Intersection Graph Algorithms

Paul F, Dietz
Ph.D. Thesis

TR 84-628
August 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

INTERSECTION GRAPH ALGORITHMS

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Paul Frederick Dietz

August 1984

INTERSECTION GRAPH ALGORITHMS

Paul F. Dietz, Ph.D.
Cornell University 1984

An intersection graph for a set of sets C is a graph G together with a bijection
‘from the vertices of G to C such that distinct vertices in G are adjacent if and
only if their images under this bijection intersect. Of particular interest have been
the classes of chordal graphs, the intersection graphs of sets of subtrees of a tree;

and interval graphs, the intersection graphs of sets of intervals of the real line.

I examine another class of intersection graphs, the class of directed path graphs:
intersection graphs of sets of paths in a directed tree. This class properly contains
the class of interval graphs, and is properly contained by the class of chordal
graphs. I give a linear time algorithm for recognizing directed path graphs and for
constructing intersection representations, and a polynomial time algorithm for

deciding directed path graph isomorphism.

Both algorithms use a data structure called a partial path tree, which is a kind of
skeletal representation of the clique hypergraph of a directed path graph. I
present linear time algorithms for finding partial path trees with specific roots and
for finding partial path trees with arbitrary roots. I prove that partial path trees
with identical roots are identical. Using this fact I develop a polynomial time

algorithm for directed path graph isomorphism.

Biographical Sketch

Paul Dietz was born August 31, 1959 in Darby, Pennsylvania. He grew up in the

suburbs of Baltimore, Maryfand.

At the age of twelve, Paul took part in a research program developed by Doctor
Julian Stanley of the Johns Hopkins University to identify mathematically and
scientifically precocious youth. Paul ranked first in science and third in math

among the participants.

With Dr. Stanley’s encouragement, Paul entered Johns Hopkins University in the

fall of 1974. He graduated three years later with a BES in electrical engineering.

Paul won an NSF graduate fellowship and enrolled in the Computer Science
department of Cornell University in the fall of 1977. After spending four years at
Cornell, he married Holly Cashatt, his childhood sweetheart. Paul went to the

University of Southern California to teach while he finished his thesis.

Besides computer science, Paul is interested in speculative fiction and political

philosophy.

11

To Holly

)

Acknowledgements

Many thanks to John Hopcroft for understanding and patience.

Thanks also to Merrick Furst for discussions that began the work described

herein.

Thanks and apologies to all I kept waiting while finishing this thesis, especially
Holly, and to all those who periodically prodded me when inertia threatened to

overwhelm.

Finally, belated thanks to Dr. Stanley. Without his program my life would have

been much more boring.

iv

Table of Contents

1. Introduction
2. Definitions and Background
2.1. Graphs
2.2. Directed Graphs
2.3. Families
2.4. Hypergraphs
2.5. Intersection Graphs
2.6. Algorithms on Intersection Graphs
2.6.1. Chordal Graphs
2.6.2. Interval Graphs and the Consecutive Retrieval Problem
2.6.3. Path Graphs and Directed Path Graphs
3. Directed Path Hypergraphs and Partial Path Trees
3.1. Simplification and Structural Theorems
3.2. Partial Path Trees
4. Algorithms on Partial Path Trees
4.1. Finding a Partial Path Tree with a Given Root
4.2. Finding a Partial Path Tree -- General Algorithm
4.3. Deriving Directed Path Trees from Partial Path Trees

4.3.1. PQR Trees

10

13

13

18

21

23

24

31

42

42

51

77

77

4.3.2. Using PQR Trees to Obtain Directed Path Trees
4.4. Summary of Results for Chapter 4
5. An Isomorphism Algorithm for Directed Path Graphs
5.1. Edge Labelled PQR Tree Isomorphism
5.2. Partial Path Tree Respecting Isomorphisms
6. Conclusions and Directions for Future Research

Index

vi

87

100

101

101

109

121

128

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:

Figure 4-13:

Lexicographic Breadth-First Search

Testing Perfect Elimination Schemes

A PQ Tree

Hypergraphs HC;, I, I3, Iy

m(z) and M(z)

Sets ¢(z,7), d(z,7), e(z,7)

Procedures Find-PPT-With-Root and Visit

Procedure Add-Edge

Procedures Find-PPT and Visit

Procedure Add-Edge

Procedure Spl:t

Procedure Casel

Procdure Case2

Procedure New-Root

Proof of theorem 4-9, line 12
Proof of theorem 4-9, line 45, case 1
Proof of theorem 4-9, line 45, case 2
Proof of theorem 4-9, line 45, case 3

Proof of theorem 4-9, line 45, case 4

vil

14

15

19

29

35

37

44

45

58

59

60

61

62

63

65

66

66

67

68

Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 4-22:
Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Proof of lemma 4-10, case 2b
Proof of lemma 4-10, case 3a
Proof of lemma 4-10, case 3b
Proof of lemma 4-10, case 3c
An R node
Action of Orient on a Q node
Procedure Orient
Inwards, Outwards Orientations
Procedure Find-Path-Tree-with-Root
Procedure PQRLabel (part 1)
Procedure DPHIso
Procedure Canon

Procedures PQRCanon and Trav

viil

71
72
73
73
78
84
85
88
93
104
114
115

116

1. Introduction

Many important problems in computer science can be formulated as graph
problems. In their full generality, many of these problems are NP-complete and
apparently intractable. Attention has therefore focused on specific cla§ses of
graphs on which the problems become tractable, such as trees, say, or planar

graphs.

One useful way of producing classes of graphs is to consider graphs defined by
the intersection of elements of some collection of sets. These so called intersection
graphs arise in numerous applications, ranging from numerical analysis [39] and

information retrieval [25] to molecular biology [2] [38].

Of particular interest is the class of chordal graphs, the class of graphs that are
the intersection graphs of subtrees of a tree. Linear time algorithms exist for
chordal graphs for the problems of finding maximal cliques, finding the chromatic

number, finding maximum independent sets and minimum clique coverings.

A subclass of the chordal graphs is the class of interval graphs, the intersyection
graphs of collections of intervals on the real line. Fast algorithms exist for finding
dominating sets in interval graphs and for determining interval graph
isomorphism; these problems are NP-complete and isomorphism-complete

(respectively) on chordal graphs.

Problems on chordal graphs can be rephrased as problems on clique hypergraphs.

g Ieydey) -uorgonponyul siyy st [1e3deyq) -siajdeqd Xis Ul po3uelie SI SISAY) SIY],

‘(8] wosuyor pue yjoog
jo wepqoid uwado ue Suiajos ‘wsigdiowost ydeid yied pajoalrp I0j UIYIIOS[E SWITY
(1eour] jou £[eyeunjyiojun 9nq) [erwoukjod & 918 03 pajtojdxe st £31edoad siqy, Vv
1001 YjIm 901y Yjed [e13ded ouo Jsow j& SBY ‘A Sedl3IeA 37} JO Y jesqus Aue pue

(7‘'A)=H qdeiBiedLy Lue 10} ‘yeq) £yiadoid [njesn ayj saey sea1} Yied [enpied

"9UIT) JRAUI[UI UNJ SW}LIOZ[R 233l1Y)} [V ‘9313 Yjed pajoalip
® 0} 9313 gjed [eiyred ® 310AU0O jBY} pue ‘jo0l Aue UYm 9013 Yred [ened e
PIInqg 38y} ‘9001 o1j10ads ® im 9013 gjed [erred ® ping 98y} WAALS al€ $9INPavoid
"294) y3pd jp134pd B POI[BO 2INJONIS 9JBIPIULILIUI UB JO 9SN SIYBW WIIIOS[E 97],

‘urojqold 991y gjed pejosdtp oY) J0j WIY)LIoZ[e awil) Jeaul| ® sjuesaid sIseyy sIYJ,

‘qyed pajdalip B SeONPUI 7 Ul 2 93pa AIoAs UOIUm UL 4 S9III8A
[jIM 931} pojdallp ® pUlj ‘47 SpIodal 8y} JO §)9sqns JO UOIIB[[0? ® PUB 4 SPIOdAI
JO 39S ® UAAIS :wajqosd 2347 ypnd pagosuip oY) st wejqoid ydeidredLy Surpuodssliiod
o], 'sealj pojoamip wr syjed poejoaltp Jo sydesS uonoesiajul oU) ‘sydoub

ynd pajoassp poffeo sydelS [BAIJUI JO UOIJBZI[BIOUS3 ® SOUIWEXS SISO} SIYJ,

‘[gg] @9s ‘monyeoridde peaidsepim punoj seq £jredoid [easlijel
2AMOASUOd 9], ‘[6] Joyen pue yYjoog £q peiaaodsip sem we[qoid sIq} 1o}
WILI08[e aWl) IBoUl] V "£[OAIINISSUOD INOJO §)asqns 9s3Y) JO [[B YOIYm UI SPIOIDI
973 Jo SuLIBpIo We pulj ‘49s SIY} JO 5)OSQNS JO UOTJII[CO © PUB SPI0IAI JO 39S B UAALS

wia)qoad)paatsgaL 2a1nISU0Y 9Y) ST UOIUS02al YdeId [eAIajUl JO 9NJO[BUB ¥YJ,

contains definitions from graph theory used in later chapters, definitions of
intersection graphs and a survey of relevant results from the literature. Chapter 3
begins the discussion of the recognition and isomorphism algorithms for directed
path graphs. A data structure, called a partial path tree, is defined. This data
structure is a kind of skeletal representation of a directed path graph; having a
partial path tree allows one to quickly find a directed path tree. Chapter 4 gives
two algorithms for finding partial path trees, called Find-PPT-With-Root and
~Find-PPT. Find-PPT-With-Root decides if there is a partial path tree with a
specified root. Find-PPT finds a root or concludes the hypergraph has no directed
path tree. Both run in linear time. Chapter 4 also contains the linear time
algorithm for finding a directed path tree from the partial path tree. Chapter 5
presents DPHIso, an algorithm that tests two directed path graphs for
isomorphism. Chapter 6 concludes with a discussion of directions for further

research.

2. Definitions and Background
We begin with a summary of definitions from basic graph theory. Notation and

definitions are drawn from [4], [6] and [28].

2.1. Graphs

A graph is a pair of sets G=(V E), where V'is a set of vertices, and E is a set of
unordered pairs of distinct vertices called edges. If G is a graph, V(G) and E(G)
are the vertex and edge sets of G, respectively. A vertex u is adjacent to a vertex

wif {u,v} is an edge, i.e., {u,v} EE.

The set of vertices adjacent to u is Adjg (u). An edge e={u,v} is incident with
the vertices u and v, which are the ends of e. The set of edges in graph G incident
with vertex v is Incg (v). The degree of v, d (v), is |Inc(v)| (in general, subscripts

will be omitted when they are clear in context).

Two graphs G and H are isomorphic if there is a bijection ¢ from V(G) to V(H)
such that vertices u and v of G are adjacent in G iff ¢(u) and ¢(v) are adjacent in
H. The function ¢ is an isomorphism from G to H. An isomorphism from G to
itself is an automorphism. A labelled isomorphism is an isomorphism that also

preserves some labelling function of the vertices or the edges of the graphs.

A graph H is a subgraph of a graph G iff V(H) C V(G) and E(H) C E(G). If
E(H)={e€E(G):eC V(H)} then H is the subgraph of G induced by V(H),
denoted G [V] (where V is the vertex set of H). H is called a vertex induced

subgraph of G. If V(H) = {v€ V(G) : v€e for some e€ E(H)} then H is the

"PIOYO B SBY $9913J9A INOJ ISBI[}B SUTUIBIUOD 9[0L0 AIoAd JT |DpLOYD
st qdei8 v ‘- - ‘1= Lue Ioj '2 %2 18y} yons ‘n pue }a seoryiea SurdUUOD

(D)7 ut 2 a8po ue ST H JO pioyd ® ‘H W opho ® sl Ya'l¥a' - - - ‘130 = JI

{a}-(OA = (aPlpy ‘(D) A Ul a Xo3104 [I®D

10y yeqy yoms [(D)A] H=p ydei3qns psonpul xe3deA ® sl H ydeid e jo anbypo vy

"s9[040 ou Yjim Yydeldd pejoauuod ®© S 294 Y

jounsip ale I¥a - - - ‘Op pue Ya=0a aloym ‘g < ¥ ‘y [Y3u9] Jo INOY ® 1 9Jofid Y

"5 jo ydei3qns pajosuuod [BUIIXEUI
® ST) JO jusuodwiod pajoauuod y "pajoouluod ale sadljdea Jo sied [[e JI pejdsuuod

st qdei8 v ‘qred (a‘n) ® seq pH J1 pajoouucd ale H Ul 4 PUB N SIV}I3A OM],

‘ypod (a‘n)
® Po[[ed SI @ pue n spud Yim gjed ® ‘yjed ayy Jo spua oY) pojed a1e yjed ® ul (fa)
x9}J94 3se] pue (On) xo3IoA }sIfj oG], °¥ SI 9A0qe UaAIS g (red ‘Inoj) yem oYy jo
[38u9] Y], "}OUIJSIP AI® SIIJIAA [[B YOIYM UI Inoj ® ST ynd Y "9oUISIP ad€ sa3pd
[le QoIgm W Y[em B st 400} V ¥ S ST ‘{a‘Tta}=! jeyy yons ‘o seSpe pue

fa sooryI04 Jo Ya¥a‘T¥a‘ - -+ ‘13'0p = J souenbaes & st yypm y 'qdeid © aq H 30T

‘(-7 u1 se8pa 9Y}) A UI Sa013I3A 97}

Sunepep £q H woy pauresqo sqdes oy oq ([F-(0) 4] H=7-9) [A-(D)A] D=A-D

P Y (D)FDd) D)ADSA N D fo ydvibgns paonpur abps ue paf[ed Sl

H “(H Jo 1es 3pa a1y s1 i o104m) [7]g pajousp ‘(H) 7 £q peduput H jo gdeidqns

2.2. Directed Graphs

A directed graph, or digraph, is a pair of sets (V,A), where Vis a set of vertices
and A is a set of ordered pairs of distinct vertices, called arcs. If D is a digraph
then V(D) and A(D) are the vertex and arc sets of D, respectively. An arc
a=(u,v) is incident with u and v; the vertices u and v are the head and tail of a; a
is an ¢n-arc of v and an out-arc of u. The sets of out-arcs and in-arcs of vertex u
are Inc T(u) and Inc“(u), respectively. The in-degree of u is d *(u)=|Inc <(u)|, the
. out-degree d *(u)=|Inc *(u)|. The sets of tails of arcs in Inc *(u) and heads of

arcs in Inc “(u) are Adj *(u) and Adj-(u), respectively.

Two digraphs D and D' are isomorphic if there is a bijection ¢ from V(D) to
V(D') such that arc (u,v) is in E (D) iff arc (¢(u),4(v)) is in E(D’). As in graphs,

an isomorphism from D to itself is an automorphism.

A directed walk is a sequence P = vg,ay, . . . ,Uk.1,8,V; Of vertices and arcs such
that a;=(v;.1,v;). A directed tour is a directed walk in which all ares are distinct.
A directed path is a directed tour in which all vertices are distinct. A directed
path with first vertex v and final vertex v is a (u,v)-directed path. As with paths

in graphs, the length of a directed path is the number of arcs in the path.

A directed cycle is a directed tour of length £ > 1 in which vp=wv; and vertices

v, - . - ,Uk-1 are distinct.

A directed acyclic graph, or DAG, is a digraph D with no cycles. Let u,v be

vertices in V(D). The vertex u is an ancestor of v (and v a descendant of u) if

there is a (u,v)-directed path in D; otherwise, u and v are unrelated. If u is an

ancestor of v and (u,v) is an arc then u is a parent of v, v a child of u.

