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Abstract

All GL(n) covariant star-body-valued valuations on convex polytopes are com-
pletely classified. It is shown that there is a unique non-trivial such valuation. This
valuation turns out to be the so called ‘intersection operator’– an operator that
played a critical role in the solution of the Busemann-Petty problem.

2000 AMS subject classification: 52A20 (52B11, 52B45)

A function Z defined on the set K of convex bodies (that is, of convex compact sets)
in Rn or on a certain subset C of K and taking values in an abelian semigroup is called
a valuation if

ZK + ZL = Z(K ∪ L) + Z(K ∩ L),

whenever K,L,K ∪ L,K ∩ L ∈ C. Real valued valuations are classical and Blaschke
obtained the first classification of such valuations that are SL(n) invariant in the 1930s.
This was greatly extended by Hadwiger in his famous classification of continuous, rigid
motion invariant valuations and characterization of elementary mixed volumes. See [13],
[17], [32], [33] for information on the classical theory and [1]–[4], [15], [16], [25], [26], [28]
for some of the more recent results.

In [24], [27], a classification of convex-body-valued valuations Z : P → K was obtained
where P is the set of convex polytopes in Rn containing the origin and addition in K is
Minkowski addition of convex bodies (defined by K + L = {x + y : x ∈ K, y ∈ L}). A
valuation Z is called GL(n) covariant, if there exists a q ∈ R such that for all φ ∈ GL(n)
and all bodies K,

Z(φK) = |detφ|q φZK,

where detφ is the determinant of φ. It is called GL(n) contravariant, if there exists a
q ∈ R such that φ ∈ GL(n) and all bodies K

Z(φK) = |detφ|q φ−t ZK,

where φ−t is the transpose of the inverse of φ. Since each body K ∈ K is determined by
its support function, h(K, ·) : Sn−1 → R, where h(K,u) = max{u · x : x ∈ K} and where
u · x denotes the standard inner product of u and x, these valuations can be defined
via support functions. For n > 2, the classification theorems [27] are the following. An
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operator Z : P → K is a GL(n) contravariant valuation if and only if there is a constant
c ≥ 0 such that

ZP = cΠP

for every P ∈ P. Here ΠP is the projection body of P , that is, h(ΠP, u) = vol(P |u⊥)
for u ∈ Sn−1, where vol is the (n−1)-dimensional volume, u⊥ is the subspace orthogonal
to u, and P |u⊥ is the image of the orthogonal projection of P onto u⊥. An operator
Z : P → K is a non-trivial GL(n) covariant valuation if and only if there are constants
c0 ∈ R and c1 ≥ 0 such that

ZP = c0m(P ) + c1 MP

for every P ∈ P. Here an operator is called trivial, if it is a linear combination of the
identity and central reflection, while m(P ) is the moment vector and MP is the moment
body of P , defined by,

m(P ) =
∫

P
x dx and h(MP, u) =

∫
P
|x · u| dx,

for u ∈ Sn−1.
These results establish a classification of GL(n) covariant and contravariant valuations

within the Brunn-Minkowski theory. In this paper we ask the corresponding question in
the dual Brunn-Minkowski theory. In the dual theory convex bodies are replaced by star
bodies and Minkowski addition of convex bodies is replaced by radial addition of star
bodies (see next section for definitions). The natural question to ask is for a classification
of star-body-valued valuations.

Let S denote the set of star bodies in Rn, where a set K ⊂ Rn is a star body, if it
is sharshaped with respect to the origin and has a continuous radial function ρ(K, ·) :
Sn−1 → R (defined by ρ(K,u)u ∈ ∂K). Let P0 denote the set of convex polytopes in
Rn that contain the origin in their interiors and let P ∗ = {x ∈ Rn : x · y ≤ 1 for every
y ∈ P} denote the polar body of P ∈ P0.

Theorem. An operator Z : P0 → S is a non-trivial GL(n) covariant valuation if and
only if there is a constant c ≥ 0 such that

ZP = c IP ∗

for every P ∈ P0.

Here IP ∗ is the intersection body of P ∗ ∈ P0, that is, the star body whose radial function
is given for u ∈ Sn−1 by

ρ(IP ∗, u) = vol(P ∗ ∩ u⊥).

In recent years, these intersections bodies have attracted increased interest within differ-
ent subjects. They first appear in Busemann’s [5] theory of area in Finsler spaces and
were first explicitly defined and named by Lutwak [29]. Intersection bodies turned out
to be critical for the solution of the Busemann-Petty problem: If the central hyperplane
sections of an origin-symmetric convex body in Rn are always smaller in volume than
those of another such body, is its volume also smaller? Lutwak [29] showed that the an-
swer to the Busemann-Petty problem is affirmative if the body with the smaller sections
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is an intersection body of a star body. This led to the final solution that the answer is
affirmative if n ≤ 4 and negative otherwise (see [7], [8], [10], [18], [19], [20], [35], [38],
[39]). For further applications of intersection bodies, see [6], [11], [12], [14], [21], [34], and
the books and surveys [9], [22], [23], [31], [36], [37].

The next section lists some basics regarding convex bodies, star bodies and valuations.
Section 2 contains the proof of the theorem.

1 Notation and background material

General references on convex bodies and star bodies are the books by Gardner [9], Leicht-
weiß [23], Schneider [36], and Thompson [37]. We work in Euclidean n-space, Rn, and
write x = (x1, . . . , xn) for x ∈ Rn. Let e1, . . . , en denote the vectors of the standard basis
of Rn. For x, y ∈ Rn, let x · y = x1 y1 + · · ·+ xn yn denote the inner product of x and y
and let |x| denote the length of x.

