n$.

Choose $h=\left(h_{1}, \ldots, h_{q-1}, h_{1} c_{(\rightarrow 1)}\right) \in \Phi_{2}$ such that $h_{1}=(n-1, n, 2,3, \cdots, n-2,1)$ and $\operatorname{Fix}\left(i d_{j}^{-1} h_{j}\right)=\emptyset$ for all $j=2, \ldots, q-1\left(i d_{j}\right.$ denotes the identity in $\left.\operatorname{Sym}\left(\Omega_{j}\right)\right)$. Moreover $h_{1} c_{(\rightarrow 1)}$ fixes exactly one point since $n>3$. Hence $|\operatorname{Fix}(h)|=1$ and so by Proposition 3.8, all permutations in I must fix a common point.

Subcase ii. $u=v=1$.
Choose $h=\left(h_{1}, \ldots, h_{q-1}, h_{1} c_{(\rightarrow 1)}\right) \in \Phi_{2}$ such that $h_{1}=(1, n, 2,3, \cdots, n-1)$ and $\operatorname{Fix}\left(i d_{j}^{-1} h_{j}\right)=\emptyset$. Clearly h fixes exactly one point and so we are done as before.
Subcase iii. $\quad u \neq 2, v \neq 1$.
Take any permutation $h_{1} \in S_{n}$ with $h_{1}(2)=1$ and $h_{1}(u)=v$, say $h_{1}=\left(a_{1}, 1, a_{3}, \cdots\right.$, $\left.a_{u-1}, v, a_{u+1}, \cdots, a_{n}\right)$. Let $g_{1}=h_{1} c_{(\leftarrow 1)}=\left(1, a_{3}, \cdots, a_{u-1}, v, a_{u+1}, \cdots, a_{n}, a_{1}\right)$ so that $g=\left(g_{1}, g_{1}, \ldots, g_{1}\right) \in \Phi_{1} \subseteq I$ and $h=\left(h_{1}, \ldots, h_{1}, h_{1} c_{(\rightarrow 1)}\right) \in \Phi_{2} \subseteq I$. But it is easy to see that both g and h cannot agree in any entry, which is a contradiction.
Subcase iv. $\quad u=2, v \neq 1$.
Choose $h_{1}=\left(a_{1}, v, 1, a_{4}, a_{5}, \cdots, a_{n}\right) \in S_{n}$. Let $g_{1}=h_{1} c_{(\leftarrow 2)}=\left(1, a_{4}, a_{5}, \cdots, a_{n}, a_{1}, v\right)$ so that $g=\left(g_{1}, \ldots, g_{1}\right) \in \Phi_{1} \subseteq I$ and $h=\left(h_{1}, \ldots, h_{1}, h_{1} c_{(\rightarrow 1)}\right) \in \Phi_{2} \subseteq I$. Again, both g and h do not intersect, which is a contradiction.

This concludes the proof.

4 Intersecting families in the direct product of symmetric groups

Let S_{m} and S_{n} denote the symmetric groups acting on the symbol-set $\Omega_{1}=\{1,2, \ldots, m\}$ and $\Omega_{2}=\{1,2, \ldots, n\}$ respectively. The group $S_{m} \times S_{n}$ consists of ordered pairs (g, h) where $g \in S_{m}, h \in S_{n}$. Recall that a family $I \subseteq S_{m} \times S_{n}$ is intersecting if, for any $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in I$, either $\left\{x: g_{1}(x)=g_{2}(x)\right\} \neq \emptyset$ or $\left\{x: h_{1}(x)=h_{2}(x)\right\} \neq \emptyset$.
Proof of Theorem 1.3 Let Γ denote the graph whose vertex-set is $S_{m} \times S_{n}$ such that two vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent if and only if $\left\{x: g_{1}(x)=g_{2}(x)\right\}=\emptyset$ and $\left\{x: h_{1}(x)=h_{2}(x)\right\}=\emptyset$. Clearly, Γ is vertex-transitive. As before, to obtain the upper
bound of $|I|$, it is enough to show that there exists a clique of size m. Indeed, this is given by a Latin square of order m on Ω_{1} and a Latin rectangle of order $m \times n$ on Ω_{2}.