A rooted tree (or directed tree) is a directed acyclic graph in which all vertices
have indegree 1 save one, the root, which has indegree 0. The root of a rooted
tree T is denoted root(T). The subtree of T rooted at v is the subtree of T induced
by the descendants of v. The depth of a vertex v in a rooted tree T, denoted
depth(v), is the length of the path from root(T) to v. The depth of a rooted tree is
‘depth(T) = maz {depth(v) : v€V(T)}. A leaf is vertex in a DAG with no
children. An ordered tree is a rooted tree in which a linear ordering is given for
every nonleaf’s children. The frontier of vertex v in an ordered tree, denoted
FRONTIER(v), is the sequence of leaves that are descendants of v, where a leaf a
occurs before leaf b in the sequence iff there is a common ancestor ¢ of @ and b
such that the child of ¢ on the path from ¢ to a comes before the child of ¢ on the
path from ¢ to b. In other words, the frontier of vertex v is the sequence of leaves
visited by‘a traversal of the subtree rooted at v. If T is an ordered tree then

FRONTIER(T) = FRONTIER(root(T)).

2.3. Families

A family is an indexed collection of (not necessarily distinct) elements
F={F(i): i€ I[F)}. An element z is in a family F (z an element of F) iff there
is an 7 in J(F), z=F({). A family F'is a subfamily of a family F (and F a
superfamily of F'), written F' C F, if I{F') C I(F) and, for every ¢ in I(F'),

F'{1) = F (7). The intersection of two families is the maximal family that is a

subfamily of both; the union of two families is the minimal family that is a
superfamily of both (if any such family exists). If F'!is a subfamily of F then the

difference F-F' is the subfamily of F with I(F-F') = I(F)-I{(F").

A bijection from a family F to a family F' is a bijection from I(F) to I(F'). If e
is an element of family F (e = F(i), ¢ an element of I{(F)) then the image of e
under bijection ¢ is denoted 4(e) (=F'[¢(¢)]). Two families F and F' are equal if

there is a bijection ¢ from F to F'' such that (e)=e for all e in F.

The size of a family of sets Fis SIZE (F) =) i€ IF) |F(¢)].

2.4. Hypergraphs
A hypergraph is a pair (V,E), V a set of vertices and E a family of sets of vertices

called edges.

Two hypergraphs H and H' are isomorphic iff there is a pair (4,6) of bijections
from V(H) to V(H') and E (H) to E (H') such that for any vertex v in V(H) and
edge e in E(H), v is an element of e iff ¢(v) is an element of é(e). The pair (¢,6) is

an isomorphism from H to H'.

A hypergraph H' is a subhypergraph of a hypergraph H if V(H') is a subset of
V(H) and E(H') is a subset of E(H). Subhypergraphs, vertex induced
subhypergraphs, edge induced subhypergraphs, adjacency and incidence are

defined as for graphs.

A hyperwalk is a sequence P = vg,ey, . . . ,Uk.1,€k,Vk Of vertices and edges such

that the vertices v;.; and v; are elements of the edge e;, 1 <7< k. As in walks
and directed walks, the length of this hyperwalk P is k. The ends of the
hyperwalk P are the vertices vg and vg. A hypertour is a hyperwalk in which all
the edges are distinct. A hyperpath is a hypertour in which all edges and vertices

are distinct. A stmple hyperpath is a hyperpath in which

es= [{oit il i=7-1
anei={ 4 1T/)

where 1 < ¢ < j<k. A hyperwalk (hypertour, hyperpath, simple hyperpath)

with ends u and v is a (u,v) hyperwalk (hypertour, hyperpath, simple hyperpath).

Two vertices u and v are connected in a hypergraph if the hypergraph has a (u,v)
hyperpath. A hypergraph is connected if every pair of vertices are connected. A

connected component of a hypergraph is a maximal connected subhypergraph.

A hypercycle is a hypertour in which wvp, ... ,vt; are distinct. A simple

hypercycle is a hypercycle for which equation (1) holds.

The dual of a hypergraph H=(V,F) is the hypergraph H+*=(I(F),F'), where F'

is the family F' = {Incyg(v) : vE€ V}.

The cliqgue hypergraph of a graph G is a hypergraph C(G) with vertices V(G)

and edges the maximal cliques of G.

The edges of a hypergraph satisfy the Helly property if for any subset
A C E(H), if for all edges e and e’ in A the intersection of e and e’ is nonempty,

then N A is nonempty.

10

If H is a hypergraph and V' is a set of vertices, V(H) and V' disjoint, H+V"' is
the hypergraph (V(H)U V',E (H)). Similarly, if E' is a family of subsets of V(H),
I(E (H)) and I(E') disjoint, let H+E' be the hypergraph (V(H),E(H)UE"). If e
is an edge in E (H) then let H, be the hypergraph obtained from H by:

1. adding a new vertex v, to V(H),
2. replacing every edge fin E'(H) that intersects e with f-e U {v.}, and

3. deleting the vertices in e from V(H).

This process is called contracting an edge. A similar process may be defined for
graphs and directed graphs, except that any edge or arc with both ends in the set

e is deleted.

2.5. Intersection Graphs
A family of sets F is an intersection representation of a graph G (and G the
intersection graph of the family F) if I(F)=V(G) and for any distinct vertices z

and y in V(G), F(z) intersects F'(y) iff z and y are adjacent in G.

An interval graph is the intersection graph of a family of intervals of the real
line. A proper interval graph is an intersection graph of a family of intervals on
the real line, such that no no interval is a subset of any other. A path graph is the
intersection graph of a family of paths in a tree. A directed path graph is the
intersection graph of a family of directed paths in a rooted tree. A circular-arc
graph is the intersection graph of a family of arcs of a circle. A proper circular-
arc graph if it is the intersection graph of a family of arcs of a circle, no arc in the

family a subset of another.

11

Gavril and others [21] [11] have proved the following fundamental theorem:

Theorem 2-1:
Let G be a graph. The following three statements are equivalent:
1. G is chordal.
2. G is the intersection graph of a family of subtrees of a tree.
3. There is a tree T whose vertices are the maximal cliques of G such
that, for every vertex v in G, the set of maximal cliques in G that
contain v induces a connected subgraph of T. (The tree T is called

a characteristic tree for G.)

Proof:

See (28], pages 92-93. #

Similar theorems have been proved for interval graphs, path graphs and directed

path graphs.

Theorem 2-2:
G is an interval graph iff the maximal cliques of G can be linearly
ordered such that for any z in V(G) the cliques containing vertex z are

consecutive in the linear order.

Proof:

See [26], [28], pages 172-173. #

12

Theorem 2-3:
G is a directed path graph iff there is a directed tree T whose vertices
are the maximal cliques of G such that, for any vertex z in V(G), the set

of maximal cliques containing = induce a directed path in T

Proof*:

See [22], theorem 2.1. #

"Theorem 2-4:
G is a path graph iff there is a tree T whose vertices are the maximal
cliques of G so that for any vertex z in V(G), the set of maximal cliques

containing = induce a path in T.

Proof:

See (23], theorem 3.3. #

The sequence of cliques in theorem 2-2 and the trees in theorems 2-3 and 2-4 are
called characteristic trees (for interval graphs, directed path graphs, or path

graphs). An immediate consequence of these theorems is:

Corollary 2-5:
Proper interval graphs are interval graphs, which are directed path

graphs, which are undirected path graphs, which are chordal graphs.

13

2.6. Algorithms on Intersection Graphs

2.6.1. Chordal Graphs

Rose, Tarjan and Lueker have [40] an elegant algorithm for recognizing chordal
graphs. Their algorithm exploits the following theorem. A vertex v in V(G) is
simplicial if G [Adj(v)] is a clique. A perfect elimination scheme is a linear
ordering vy, ... ,v, of the vertices of G such that v; is a simplicial vertex in

G-{Ul, R ,'U,‘_]_}, 1 S i S n.

Theorem 2-6:

A graph G is chordal iff it has a perfect elimination scheme.

Proof:

See (28], pages'83-84. #

Rose, Tarjan and Lueker’s algorithm constructs a perfect elimination scheme, if
one exists. The algorithm is straightforward, and is given below (figure 2-1). The
algorithm uses a technique called lezicographic breadth-first search. It can be
implemented to run in linear (O(|V]+]E])) time. A simpler algorithm, attributed to
Tarjan, that also produces perfect elimination schemes in chordal graphs is called
mazimum cardinality search [28]. It uses a technique similar to lexicographic
breadth-first search, except that the vertex picked in each iteration is the

unnumbered vertex that is adjacent to the most numbered vertices.

To test if (V,E) is chordal we must also be able to test if a linear ordering of the

14

Comment Rose, Tarjan and Lueker algorithm for finding perfect
elimination schemes in a chordal graph (V,E);
proc RTL(V,E)
1. for all vin Vdo LABEL[v], o(v):= 0,0
2. for i :=|V] to 1 step -1 do
3. Pick a vertex v from V'such that o(v)=0 and LABFEL[v] is maximum,;
4. o(v) :=1;
5. for all u in Adj(v) do LABEL[u] := LABEL[u] U {3}
end

6. return ¢

end RTL

Figure 2-1: Lexicographic Breadth-First Search

vertices ¢ is, in fact, a perfect elimination sequence. This can also be done in

linear time (figure 2-2).

(The algorithms in figures 2-1 and 2-2 are drawn from [28], chapter 4.

Implementation details and proofs of correctness may also be found there.)

Let o(1), . . . ,o(|V]) be a perfect elimination scheme on a chordal graph G, and
let C be a maximal clique in G. If the integer m = min{s"}(v) : v€ V(C)} and
the graph G;= G-{vy,...,v;.1} then V(C) is simply {vn}U Adjg,, (vm)

Therefore,

15

Comment Test if ¢ is a perfect elimination scheme on (V E);
proc Perfect(s,V,E)
1. for all vin Vdo Afv] ;== 0;

2. for i:=1 to n-1 do

3. v :=o(1);

4. X:={z€Adj() : el{(z) < L v)};
5. if Xz 0 then

6. u = o{min{c’l(z) : € X});

7. Alu] == Alu] U (X-{u});

8 if A[v] is not a subset of Adj(v) then
9. return false;

10. return true

end Per fect

Figure 2-2: Testing Perfect Elimination Schemes

Proposition 2-7:
[18] A chordal graph (V,E) has at most |V] maximal cliques, and has

exactly |V] maximal cliques iff F is empty.

In fact, there exists an algorithm for finding the maximum cliques of (V,E) given
a perfect elimination scheme. The algorithm runs in linear time (so we know the

sum of the sizes of the cliques is O(|V]+|E])). Linear time algorithms also exist for

16

minimum colorings, maximum independent sets and minimum clique covers of
chordal graphs [20]. All of these problems (and the problem of finding a maximum

clique) are NP-complete on general graphs [19].

On the other hand, Booth and Johnson [8] has shown that the problem of finding
a minimum dominating set on chordal graphs is NP-complete, and Lueker and
Booth [35] have shown that testing isomorphism of chordal graphs is polynomially
equivalent to general graph isomorphism (see [7] for a list of isomorphism-complete

‘ problems).

Of interest to us is the fact that all maximum cliques of a chordal graphs can be
found in linear time. In other words, given a chordal graph G we can find the
clique hypergraph C(G) in linear time. This will simplify the problem of
recognizing interval, directed path and path graphs, since a chordal graph G is an
interval (direct path, path) graph iff we can arrange the vertices in the dual of the
clique hypergraph, C(G)* into a path (directed tree, tree) in which all edges in

C(G)* induce (directed) paths.

Proposition 2-8:
The dual of the clique hypergraph of a chordal graph may be found in

O(|V]+|E]) time.

Let H be a hypergraph. We call the problem of deciding of there is a tree T such
that the edges in £ (H) induce subtrees in T the subtree representation problem; a

hypergraph for which such a tree exists is called a chordal hypergraph.

17

Proposition 2-9:

If G is chordal then C(G)™ is a chordal hypergraph.

In addition,

Theorem 2-10:

If H is a chordal hypergraph then the edges of H satisfy the Helly

property.

Proof:

Let T be a tree with vertices V(H) in which each edge in E'(H) induces
a subtree. Let ey, . . . ,er be edges in E(H), e;Ne;j5# 0,1 <4<k
Let U; be the subgraph of T induced by e; N ... Ne;, 1 K i< k. We
prove that each U; is nonempty. Clearly, U; and U; are nonempty.
Inductively, if Uiy is nonempty (¢ < 2), and if V(T;) does not intersect
V(Ui.1) then T; is a subtree of one of the connected components in
T-V(U;.;). But none of these components contains vertices from all of
€1, .- -,€i1, SO ejNej is empty for some j, 1< j<i. This is a

contradiction, so V(T;) and V(Uj.;) intersect, and U; is nonempty. #

18

2.6.2 Interval Graphs and the Consecutive Retrieval Problem

Let H be a hypergraph. The consecutive retrieval problem on H is the problem
of finding a linear ordering in which, for every edge in E{H), the vertices in the edge

occur consecutively. We say H is CRP if there exists such an ordering.

By theorem 2-2, a graph is an interval graph iff the dual of its clique hypergraph is
CRP. Booth and Lueker gave a linear time algorithm for determining if a hypergraph
is CRP [9] [10] [36]. Their algorithm uses an important data structure called a
PQ tree. The algorithms described later for recognizing directed path graphs make

essential use of a variant of PQ trees called PQR trees.

A PQ tree represents a set of linear orderings of some set L. A PQ tree is a

rooted, oriented tree that has three kinds of vertices:

1. Leaves. The leaves of a PQ tree are the elements of the set L (except for the

empty PQ tree, which has no nodes and represents the empty set of sequences).

2. P nodes. These internal nodes have at least two children and are represented by

circles.

3. Q nodes. These internal nodes have at least two children and are represented by

rectangles.

See figure 2-3.

19

aye

Figure 2-3: A PQ Tree

Two PQ trees T and T' are equivalent (denoted T= T') if there is a sequence

comprised of the following transformation that turns T into T
1. Arbitrarily permute the order of the children of a P node.

2. Reverse the order of the children of a Q node.

Clearly, = is an equivalence relation. Define

CONSISTENT (T) = {FRONTIER(T") : T=T'}

to be the set of sequences represented by the PQ tree

CONSISTENT (T)= 0 if T has no vertices.

T, where

20

One can show that

Theorem 2-11:

If Z and Z' are PQ trees, and

CONSISTENT(Z) = CONSISTENT(Z')

then Z and Z' are equivalent.

" Proof:

See [35], theorem 1. #

Booth and Lueker have a procedure, REDUCE , such that if T is a PQ tree with

leaves elements of a set L and A is a nonempty subset of L, then

CONSISTENT (REDUCE (T A)) =

{¢ € CONSISTENT (T) : A is consecutive in o}.

They also gave an implementation of PQ trees and REDUCE so that n calls to
REDUCE on sets Ay, . . . ,A, can be performed in O(|L|+)_ ?=1 |A;]) time. This
solves the consecutive retrieval probIem, and, when combined with the algorithm
for extracting maximum cliques from a chordal graph, allows one to recognize and

construct intersection representations for interval graphs in O(|V]+|E]) time.

Booth and Lueker use PQ trees to help implement the Lempel-Even-Cederbaum
planarity testing algorithm ([9], [16], section 8.4), achieving linear running time.

A generalization of PQ trees, called PQ graphs, has been used to get a (nearly)

21

linear time algorithm for the graph realization problem (the problem of deciding if
a (0,1) matrix is a fundamental circuit matrix of a graph [17]). Lueker and Booth
[35] and Colbourn and Booth [13] have used PQ trees in linear time algorithms to
decide isomorphism of interval graphs, to find canonical forms for (labelled) PQ
trees, to find the number of automorphisms of an interval graph, and to find the
generators of the automorphism group of interval graphs. The algorithms are
extensions of the well known linear time tree isomorphism algorithm [1], [12]. This

_ algorithm will be described later in chapter 5.