Let K ∈ S. Then its radial function can extended to v ∈ Rn, v 6= 0, by

ρ(K, v) = max{λ ≥ 0 : λ v ∈ K}.

It follows immediately that for s > 0 and φ ∈ GL(n),

ρ(K, s v) =
1
s
ρ(K, v) and ρ(φK, v) = ρ(K,φ−1v). (1)

The radial sum K1 +̃K2 of K1,K2 ∈ S is the star body whose radial function is given by

ρ(K1 +̃K2, v) = ρ(K1, v) + ρ(K2, v).

The set S equipped with the operation +̃ is an abelian semigroup and {0} is its neutral
element.

Let Z : P0 → S be a valuation which is GL(n) contravariant of weight q ∈ R, that is,
for all φ ∈ GL(n) and all P ∈ P0,

ZφP = |detφ|q φ−t ZP.

We associate with Z an operator Z∗ : P0 → S by setting Z∗ P = ZP ∗ for P ∈ P0. Let
P1, P2, P1 ∪ P2 ∈ P0. Since

(P1 ∪ P2)∗ = P ∗1 ∩ P ∗2 and (P1 ∩ P2)∗ = P ∗1 ∪ P ∗2 ,

we obtain

Z∗ P1 +̃ Z∗ P2 = ZP ∗1 +̃ ZP ∗2 = Z(P ∗1 ∪ P ∗2 ) +̃ Z(P ∗1 ∩ P ∗2 )
= Z(P1 ∩ P2)∗ +̃ Z(P1 ∪ P2)∗ = Z∗(P1 ∩ P2) +̃ Z∗(P1 ∪ P2).

Thus Z∗ is a valuation on P0. Let P ∈ P0 and φ ∈ GL(n). Since

(φP )∗ = φ−tP ∗ (2)

and since Z is GL(n) contravariant of weight q, we obtain

Z∗(φP ) = Z(φP )∗ = Z(φ−tP ∗) = |detφ|−qφZ∗ P. (3)

Thus Z∗ is GL(n) covariant of weight −q.
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2 Proof of the Theorem

Lutwak [30] showed that for all φ ∈ GL(n) and all K ∈ S

I(φK) = |detφ|φ−t IK.

By (3), P 7→ IP ∗ is a GL(n) covariant valuation on P0 and we prove that up to multipli-
cation with a constant this is the unique non-trivial such valuation. The proof consists
of three steps. First, we extend GL(n) covariant valuations defined on P0 to valuations
defined on a larger set of polytopes. Next, we derive a classification of valuations which
are GL(n) covariant of weight q ≥ 0. Then we derive a classification of valuations which
are GL(n) contravariant of weight q > 0. This classification of contravariant valuations
and (3) provide a classification of valuations which are GL(n) covariant of weight q < 0.
Combined these results prove the theorem.

2.1 Extension

Let P0 denote the set of convex polytopes P which are either in P0 or are the intersection
of a polytope P0 ∈ P0 and a polyhedral cone with apex at the origin and at most n facets.
As a first step, we extend valuations Z : P0 → S to simple valuations on P0. Here a
valuation is called simple if Z(P ) = {0} for every P ∈ P0 with dimension less than n.

We need the following definitions. For A,A1, . . . , Ak ⊂ Rn, let [A1, . . . , Ak] denote
the convex hull of A1, . . . , Ak and let

A⊥ = {x ∈ Rn : x · y = 0 for every y ∈ A}.

For a central hyperplane H (that is, a hyperplane containing the origin), let H+ and H−

denote the complementary closed halfspaces bounded by H. Let P0(H) denote the set
of convex polytopes in H that contain the origin in their interiors relative to H.

Let C+(Sn−1) denote the set of non-negative continuous functions on the unit sphere
Sn−1 and let C+(Sn−1) denote the set of non-negative functions that are continuous
almost everywhere on Sn−1. Note that if Z : P0 → S is a valuation then the operator
Y defined by YP (·) = ρ(ZP, ·) is a valuation taking values in C+(Sn−1). Let H be a
central hyperplane and let A ⊂ Sn−1. For P ∈ P0(H), we say that Y : P0 → C+(Sn−1)
is vanishing on A at P if

lim
u,v→0

Y[P, u, v] = 0 locally uniformly on A

for u ∈ H−\H, v ∈ H+\H. For P ∈ P0(H), we say that Y is bounded at P if there exists
a constant c ∈ R such that

Y[P, u, v](x) ≤ c

for every x ∈ Sn−1 and u ∈ H−\H, v ∈ H+\H if |u|, |v| ≤ 1 and [P, u, v] = [P, u]∪ [P, v].

Lemma 1. Let Y : P0 → C+(Sn−1) be a valuation such that for every central hyperplane
H and P ∈ P0(H), Y is bounded and vanishing on Sn−1\H at P . Then Y can be
extended to a simple valuation Y : P0 → C+(Sn−1) and for P ∈ P0 bounded by central
hyperplanes H1, . . . ,Hn, YP is continuous and bounded on Sn−1\(H1 ∪ · · · ∪Hn).
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Proof. Let Pj , j = 1, . . . , n, be the set of convex polytopes P such that there exist
P0 ∈ P0 and hyperplanes H1, . . . ,Hj containing the origin with linearly independent
normal vectors and

P = P0 ∩H+
1 ∩ · · · ∩H+

j . (4)