For a proof of the characterization, we first form $(m-1)$! Latin squares $L^{1}, \ldots, L^{(m-1)}$! on the symbol-set Ω_{1} as follows: for each $g \in\left\{g \in S_{m}: g(1)=1\right\}$ in the point stabilizer of 1 , form a Latin square whose rows consist of g and all its cyclic shifts. Clearly, these Latin squares partition S_{m}.

For each L^{l}, denote the i-th row by r_{i}^{l}. Let $T_{i}^{l}=\left\{h \in S_{n}:\left(r_{i}^{l}, h\right) \in I\right\}$. Further, decompose T_{i}^{l} into $T_{i 1}^{l}, \ldots, T_{i n}^{l}$ where $T_{i j}^{l}=\left\{h \in T_{i}^{l}: h(j)=1\right\}$. Now, consider the following cases:
Case I. There exist $k, \alpha_{1} \neq \alpha_{2}, \beta_{1} \neq \beta_{2}$ such that $T_{\alpha_{1} \beta_{1}}^{k} \neq \emptyset$ and $T_{\alpha_{2} \beta_{2}}^{k} \neq \emptyset$.
Suppose $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=\Omega_{1}$. Choose pairwise distinct elements $\beta_{1}, \ldots, \beta_{m} \in \Omega_{2}$. Consider the sets $U_{j}^{l}=\bigcup_{i=1}^{m} T_{\alpha_{i}\left(\beta_{i}+j\right)}^{l}, 0 \leq j \leq n-1$, where $\beta_{i}+j$ is in modulo n. Then

$$
\begin{equation*}
(m-1)!n!=|I|=\sum_{l=1}^{(m-1)!} \sum_{j=0}^{n-1}\left|U_{j}^{l}\right| \tag{6}
\end{equation*}
$$

Since U_{j}^{l} is intersecting, we have $\left|U_{j}^{l}\right| \leq(n-1)$!. In fact, it follows from (6) that $\left|U_{j}^{l}\right|=$ $(n-1)$! so that U_{j}^{l} must be a coset of a point stabilizer for every $0 \leq j \leq n-1$ and $1 \leq l \leq(m-1)$! (by Theorem 1.1).

Suppose $m<n-1$. Since 1 appears in at least two (e.g. the $\beta_{1^{-}}$and β_{2}-entry) but in at most $m \leq n-2$ different entries in U_{0}^{k}, we deduce that it cannot be a coset of a point stabilizer. Suppose $m=n-1$. Then $U_{0}^{k}=\left\{h \in S_{n}: h\left(\beta_{n}\right)=\gamma\right\}$ for some $\beta_{n}, \gamma \in \Omega_{2}$ where $\beta_{n}=\Omega_{2} \backslash\left\{\beta_{1}, \ldots, \beta_{n-1}\right\}$ and $\gamma \neq 1$. Moreover, since $m=n-1>2$, we must have $T_{\alpha_{n-1} \beta_{n}}^{k}=\emptyset$ in order to preserve intersection with elements in U_{0}^{k} (note that this conclusion is not true if $(m, n)=(2,3))$. Replacing our choice of β_{n-1} by β_{n}, the symbol 1 now appears in exactly $n-2$ different entries in the new U_{0}^{k} so that it cannot be a coset of a point stabilizer, a contradiction.