Bertossi [5] has a fast algorithm for finding hamiltonian circuits in proper
interval graphs. The complexity of finding hamiltonian circuits in more general

classes of chordal graphs is unknown.

2.6.3. Path Graphs and Directed Path Graphs

The problems of recognizing path graphs and directed path graphs can be
reduced to two problem on hypergraphs: the path tree problem (PTP): given a
hypergraph H, find a tree with vertices V(H) in which all edges in E'(H) induce
paths, and the directed path tree problem (DPTP): given a hypergraph H find a

directed tree with vertices V(H) in which all edges in E (H) induce directed paths?

Gavril [22] [23] has O(|V]%) time algorithms for these problems.

Truszcezynski [44] has a worse than linear time algorithm for the directed path
tree problem. His algorithm used a data structure similar to the PQR trees that

are used here. His paper described an application of directed path tree problem to

22

information retrieval: suppose a given set of records is to be stored on a disk. Let
each record have one pointer that can point to one other record. Require the
resulting directed graph to be acyclic. Given a collection Q of subsets of the
records, arrange the pointers so that the records in each subset occur
consecutively. The rational for this problem is that each *query® in @ can be
represented by its length, and by a pointer to its first record in the tree.
Truszczynski also has a polynomial time algorithm for the problem where the

requirement that the graph be acyclic has been dropped [42].

Booth and Johnson [8] have a polynomial time algorithm for finding minimum
dominating sets in directed path graphs. Their algorithm runs in linear time if a
characteristic tree for the directed path graph is available; the algorithm presented
later in chapter 4 produces a characteristic tree in linear time. Lueker and Booth’s

[35] proof that chordal graph isomorphism is isomorphism-complete extends
naturally to show that path graph isomorphism is also isomorphism-complete (the
chordal graphs constructed in the reduction are actually undirected path graphs).
Booth and Johnson conjecture that isomorphism of directed path graphs can be
done in polynomial time (by analogy with the minimum dominating set problem).

Their conjecture is true; an algorithm appears in chapter 5.

3. Directed Path Hypergraphs and Partial
Path Trees

In this chapter we investigate the structure of directed path hypergraphs.

In the first section (section 3.1) we prove a very (useful) technical lemma, lemma
3-1, that will allow us to prove many particular hypergraphs are not directed path
hypergraphs. The lemma allows one to reduce a complicated hypergraph H to a
simpler hypergraph H' so that if H has a directed path tree then so does H'. We
will use this lemma along with lemma 3-2 (which gives some simple hypergraphs
without directed path trees) to prove that the algorithms in section 4 are correct

when they report a hypergraph has no directed path tree.

In section 3.2 we define partial path trees. The vertices of a partial path tree
form a partition of the vertex set of the hypergraph; these trees can be thought of
as decompositions of directed path hypergraphs into interval hypergraphs. Partial
path trees are used in both the recognition and isomorphism algorithms. In the
recognition algorithm we solve each of the interval hypergraphs using PQ tree
techniques, then knit the solutions together. In the isomorphism algorithm, we
exploit theorem 3-5 which states that PPT with identical roots are identical, and
lemma 3-6, which states that if a hypergraph H has a directed path tree with root

r it has a partial path tree with root {r}.

We next define the sets m(z) and M{z) (where z is a vertex in some PPT P for

hypergraph H), and prove lemma 3-7, which shows (among other things) that both

23

24

of these sets induce paths in any directed path tree for H. Using M{z) we then
prove lemma 3-8, which shows that certain other sets also induce directed paths in
directed path tree for H. These sets, which are in the connector of a vertex z (in
P) with its parent will be used later to fit together the PQ trees for the vertices of
P to get a directed path tree for H. Lemma 3-9 shows how these connectors must

be arranged in any directed path graph for H.

Lemma 3-10 shows that if H has a directed path tree then any PPT P for H is
“also a PPT for the closure of H, obtained by repeatedly intersecting and joining
edges in H (operations 2 and 5; see below). This lemma is used in the proof of
correctness of the first algorithm in chapter 4 (lemma 4-1), and in the proof of

correctness of the second algorithm (lemma 4-10).

Finally, lemma 3-11 shows that if vertex u is an ancestor of vertex v in a PPT P
for H, one can find a simple hyperpath in the closure of H from some vertex in u
to some vertex in v, the edges in the hyperpath intersecting only ancestors of v.
As a consequence, if T is a subtree of P with the same root then for any directed
path tree D for H, the subgraph of D induced by the union of the vertices in T is a

subtree of D.

3.1. Simplification and Structural Theorems
Let H be a hypergraph, and let T be a rooted tree with vertices V(H). Consider
the following six operations:
1. (Contract an edge). Set the hypergraph H to be H, and set the tree T to be

T, (see the definition of edge contraction), where e is an edge in E'(H).

25

2. (Intersect two edges). Set the hypergraph H to be H+{cNd}, . Leave the
tree T unchanged. The edges ¢ and d in E(H) and the set ¢\ d must be
nonempty.

3. (Delete a vertex). Set the hypergraph H to be H-{r} for some vertex r in
V(H). If ris the root of the tree T, one of its children becomes the new root
and inherits r's other children. Otherwise, r's children are inherited by r’s
parent.

4. (Delete an edge). Set the hypergraph H to be H-{e} for some edge e in
E (H). Leave the tree T unchanged.

5. (Join two edges). Set the hypergraph H to be H+{c U d}. The tree T is left
unchanged. The sets ¢ and d must be edges in F'(H) and there must exist an
edge e in E'(H) such that ¢ and d are subsets of ¢, and ¢ d is nonempty.

6. (Difference of two edges). Set the hypergraph H to be H+{c-d,d-c}, the tree
T is unchanged. The edges ¢ and d in E(H) must intersect, neither ¢ nor d

can be a subset of the other and both must be subsets of some edge e in

E (H).

If hypergraph H' and tree T' are obtained from hypergraph H and tree T by a
sequence of such operations then the pair (H',T') is a stmplification of the pair
(H,T), and this sequence of operations simplifies the pair (H,T) to the pair

(H",T") (and simplifies H to H').

", H 10} 9213 qyed pejoalip e st (I
srenba yorqm) , 7 ‘qyed pajosdip ® SI 9913 pajoallp Jo syjed pajoalip
oM} JOo uonossidul Yy eouly i =:,I ‘{(pU+H = ,H %

", H 10} @21} qyed pajdalip ® st ,
‘a10jo107], ‘{3a} No-f $901310A [)Im [yed Pajoslrp ® SI UOIUN JIBY)
pue ¢, I w syyed pajoalrp ale {°a}Na-87 pue {’a}Na-17 ‘7]

“q)m sole ou aleys & pue I souig £Lydwe jou st (¢J)A pue ‘€
Jo pBay 2y st &g Jo [1e) 2y Zg jo peay oYy st L Jo [re) aY) ‘2 wolj
juiofsip a1e (€7)A pue (I7)A °Iaym ‘9 ul s9013daA JO §)UBPUDISAP
Iadoid surejuoo 9eY} €7 yYred pojdallp B PUR ‘9 UI 59013d9A A[UO
surejuod 18y} 47 yred poejdalip & ‘@ Ul So0IjIaA Jo sl0jssous lodoid
surejuod jeq) Iy yjed pojosaip ® :syjed pajoelip 9aIyj jsowl 9e
ojut pesodwiodap aq wed [f],7 weyy 2 a8poe ay) s300s1djul [28pe uw
I festmaoqyo [W qyed pagoaxtp & seonput S os ‘[f] [=[/], [ueys
3 93pd wody quiofstp st (fr) 7 wl f #8ps ue 1 [=: [“H = ,H '1
"$9S8BD XIS 973 Jo Yoea ul suaddeqy jeqm moys A[UO paau am OS

‘suoljerado Jo IaquUUNU 8Y) WO WOWINPUI Aq ST BWIWIS] 373 Jo Jooid oy,

1Jooadg

", H qdeidiedLy
oY} Ioj 9313 yjed pejdaxip ® St , I wayy (, L', H) ired ayy o3 seijijduuts
(I‘g) wed oyy pue g ydeiSiodLy ioj a1y yied pejoslrp ® st I JI

:-¢ BWWA]

96

27

3. H'=H-{r}. As in case 1, for any edge f in E(H) containing
vertex r, f can be broken down into three directed paths consisting
of: proper ancestors of r in T, proper descendants of r, and r itself.
In T', the vertex r has been deleted and the other two lists are
linked together, so f-{r} is a directed path in 7.

4. H' := H-{e}, T' := T. All remaining edges in E'(H) are still
directed paths in T' (=T), so T' is a directed path tree for the
hypergraph H'.

5. H' := H+{cNd}, T' := T, where edge c intersects edge d and ¢
Iand d are subsets of some edge e. Since ¢ and d are subsets of e,
they must both induce subpaths in T of the directed path T'[e].
Since they intersect, these paths must overlap, so their union must
induce a directed path. Therefore, T' (=7) is a directed path tree
for H'.

6. H' := H+{c-d,d-c}, T' := T, where edges c,d,e are as in the
previous case, and neither ¢ nor d is a subset of the other. As in
case 5, ¢ and d are subpaths of T[e]. Since neither is a subset of
the other, it cannot be the case that there are vertices in c-d that
are descendants of all vertices in d and vertices in c-d that are
ancestors of all in d. Therefore, cUd can be decomposed into
three nonempty subpaths T'[c-d], T[¢Nd] and T[d-c], where the
second occur between the other two. Therefore, c-d and d-c induce

directed paths in T' (=T), so T' is a directed path tree for H'. #

28

To prove that a particular hypergraph H is not a directed path hypergraph it
suffices to simplify it to a hypergraph having no directed path tree. The next

lemma provides examples of such hypergraphs.

Lemma 3-2:

The following hypergraphs have no directed path trees:

HC,‘I ({Uly T)vi}y
{{01702}1 Tt ,{’U,’_I,U{},{U{,’Ul}}), t>2

IQ: ({a7b1c)d}7
{{a1b)c)d}){a7b}7{a’c}’{a)d}})

Iy: ({abed},
{{a,b,c},{a,b,d},{a,c,d}})

14: ({ayb,c)d7e}1
{{arbvc}’{a)d’e}){a)b}7{aac}’{a7d}7{a)e}})'

(See figure 3-1.)

Proof:
The hypergraph HC; is a simple hyperpath with i vertices. Contract
all but three edges; the result is a simple hyperpath with three vertices.
This hypergraph violates the Helly property and so isn’t even a chordal

hypergraph, much less a directed path hypergraph.

The hypergraph I has no directed path tree because at most one of
the vertices b, ¢ and d can be the parent of the vertex a; the others must
be children of a. Since two must be children of a, {a,b,c,d} cannot be a

path.

(o / D)

30

Similar reasoning applies to the hypergraphs I3 and I4. By lemma
3-1 we can add to I3 edges {a,b}, {a,c} and {a,d}, so in any directed
path tree at least two of the vertices b, c and d must be children of a,
implying that at least one of the edges {a,b,c}, {a,b,d} and {a,c,d} is not
a path. To see that Ij is not a directed path hypergraph note that in
any supposed directed path tree at most one of the vertices b, ¢, d and e

is not a child of a, so either {a,b,c} or {a,d,e} is not a path. #

Lemma 3-3:
Let the hypergraph H have directed path tree and let
P=vg,e1, - * - ,Vk-1,€k,Vx be a simple hyperpath in H. If T is a directed
path tree for H in which the vertex vy is an ancestor of the vertex v;

then, for 0 < ¢ < j < k, each v; is an ancestor of v;.

Proof*

By induction on k. If k=0 or 1, the lemma is trivial.

Suppose k> 2. Assume the lemma is true for simple hyperpaths of
length less than k. Then, v; is an ancestor of v;in T, 0 < i < j< k. If
vk is an ancestor of vg.; then either v is a descendant of vg.9, in which
case eg.; does not induce a directed path in T or vg is an ancestor of vg.o
in which case e; does not induce a path in 7. So, vxy must be a

descendant of vg.;. #

31

3.2. Partial Path Trees
The algorithms presented in this thesis manipulate structures called partial path

trees (PPT’s). If H is a connected hypergraph then

Definition 3-4:
A partial path tree (PPT) for H is a directed tree P such that
1. The vertices of P are nonempty disjoint subsets of V(H),
UV(P=V(H). (If ¢ is a vertex in V(H), let P(x) denote the
vertex in P containing z.)
2. For any vertices u and v in V(P), u a proper ancestor of v, if
e € Incgy(u) N Incy(v) then v is a subset of e.
3.If u and v are unrelated vertices in V(P) then Incy(u) and
Incy (v) are disjoint.
4. For any vertices u, v and w in V(P), u the parent of v, v a proper
ancestor of w, Incy(u) N Incy(w) is a proper subset of Incy (u)
N Incy(v).
5. For any vertex v in V(P), the set
CONN{(v)={e-Belowp(v) :
e € Incy (v), e-Belowp (v)nonempty}
called the connector of v, is linearly ordered by C (it is a chain),

where

Belowp(v) = U{veV(P):v

is a descendant of u in P}.

32

6. The root of Pis a directed path in any directed path tree for H.

The definition of PPT'’s is quite complicated. It has been chosen so that the

following lemma holds.

Theorem 3-5:

For any connected DPH H, there is at most one PPT with a given

root.

Proof*:

The proof is by induction on the number of vertices in the hypergraph

H.
If H has only one vertex then H has exactly one PPT.

Assume the lemma is true for all hypergraphs containing fewer than
|V(H)| vertices, |V(H)| < 1. Let P and P' be PPT’s for H with

root (P)=root (P')=z.

Let s and r be distinct vertices in some child of z in P. By part 2 of
definition 3-4, Incg(z) N Incy (s)=Incy(z) N Incy(r), and, by parts 3
and 4, this set is nonempty (since H is connected). Therefore, s and r
cannot be in unrelated vertices in P’. But both s and r must be in a
child of z in P’; otherwise, if, say, P'(s) is not a child of z then

Incgy (z) N Incgr(8) is not a proper subset of Incy(z) N Incy (y), where

33

y is the child of z between z and P/(s). So, s and r must be in the same
child of z in P’. Similarly, if s and r are in the same child of z in P’
they must be in the same child of z in P. We conclude the z has the

same children in P and P’.

" Since P is connected, if y is a child of £ in P and P' then
Belowp(y)=DBelowp«(y). Since the subtrees of P and P’ rooted at y are
PPT'’s for the hypergraph H[Belouw(y)], by induction these trees are

identical. Therefore, the trees P and P’ are identical. #

We now prove that every directed path hypergraph has a PPT. We say that a
PPT P for H approzimates a directed path tree T if, for any vertices @ and b in

V(H), if a is an ancestor of b in T then P(a) is an ancestor of P(b) in P.

Lemma 3-6:
For any directed path tree T for H there is a unique partial path tree

for H with root {root (T)}, and this PPT approximates T.

Proof:

There is at most one such PPT (lemma 3-5).

To show that there is at least one such PPT we use induction on

[V(H)|.

If |V(H)|=1, then the directed tree P=({root (T)}, @) approximates T.