Define Y on Pj , j = 1, . . . , n, inductively, starting with j = 1, in the following way. For
P ∈ Pj and u ∈ H1 ∩ · · · ∩Hj−1, u ∈ H−

j \Hj , set

YP = lim
u→0

Y[P, u] on Sn−1\(H1 ∪ · · · ∪Hj). (5)

We show that Y is well defined (that is, the limit in (5) exists and does not depend on
the choice of Hj), that YP is continuous and bounded on Sn−1\(H1 ∪ · · · ∪ Hj), that
for every hyperplane H and P ∈ Pj(H), we have for u, v ∈ H1 ∩ · · · ∩Hj , u ∈ H+\H,
v ∈ H−\H,

lim
u,v→0

Y[P, u, v] = 0 locally uniformly on Sn−1\H (6)

and
Y[P, u, v] is uniformly bounded on Sn−1 for |u|, |v| ≤ 1, (7)

and that Y has the following additivity properties:
If P ∈ Pj−1 and H is a hyperplane such that P ∩H+, P ∩H− ∈ Pj , then

YP = Y(P ∩H+) + Y(P ∩H−) on Sn−1\(H1 ∪ · · · ∪Hj−1 ∪H). (8)

If P,Q, P ∩Q,P ∪Q ∈ Pj are defined by (4) with halfspaces H+
1 , . . . ,H

+
j , then

YP + YQ = Y(P ∪Q) + Y(P ∩Q) on Sn−1\(H1 ∪ · · · ∪Hj). (9)

The operator Y is well defined and a valuation on P0. Suppose that Y is well defined
by (5) on Pk−1, that YP is continuous and bounded on Sn−1\(H1 ∪ · · · ∪ Hk−1) for
P ∈ Pk−1 and that (6), (7), (8) (if k > 1) and (9) hold for j < k.

First, we show that the limit in (5) exists and that for P ∈ Pk bounded by hyperplanes
H1, . . . ,Hk, YP is bounded and continuous on Sn−1\(H1∪ · · ·∪Hk). Let u′ ∈ H1∩ · · ·∩
Hk−1, u′ ∈ H−

k \Hk be chosen such that [P, u] ⊆ [P, u′] and −u′ ∈ P . Then applying (9)
with j = k − 1 gives on Sn−1\(H1 ∪ · · · ∪Hk)

Y[P, u] + Y[P ∩Hk, u
′,−u′] = Y[P, u′] + Y[P ∩Hk, u,−u′]. (10)

Consequently, for x ∈ Sn−1\(H1 ∪ · · · ∪Hk)

|Y[P, u](x)−Y[P, u′](x)| ≤ Y[P ∩Hk, u
′,−u′](x) + Y[P ∩Hk, u,−u′](x). (11)

Combined with (6) for j = k−1, this implies that the limit in (5) exists locally uniformly
and that YP is continuous on Sn−1\(H1 ∪ · · · ∪Hk). By (10) we have

Y[P, u′](x) ≤ Y[P, u](x) + Y[P ∩Hk, u
′,−u′](x).

For u fixed, Y[P, u] is bounded by the induction assumption. Let u′ → 0. Then (7) implies
that YP is bounded on Sn−1\(H1 ∪ · · · ∪Hk). For k > 1 we show that YP as defined
by (5) does not depend on the choice of the hyperplane Hk. Let u ∈ H1 ∩ · · · ∩ Hk−1,

5



u ∈ H−
k \Hk. Choose w ∈ H2 ∩ · · · ∩Hk, w ∈ H−

1 \H1. Then applying (8) for j = k − 2
gives on Sn−1\(H1 ∪ · · · ∪Hk)

Y[P, u,w] = Y([P, u,w] ∩H+
k ) + Y([P, u,w] ∩H−

k ). (12)

We have [P, u,w] ∩H−
k = [P ∩Hk, u, w] and w ∈ Hk. By (5) and (6) for j = k − 2, we

get on Sn−1\(H1 ∪ · · · ∪Hk)

lim
u→0

Y[P ∩Hk, u, w] = 0.

Combined with [P, u,w] ∩H+
k = [P,w], this implies that on Sn−1\(H1 ∪ · · · ∪Hk)

lim
u→0

Y[P, u,w] = Y[P,w]. (13)

Similarly, we get on Sn−1\(H1 ∪ · · · ∪Hk)

lim
w→0

Y[P, u,w] = Y[P, u]. (14)

Note that by an argument similar to (11) limu,w→0 Y[P, u,w] exists. Thus (12) combined
with (13) and (14) implies that

lim
u,w→0

Y[P, u,w] = lim
u→0

Y[P, u] = lim
w→0

Y[P,w] = YP. (15)

Thus Y is well defined on Pk.
Next, we show that (6) and (7) hold for j = k < n. Let ε > 0 be chosen. Let

P ∈ Pk(H) be bounded by H1, . . . ,Hk. Since P ⊂ H, YP is defined on Sn−1\H. Let
x ∈ Sn−1\H. Choose z ∈ H ∩H1 ∩ · · · ∩Hk−1 and z ∈ H−

k \Hk. Then [P, z] ∈ Pk−1(H)
and by (6) for j = k − 1,

Y[P, z, u, v] < ε (16)

locally around x for u, v ∈ H1 ∩ · · · ∩ Hk, u ∈ H−\H and v ∈ H+\H with |u|, |v|
sufficiently small. Since [P ∩Hk, u, v] ∈ Pk−1(Hk), (6) for j = k − 1 implies that

lim
w→0

Y[P ∩Hk, u, v,−w,w] = 0 locally uniformly (17)

for w ∈ H ∩H1 ∩ · · · ∩Hk−1 and w ∈ H−
k \Hk. Since Y is a valuation,

Y[P, z, u, v] + Y[P ∩Hk,−w,w, u, v] = Y[P,w, u, v] + Y[P ∩Hk,−w, z, u, v].