So, we may assume that $m=n$. It is readily checked that the result holds for $n=2$. For $n \geq 4$, the result follows from Theorem 3.1.
Case II. For all k, there exist α_{k}, β_{k} such that $T_{\alpha_{k} \beta_{k}}^{k} \neq \emptyset$ and $T_{i j}^{k}=\emptyset$ for all $i \neq \alpha_{k}$.
If $T_{\alpha_{k}}^{k} \neq S_{n}$ for some k then $|I|<(m-1)!n!$, which is a contradiction. So $T_{\alpha_{k}}^{k}=S_{n}$ for all k. In order to preserve intersection, the maximality of I (by Theorem 1.1) implies that $I=\{(g, h): g(x)=y\}$ for some $x, y \in \Omega_{1}$.
Case III. For all k, there exist α_{k}, β_{k} such that $T_{\alpha_{k} \beta_{k}}^{k} \neq \emptyset$ and $T_{i j}^{k}=\emptyset$ for all $j \neq \beta_{k}$.
If $T_{i \beta_{k}}^{k}$ is not a coset of the stabilizer of 1 in S_{n} for some i, k, then $|I|<(m-1)!m(n-$ $1)!\leq(m-1)!n!$, contradicting the maximality of I. So $|I|=(m-1)!m(n-1)$!. Again, the maximality of I implies that $m=n$ and so I has the required shape as above.
Proof of Theorem 1.4 As before, the upper bound of $|I|$ is given by the existence of Latin squares of order n_{1} and Latin rectangles of order $n_{1} \times n_{i}$ for all $n_{1}<n_{i}$. It remains to consider the case of equality with the following possibilities:
P1. $4 \leq n_{1} \leq \cdots \leq n_{q}$;
P2. $3=n_{1}<n_{2} \leq \cdots \leq n_{q}$;
P3. $2=n_{1}<n_{2} \leq \cdots \leq n_{q}$ with $4 \leq n_{2}$;

P4. $2=n_{1}=n_{2}<n_{3} \leq \cdots \leq n_{q}$ with $4 \leq n_{3}$.
By Theorem 3.1, we may assume that $2 \leq n_{1}=\cdots=n_{p}<n_{p+1} \leq \cdots \leq n_{q}$ for some $1 \leq p<q$ subject to the above possibilities. Set $m=n_{1}=\cdots=n_{p}$ and $n=n_{p+1}$ so that $m<n$. For each $1 \leq i \leq p$, we first partition $S_{n_{i}}$ into $(m-1)$! Latin squares $L^{i l}$, $1 \leq l \leq(m-1)$!, whose rows are $r_{1}^{i l}, \ldots, r_{m}^{i l}$. Next, for every choice of $\tilde{l}=\left(l_{1}, \ldots, l_{p}\right)$ where $1 \leq l_{1}, \ldots, l_{p} \leq(m-1)$!, construct m^{p-1} Latin rectangles as follows: fix π to be the cyclic permutation $(m, 1,2, \ldots, m-1)$, then for every choice of $\tilde{j}=\left(j_{2}, j_{3}, \ldots, j_{p}\right)$ where $0 \leq j_{2}, \ldots, j_{p} \leq m-1$, construct a Latin rectangle whose rows consist of the following permutations from $S_{n_{1}} \times \cdots \times S_{n_{p}}$:

$$
\begin{gathered}
\left(r_{1}^{1 l_{1}}, r_{\pi^{j_{2}}(1)}^{2 l_{2}}, \ldots, r_{\pi^{j_{p}}(1)}^{p l_{p}}\right) \\
\left(r_{2}^{1 l_{1}}, r_{\pi^{j_{2}}(2)}^{2 l_{2}}, \ldots, r_{\pi^{j_{p}}(2)}^{p l_{2}}\right) \\
\vdots \\
\left(r_{m}^{1 l_{1}}, r_{\pi^{j_{2}}(m)}^{2 l_{2}}, \ldots, r_{\pi^{j_{p}}(m)}^{p l_{p}}\right) .
\end{gathered}
$$

Denote this Latin rectangle by $L(\tilde{l}, \tilde{j})$ and its i-th row by $r_{i}(\tilde{l}, \tilde{j})=\left(r_{i}^{1 l_{1}}, r_{\pi^{j_{2}}(i)}^{2 l_{2}}, \ldots, r_{\pi^{j_{p}}(i)}^{p l_{p}}\right)$. Observe that these Latin rectangles partition $S_{n_{1}} \times \cdots \times S_{n_{p}}$ and there are $(m-1)!^{p} m^{p-1}=$ $(m-1)!m!^{p-1}$ such Latin rectangles. Now, for each row $r_{i}(\tilde{l}, \tilde{j})$, define

$$
T\left(r_{i}(\tilde{l}, \tilde{j})\right)=\left\{\left(h_{p+1}, \ldots, h_{q}\right) \in S_{n_{p+1}} \times \cdots S_{n_{q}}:\left(r_{i}^{1 l_{1}}, r_{\pi^{j_{2}}(i)}^{2 l_{2}}, \ldots, r_{\pi^{j_{p}}(i)}^{p l_{p}}, h_{p+1}, \ldots, h_{q}\right) \in I\right\} .
$$