34

Suppose |[V(H)| > 1. Assume the lemma is true for hypergraphs with
fewer vertices. Choose some leaf a of . By lemma 3-1, the tree
T'=T-{a} is a directed path tree for H-{a}. By the induction
hypothesis, there is a PPT P’ with root root (T') (which equals root (7))
approximating T'. Let b be the parent of a in T. If b=root (T) then we
may add a new child {a} below {b} in P’ to obtain a PPT for H. If
b5~ root (T) there are two cases. Let s be b's parent in T. If
Incgr(s) N Incgr (b) = Incgy(s) N Incyy(a) then adding a to P'(b) yields
a PPT for H approximating T. Otherwise, adding a child {e¢} below

P'(b) yields a PPT for H approximating T. #

Let Pbe a PPT for H, z a vertex in P. Define

m(z) = { z if z=root(T)
' N (Incy (z) N Incy (y)) otherwise,
where y is the parent of z.

M(z)= {v: c€ UlIncy(z), P(v) an ancestor of z}.

(See figure 3-2.)

35

Figure 3-2: m(z) and M(z)

Lemma 3-7:
Let Pbe a PPT for a connected hypergraph H, and let z be a vertex in
P.
1. The vertex z is a subset of the sets m(z) and M(z), with equality if
and only if z is the root of P.
2. The sets m(z) and M(z) intersect only ancestors of z in P, and
3. The sets m(z) and M(z) induce directed paths in any directed path

tree for H.

Proof:

If z is not the root of P, let y be z’s parent.

36

(1) Since Incy(z) N Incg(y) = Incyg(r) N Incy(y) for every rin z, 2
is a subset of m(z). Since H is connected, part 4 of definition 3-4 implies
that Incg(z) N Incy (y) is nonempty, so m(z)=xz iff = is the root of P.
Similarly, if z is not the root then M(z) intersects y (trivially, z is a

subset of M(z)).

(2) This is also trivial for M{z). For m(z), if z is not the root and z is
a proper descendant of z then part 4 of definition 3-4 states that
Incg(2)NIncy(y) is a proper subset of Incy(z)N Incy(y), so

m(z)= N (Incyg (z) N Incy(y)) and z are disjoint.

(3) Since m(z) is either the root or the intersection of edges in E (H),
by lemma 3-1 m(z) induces a path in any directed path tree for H. To
prove that M(z) induces é, path, observe that there must be some edge e
in Incg(z) such that M(z) C e (this follows from definition 3-4, parts 4
and 5). Add edge m(v) N e to H for every ancestor v of z for which this
set is nonempty. By part (1) of this lemma, each m(v) intersects m(w), w
the parent of v, and since the union of these sets is M(z), by lemma

3-1 M{z) induces a path in any directed path tree for H. #

Let the connector of a vertex x, CONN(z), be the set {c(z,1), - - - ,c(z,k)}, where

¢(z,7) C c(z,i+1). Define

37

. c(z,l), if t=1
d(z,i) ={ c§x,,~)).c(x,i-1), if 1< i< |[CONN(z)|

and

o(a.i) ={ ABICONN@ if i=1.
’ ¢(2,|CONN(z)|)-¢(z,i-1) if 1 < i < |CONNz)|

(See figure 3-3.)

e(z,?)

c(z,?)

Figure 3-3: Sets ¢(z,1), d(z,7), e(z,?)

Note that m(z)=z U ¢(z,1) and M(z)=z U ¢(z,1).

38

Lemma 3-8: _
Let P be a PPT for H, ¢ a vertex in P. Each set ¢(z,t), d(z,i) and
e(z,1) induces a directed path in any path tree for H. Moreover, if
|CONN{(z)| > 1 then the vertices in node z induce a directed path in

any path tree for H.

Proof:
Let T be a path tree for H. If z is the root, the lemma is vacuously
true. If z is not the root, let y be the parent of z in P. We know that
each c(z,t) is a set of the form e M(y), e an edge in E (H) intersecting

both z and y, and therefore induces a directed path in T.

Similarly, ¢(z,?) and ¢(z,i-1) are subsets of M(z) and d(z,/)=c(z,i)-e for
some edge in E(H) intersecting both z and y. Therefore, ¢(z,i) and
¢ N M(z) are intersecting subsets of M(z) but neither is a subset of the
éther, so (lemma 3-1, part 6) d(z,f) induces a path in 7. A nearly
identical argument also works for the e(z,:)’s and also shows that, if

|CONN(z)| > 1 then z induces a path in T. #

Lemma 3-9:
If |CONN(z)| > 1 then in any directed path tree T for H the vertices
in d(z,?) are ancestors of those in d(z,i+1) (1 £ ¢ < |CONN(z)|) or the
vertices in d(z,s) are descendants of of those in d(z,i+1)

(1< i < |CONN(z))).

39

Proof*:

We know that the vertices in
zUd(z,1)U - - - Ud(z,|CONN(z)|) = Mz)

induce a path in T (lemma 3-7). The sets zUd(z,1) (=m(z)) and
d(z,9) U d(z,i+1) (=c(z,i+1) N e(z,i), 1 < ¢ < |[CONN(z)|) induce paths

in T (lemmas 3-1, 3-7 and 3-8). Lemma 3-3 then proves the lemma. #

Lemma 3-10:
Let P be a PPT for H. If H has a directed path tree then Pis a PPT
for H*, where H* is the hypergraph obtained by repeatedly applying

operations (2) and (5) to H (called the closure of H).

Proof:
We verify that, after applying operation (2) or (5) to H, P is still a
PPT for the new hypergraph H'. There are six possibilities,

corresponding to the six parts of definition 3-4.

(1) is trivial.

(2) remains true when adding the intersections of edges: let u,v € V(P),
u a proper ancestor of v. Let ¢ and d be edges in E'(H) intersecting both
v and v. Since v is a subset of ¢ and d, it is a subset of their
intersection. (2) also remains true when joining edges. Let ¢ and d
intersect u and v, respectively, and let the intersection of ¢ and d be

nonempty. Either d intersects v's parent, in which case v is a subset of

40

d, or c intersect v, in which case v is a subset of ¢. In either case v is a

subset of the union of ¢ and d.

(3) remains true because ¢ and d cannot create a new edge that is not a

subset of previously existing edge.

(4) can only be invalidated if some edge is created that intersects u and
w but not v, u the parent of v, v a proper ancestor of w. Intersecting
edges cannot do this, because if edges ¢ and d intersect v and w then v is
a subset of the intersection of ¢ and d. Joining edges cannot do it,
because if edge ¢ intersects v and v intersects w and ¢ intersects d then
either ¢ intersects v (and v is a subset of ¢) or d intersects u (and v is a

subset of d).

(5) If (5) becomes false, then we can simplify H' to HC3, which has no
directed path tree, so H' and therefore H have no directed path trees
(lemmas 3-1, 3-2, 3-7). Since we assumed that H has a directed path

tree this can’t happen.

(6) is trivial.

Since a single application of operations (2) or (5) preserves PPT’s, so

do sequences of these operations, so Pis a PPT for H*. #

41

Lemma 3-11:

Let P be a PPT for H*, and let « and v be vertices in P, u an
ancestor of v. For any r € 4 and s € v there is a simple (r,s) hyperpath

in H* containing edges intersecting only ancestors of v.

Proof:
Let u=uwy, - - - ,up=v be the (u,v) directed path in P. We can build a
(not necessarily simple) (r,s) hyperpath using the edges m(v;), 1 < i<k
and by selecting one element from each v; (select » and s from u and v).
By lemma 3-7 these edges intersect only ancestors of v. Since every (r,s)
hyperpath has as a subhypergraph a simple (r,s) hyperpath, there is a
simple (r,s) hyperpath in H* with edges intersecting only ancestors of

v. #

4. Algorithms on Partial Path Trees

This chapter describes three algorithms on partial path trees. The first, called
Find-PPT-with-Root, determines if a hypergraph H has a PPT with a given root r,
where r is a subset of the set of vertices V(H) that induces a path in any directed
path tree for H. The second, Find-PPT, will produce a PPT for H if H has a
directed path tree. The final algorithm, Find-Path-Tree, takes as input a PPT for
hypergraph H and produces a directed path tree for H, if one exists. All of these

- algorithms run in linear (that is, O(|V|+SIZE (E (H)))) time.

4.1. Finding a Partial Path Tree with a Given Root

We now give an algorithm that, given a root r C V(H), will construct a PPT P
for H with root r (if one exists). The algorithm runs in linear time. By lemma
3-6, if H has a directed path tree with root r in V(H) then H has a PPT with root
{r}. So, if there is no r such that H has a PPT with root {r} then H has no
directed path tree. Combined with the algorithm from section 4.3 one gets a
quadratic time algorithm for finding directed path trees for directed path

hypergraphs. This is essentially Truszezynski’s algorithm [44].

The tree is constructed in a depth-first manner. When a vertex v of the PPT is
visited all edges in E{H) intersecting v that have not yet been added to the tree
are added. This may alter the subtree rooted at v, but not v itself. At each stage
the tree is a PPT for the edge induced subhypergraph H[E'], where E' is the

set of edges so far added.

42

43
Figures 4-1 and 4-2 present the details of the algorithm.
Lemma 4-1 proves the partial correctness of Find-PPT-with-Root.

We say that a vertex z has been visited if the procedure Visit has been called

with z as its argument.

Let H be a hypergraph and let r, a vertex in V(H), be the root of some directed

path tree for H.

Lemma 4-1:
After each iteration of the loop at line 5 in procedure Visit (figure 4-1),
the tree P is a PPT for H[E'|, and if the algorithm halts without

aborting £/ =F (H), assuming H is connected.

Proof*:
By induction on |E'|. Initially, E'={r} and P is the tree with the

single vertex r, so Pis a PPT for H[E'].

Assume the lemma is true for 1< |E'|<n (n>1). Let z be the
vertex being visited, e the edge being added. Since vertices are visited in
preorder no descendant of = has yet been visited, so for every descendant

yof z, Incy(y)NE' C Incy(z)NE'.

Let d be ¢cNV'. If the set d induces a disconnected subgraph of

Comment Construct a PPT for H=(V,E) with root r € E

proc Find-PPT-With-Root(V,E,r)

begin

1. E':={r};
2. VI i=mr,

3. Pi=({r},0);
4. Visil(r)

end Find-PPT-With-Root,

Comment Visit vertex z, adding all edges in Incg (z)-E';
proc Visil(z)

begin

5. for each c in Incg(z)-E' in decreasing order of |eN z| do
6. Add-Edge(c,z);

7. E'NVI':=FE'"U{c},V' Uc

8. for each child s of z do Visi{(s)

end Visit,

Figure 4-1: Procedures Find-PPT-With-Root and Visit

45

Comment Add an edge ¢ below vertex z in PPT P,
proc Add-Edge(c,z)
begin
9. de:=cnNV',c-V',
10. if d is not a subset of z then
11. L:= {s : sis a vertex in P, s intersects ¢, s
has no proper descendants in L};
12. if L contains a nondescendant of z or |L} > 1 then abort;

13. if |L| = 1 then

14. uQ, - - - Uy = the (z,u) directed path in P, where L = {u};
15. if u; is not a subset of ¢ for some 7, 1 < ¢ < m then abort;
16. b:= the most recently added edge intersecting uy;

17. if ¢ Nz is not a subset of 5N = then abort;

18. if u is not a subset of d then

19. y:=u-d,

20. Add vertex y to P,

21. Make every child of u in P a child of y;

22. Replace u with uNd in P,

23. Make y a child of uNd in P

end Add-Edge

Figure 4-2: Procedure Add-Edge

46

H([E'] then the hypergraph H[E' U {c}] has a simple hypercycle of
length at least three, an impossibility since H has a directed path tree.

Therefore, H* contains the edge

U{eNc:e€lncyg(c)NE'}
(lemma 3-1), which is d.

So, we add d to the tree. There are two cases. If d intersects only z
the tree is unchanged. Otherwise, d intersects a sequence of vertices
T = ug,uy, . . . ,U;y,, ¥;.1] the parent of u; in P and uq, . . . ,u,,) subsets
of ¢. If u,, is also a subset of ¢ then Pis a PPT for H[E' U {d}].
Otherwise, the algorithm splits u,, into u,, N d and u,,-d, making the
first the parent of the second. All children of u,, become children of
Um-d. It is not difficult to verify that the result is a PPT for

H[E' U {d}] (part 4 of definition 3-4 is the critical part).

Once we have a PPT for H[E' U{d}] we can get a PPT for
H[E' U {c,d}] by making c-d a child of the deepest vertex intersecting
d. By theorem 3-5 and lemma 3-10 the result is also a PPT for

HIE'Ud.

Since H is connected every edge is eventually added, so E' eventually

becomes E. #

Lemma 4-2 provides the justification for the crucial step in the linear time

47

algorithm. It gives conditions under which vertices can be discarded from a
hypergraph while building the hypergraph’s PPT. The lemma is true because all
obstacles that can arise while building a PPT force the root of an directed path

tree for H to be at or below the obstacle (see the lemma for a precise formulation).

Lemma 4-2:
Let H be a hypergraph, r an edge in E(H), P a PPT for H with root r
and P' a PPT for H[E'] with root r constructed by
Find-PPT-with-Root. Let U be the set of vertices in V[P’) visited so far.

Then, UC V(P) and P' [U]=P[U].

Proof:

By induction on the size of U. Initially, U={r}, and since r is the root

of P, P{r}]=P" [{r}].

Assume that UC V(P) and UC V(P'), 1< |U] < k. Let y be the
k-th vertex in P’ to be visited. Let z be y’s parent in P'. Since the
vertices are visited in pfeorder, z is in V(P), and all edges in Incg(z)
are in E'. We can therefore show, by arguments similar to those used
in the proof of theorem 3-5, that the children of z are the same in P and

P'. Therefore, yis in V(P). #

Finally, we must show that when the algorithm aborts, H has no partial path

tree with root r or has no directed path tree whatsoever.

48

Lemma 4-3:
If Find-PPT-with-Root aborts then either H has no PPT or H has no

directed path tree.

Proof:
There are four places where the algorithm can abort, all in procedure
Add-Edge. Let P' be the PPT constructed so far, z the vertex being

visited, ¢ the edge being added.

Line 13: The edge c intersects a vertex u in V(P') that is not a
descendant of z. The vertex u must be unrelated to ; otherwise, the
edge ¢ would have already been added to E'. Let v be the least
common ancestor of r and u. There is a simple hyperpath from some
vertex in z N ¢ to some vertex in u N ¢ passing through v. Adding ¢ to
this path yields a simple hypercycle of length at least three so (lemmas

3-1, 3-2) H has no directed path tree.

Line 13: The edge c intersects two unrelated descendants of z, say u
and v. By lemma 4-2, either H has no directed path tree or the vertices
in v and v must be in proper descendants of z in any PPT for H with
root r. In the latter case, let s and ¢ be vertices in uNe¢, vNeg,
respectively. Since the intersections of Incg(s) and Incy(t) with
Incpr (z) are incomparable, s and ¢ must be in unrelated descendants of
z (definition 3-4, part 4), an impossibility (definition 3-4, part 3). So,

either H has no directed path tree or H has no PPT with root r.

49

Line 16: The descendants of z that intersect ¢ lie along a directed path,
u the deepest such descendant, and their is a vertex v between = and u
that is not a subset of c. Let s and ¢ be vertices in v-¢ and uNe,
respectively. As in the previous case, lemma 4-2 requires that s and ¢ be
in unrelated descendants of z in any PPT for H with root r, an

impossibility.

Line 18: Some previously added edge b intersects a child u; of z, let
cNz is not a subset of 5N z. We know that b does not intersect z’s
parent (if z has a parent); otherwise, ¢z would be a subset of bN z.
But since edges are added by Visit in decreasing order of the size of their
intersections with z, we know that |bN z] 2> |¢ N z], so neither b N z nor
cNc is a subset of the other. By deleting from H all but one record
from (bNz)c, (cNz)b and ujNe, we can simplify A to HC3, so

(lemmas 3-1, 3-2) H has no directed path tree. #

Theorem 4-4:

Find-PPT-with-Root is correct.