Let w → 0, then by (5) and (17)

Y[P, z, u, v] = Y[P, u, v] + Y[P ∩Hk, z, u, v]. (18)

Since Y ≥ 0, (18) combined with (16) implies that

Y[P, u, v] ≤ ε

locally around x for |u|, |v| sufficiently small. Thus (6) holds for j = k. It follows from
(7) that Y[P, z, u, v] is uniformly bounded for |u|, |v| ≤ 1. Thus (18) implies that (7)
holds for j = k.
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Next, we show that (8) holds for j = k. Let P ∈ Pk−1, that is, there exist P0 ∈ P0 and
hyperplanesH1, . . . ,Hk−1 such that P = P0∩H+

1 ∩· · ·∩H
+
k−1. Choose u ∈ H1∩· · ·∩Hk−1,

such that u ∈ P ∩ H+\H and −u ∈ P ∩ H−. Then P , [P ∩ H,u,−u], [P ∩ H+,−u],
[P ∩H−, u] have the hyperplanes H1, . . . ,Hk−1 in common. Applying (9) for j = k − 1
gives on Sn−1\(H1 ∪ · · · ∪Hk−1 ∪H)

YP + Y[P ∩H,u,−u] = Y[P ∩H+,−u] + Y[P ∩H−, u].

By (6) and definition (5), this implies that (8) holds for j = k.
Finally, we show that (9) holds for j = k. Choose u ∈ H1 ∩ · · · ∩Hk−1, u 6∈ Hk such

that −u ∈ P ∩Q. Applying (9) for j = k − 1 shows that on Sn−1\(H1 ∪ · · · ∪Hk)

Y[P, u] + Y[Q, u] = Y[P ∪Q, u] + Y[P ∩Q, u].

Because of definition (5) this implies that (9) holds for j = k.
The induction is now complete and Y is extended to P0. As last step, we show that

Y is a valuation on P0. In addition to (8) and (9) it suffices to prove that if P ∈ Pn and
H is a hyperplane such that P ∩H+, P ∩H− ∈ Pn, then

YP = Y(P ∩H+) + Y(P ∩H−) (19)

on Sn−1\(H1 ∪ · · · ∪Hn ∪H).
First, let n = 2. Let P be bounded by H1,H2, and let P ∩ H+ and P ∩ H− be

bounded by H1,H and H,H2, respectively. For u ∈ H ∩ (H−
1 \H1)∩ (H−

2 \H2), it follows
from (8) that Y[P, u] = Y[P ∩H+, u] + Y[P ∩H−, u]. By (5), this implies that

lim
u→0

Y[P, u] = Y(P ∩H+) + Y(P ∩H−). (20)

On the other hand, it follows from (8) that

Y[P, u] = Y([P, u] ∩H+
1 ) + Y([P, u] ∩H−

1 )
= Y[P,w] + Y([P, u] ∩H−

1 ∩H−) + Y([P, u] ∩H−
1 ∩H+) (21)

= Y[P,w] + Y[P ∩H1, u] + Y[0, u, w].

where w ∈ H1 depends on u. Because of (5), we have limu→0 Y[P,w] = YP and because
of (6), we have limu→0 Y[P ∩H1, u] = 0. By (8), Y[P ∩H2, u] = Y[P ∩H2, w]+Y[0, u, w].
Since by (6) limu→0 Y[P ∩ H2, u] = 0 and limu→0 Y[P ∩ H2, w] = 0, this implies that
limu→0 Y[0, u, w] = 0. Thus it follows from (21) that limu→0 Y[P, u] = YP . Combined
with (20) this implies (19).

Second, let n ≥ 3. Let P = P0∩H+
1 ∩· · ·∩H+

n , P0 ∈ P0. Since P ∩H+, P ∩H− ∈ Pn,
we can say that P ∩H+ is bounded by H1,H,H3, . . . ,Hn and that P ∩H− is bounded by
H,H2,H3, . . . ,Hn, whereH1∩H2∩· · ·∩Hn−1 ⊆ H. Therefore on Sn−1\(H1∪· · ·∪Hn∪H)

YP = lim
u→0

Y[P, u]

and
Y(P ∩H+) = lim

u→0
Y[P ∩H+, u], Y(P ∩H−) = lim

u→0
Y[P ∩H−, u]

where u ∈ H1 ∩H2 ∩ · · · ∩Hn−1, u ∈ H−
n \Hn. Applying (8) for j = n shows that

Y[P, u] = Y[P ∩H+, u] + Y[P ∩H−, u].

Because of definition (5) this implies (19). This completes the proof of the lemma.
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We also require the following lemmas. The proofs are similar to that of Lemma 1 and
are omitted.

Lemma 2. Let Y : P0 → C+(Sn−1) be a valuation such that for every central hyperplane
H, Y is vanishing on Sn−1 at P0(H). Then Y can be extended to a simple valuation
Y : P0 → C+(Sn−1).

Lemma 3. Let Y : P0 → C+(Sn−1) be a valuation such that for every central hyperplane
H, Y is vanishing and bounded on Sn−1\H⊥ at P0(H). Then Y can be extended to a
simple valuation Y : P0 → C+(Sn−1) and for P ∈ P0 bounded by hyperplanes H1, . . . ,Hn,
YP is continuous and bounded on Sn−1\(H⊥

1 ∪ · · · ∪H⊥
n ).