Further, partition $T\left(r_{i}(\tilde{l}, \tilde{j})\right)$ into

$$
T\left(r_{i}(\tilde{l}, \tilde{j})\right)_{j}=\left\{\left(h_{p+1}, \ldots, h_{q}\right) \in T\left(r_{i}(\tilde{l}, \tilde{j})\right): h_{p+1}(j)=1\right\}, \quad 1 \leq j \leq n
$$

We shall prove the theorem by induction on $q \geq 2$. The base case $q=2$ is the statement of Theorem 1.3. By the inductive hypothesis, we may assume that the result is true for $S_{n_{p+1}} \times \cdots \times S_{n_{q}}$ where $4 \leq n_{p+1}=\cdots=n_{r}<n_{r+1} \leq \cdots \leq n_{q}$ for some $p+1 \leq r \leq q$. We proceed by considering the following cases:
Case $\overline{\mathbf{I}}$. There exist $\tilde{l}, \tilde{j}, u \neq u^{\prime}, v \neq v^{\prime}$ such that $T\left(r_{u}(\tilde{l}, \tilde{j})\right)_{v} \neq \emptyset$ and $T\left(r_{u^{\prime}}(\tilde{l}, \tilde{j})\right)_{v^{\prime}} \neq \emptyset$.
Suppose $\left\{u_{1}=u, u_{2}=u^{\prime}, u_{3}, \ldots, u_{m}\right\}=\{1, \ldots, m\}$. Choose m pairwise distinct elements $v_{1}=v, v_{2}=v^{\prime}, v_{3}, \ldots, v_{m}$ from $\Omega_{p+1}=\{1, \ldots, n\}$. Consider the sets

$$
U_{w}^{(\tilde{l} \tilde{j})}=\bigcup_{i=1}^{m} T\left(r_{u_{i}}(\tilde{l}, \tilde{j})\right)_{v_{i}+w}, \quad 0 \leq w \leq n-1,
$$

where $v_{i}+w$ is in modulo n. Then

$$
\begin{equation*}
(m-1)!m!^{p-1} \prod_{i=p+1}^{q} n_{i}!=|I|=\sum_{(\tilde{l}, \tilde{j})} \sum_{w=0}^{n-1}\left|U_{w}^{(\tilde{l} \tilde{j})}\right| . \tag{7}
\end{equation*}
$$

Since $U_{w}^{(\tilde{l}, \tilde{j})}$ is intersecting, it follows from (7) that $\left|U_{w}^{(\tilde{l} \tilde{j})}\right|=(n-1)!\prod_{i=p+2}^{q} n_{i}$! so that, by the inductive hypothesis, each $U_{w}^{(\tilde{l} \tilde{,})}$ has the form $\left\{\left(h_{p+1}, \ldots, h_{q}\right) \in S_{n_{p+1}} \times \cdots \times S_{n_{q}}\right.$: $\left.h_{s}(x)=y\right\}$ for some $p+1 \leq s \leq r, x, y \in \Omega_{s}$.

Suppose $m<n-1$ (this covers the possibilities P3 and P4). Since 1 appears in at least two (e.g. the v_{1} - and v_{2}-entry) but in at most $m \leq n-2$ different entries in the $S_{n_{p+1}}$-coordinate of elements in $U_{0}^{(\tilde{l}, \tilde{j})}$, it cannot be a coset of a point stabilizer. So $m=n-1>2$ (since the possibilities $\mathbf{P} 3$ and $\mathbf{P} 4$ are now excluded). Since 1 appears in exactly $n-1$ different entries in the $S_{n_{p+1}}$-coordinate of elements in $U_{0}^{(\tilde{l}, \tilde{j})}$, we deduce that $U_{0}^{(\tilde{l}, \tilde{j})}=\left\{\left(h_{p+1}, \ldots, h_{q}\right) \in S_{n_{p+1}} \times \cdots \times S_{n_{q}}: h_{p+1}\left(v_{n}\right)=z\right\}$ for some $v_{n}=\Omega_{p+1} \backslash\left\{v_{1}, \ldots, v_{n-1}\right\}$ and $z \neq 1$. Moreover, since $m=n-1>2$, we must have $T\left(r_{u_{n-1}}(\tilde{l}, \tilde{j})\right)_{v_{n}}=\emptyset$ in order to preserve intersection with elements in $U_{0}^{(\tilde{l}, \tilde{j})}$. Replacing our choice of v_{n-1} by v_{n}, the symbol 1 now appears in exactly $n-2$ different entries in the $S_{n_{p+1}}$-coordinate of elements in the new $U_{0}^{(\tilde{l}, \tilde{j})}$ so that it cannot be a coset of a point stabilizer, a contradiction.
Case II. For all \tilde{l}, \tilde{j}, there exist u, v such that $T\left(r_{u}(\tilde{l}, \tilde{j})\right)_{v} \neq \emptyset$ and $T\left(r_{u^{\prime}}(\tilde{l}, \tilde{j})\right)_{v^{\prime}}=\emptyset$ for all $u^{\prime} \neq u$.