Proof:

Immediate from lemmas 4-1 and 4-3. #

It should be mentioned that two of the ways the algorithm can abort (the first

and last) cannot happen if H is a chordal hypergraph.

50

We now outline a linear time implementation of this algorithm. Proper choices

of data structures are crucial.

The hypergraph H=(V,E) is represented as follows. Each pair (v,e), v a vertex
in V, e a vertex in E(H), v an element of e, is represented by a record in memory.
These records are strung together into doubly linked lists, one for each vertex v
(containing all records of the form (v, - - -)) and one for each edge e (containing all
records of the form (- --,e)). These records can be deleted and inserted in

“constant time. The vertices of the PPT P are represented by linked lists of

vertices from V(H) (each vertex is in at most one tree vertex).

The procedure Visit is implemented as follows. Let z be the vertex being visited.
For each vertex r € z, traverse the list list of pairs (r,e). For each edge e found,
increment by one a counter (initially zero) associated with that edge. After all lists
are traversed, which takes time proportional to |z| plus the sum of the sizes of the
Incg(r)'s (r € z), the counters contain the sizes of the intersections of the edges in
Incy(z)-E'' with z. These numbers can be sorted by a simple bucket sort in
O(|z|+|Incg (z)-E']) time. In decreasing order of |eN z| we add these edges to P

(see below) and delete them from C. This takes time |e| per edge e.

Add-Edge is also straightforward. First, partition the edge ¢ into ¢cN V' and
c-V'. This takes O(|c|) steps. Finding the vertices in P that intersect ¢ can also
be done in O(|c|) steps. Call this set of vertices D. If the parent of any vertex in

D-{z} is not in D then stop and abort. If any vertex in D-{z} that has a child in

t

51

D is not a subset of ¢ then stop and abort. Finally, if there is more than one

vertex in D that has no child in D then stop and abort. This all takes O(|c|) steps.

For every unvisited vertex in V(P) we keep track of the last edge added to the
tree that intersected v, and store the intersection of b and v. This took O(|b|) steps
when b was added. When ¢ is added, comparing ¢cNz and bNz takes O(|c|)
steps. Splitting the deepest vertex in D and adding c-V takes O(|c|) steps. Since

every part of Add-Edge takes at most O(|c|) steps, Add-Edge takes O(|c|) steps.

Adding up the running time gives:

Proposition 4-5:
Assuming H is connected, algorithm Find-PPT-unth-Root returns or

aborts within O(SIZE (E (H))) steps.

We can find a PPT for any connected DPH H by running Find-PPT-with-Root
for r={v} for each vertex v in V(H). By lemma 3-6, there must be some vertex v

in V(H) for which the algorithm will succeed. Worst case running time will be

O(|V|+SIZE (E)).

4.2. Finding a Partial Path Tree -- General Algorithm

In the previous section we saw how to determine in linear time if a hypergraph
has a PPT with a given root. In general, however, we do not know ahead of time
what the root will be. This section describes a linear time algorithm for finding

such roots.

52

The algorithm begins by building a PPT for the hypergraph H at some arbitrary
root {r}, r a vertex in V(H). When obstacles are encountered the algorithm
discards portions of the tree and chooses a new root. This process continues until
a PPT P' for a subhypergraph H' of H has been found. This subhypergraph has
the property that the existence of a directed path tree for H guara.nteés the
existence of a PPT for H with root root (P'). If the algorithm fails then H has no

directed path tree.

We begin by proving several lemmas that are crucial to understanding the linear

time algorithm.

First, lemma 4-6 shows how to simplify a PPT for a hypergraph H when a vertex

is deleted from H.

Let H be a hypergraph, r a vertex in V(H), H' =H-{v}. As usual, assume H
and H' are connected, and that V(H') is nonempty. Let P be a PPT for H.
Build a PPT P’ for H' as follows:

1. Delete r from P(r). If P(r)={r} and P(r) is the root then delete it and,
since P' is connected, P(r) has only one child; it becomes the root of P’.
Otherwise, if P(r)={r} and P(r) is not the root then P(r)’s parent inherits
P(r)’s children.

2. While there are vertices z,y and z in the tree, y a child of z, z a child of y,
Incg ' (z) N Incgi(y) = Incgi(z) N Incgyi(z), replace y and z by their
union. All children of y (except z) and all children of 2 become children of

the next vertex.

53

Lemma 4-6:

P! is a PPT for H'.

Proof:

Observe that the tree obtained after step (1) satisfies all parts of
definition 3-4 except part 4. As vertices are merged in step (2) this
remains true. When this loop concludes (as it must, since their are a
finite number of vertices) part 4 of definition 3-4 is also satisfied, and the

tree is a PPT for H'. #

Corollar); 4-7:
If v,...,vs€V(H) are not in root(P) then H-{vq,...,vx} has a

PPT with root root (P).

The next lemma (lemma 4-8 gives conditions under which the existence of a PPT
for a subhypergraph H [V'] of H implies the existence of a PPT for P (with the
same root). This lemma is central to the linear time algorithm; it will allow use to
discard portions of a hypergraph, find a PPT for the remaining subhypergraph,

then extend this PPT to a PPT for the entire hypergraph.

Let H=(V)E) be a hypergraph, V! CV, H'=H|[V']. Assume H and H' are

connected.

94

Lemma 4-8:

If P' is a PPT for H' with root v, v an edge in F, and if there is a
directed path tree T for H in which all vertices in U Incy (V-V') are

descendants of some vertex r in v then H has a PPT P with root v.

Proof:
We show that there is a PPT P with root v by running
Find-PPT-unth-Root on H, starting at vertex v. We prove that it cannot

abort so (theorem 4-4) it must return a PPT for H with root v.

To show that the algorithm cannot abort, we consider each of the four
cases that could cause it to fail. Two of those cases (cNz is not a
subset of 5N z, and ¢ intersects a nondescendant of z) imply that H has
no directed path tree, a contradiction. We consider the other two cases.

Let = be the vertex being visited and ¢ the edge being added.

At line 13, suppose there are two unrelated descendants of z, say y and
z, that intersect ¢. Let b and d be the most recently added edges
intersecting y and z (other than ¢). Since H has a directed path tree,
cNz must be a subset of bNz and dNz. Let ri€EyNe, rp€2zNC
and r3€ zNc. By lemma 3-1, in any path tree for H exactly one of r;
or ro is an ancestor of r3. Without loss of generality, assume it is r{ in
the directed path tree . By lemmas 3-11 and 3-3 there is in H* a

simple (r3,s)-hyperpath (s any vertex in v) that does not contain edges

95

intersecting y or z and therefore r; is an ancestor in T of all vertices in v.

So, r; is not in any edge intersecting V-V, so c is a subset of V.

If z is the root then H' has no PPT with root v, since r; and ro must
be in wunrelated descendants of v, and rj€b-d, ro€d-b and

b,d € Incgy (v), yet both r1,ro € ¢ (violating definition 3-4, part 3).

So, z7#v. Let v=t,,...,zp,=z be the (v,r)-directed path in P’.
We show that there is a subset of V' (of which v is a subset) that
induces a connected subhypergraph of P’ that has no PPT with root v,

a contradiction (corollary 4-7).

The set ¢ is disjoint from U Incp(V-V'), because r € 2, ¢ is disjoint
from v, and ry is an ancestor in T of all vertices in v (this follows from
lemma 3-1: contract ¢; the vertex v, must be a proper ancestor of all
vertices in v). So, no edge intersecting z and c intersects V-V’ and
therefore M(z,) is a subset of V'. If z; is the deepest vertex along to
(v,z)-directed path that intersects an edge intersecting v then for all j,
t < j < n, the vertices in M(z;) are ancestors in T of those in v (lemmas
3-1, 3-3 and 3-11), so M(z;) does not intersect any edge intersecting

V-v!.

If there exists an edge intersecting both z, and v then let the set X be
the union of zy, ... ,r, and {ry,r2}. We know that each z; is a subset

of M(z,). Is there a PPT for H'[X] with root v? No: if there were then

56

(lemma 4-6) the vertices zy, . . . ,z, would exist in it as well, and r; and
ro would necessarily lie in unrelated descendants of z,. This again

contradicts definition 3-4, part 3.

So, assume that there is no edge intersecting both z,, and v. Let z; be
as above; let X be vU M(z;41) U ... UM(z,)U {r;,ro}. By lemma
4-6, a PPT for H'[X] with root v would contain a directed path from v,
the union of the vertices in the path equal to
(z1U ... Uz;)N M{z;41). The deepest vertex in this directed path
would include all vertices in M{z;41) N z;, so the vertices x4y, ... ,z,
would be unchanged. Again, r; and ro must be in unrelated descendants

of z,,, a contradiction.

This exhausts line 13, so Add-Edge cannot abort there.

Line 16: Here, the edge ¢ intersects some proper descendants of z, say y
and z, y a proper ancestor of z, ¥ not a subset of c. Let rj€zNcg,
ro€y-c, r3€zxNc. Let b be the most recently added edge (before c)
intersecting z and d the most recently added edge intersecting y but not
z. As before, cN z is a subset of bNz and dNz. We can contract the
edge M(z) and delete all other vertices except r; and ro and conclude
(lemmas 3-1, 3-7 and 3-3) that either r; or rg is an ancestor in T of all
vertices in v, so b and d are subsets of V/. From this point on the proof

is the same as the previous case.

57

Since Find-PPT-with-Root does not abort on root v, H has a PPT with

root v. #

Figures 4-3, 4-4, 4-5, 4-6, 47 and 4-8 give the details of the linear time

algorithm. Let Above(z,c) = M(z)-(zNc).

The next theorem shows that if this algorithm aborts then H has no directed

path tree.

Theorem 4-9:
Let Py be a PPT for H'=H [E'], E' C E. Let z be a vertex in Py
such that for every descendant v of z, the edges in E'' intersecting v
also intersect z. Let ¢ be an edge in E-E' intersecting z that is being
added to the tree by Add-FEdge (figure 4-4) at vertex z. If Add-Edge

aborts then H has no directed path tree.

Proof:

There are five places where the algorithm can abort.

(Line 10) If ¢ intersects some vertex y in Py unrelated to z then H has

a simple hypercycle, so H has no directed path tree.

(Line 12) If ¢ intersects at least three unrelated descendants of z, say
Y1, y2 and y3, then there are edges ej, e and e3 in E'! such that each e;

intersects £ and y; but not the other y; (¢5%j). Let r;€y;Ne,

58

Comment Build a PPT for H=(V,E) or find that H is not DPH;
proc Find-PPT (VE)

begin

1. P:=({e},0) for some e€ E;

2. V' ,Root,E',D:=e,e{e},0;

3. Visit{Root);

4. return (Find-PPT-with-Root (R,C,Root))

end Find-PFT,

Comment Visit the vertex r in P’, adding all edges in E-E'' intersecting z;
proc Visil(z)

begin

5. for each c in E-E' intersecting = in decreasing order of |c N z| do

6. z:= Add-Edge(c,z);

7. while z is a vertex in P and « has a child s that hasn’t been visted do

" 8. Visit(s)

end Visit;

Figure 4-3: Procedures Find-PPT and Visit

59

Comment Add the edge ¢ to E'' while visiting vertex z;

proc Add-Edge(c,z)

begin

9. A:={v: va vertex intersecting ¢, v 7 z};

10. if A contains any vertex unrelated to z then abort;
11. L:= {vE€ A : No proper descendant of v is in A};
12. if |L| > 2 then abort;

13. if ¢ is not a subset of V' then L := Split(c,L);

14. if |L| = 1 then z := Casel(c,z,L)

15. else if |L| = 2 then z := Case2(c,z,L);

16. V! .=V Ucg;

17. E' :=F' U{c};

18. if - U A is not empty then

19. Make c- U A a child of the deepest vertex in P intersecting c;
20. return(z)

end Add-Edge;

Figure 4-4: Procedure Add-Edge

60

Comment Split the vertices in PPT P’ which intersect ¢, have no descendants
intersecting ¢, and are not subsets of ¢ into parts intersecting ¢ and
disjoint from c;

proc Split(c,L)

- begin

21. N:= 0;

22. for each v in L do

23. if vis a subset of ¢ then N:= NU {v}

24. else

25. Replace v with vNcin P,
26. Vi:=V'U{m(v)Nc};
27. Make v~c¢ a child of v ¢;
28. N=Nu{vne}

29. return(/V)

end Split;

Figure 4-5: Procedure Split

61

proc Casel(c,z,L)

begin
30. u := the single vertex in *L*;
31. z,uq, . . . ,4y, ;= the path from z to u in P,

32. e:= the most recently addéd edge in E' intersecting uy;
33. if ¢ N z is not a subset of eN =z then abort;

34. if each u;, 1 < i < m, is a subset of ¢ then return(z);
35, 8:= min{i : u; is not a subset of c};

36. return(/New-Root (M(u,)));

end Casel;

Figure 4-8: Procedure Casel

1 <i< 3. Obtain a hypergraph I from H' by contracting m(z) and
deleting all other vertices except the r;'s. The resulting hypergraph is
isomorphic to Iy so (lemmas 3-1, 3-2) H has no directed path tree. See

figure 4-9.

(Lines 33) All vertices intersecting ¢ are related, u the deepest vertex
intersecting ¢, e the edge in E' intersecting z and u with the smallest
intersection with z, and ¢ z is not a subset of eN z. In this case we
can delete from H all but one vertex in (¢ N z)-¢, (e N z)-¢ (which must
be nonempty, since e N z| 2> |¢ N z|, and one from u N ¢c. The resulting

hypergraph is isomorphic to HC3, so H has no directed path tree.

62

proc Case2(c,z,L)

begin

37. u,v:= the two vertices in L;

38. z,uy, . . . ,uy and z,vy, . . . ,v, ;= the paths from z to u and z to v in P,
39. k:=min{i : u; 7 v;};

40.
41.
42.

43.

44.

45.

46.

e,f:= the most recently added edges in E'’/ intersecting u; and wvy;
if c N z is not a subset of e or of f then abort;
b.= c;l
if u; is not a subset of ¢ for some 7, 1 < ¢ < m or
there is an edge in E' intersecting u; and Above(z,c) then b:= M(uy,);
if v; is not a subset of ¢ for some j, 1 <j<nor
there is an edge in E' intersecting v and Above(z,c) then
if b % ¢ then abort else b : = M(vy,);

return(New-Root (b))

end Case2;

Figure 4-7: Procdure Case2

(Line 41) is, with small changes, identical to the previous case.

(Line 45) If the algorithm aborts here then it must have already set &
to M(u,,) at the previous statement. Let u and v be the deepest
descendants of =z intersecting ¢, and let =zuy,...,u,=u and

z,v1, . . . ,up=0 be the directed paths from z to » and v in P, and let &k

63

Comment Create a new root, discarding all vertices above it;

proc New-Root (b)

begin

47. Deep := {v : v a vertex in P, v has an ancestor intersecting b,
v has no proper descendants that intersect b };

48. D:=DU({r€ V' : ris not in a vertex in Deep}-b);

49. D:=DuU{reV' : thereis a path from r to some vertex in D

that does not pass through V'-D};

50. Remove all vertices in D from all edges;

51. V! .=V'-D;

52. Replace the vertices intersecting b in P with the single vertex b;

53. Root,E\E' :=b,EU {b},E' U {b};

54. return(Root)

end New-Root

Figure 4-8: Procedure New-Root

be the smallest number (> 0) such that ug 5 vg. There are several
cases to consider.
1. u; (=v;) is not a subset of ¢ for some 7, 1 i < k. Let g€EcNue,
r€u;-c, s€uNc and tEvNec. The subhypergraph H [{g,r,s,t}]
simplifies to I3, so (lemmas 3-1, 3-2) H has no directed path tree.