Lemma 4. Let Y : P0 → C+(Sn−1) be a valuation such that for every central hyperplane
H, Y is vanishing on Sn−1\H⊥ at P0(H). Then Y can be extended to a simple valu-
ation Y : P0 → C+(Sn−1) and for P ∈ P0 bounded by hyperplanes H1, . . . ,Hn, YP is
continuous on Sn−1\(H⊥

1 ∪ · · · ∪H⊥
n ).

Note that if Z : P0 → S is GL(n) covariant (contravariant), then the extended operator
Z is GL(n) covariant (contravariant) on P0.

2.2 Covariant valuations

We prove the following result.

Proposition 1. Let Z : P0 → S be a valuation which is GL(n) covariant of weight q ≥ 0.
Then there are constants c1, c2 ≥ 0 such that

ZP = c1 P +̃ c2(−P )

for every P ∈ P0.

To extend Z to P0, we apply Lemmas 1 and 2 and need the following result.

Lemma 5. Let Z : P0 → S be a valuation which is GL(n) covariant of weight q and let
Y : P0 → C+(Sn−1) be defined by YP (·) = ρ(ZP, ·). Then for every central hyperplane
H and P ∈ P0(H), the following holds: If q > −1, then Y is vanishing on Sn−1\H at
P . If q > 0, then Y is vanishing on Sn−1 at P . If q ≥ 0, then Y is bounded at P .

Proof. Since Z is rotation covariant, it suffices to prove the statements for H = e⊥n . Let
P ∈ P0(H). Let u ∈ H−\H and v ∈ H+\H be chosen such that [P, u, v] = [P, u] ∪ [P, v]
and let r > 0 be suitably small. Since Z is a valuation, we have

Z[P, u, v] + Z[P,−r u,−r v] = Z[P, u,−r u] + Z[P, v,−r v]

and
Z[P, u,−r u] + Z[P, r u,−u] = Z[P, u,−u] + Z[P, r u,−r u].

Thus to prove the lemma it suffices to show that Y[P, u,−u] is bounded on Sn−1 for
|u| ≤ 1 for q ≥ 0 and that limu→0 Y[P, u,−u] = 0 locally uniformly on Sn−1\H for
q > −1 or uniformly on Sn−1 for q > 0.
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Define φu ∈ GL(n) by φu ej = ej , j = 1, . . . , n− 1, and φu en = u. Then

φ−1
u x = (x1 −

u1

un
xn, . . . , xn−1 −

un−1

un
xn,

xn

un
). (22)

Since Z is GL(n) covariant of weight q, we obtain by (1)

Z[P, u,−u](x) = Z(φu[P, en,−en])(x) = uq
n Z[P, en,− en](φ−1

u x).

and

Y[P, u,−u](x) = uq+1
n Y[P, en,−en](un x1 − u1 xn, . . . , un xn−1 − un−1 xn, xn). (23)

For q > −1, this implies that limu→0 Y[P, u,−u] = 0 locally uniformly on Sn−1\H. If
x ∈ Sn−1 ∩H, it follows from (23) and (1) that

Y[P, u,−u](x) = uq
n Y[P, en,−en](x1, . . . , xn−1, 0).

Thus, we obtain that limu→0 Y[P, u,−u] = 0 uniformly on Sn−1 for q > 0. Let x ∈ Sn−1.
It follows from (23) and (1) that

Y[P, u,−u](x) ≤ uq+1
n

|φ−1
u x|

max
w∈Sn−1

Y[P, en,−en](w). (24)

If |un| ≥ 4 |xn|, then by (22)

|φ−1
u x| = |x+

xn

un
(en − u)| ≥ 1− 1

4
|en − u| ≥ 1

2
.

If |un| ≤ 4 |xn|, then by (22), |φ−1
u x| ≥ |(φ−1

u x) · en| ≥ 1
4 . Thus (24) implies that Y is

bounded at P for q ≥ 0.

We also write Z for the extended operator. Let T be the simplex with vertices
0, e1, . . . , en. We determine ZT . Since Z is GL(n) covariant,

ρ(ZT, (x1, . . . , xn)) = ρ(ZT, (xi1 , . . . , xin)) (25)

for every permutation (i1, . . . , in) of (1, . . . , n). Let Z′ be a simple and GL(n) covariant
valuation on P0. Note that it suffices to show that ZT = Z′ T to show that ZP = Z′ P for
every P ∈ P0. This implies that Proposition 1 is a consequence of the following lemmas.

First, let q > 0. Note that in this case it follows from Lemma 2 and Lemma 5 that
ρ(ZT, ·) is continuous on Sn−1.

Lemma 6. Let Z : P0 → S be a valuation which is GL(n) covariant of weight q > 0.
Then ZT = {0}.

Proof. For 0 < λj < 1, j = 2, . . . , n, let Hj be the central hyperplane with normal vector
λj e1 − (1− λj) ej . Then Hj dissects T into two simplices T ∩H+

j and T ∩H−
j . Since Z

is a simple valuation, we have

ZT = Z(T ∩H+
j ) +̃ Z(T ∩H−

j ). (26)
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For j = 2, . . . , n, define φj , ψj by

φjej = (1− λj) e1 + λj ej and φjei = ei for i 6= j,

ψje1 = (1− λj) e1 + λj ej and ψjei = ei for i 6= 1.