If $T\left(r_{u}(\tilde{l}, \tilde{j})\right)_{v} \neq S_{n_{p+1}} \times \cdots \times S_{n_{q}}$ for some (\tilde{l}, \tilde{j}), then $|I|<(m-1)!m!^{p-1} \prod_{i=p+1}^{q} n_{i}!$, which is a contradiction. So $T\left(r_{u}(\tilde{l}, \tilde{j})\right)_{v}=S_{n_{p+1}} \times \cdots \times S_{n_{q}}$ for all (\tilde{l}, \tilde{j}). In order to preserve intersection, the maximality of I (using Theorem 3.1 if $\mathbf{P} 1$ occurs or Theorem 1.1 if P2 or P3 occurs or Theorem 1.3 if $\mathbf{P} 4$ occurs) implies that $I=\left\{\left(h_{1}, \ldots, h_{q}\right): h_{i}(x)=y\right\}$ for some $i \in\{1, \ldots, p\}, x, y \in \Omega_{i}$.
Case III. For all \tilde{l}, \tilde{j}, there exist u, v such that $T\left(r_{u}(\tilde{l}, \tilde{j})\right)_{v} \neq \emptyset$ and $T\left(r_{u^{\prime}}(\tilde{l}, \tilde{j})\right)_{v^{\prime}}=\emptyset$ for all $v^{\prime} \neq v$.

If $T\left(r_{u^{\prime}}(\tilde{l}, \tilde{j})\right)_{v} \neq\left\{\left(h_{p+1}, \ldots, h_{q}\right): h_{p+1}(v)=1\right\}$ for some u^{\prime} and (\tilde{l}, \tilde{j}), then $|I|<$ $(m-1)!m!^{p-1} \cdot m \cdot(n-1)!\cdot \prod_{i=p+2}^{q} n_{i}!$, contradicting the maximality of I. So $|I|=$ $(m-1)!m!^{p-1} \cdot m \cdot(n-1)!\cdot \prod_{i=p+2}^{q} n_{i}!$. Again, the maximality of I implies that $m=n$, a contradiction.

References

[1] R. Ahlswede, H. Aydinian and L. H. Khachatrian, The intersection theorem for direct products, European Journal of Combinatorics 19 (1998), 649-661.
[2] M. O. Albertson and K. L. Collins, Homomorphisms of 3-chromatic graphs, Discrete Math. 54 (1985), 127-132.
[3] N. Alon, I. Dinur, E. Friedgut and B. Sudakov, Graph products, fourier analysis and spectral techniques, Geomatric And Functional Analysis 14 (2004) 913-940.
[4] P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European Journal of Combinatorics 24 (2003), 881-890.
[5] M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, Journal of Combinatorial Theory Ser A 22 (1977), 352-360.
[6] P. Frankl, An Erdős-Ko-Rado theorem for direct products, European Journal of Combinatorics 17 (1996), 727-730.
[7] The GAP Group (2002), GAP-Groups, Algorithms and Programming, Aachen, St Andrews, Available from: http://www-gap.dcs.st-and.ac.uk/ gap.
[8] B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European Journal of Combinatorics 25 (2004), 657-673.
[9] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, Journal of Graph Theory 40 Issue 3 (2002), 162-171.