See figure 4-10.

64

2. u; is not a subset of ¢, v; is not a subset of ¢, for some i, j,
k<i<m, k<j<n Let g€uyc, r€vre, s€EuNc and
t€vNec. The hypergraph obtained from H by adding edges
Mu)Ne and M{v)Nec, contracting m(z) and deleting all other
vertices except ¢,r,s and ¢ simplifies to Iy so (lemmas 3-1, 3-7 and
3-2) H has no directed path tree. See figure 4-11.

3. There is an edge d; in E' intersecting u; and Above(z,c), and an
edge do in E' intersecting v and Above(z,c). We can assume that
one of uj or vy is a subset of c; otherwise, the previous case applies.
Without loss of generality assume uj is a subset of ¢. We know
that dy N dg N Above(z,c) is not empty (from definition 3-4, part
5). Let g€zNe¢, r€EvNe, sEuknc. and t€diNdoN €
Above(z,c). If v intersects ¢ then let pEwvrNc, and the
hypergraph H [{p,q,s,t}] simplifies to I3. If v and ¢ are disjoint
then let p € v;. The hypergraph H [{p,q,r,s,t}] simplifies to I;. In
either case H has no directed path tree (lemmas 3-1, 3-2). See
figure 4-12.

4. u; is not a subset of ¢ for some i, k < i< m, no edge in E'
intersects both u; and Above(z,c), and there is some d in
vi N Above(z,c) (the symmetric case is identical; interchange u and
v and m and n in the following.) Assume v is a subset of ¢;
otherwise, case 2 applies. Let pE v, g€ u;-c, r€EuNe, s€ExNc

and ¢ €dN Above(z,c). The hypergraph H [{p,q,r,s,t}] again

65

simplifies to Iy, so H has no directed path tree (lemmas 3-1, 3-2).

See figure 4-13.

This covers all cases, so if Add-Edge, Casel or Case2 abort then H has

no directed path tree. #

QAL

Figure 4-9: Proof of theorem 4-9, line 12

There is another place the algorithm can abort that hasn’t been covered. After
producing a PPT P for the subhypergraph H|[E'| the algorithm runs
Find-PPT-with-Root on H starting on root (P). Using lemma 4-8 we can show
that if Find-PPT-with-Root aborts then H has no directed path tree. To do this,
we will show that if Find-PPT discards vertices D then in any directed path tree
for H the vertices in D must be descendants of some vertex in root (P). The next

lemma (lemma 4-10 shows that this condition and two others are invariant.

66

N

Figure 4-10: Proof of theorem 4-9, line 45, case 1

u; € ¢ rE'vJ'

& N

Figure 4-11: Proof of theorem 4-9, line 45, case 2

67

GEU/;/ p € v

r €l v

Figure 4-12: Proof of theorem 4-9, line 45, case 3

Lemma 4-10:
Assuming the hypergraph H has a directed path tree T, the following
are always true at procedure Visit in algorithm Find-PPT:
1. P! is a PPT for H[E'] with root Root,
2. D is disjoint from V', and any vertex v adjacent in H to some
vertex in D is a descendant in T of some vertex in Root,
3. All edges that have not yet been added to E' are either subsets of

D or are disjoint from D.

Proof:

68

QLE:C

—_—
/Evk
Y

qg € u;

r e u)

Figure 4-13: Proof of theorem 4-9, line 45, case 4

The lemma is clearly true initially, since D is empty and P’ is the

single vertex Root.

Let z be the vertex in P’ being visited, ¢ the edge in E-E' being
added. By lemma 3-1 we know that V' N ¢ is a directed path in T (it is

in (H'+{c})*) so we can add it to P’ first.

So assume, c is a subset of V/. There are several cases. Let L be the
set of proper descendants of z that intersect ¢ and have no proper

descendants intersecting ¢. By lemmas 3-1, 3-7 and 3-10 for every u € L

69

we can add the edge (c N M{u)) U (M(v) N M(u)) (where v is the parent
of uin P') to E'. Procedure Split modifies P’ by splitting u into
uNc and u-c, giving a PPT for the hypergraph obtained by adding
these edges. For the rest of this proof we assume that this has been done

and that each u € L is a subset of c.

We want to show that Add-Edge will either produce a PPT for
(V',E' Ue) with the same root or it will produce a new root b such
that the following conditions hold:

1. b intersects z.

2. The set of vertices Vj in P’ that intersect b induces a subtree of
P'.

3. All vertices in Vj, except possibly the root of the subtree induced
’by V4, are subsets of b.

4. Let Deep (V) be the set of vertices in Vj that have no proper
descendants in Vj. ~All vertices in V' that are not descendants of
some vertex in Deep (V;) are descendants in T are descendants in T
of some vertex that is.

5. M(v) is a subset of b for all v in Deep (V).

6. b induces a directed path in any directed path tree for H.
A new root that satisfies these six conditions is called a valid root.

There are several cases to consider.

70

1. L is empty. Then P' is a PPT for (V' ,E' U {c}).
2. L= {uy}, where z,uy, ..., ,u,, is the directed (z,u,,) path in
P'.
a. If uy,...,u, are subsets of ¢ then P' is a PPT for
(V'.E" U{c}).
b. Otherwise, suppose some u;, 1 < ¢ < m, is not a subset of ¢.
Let ¢ be the minimum such value. Let p€u,,, ¢€EcNc,

r € u;~c. Using lemma 3-1 we can simplify (V' ,E’' U {c}) to

(p.a.rb{{p,ar},{p.9} {a,7}})

and therefore conclude that all vertices in z are ancestors of
porof rinin T. Therefore, all vertices in u;.1, ... ,u; and
in z are ancestors in T of some vertex in u,, or in u;, so the
new root b=M(u,-) is valid. See figure 4-14.
3. L = {up,v,}, z,uy,...,uy and z,vq,...,v, directed paths in
P', vg 7 ug, and k=1 or ug.j=uvg.]. There are several cases:

a. All u,;, v; are subsets of ¢ and no edge in E'' intersecting uj
or vy intersects Above(z,c). Using lemma 3-1 we can show
that all vertices in proper ancestors of u,, and v, are
descendants in T of some vertex in u,, or v, and, since
M(u,,) and M(v,) are subsets of ¢, the new root b=c is valid.
See figure 4-15.

b. All u;, v; are subsets of ¢, no edge in E' intersects both v

and Above(z,c) but some edge in E' does intersect both ug

71

Figure 4-14: Proof of lemma 4-10, case 2b

and Above(z,c). Let p E ug, gEzrnNe,
r € Above(z,c) N M{ug), s € v, and t € u,,. We can simplify

(VI,E' U{c}) to

({p.q,,s,t}, {07} {p,0.t} Ap,0,8,t} {qg,r},{g,5}}).

This hypergraph has exactly one directed path tree, with ¢
the root. By lemma 3-1 the vertex u,, contains a vertex that
is an ancestor in T of all vertices in M{u,,), so the new root b
=M{(u,y,) is valid. (The symmetric case where there is an
edge in E' intersecting both v; and Above(z,c) is identical,

with b=M(v,).) See figure 4-16.

72

c. A vertex u; is' not a subset of ¢, k < ¢ < m. The algorithm
will abort (correctly) if there is an edge intersecting vy and
Above(z,c) or if some v; is not a subset of c. Let p € up,
g€zNe, reu-c and s Euvy,. We can simplify
(VI,E' U{c}) to

({p,ar.s}.{{p,0.,r}.{pr,9,8} . {a,r},{g,8}})

which has exactly one directed path tree, with root p.
Therefore, all vertices in Mu,,) are descendants in T of some
vertex in 4,,, and b=M{u,y,) is a valid root. See figure 4-17.

All other cases are ruled out by theorem 4-9.

Figure 4-15: Proof of lemma 4-10, case 3a

73

p E ug

! € tm °)€ tn

Figure 4-16: Proof of lemma 4-10, case 3b

Figure 4-17: Proof of lemma 4-10, case 3¢

Note that all the b’s generated above are valid: (1) they intersect z

74

because the tree is built depth first and all edges intersecting
descendants of z intersect = as well, (2) they all induce subtrees of P’',
(3) all vertices they intersect are subsets of b, except possibly the highest,
(4) all vertices in b are descendants in T of some vertex in a vertex in
Deep (Vp), so (lemmas 3-1, 3-7) all vertices in V' not in descendants of
some vertex in Deep(V;) are ancestors in T of some vertex in
U Deep (V), (5) M(v) is a subset of b for v in Deep (V}) because either b
ts M{v) or b is ¢ and M(u;) and M(v;) are subsets of ¢ for all i. Finally,
(6) b induces a directed path in any directed path tree for H because it is
either ¢ € E or M{u) for some vertex in P, and u does not intersect any

edge intersecting D.

So, either P! is a PPT for (V' ,E' U{c}) (and we are done) or we
have called New-Root on a valid root b. We now argue that if b is valid

then the lemma remains true.

First, observe that New-Root discards (puts into D) only those vertices
that are in V' and are not in b or in descendants of a vertex in
Deep (Vp), and all vertices that are disconnected from V' when these
vertices are discarded. Since b is valid, all discarded vertices must be
descendants in T of some vertex in U Deep (V3) C b. Note also that no
edge in F intersects both D and V-(D U b), since M(v) is a subset of b for
all v € V}, and no hyperpath can go from a vertex in V'-b to a vertex in
D without passing through a vertex in & (if not, H has a simple

hypercircuit, contradicting the existence of a directed path tree T for H)..

75

Therefore, after New-Root discards vertices, the union of the edges
intersecting D is a subset of DUb. We need only verify that the
resulting tree is a PPT, which is straightforward, and that all edges in

E' appear in H*, which is also straightforward. #

Putting it all together, we get

Theorem 4-11:
Find-PPT (V|E) either produces a PPT for (V,E) or correctly reports

that (V,E) has no directed path tree.

Proof:
If Find-PPT aborts while building the first PPT then (theorem 4-9)
(V,E) has no directed path tree. Otherwise, if it aborts after finding a
root then (theorem 4-11, lemmas 4-8, 4-10) (V,E) has no directed path

tree. If it finishes without aborting then (lemmas 4-3, 4-10) it produces a

PPT for H. #

It remains to be shown that Find-PPT can be implemented to run in linear time.
We use the same data structure as in Find-PPT-with-Root. A copy of the
hypergraph H=(V)E) is used to build the first PPT. H can be copied in linear
time. When visiting a vertex z, sorting the edges incident on vertices in z takes
time proportional to the sum of the sizes of the intersections (as in the first

algorithm), or linear time overall. In Add-Edge, constructing the set A takes time

76

proportional to |c¢|]. Finding whether A contains any vertices that are not
descendants of z can be done in time proportional to the distance from z to the
deepest vertex in A (if a nondescendant of z is actually in A it doesn’t matter how
much time we spend here, as long as it’s linear in the size of H). The call to Split

takes O|c|) time.

Casel takes O(|c|) time if a new root is not found, as does Case2. If a new root
is found then Casel and Case2 take time O(|b|+]|c|), where b is the new root, plus
time proportional to the number of vertices discarded and to the number of
vertex,edge pairs belonging to the discarded vertices. Since an edge is made the
root at most once and vertices are discarded at most once, this will be linear time
overall. The time spent here will cover the cost of determining if A contained any
nondescendants of z (see above) because either all vertices on the directed path
from z to some u in A are subsets of ¢ (except for z), or they are all subsets the

new root.

We conclude

Proposition 4-12:
Find-PPT can be implemented to run in time O(|V|+SIZE (E)).

77

4.3. Deriving Directed Path Trees from Partial Path Trees
We now give algorithms for producing directed path trees from partial path
trees. The algorithms make use of a variant of PQ trees called PQR trees. We

begin be describing PQR trees.

4.3.1. PQR Trees

A PQR tree is a tree that, like a PQ tree, represents a set of linear orderings of
some set L. PQR trees are rooted, oriented trees. In addition to the leaves, P
" nodes and Q nodes of PQ trees, PQR trees have an additional type of internal
node called R nodes. R nodes are drawn as parallelograms (see figure 4-18). No R
node can be a child of another R node, and every R node must have at least two
children. We will require that P nodes have at least three children (P nodes with
two children are indistinguishable from Q nodes with the same children; these

nodes will, by convention, be called Q nodes).1

Equivalence of PQR trees is the same as for PQ trees: two PQR trees are
equivalent if one can be transformed into the other by permuting the order of
children of some P nodes and reversing the order of the children of some Q nodes.
The order of the children of R nodes cannot be changed. The definitions of

FRONTIER and CONSISTENT also remain the same.

! Booth and Lueker [9] require that any node with exactly two children be a P
node, but they note that this is entirely a matter of convention. The choice of Q

node is more convenient here.

78

T

Figure 4-18: An R node

Theorem 4-13:

Let Z and Z' be PQR trees with CONSISTENT(Z) =
CONSISTENT (Z'). Then, Z and Z' are equivalent.

Proof:

Clearly Z and Z' have the same set of leaves, otherwise they cannot
be equivalent. Let Z and Z' each have k leaves. We proceed by

induction on k.

If k=1 then each tree consists of a single node, so Z and Z’' must be

equivalent.

79

Otherwise, assume the theorem has been proved for trees with fewer
than k leaves. Orient the trees so that they have the same frontier, and
let z be the leftmost leaf. Let u and u' be the parent of z in Z and Z'.
Obtain new PQR trees Y and Y’ from Z and Z' by deleting z; the
parent of z is removed/ if it has one child, and becomes a Q node if it
previously was a P node with three children. By the induction
hypothesis, Y and Y’ are equivalent. The nodes u and u' are R nodes
in Yand Y’ iff u and u’ are R nodes in Z and Z', so if u and u' are
R nodes then Z and Z' are equivalent. If » and 4’ are both P nodes in
Y and Y’ they must also be P nodes in Z and Z', so Z and Z' are
equivalent. If u and u’ are Q nodes in Y and Y' but only one is a Q
node in the larger tree then CONSISTENT (Z) # CONSISTENT (Z'):
let z, y and z be the children of u (which we assume is a P node in Z).
The frontier of u' (a Q node) in Y’ is equal to the frontier of u in Y, so
the frontier of u’ in Z' is equal to the frontier of u in Z. u' has three
children in Z', and is a Q node, so it cannot be transformed to have
frontier z,FRONTIER (z),FRONTIER (y), as u can. This contradicts
the assumption that CONSISTENT (Z)=CONSISTENT (Z'), so u and
u' must either both be Q nodes or both be P nodes in Z and Z'.

Therefore, Z and Z' are equivalent, completing the induction step. #

Define the characteristic node of an edge ¢ in E(H) in a PQ (PQR) tree Z,

CHAR(e), to be the deepest node in the tree such that every vertex in e is its

80

descendant. The set of edges in E (H) with characteristic node ¢t is CHAR"(¢). A
node w in Z is said to be empty with respect to e if no vertex in FRONTIER (w) is

in A.

The following lemma is similar to lemma 1 in [35]:

Lemma 4-14:

Let Z be a PQR tree with leaves L, and let A be a subset of L that is
consecutive in every sequence in CONSISTENT (Z). Let t=CHAR(A).
Then,

1. tis a leaf, or

2.t is a P node and the nodes in FRONTIER (t) are precisely those
in A, or

3. tis a Q node or an R node and there is a consecutive sequence of
children of ¢ such that the set of nodes in the frontiers of these

children is A.

Proof:

The proof is similar to the proof of lemma 1 in [35].