Then T ∩H+
j = φjT and T ∩H−

j = ψjT . Set f(x) = ρ(ZT, x) and let x 6= 0. Since Z is
GL(n) covariant of weight q, (26) and (1) imply that

f(x) = λq
j f(φ−1

j x) + (1− λj)q f(ψ−1
j x). (27)

Note that

φ−1
j ej = −1− λj

λj
e1 +

1
λj
ej and φ−1

j ei = ei for i 6= j,

ψ−1
j e1 =

1
1− λj

e1 −
λj

1− λj
ej and ψ−1

j ei = ei for i 6= 1.

From (27) with x = e1, we obtain

f(e1 − λj ej) =
1− λq

j

(1− λj)q+1
f(e1). (28)

Since (1 − λq
j)/(1 − λj)q+1 → ∞ as λj → 1, we obtain that f(e1) = 0 and by (25) that

f(ei) = 0, i = 1, . . . , n. Similarly, we obtain that f(−ei) = 0, i = 1, . . . , n. From (27),
we obtain

f((1− λj) e1 + λj ej) = λq
j f(ej) + (1− λj)q f(e1).

It follows from this and (28) that f(x1 e1+xj ej) = 0 for every x1, xj ∈ R, (x1, xj) 6= (0, 0).
Let x′ = x2 e2 + · · ·+ xj−1 ej−1. Then by (27)

f((1− λj) e1 + λj ej + x′) = λq
j f(ej + x′) + (1− λj)q f(e1 + x′). (29)

By (25), f(e1 + x′) = f(ej + x′). Thus by using induction on the number of vanishing
coordinates, we obtain from (29) that f(x) = 0 for every x 6= 0.

Next, we consider the case q = 0. Note that in this case it follows from Lemma 1 and
Lemma 5 that ρ(ZT, ·) is continuous and uniformly bounded on Sn−1\(e⊥1 ∪ · · · ∪ e⊥n ).

Lemma 7. Let Z : P0 → S be a valuation which is GL(n) covariant of weight q = 0.
Then there are constants c1, c2 ≥ 0 such that

ρ(ZT, x) = c1 ρ(T, x) + c2 ρ(−T, x)

for x 6∈ e⊥1 ∪ · · · ∪ e⊥n .

Proof. We define Hj , φj , ψj , and f as in the proof of Lemma 6. Let x 6∈ e⊥1 ∪ · · · ∪ e⊥n .
Note that for given x, there is a dense set of λ2 such that the subsequent expressions are
well defined, that is, for example, φ−1

2 x 6∈ e⊥1 ∪ · · · ∪ e⊥n . As in (27), we have

f(x) = f(φ−1
2 x) + f(ψ−1

2 x). (30)
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Using this repeatedly, we obtain

f(ψk
2 x) =

k∑
j=1

f(φ−1
2 ψj

2 x) + f(x). (31)

Let x′ = x2 e2 + · · ·+xn en. Note that for ψ2 the vectors ei, i = 2, . . . , n, are eigenvectors
with eigenvalue 1 and the vector e1−e2 is an eigenvector with eigenvalue (1−λ2). Setting
x = (e1 − e2) + x′ in (31) gives

f((1− λ2)k (e1 − e2) + x′) =
k∑

j=1

f(φ−1
2 ((1− λ2)j(e1 − e2) + x′)) + f(x).

Let k →∞. Since f is uniformly bounded, continuous and non-negative, we obtain that
f(φ−1

2 x′) = 0. Note that

φ−1
2 x′ = −1− λ2

λ2
x2 e1 +

1
λ2
x2 e2 + x3 e3 + · · ·+ xn en.

Using (25) and the continuity of f , we conclude that

f(x1, . . . , xn) = 0 if xi 6= 0 for i = 1, . . . , n, and not all xi have the same sign. (32)

Let x1, . . . , xn > 0. Then by (30) and (32) we have

f(φ2 x) = f(x) + f(ψ−1
2 φ2 x) = f(x).

Thus
f(φn · · ·φ2x) = f(φn−1 · · ·φ2x) = · · · = f(x).

Since

φn · · ·φ2 (x1, . . . , xn) = (x1 + (1− λ2)x2 + · · ·+ (1− λn)xn, λ2 x2, . . . , λn xn), (33)

we obtain that

f(x1, . . . , xn) = f(1, . . . , 1) for x1 + · · ·+ xn = n, 0 < x2, . . . , xn < 1.

By choosing λi such that λi xi < 1, we obtain from this and (33) that

f(x1, . . . , xn) = f(1, . . . , 1) for x1 + · · ·+ xn = n, x1, . . . , xn > 0.

Similarly, we obtain that

f(−x1, . . . ,−xn) = f(−1, . . . ,−1) for x1 + · · ·+ xn = n, x1, . . . , xn > 0.

Thus f(x) = c1 ρ(T, x) + c2 ρ(−T, x) with suitable constants c1, c2 ≥ 0.
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2.3 Contravariant valuations

We prove the following result.

Proposition 2. Let Z : P0 → S be a valuation which is GL(n) contravariant of weight
q > 0. Then there is a constant c ≥ 0 such that

ZP = c IP

for every P ∈ P0.

To extend Z to P0, we apply Lemmas 2, 3 and 4 and need the following result.

Lemma 8. Let Z : P0 → S be a valuation which is GL(n) contravariant of weight q and
let Y : P0 → C+(Sn−1) be defined by YP (·) = ρ(ZP, ·). For every central hyperplane H,
the following holds: If q > 0, then Y is vanishing on Sn−1\H⊥ at P0(H). If q > 1, then
Y is vanishing on Sn−1 at P0(H). If q ≥ 1, then Y is bounded on Sn−1 at P0(H).

Proof. Since Z is rotation contravariant, it suffices to prove the statements for H = e⊥n .
Let P ∈ P0(H). Let u ∈ H−\H, v ∈ H+\H be chosen such that [P, u, v] = [P, u]∪ [P, v]
and let r > 0 be suitably small. Since Z is a valuation, we have

Z[P, u, v] + Z[P,−r u,−r v] = Z[P, u,−r u] + Z[P, v,−r v]

and
Z[P, u,−r u] + Z[P, r u,−u] = Z[P, u,−u] + Z[P, r u,−r u].

Thus to prove the lemma it suffices to show that Y[P, u,−u] is bounded on Sn−1 for
|u| ≤ 1 for q ≥ 1 and that limu→0 Y[P, u,−u] = 0 locally uniformly on Sn−1\H⊥ for
q > 0 or uniformly on Sn−1 for q > 1.

Define φu ∈ GL(n) by φu ej = ej , j = 1, . . . , n− 1, and φu en = u. Then

φt
ux = (x1, . . . , xn−1, x1 u1 + · · ·+ xn un). (34)

Since Z is GL(n) contravariant of weight q, we obtain by (1)

Z[P, u,−u](x) = Z(φu[P, en,−en])(x) = uq
n Z[P, en,− en](φt

ux).

and
Y[P, u,−u](x) = uq

n Y[P, en,−en](x1, . . . , xn−1, x1 u1 + · · ·+ xn un). (35)

For q > 0, this implies that limu→0 Y[P, u,−u] = 0 locally uniformly on Sn−1\H⊥. If
x ∈ Sn−1 ∩H⊥, it follows from (35) and (1) that

Y[P, u,−u](x) = uq−1
n Y[P, en,−en](0, . . . , 0, xn).

Thus, we obtain that limu→0 Y[P, u,−u] = 0 uniformly on Sn−1 for q > 1. Let x ∈ Sn−1.
It follows from (35) and (1) that

Y[P, u,−u](x) ≤ uq
n

|φt
ux|

max
w∈Sn−1

Y[P, en,−en](w). (36)

Since |un| ≤ 1, by (34)

|φt
ux|2

u2
n

=
x2

1

u2
n

+ · · ·+
x2

n−1

u2
n

+
(x · u)2

u2
n

≥ 1.

Thus (36) implies that Y is bounded at P for q ≥ 0.
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We also write Z for the extended operator. Let T be the simplex with vertices
0, e1, . . . , en. We determine ZT . Since Z is GL(n) contravariant,

ρ(ZT, (x1, . . . , xn)) = ρ(ZT, (xi1 , . . . , xin)) (37)

for every permutation (i1, . . . , in) of (1, . . . , n). Let Z′ be a simple and GL(n) con-
travariant valuation on P0. Note that it suffices to show that ZT = Z′ T to show that
ZP = Z′ P for every P ∈ P0. This implies that Proposition 2 is a consequence of the
following lemmas.

First, let q > 1. Note that in this case it follows from Lemma 2 and Lemma 8 that
ρ(ZT, ·) is continuous on Sn−1.

Lemma 9. Let Z : P0 → S be a valuation which is GL(n) contravariant of weight q > 1.
Then ZT = {0}.

Proof. We define Hj , φj , ψj , and f as in the proof of Lemma 6. Let x 6= 0. Since Z is
GL(n) contravariant of weight q, (26) and (1) imply that

f(x) = λq
j f(φt

j x) + (1− λj)q f(ψt
j x). (38)

From this with x = e1, we obtain

f(e1 + (1− λj) ej) =
1− (1− λj)q−1

λq
j

f(e1). (39)

Since (1 − (1 − λj)q−1)/λq
j → ∞ as λj → 0, we obtain that f(e1) = 0 and by (37) that

f(ei) = 0, i = 1, . . . , n. Similarly, we obtain that f(−ei) = 0, i = 1, . . . , n. From (38),
we obtain

f(λj e1 − (1− λj) ej) = λq−1
j f(e1) + (1− λj)q−1 f(−ej).

It follows from this and (39) that f(x1 e1+xj ej) = 0 for every x1, xj ∈ R, (x1, xj) 6= (0, 0).
Let x′ = x2 e2 + · · ·+ xj−1 ej−1. Then by (38)

f(λj e1 − (1− λj) ej + x′) = λq
j f(λj e1 + x′) + (1− λj)q f(−(1− λj) ej + x′). (40)

By (37), f(−(1 − λj) ej + x′) = f(−(1 − λj) e1 + x′). Thus by using induction on the
number of vanishing coordinates, we obtain from (40) that f(x) = 0 for every x 6= 0.

Next, we consider the case 0 < q < 1. Let Rn
a be the set of x ∈ Rn not on the

coordinate axes, that is, x ∈ Rn, x 6= λ ej , λ ∈ R, j = 1, . . . , n. Note that for 0 < q < 1
it follows from Lemma 4 and Lemma 8 that ρ(ZT, ·) is continuous on Rn

a .

Lemma 10. Let Z : P0 → S be a valuation which is GL(n) contravariant of weight
0 < q < 1. Then

ρ(ZT, x) = 0

for x ∈ Rn
a .

Proof. We define Hj , φj , ψj , and f as in the proof of Lemma 6. We consider x ∈ Rn
a for

which the subsequent expressions are well defined, that is, for example, φt
2 x ∈ Rn

a . Since
Z is GL(n) contravariant of weight q, (26) and (1) imply that

f(x) = λq
2 f(φt

2 x) + (1− λ2)q f(ψt
2 x). (41)
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For x2 = 1− λ2, it follows that

f(x1, 1− λ2, x3, . . . , xn) = λq
2 f(x1, (x1 + λ2)(1− λ2), x3, . . . , xn)

+ (1− λ2)q f((x1 + λ2)(1− λ2), (1− λ2), x3, . . . , xn).