Assume ¢t is not a leaf. If ¢ is a P node, assume that there are vertices
in FRONTIER (t) not in A. Since ¢ is the characteristic node of A it
must have at least two children, say u and v, with descendants in A. If ¢

has a child w empty with respect to e then permute the children of ¢ so

81

that w occurs between u and v. The result is a PQR tree in which A is
not consecutive, a contradiction. So, assume ¢ has no child empty with
respect to w. There must be some child of £, say z, with some leaf a in
FRONTIER (z) not in A. If a occurs first in FRONTIER (z) then
permute the children of ¢ so that = occurs last. Otherwise, permute the
children of ¢ so that z occurs first. In either case A is not consecutive in

FRONTIER (t), again a contradiction.

If tis a Q node or an R node, let u;, ... ,u; be the children of ¢
between the leftmost (u;) and rightmost (u;) children whose frontiers
intersect A. Since ¢ is the characteristic node of ¢, 1 is less than ;. If any
FRONTIER (u) (f < k < j) contains vertices not in A then A is not
consecutive in FRONTIER(t), a contradiction. Assume
FRONTIER (u;) contains vertices not in A. These vertices must be the
leftmost vertices in FRONTIER (u;). If t is a Q node then reverse the
order of its children; in the resulting tree A is not consecutive in
FRONTIER (t). If t is an R node then u; must be a P node or a Q node,
so reverse the order u;’s children, also giving a tree in which A is not
consecutive in FRONTIER (t). So, FRONTIER (u;) is a subset of A. A

symmetrical argument shows that FRONTIER (u;) is also a subset of A.

#

Using this lemma we can show

82

Lemma 4-15:
Let Z be a PQ tree for hypergraph (V)E), and let ACV. If
REDUCE (Z,A) is not the null tree then any node in Z empty with

respect to A is also in REDUCE (Z,A).

Proof:

Assume not. Let ¢ be a node in Z with frontier F, F and A disjoint.
We assume that the characteristic node of F in REDUCE (Z,A) is not ¢
but rather some other node ¢t’. We can rule out the case where ¢ and
t' have the same vertices in their frontiers, since the order of the
vertices in F in some sequence in CONSISTENT(Z) cannot affect
whether A is consecutive. So, FRONTIER (t') must be a superset of F.
By lemma 4-14 we know that ¢’ cannot be a P node, so it must be a Q
node. But this implies that the sequence obtained by reversing the order
of the vertices in F in FRONTIER(REDUCE (Z,A)) is not in
CONSISTENT (REDUCE (Z,A)), a contradiction. We conclude that

the characteristic node of F in REDUCFE (Z,A) is t, proving the lemma.

#

Let Z be a PQR tree and let a and b be disjoint nonempty sets of leaves in Z,
where a, b and a U b are consecutive in all sequences in CONSISTENT (Z). The

operation Orient(a,b,Z) produces a new PQR tree Z' such that

CONSISTENT (Z') = {¢ € CONSISTENT (Z) : a precedes b in o}.

83

Orient works as follows. If Z is the null tree then Orient returns it unchanged.
Otherwise, let ¢ = CHAR(aUb). We know that CHAR(a) and CHAR(b) are
either ¢ or children of {£. There are three cases depending on what kind of node ¢
is.

1. ¢t is a P node. This case cannot happen (see below).

2.t is a Q node. By lemma 4-14, there is a sequence of children of ¢
Ui, . . . Uk,Uk41, - - - ,u; such that the union of the frontiers of u;, . .. ,uj is
a and the union of the frontiers of uj4y, ... ,u;is b (or vice versa; reverse ¢
in this case). Make ¢t an R node. If #'s parent is an R node then replace ¢
with its children as children of ¢'s parent. See figure 4-19.

3. tis an R node. Obtain the sequences of children as in the previous case. If a

. precedes b in this sequence then the tree is unchanged; otherwise, a null tree

is produced.

The details of Orient are presented in figure 4-20.

Before we prove the correctness of Orient, a lemma is needed. This lemma will

be used again later in this section.

Lemma 4-18:
Let Z be a PQR tree with leaves L, and let a,b, and a U b be subsets of
L consecutive in FRONTIER (Z), a and b nonempty and disjoint. The
node CHAR(aUb) is a Q node or an R node, and each of the nodes

CHAR(a) and CHAR(b) are either equal to or children of CHAR(a U b).

84

- N L
TIET i

> L
== T

]

T

Figure 4-19: Action of Orient on a Q node

Proof:

Let t = CHAR(a U b), v = CHAR(a) and v = CHAR(b). Clearly, u
and v are descendants of ¢ in Z. Assume u is not ¢ or a child of {. There
must be some node w, w a child of ¢ and a proper ancestor of u in Z.
Since b is consecutive in Z, w is empty with respect to b (otherwise,
reverse the order of the children of w or of ¢; the result is a tree in which
b is not consecutive in FRONTIER (v)). So, w must be an ancestor of
some leave not in a U b. Again, reverse the order of the children of w or
of t; a Ub is not consecutive in the resulting tree. So, u must be ¢ or a

child of ¢£. The argument for v is the same.

Now assume that ¢ is a P node, and therefore has at least three

85

Comment Make vertices in a precede those in b in Z;
proc Orient(a,b,Z)

begin

1. if Z=0 then return(Z);

2. t:=CHAR(a U b);

" 3. if tis a P node then error

4. else if { is a Q node then

o

if b precedes a in FRONTIER (t) then

6. Reverse the order of the children of ¢;

7. Make ¢ an R node;

8. if ¢ is not the root and ¢'s parent is an R node then
9. Replace ¢ with t's children as children of ¢'s parent
10. else /* t is an R node */

11. if b follows a in FRONTIER (t) then return(9);

12. return(Z2)

end Orient;

Figure 4-20: Procedure Orient

children. By lemma 4-14, FRONTIER (t) = a U b, so one of a or b must

86

have vertices in the frontiers of at least two children of £. So, by lemma

4-14, a U b=a or a U b=b, a contradiction. #

Lemma 4-17:

Orient is correct, and runs in O(|a|+[b|) time.

Proof:

Let Z be a proper PQR tree and let a, b and a U b be sets consecutive
in FRONTIER (Z), a and b nonempty and disjoint. If Z is the null tree
then the lemma is true. Otherwise, assume Z is not the null tree. Let
t = CHAR(a U b), u = CHAR(a) and v = CHAR(b). By lemma 4-16 u
and v are equal to or children of ¢, and ¢ is a Q node or an R node. In
either case a and b are unions of the frontiers of consecutive children of ¢
(lemma 4-14). (These children can be found in O(|a|+]b]) time.) If ¢ is
an R node then either the children of ¢ with frontiers intersecting a
precede those whose frontiers intersect b, so all in all sequences in
CONSISTENT (Z) a precedes b, or the children with frontiers
intersecting a follow those that intersect 4, in which case in no sequence

in CONSISTENT (Z) does a precede b, so Orient is correct.

If ¢t is a Q node then any sequence in CONSISTENT (Z) in which a
precedes b may be obtained by orienting ¢ so that a precedes b then
performing operations on other nodes in the tree. A PQR tree allowing

precisely these operations is obtained by permuting ¢ so that a precedes b

87

then fixing it to be an R node. So, the PQR tree produced by Orient is
consistent with exactly those sequences in CONSISTENT (Z) in which a

precedes b.

The running time of Orient is simply the time needed to find ¢, u and
v, plus the time to manipulate ¢ (which can be done in O(1) time), for a

total of O(|a|+]b]) time. #

" 4.3.2. Using PQR Trees to Obtain Directed Path Trees
We now describe the algorithm that uses PQR trees to obtain directed path trees
for H from a partial path tree for H. The algorithm makes use of Booth and

Lueker’s procedure Reduce as well as Orient, described in the previous subsection.

For the rest of this subsection, let H be a hypergraph, P a PPT for H, and let z

be a vertex in P.

Definition 4-18:
Let T be a directed path tree for the hypergraph H. We say a
connector CONN (z) is oriented inwards in T if the vertices in d(z,?) are
ancestors in T of those in d(z,i+1), (1 £ i < |CONN (z)|); otherwise,

CONN (z) is oriented outwards. See figure 4-21.

We know (lemma 3-9) that if |[CONN ()| > 1 then CONN (z) must be oriented
inwards or outwards. The notion of orientation is not defined for |CONN (z)| £ 1

(such connectors are called trivial).

88

Figure 4-21: Inwards, Outwards Orientations

Lemma 4-19:
Let T be a directed path tree for H. If |CONN (z)| > 1 then the root

of T is in Below(z) iff CONN (z) is oriented inwards.

Proof:
(<=) The vertices in ¢(z,1) are ancestors in T of the vertices in e(z,2)
(lemma 3-8). By lemmas 3-3 and 3-11 all vertices in V(H)-Below(z) are
descendants in T of some vertex in ¢(z,1), which must be a descendant of

some vertex in z. Therefore, the root of T'is in Below(z).

(=) Assume the root of T is in Below(z). If CONN|(z) is oriented

89

outwards then (lemma 3-8) all vertices in e(z,2) are ancestors in T of all
vertices in z. This contradicts the assumption that the root of T is in
Below(z), since we can trace a simple hyperpath in H* from each
vertex in z to each vertex in Below(z) (simply add edges of the form

m(v), v a vertex in P). #

We use PPT’s to decompose P into simple pieces. The next few lemmas show
how to do this so the directed path trees for the pieces may be fitted together

again.

Lemma 4-20:
Let T be a directed path tree for H. If z is a vertex in PPT P other
than the root then either the root of T [Below(z)] is in = or the root of

H-Below(z) is in m(z)-z.

Proof:
If the root of T is in V(H)-Below(z) then, by lemmas 3-11 and 3-3, the
vertices in z are ancestors in T of all vertices in Below(z)-z, so the root

of T[Below(z)| is in z.

Otherwise, assume the root of T is in Below(z). Again, by lemmas
3-3 and 3-11 we can show that all vertices in V-(Below(z) U m(z)) are

ancestors in T all vertices in m(z), so the root of T-Below(r) must be in

m(z)-z. #

90

We can prove a restricted version of the converse of lemma 4-20.

Lemma 4-21:
If |CONN (z)|=1 then for any directed path trees T; for H [Below(z}]
and Ty for H-Below(z), of the root of T; is in z then there is a directed

path tree T for H that simplifies to T and T5.

Proof:

T is obtained by making the roots of T7 a child of the deepest vertex in
m(z)-z in Ty (by lemmas 3-1 and 3-7, m(z)-z must induce a directed
path in 73). For any edge ¢ in E(H) intersecting both Below(z) and
V(H)-Below(z), the intersection of ¢ and V(H)-Below(z) must be m(z)-z
(since |[CONN (z)|=1), so c is a path in T. Since T7 and T, are subtrees
of T all other edges also induce paths in T, so T is a directed path tree

for H. #

Lemma 4-22 gives necessary and sufficient conditions for a hypergraph H to have

a directed path tree whose root is in the root of a partial path tree P.

g1

Lemma 4-22:
Let z be the root of PPT P. The hypergraph H has a directed path
tree with root in z iff (1) for each child y of z, P[Below(y)] has a directed

path tree with root in y, and (2) the hypergraph

H? = H[z]+{e(y,2) : y a child of z, |CONN (y)| > 1}

has a directed path tree in which for each child y of =z,

|[CONN (y)| > 1, the vertices in e(y,2) are ancestors of those in ¢(y,1).

Proof:

(=) Let T be a directed path tree for H with root in z. The set z
induces a directed path in T, and each Below(y) induces a subtree of T
rooted at some child in T of a vertex on this path. Deleting the vertices
in V(H)-Below(y) yields the desired directed path tree for P{Below(y)|.
In addition, in the directed path tree T'[z] each e(y,2) must induce a
directed path (lemma 3-8) and all vertices in e(y,2) must precede those in
¢(y,1) (otherwise, c(y,1) U y does not induce a path in T), so T[z] is the

desired directed path tree for H [z].

(¢=) Let T® be a directed path tree for H* in which for each child y of
z where |CONN (y)| > 1, the vertices in e(y,2) are ancestors of those in
¢(y,1), and for each child y of z let T¥ be a directed path tree for
H [Below(y)] with root in y. Build the directed path tree for H by

making the root of T¥ a child of the deepest vertex in e(y,1) in T%. Any

92

edge in E'(H) entirely in T? or one of the T¥’s induces a directed path
in this tree. Let ¢ be some edge in E (H) intersecting both z and y for
some child y of . Since the last vertex in e(y,1) in T7 is in ¢(y,1), the
last vertex in e(y,1) is also the last vertex in T% of the directed path

cN z, so ¢ induces a directed path in T. #

Figure 4-22 gives the algorithm based on lemma 4-22. It returns @ if H=(V}E)

has no directed path tree with root in z.

Theorem 4-23:

The procedure Find-Path-Tree-with-Root returns a directed path tree

for H with root in root (T) if one exists, otherwise, it returns 0.

Proof:

Immediate from lemma 4-22 and the correctness of Orient (lemma

417). #

The general algorithm must determine where the root of the directed path tree

can be. The next few lemmas will help determine where the root can be.

93

Comment Find a path tree for H [Below(z)] with root in z, z the root of P,
proc Find-Path-Tree-with-Root (P)

begin

1. z:=root (P);

2. for each child y of z do

3. PY:= the subtree of Prooted at y;

© 4. T Y := Find-Path-Tree-with-Root (PY);

5. ifTY= 0 then return(0)

&

Z:= aPQ tree for P%

7. for each child y of z do

8. if [CONN (y)| > 1 then

9. Z := Orient(Z,e(y,2),c(y,1));

10. if Z= 0 then return(9)

1.T:= a path consisting of the vertices in FRONTIER (Z), in that order;
12. for each child y of z do

13. Make the root of TY¥ a child of the deepest vertex in ¢(y,1) in T}

14. return(7)

end Find-Path-Tree-with-Root

Figure 4-22: Procedure Find-Path-Tree-with-Root

94

Lemma 4-24:
Let T be a directed path tree for H, and let z, y and z be vertices in
PPT P, z the parent of y, z the parent of z. If the root of T is in
Below(z), CONN (z) and CONN (y) are each nontrivial, and M(y)

intersects z then the root of T is in Below(y).

Proof:

Since |CONN (z)| > 1, z induces a directed path in T and CONN (z)
is oriented inwards (lemmas 3-8 and 4-19). Let k=|CONN (y)|; we
know that, for some ¢, ¢(z,?) is a subset of ¢(y,k) (because M(y) intersects
z), so the vertices in ¢(y,k-1) are ancestors of those in ¢(y,k) in T (lemma
3-8) and CONN (y) is oriented inwards in 7. Therefore, the root of T is

in Below(y) (lemma 4-19). #

Lemma 4-25:
Let |CONN (z)|=1, and suppose every directed path tree T for H has
its root in Below(z)-z. Then, H has a directed path tree iff there exists a
directed path tree T; for H-Below(z) with root in m(z)-z and a directed
path tree Ty for H [Below(z)U m(z)]. Moreover, for any two such Tj
and T, there is a directed path tree T for H such that T-Below(z) = T}

and T [Below(z) U m(2)|m(z)-z = (T2)m(z)-z-

Proof*:

(=) If H has a directed path tree T then (lemmas 3-1, 4-20) the root of

95

tree T-Below(z) (which is a directed path tree for H-Below(z)) in in
m(z)-z, and the tree T [Below(r)U m(z)] is a directed path tree for

H [Below(z) U m(z)].