Let x1 → −λ2, x3, . . . , xn → 0. Since the left hand side is well defined and f is non-
negative, this implies that f is uniformly bounded on Sn−1 ∩ Rn

a . By (41),

f(φ−t
2 x) = λq

2 f(x) + (1− λ2)q f(ψt
2φ
−t
2 x).

Setting x1 = −1, x2 = 1 and dividing by λ2 gives

f(−λ2, 2− λ2, λ2 x3, . . . , λ2 xn)

= λq−1
2 f(−1, 1, x3, . . . , xn) + (1− λ2)q f(λ2, 2− λ2, λ2 x3, . . . , λ2 xn).

Let λ2 → 0. Since f is uniformly bounded on Sn−1 ∩ Rn
a , this shows that

f(−1, 1, x3, . . . , xn) = 0.

Combined with (41) for x = (−1, 1, x3, . . . , xn) this gives

0 = λq
2 f(−1,−1 + 2λ2, x3, . . . , xn) + (1− λ2)q f(−1 + 2λ2, 1, x3, . . . , xn).

Since f is non-negative, this implies that

f(−1,−1 + 2λ2, x3, . . . , xn) = f(−1 + 2λ2, 1, x3, . . . , xn) = 0.

Similarly, we obtain that f(1,−1, x3, . . . , xn) = 0 and conclude that f(x) = 0 for every
x ∈ Rn

a .

Finally, we consider the case q = 1. Note that in this case it follows from Lemma 3
and Lemma 8 that ρ(ZT, ·) is continuous and uniformly bounded on Sn−1 ∩ Rn

a .

Lemma 11. Let Z : P0 → S be a valuation which is GL(n) contravariant of weight
q = 1. Then there is a constant c ≥ 0 such that

ρ(ZT, x) = c ρ(IT, x)

for x ∈ Rn
a .

Proof. We define Hj , φj , ψj , and f as in the proof of Lemma 6. Let x ∈ Rn
a . Note

that for given x, there is a dense set of λj such that the subsequent expressions are well
defined, that is, for example, φt

jx ∈ Rn
a . Since Z is GL(n) contravariant of weight q = 1,

(26) and (1) imply that

f(x) = λj f(φt
jx) + (1− λj) f(ψt

jx). (42)

Using this repeatedly, we obtain

f(x) = λ2 · · ·λn f(φt
n · · ·φt

2x)+
n∑

j=3

λ2 · · ·λj−1(1−λj) f(ψt
jφ

t
j−1 · · ·φt

2x)+(1−λ2) f(ψt
2x).
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Using this repeatedly, we obtain

f((ψ−t
2 )kx) = λ2 · · ·λn

k∑
i=1

(1− λj)k−if(φt
n · · ·φt

2(ψ
−t
2 )ix) (43)

+
n∑

j=3

λ2 · · ·λj−1

k∑
i=1

(1− λj)k−i f(ψt
jφ

t
j−1 · · ·φt

2(ψ
−t
2 )ix) + (1− λ2)k f(x).

Let x′ = x3 e3 + · · · + xn en. Note that for ψt
2 the vectors e1 + e2 and ei, i = 3, . . . , n,

are eigenvectors with eigenvalue 1 and the vector e1 is an eigenvector with eigenvalue
(1− λ2). Setting x = e1 + x′ in (43) and dividing by (1− λ2)k gives

f(e1 + (1− λ2)kx′) = λ2 · · ·λn

k∑
i=1

f(φt
n · · ·φt

2(e1 + (1− λ2)ix′))

+
n∑

j=3

λ2 · · ·λj−1

k∑
i=1

f(ψt
jφ

t
j−1 · · ·φt

2(e1 + (1− λ2)kx′)) + f(x).

Let k →∞. Since f is uniformly bounded, continuous and non-negative, we obtain that
f(φt

n . . . φ
t
2e1) = 0. Note that φt

n · · ·φt
2e1 = e1 + (1− λ2) e2 + · · ·+ (1− λn) en. Thus we

conclude that
f(x1, . . . , xn) = 0 for x1, . . . , xn > 0. (44)

Next, let x1 < 0, x2, . . . , xn > 0 and (1 − λj)x1 + λj xj > 0, j = 2, . . . , n. Then by
(42) and (44)

f(x) = λ2 f(φt
2x) + (1− λ2) f(ψt

2x) = λ2 f(φt
2 x)

and
f(φt

n · · ·φt
2 x) =

1
λ2 · · ·λn

f(x).

Setting x = (−1, 1, . . . , 1) and a = f(−1, 1, . . . , 1), we obtain

f(−1,−1 + 2λ2, . . . ,−1 + 2λn) =
a

λ2 · · ·λn
.

We use induction on the number of negative coordinates. Suppose f is determined by a
for x with at most (k−1) negative coordinates. Let x1, x2 < 0 and (1−λ2)x1+λ2 x2 > 0.
Then

f(x) = λ2 f(φt
2x) + (1− λ2) f(ψt

2x)

and φt
2x as well as ψt

2x have at most (k−1) negative coordinates. Thus f(x) is determined
by a. We obtain that for given a there is at most one operator Z. Since Z = c I with a
suitable c ≥ 0 is such an operator, this concludes the proof of the lemma.
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