(=) Let T; and To be directed path trees for H-Below(z) and
H [Below(z) U m(z)], root(T1) in m(z)-z. Build T by replacing the
directed path in T5 induced by m(z)-z with the path induced by m(z)-z
in T (along with the rest of T}). Since Tj is a subtree of T, every edge
in E(H) that is a subset of V(H)-Below(z) induces a directed path in T,
as does every edge that is a subset of Below(z). Since |[CONN (z)|=1,
m(z)-z is a subset of every edge that intersects both z and m(z)-z, so
each such edge induces a path in T. So, every edge in F'(H) induces a

path in T and T is a directed path tree for H. #

Lemma 4-26:

Let H*® be as in equation 1 (lemma 4-22, and let y be a child of «z,
|CONN (y)] > 1. The characteristic node of e(y,1) in a PQ tree Z for

H?* is a Q node.

Proof:

Since the disjoint sets e(y,2) and ¢(y,1) are consecutive in Z, by lemma
4-16 the characteristic node of e(y,1)=e(y,2) U c(y,1) is either a Q node

or an R node. Since Zis a PQ tree is must be a Q node. #

96

Let CHAR(e(y,1)) be the characteristic node of e(y,1) in a PQ tree Z for H>.
The connector CONN (y) is oriented inwards in Z if ¢(y,1) precedes e(y,2) in

FRONTIER (Z), otherwise, it is oriented outwards.

We now outline the full algorithm for making a directed path tree given a partial
path tree. Let H=(V,E) be a hypergraph, P a PPT for H.

1. Use procedure Find-Path-Tree-with-Root to decide for each vertex z in P
whether H [Below(z)] has a path tree with root in z, and to produce such a
tree if one exists (theorem 4-23). If the root has such a tree then stop; we are
done. If there are two unrelated vertices £ and y such that H [Below(z)] has
no path tree with root in z and H [Below(y)] has no path tree with root in y
then stop; H has no path tree (this follows from lemma 4-20). Otherwise, the
vertices for which H [Below(z)] has no path tree with root in z form a path
from the root to some vertex .

2. Prune from P all subtrees rooted at each vertex y such that H [Below(y)] has
a directed path tree with root in y and |[CONN (y)|=1. By lemma 4-21 the
directed path trees we've found for the H [Below(y)] may be connected to
any directed path tree for the rest of the hypergraph. Remove from H all

vertices in vertices pruned from P. P remains a PPT for H.

a. If |CONN (z)|=1 then H may be decomposed into the hypergraphs
H-Below(z) and H [Below(z)Um(z)]. By lemma 4-20 H-Below(z)

must have a directed path tree with root in m(z)-z; create a PPT for

97

H-Below(z) with root m(z)-z (use Find-PPT-with-Root) and use Find-
Path-Tree-with-Root to find the directed path tree with root in m(z)-z.
A PPT for H [Below(z)Um(z)] can be produced by adding the
vertices in m(z) to z and deleting all vertices that are not descendants
of z. By lemma 4-25, the directed path tree T) for H-Below(z) with
root in m(z)-z and any path tree Ty for H [Below(z)U m(z)] may be
combined (replace m(z)-z in Tp with the path m(z)-z in T}) to get a
directed path tree for H. Use case 3.b.ii. below to find the path tree
for H [Below(z) U m(z)).
b. Otherwise, if |CONN (z)| 74 1 there are two subcases:

i. The root of P is not z, and there is a child y of z such that M(y)
intersects the parent of z. In this case lemma 4-24 guarantees
that the root of any directed path tree for H is in Below(y), so
repeatedly set z equal to y until z no longer has a child y with
M(y)-(z U y) nonempty. Since Below(y) has a path tree with root
in y we know that |CONN (y)| > 1, otherwise y would have been
pruned off at step 2. If two such y’s are found then stop; H has
no directed path tree (lemma 4-24). When done, we have an z
such that every directed path tree for H has root in Below(z),
H [Below(z)] has a directed path tree T} with root in z and for
every child y of £ no edge in E'(H) intersects both y and the
parent of z. Build a path tree for H by finding a directed path

tree Ty for H-Below(z) with root in m(z)-z (use Find-PPT-with-

il.

98

Root and Find-Path-Tree-with-Root); make the root of T a child
of the deepest vertex in z in T7.

The root of P is z or there is no child y of = such that My)
intersects the parent of z. By lemma 4-22, it must be the case
that H [z] has no directed path tree in which all CONN(y) (y a
child of =z) are oriented outwards. By lemma 4-26, the
characteristic nodes of the c(y,1) are Q nodes in a PQ tree Z for
PZ. The only way we can fail to be able to orient all connectors
outwards is if two connectors, say CONN (u) and CONN (v)
(|CONN (u)|,|CONN (v)]| > 1) have the same characteristic Q
node and are oriented in opposite directions. Call such a Q node
con flicting. There are several cases:

1. There are at least two conflicting Q nodes. This requires
that at. least two connectors be oriented inwards in any
directed path tree, an impossibility (lemma 4-19), so stop; H
has no directed path tree.

2. There is a conflicting Q node with at least two Q nodes
oriented in each direction. Again, at least two connectors
must be oriented inwards, so H has no directed path tree
(lemma 4-19).

3. Otherwise, there is a single conflicting Q node. It has one
connector, say CONN (y), oriented in one direction. In the

other direction it either has more than one connector or it

Theorem 4-27:

99

has a single connector; for the moment assume the former.
In this case the root of any directed path tree for H must
be in Below(y) (lemma 4-19). We can now repeat the
process used in case 3.b.i.: while y has any child z such that
M(z) intersects y’s parent, we know that the root of any
path tree for H is in Below(z), so let y be 2. If two such z’s
are found then stop; H has no directed path tree.
Eventually, a vertex y is found such that H [Below(y)] has a
directed path tree with root in y and no child z of y is in an
edge intersecting y's parent. As in case 3.b.i., build a
directed path tree for H by building a directed path tree for
H-Below(y) with root in m(y)-y, and make the root of this
tree a child of the deepest vertex in y in the directed path
tree for H [Below(y)).

If the conflicting Q node had one connector oriented in each
direction, say CONN (u) and CONN (v), we try the
procedure outlined above for y=wu and, if that fails, for
y=v. H has a directed path tree iff it has a directed path

tree with root in H [Below(u)] or in H [Below(v)).

This algorithm is correct and runs in linear time.

100

Proof:

The proof of correctness is straightforward (see comments above for

details).

The running time of the algorithm of each part of the algorithm is

O(|V]+SIZE (E)) so the algorithm runs in linear time. #

4.4. Summary of Results for Chapter 4

In this chapter we have presented several algorithms and have proved them
correct. The first algorithm, Find-PPT-with-Root, determines if a hypergraph H
has a partial path tree with a given root. It was described in section 4.1 and runs
in linear time. The second algorithm, Find-PPT, will produce a partial path tree
for a directed path hypergraph in linear time (on hypergraphs that are not
directed path hypergraphs it may abort). It was described in section 4.2. In
section 4.3 we defined PQR trees and showed how to use them to obtain directed

path trees from partial path trees. This procedure also takes linear time.

5. An Isomorphism Algorithm for Directed
Path Graphs

This chapter gives a polynonﬁal time algorithm for deciding if two directed path
hypergraphs H and H' are isomorphic. Since two directed path graphs are
isomorphic iff the duals of their clique hypergraphs are isomorphic, the algorithm
also enables one to decide quickly if two directed path graphs are isomorphic
(using the fact that the clique hypergraph of a chordal graph can be found in
- linear time with the Rose-Tarjan-Lueker algorithm). The algorithms presented
here use a variant of Lueker and Booth’s PQ tree isomorphism algorithm [35] [14],
which is in turn based on the the classic linear time tree isomorphism algorithm

[12] {1].

5.1. Edge Labelled PQR Tree Isomorphism

Definition 5-1:
Two PQ (PQR) trees Z and Z' are isomorphic if there is a bijection ¢
from the nodes of Z to the nodes of Z' such that the image of Z under 4

is equivalent to Z'.

Let A and A’ be families of subsets of FRONTIER(Z) and
FRONTIER(Z'). Let Ibl and Ibl’ be functions from A and A’ to some
set of labels. The pairs (Z,4) and (Z',A') are edge labelled isomorphic
iff there is an isomorphism ¢ from Z to Z' and a bijection ¢ from A to
A' such that for every set ¢ in A, ¢(a)={6(v):v€a} and Ibl(a)=

1bl'(¢(a)).

101

102

Theorem 5-2:
Let H and H' be interval hypergraphs, and let Z and Z' be PQ trees
for H and H'. Let lbl and Ibl’ be constant valued functions, and let 4
and A' be the families E{H) and E(H'). The pairs (Z,A) and (Z',A')

are edge labelled isomorphic iff H and H' are isomorphic.

Proof:
(=) Any edge labelled isomorphism from (Z,A) to (Z',A') induces an
isomorphism from the hypergraph (FRONTIER(Z),A) to the hypergraph

(FRONTIER(Z'"),A'); i.e., from H to H'.

(<) If H and H' are isomorphic then for any PQ trees Z and Z' for H
and H', there is an bijection ¢ from the leaves of Z to the leaves of Z'
such that CONSISTENT4(Z))=CONSISTENT(Z'). So, by theorem
2-11 (and theorem 4-13) 6(Z) and Z' are equivalent, so Z and Z' are
isomorphic. = The bijection on the leaves of Z comes from the
isomorphism from H to H', so it also maps the edges of H to the edges

of H'. #

Figure 5-1 gives an algorithm for labelling the nodes of edge labelled PQR trees.
If Zis a PQR tree and A a family of subsets of FRONTIER(Z), where each a in A
is consecutive in every ¢ in CONSISTENT(Z), and u is a node in Z, then let Z, be
the subtree of Z rooted at u and let A, be the subfamily of A consisting of those

sets in A that are subsets of FRONTIER(u). If u and v are nodes in Z,

103

depth(u)=depth(v), then the labelling algorithm will make the labels L{u] and L[v]

the same iff the edge labelled PQR trees (Z,,A,) and (Z,,A,) are isomorphic.

In figure 5-1, let SORTED(z,,...,z,) denote the list

“(’? II I"(l) || “’H ” L. || H’H ” xﬂ-(n) ” “))7

where || denotes concatenation, the z; are integers or strings (the strings may
contain commas and parentheses if the parentheses are balanced and all commas
' appear inside a set of parentheses), = is a permutation on {1,...,n} and
Tr(i) < Tr(i+1) 1 < i< n (where the comparison is lexicographic if the z;'s are
strings). Observe that if A and A' are families of integers or families of strings
then SORTED(A) = SORTED(A') iff there is a bijection f from A to A’ such

that fla)=a for all a in A.

104

Comment Algorithm to label the nodes of an edge-labelled PQR tree;
proc PQRLabel(Z,A,lbl)

begin

1. for ¢ := 0 to depth(Z) do D[i] := {v€E V2) : depth(v)=1};

2. for { := depth(Z) downto 0 do

3. for all vin D[¢] do

4. Let vy, . . . ,u; be the children of v, and
5. let ay, . . . ,a;; € CHARY(v);
6. if v is a leaf then
7. EL[v] := SORTED(lbl(ay), . . . ,Ibl(any));
8. SL{v], kind := ¢ “L";
9. else if v is a P node then
10. ELjt] :== SORTED(ibl(ay), . . . ibl(ay)
11. SL[v| := SORTED(I|vy], . . . Jvg));
12. Permute the children of v so that their I numbers occur in
13. nondecreasing order from left to right;
14. kind := “P
15. else /* vis a Q node or an R node */
16. for; ;= ltomdo
17. by i= (" [(7 (s 1157 1] dbd(ag) 1])"
18. and ¢; = “(" |[g || " LAy |1) bl(ay)])7

Figure 5-1: Procedure PQRLabel (part 1)

105

19. where 1 < iy < iy < k and a;=U!2; FRONTIER(v,);

20. if v is an R node then

2L SL[y] = “(" || D] I[" - 7 1 fogd 1])

22. EL[v] := SORTED(by, . .. by,);

23. kind := “R"”

24. else /*visaQnode*/

25. SL= (| Mol 1157 o | T
. 26. S2 = (7| Mwgd]] e N)

27. El := SORTED(by, . . . ,bp);

28. E2 := SORTED(cy, - . . ,tm);

29. if 51 < 82 or (S1=52 and FE1 < E2) then

30. SL[v] := S1;

31. ELjv] :== E1

32. else

33. Reverse the order of the children of v;

34. SL[v] := 52

35. EL[v] := E2

36. kind = “Q";

37. L[v] := kind || EL[v] || SL{v);

38. for all vin D[i] do

39. Ilv] := the index of L[¢] in the set {L[u]:u € D[4]}

end PQRLabel,

Figure 5-1: Procedure PQRLabel (part 2)

106

Theorem 5-3:
Let u and v be nodes in Z at the same depth. PQRLabel makes L[u]=
Llv] (and Iu]=I[v]) iff there is an edge-labelled isomorphism from

(Zu,Aq) to (Zy,Ay).

Proof*:
The theorem is proved by induction on h=depth(Z)-depth(u). Assume
the theorem has been proved for all deeper vertices. Let the nodes u
and v have children uy, . . . ,ux and vy, . . . ,v;, respectively. We want to

show that L{u]=L[v] iff there is an edge labelled isomorphism from

(Zu,Ay) to (Zy,Ay).

(=) Suppose the labels L{u] and L[v] are equal. Then, u and v are the

same kind of node (P, Q, R or leaf), EL[u|=FL[v] and SL[u]=SL[v].

Assume u and v are leaves or P nodes. Since SL[u]|=SL[v], there is a
bijection from the children of u to the children of v (say, from u; to v;)
such that (Zy;,Ay;) is edge-labelled isomorphic to (Zy;Ay,)- This implies
that u and v have the same number of children, of course. All elements
a in A, are either in every A, (and therefore in CHARl(u)), or in
exactly one Ay; (and not in CHARY(u)). Since EL[u]=EL[v], there is a
bijection from CHAR(u) to CHAR(v) preserving edge labels.
Therefore, there is an edge labelled isomorphism from (Z,,4,) to

(Z v:Av) *

107

If v and v are R nodes then since SL{u]=SL[v], we know that k=1 and
there are edge labelled isomorphisms between the subtrees rooted at the
u; and the v; as in the previous case. In addition, since EL[u}=FEL[v],
there is a bijection from CHAR(u) to CHAR(v) mapping edges a=
FRONTIER(u;)U ... UFRONTIER(u;) to an edge containing vertices
FRONTIER(v)U ... UFRONTIER(v;), the image edge having the
same label. Therefore, there is a edge labelled isomorphism from

(Zy,Ay) to (Z,,A,). A similar argument applies for Q nodes.

(=) Assume there is an edge labelled isomorphism (4,4) from (Z,,A,) to
(Z»Ay), v and v distinct nodes at depth depth(Z)-h. If u and v are
leaves this implies that there is an bijection from A4, to A, preserving
edge labels, so EL[u]=FEL[v] and therefore L[u|=L[v]. Otherwise, if u
and v are not leaves then arrange the PQR tree so that the isomorphism
maps the :-th child of u, u;, to the i-th child of v, v;. Restricting (4,4) to
Zy; and Zy; yields an edge labelled isomorphism, so by the induction

hypothesis L{u;|=L[v,].

If u and v are P nodes then the function ¢ restricted to CHAR1(u) and
CHAR-Y(v) is a bijection preserving edge labels, so EL[u]=FEL[v]. Since

Llug]=L|[v;], we know SL{u|=SL[v], and so L[u]=L|v].

If and v are R nodes then ¢ restricted to CHAR"(u) and CHAR"1(v)

is a bijection mapping edges

108
a; = FRONTIER(x;,)U...U FRONTIER(u;,)

(where 1 < iy <1< k) to

#(a;) = FRONTIER(v;)) U ... U FRONTIER(v;,).

So, EL[u]=FEL[v]. Since L{u;]=L{v;] for i=1, . .. ,k, we know SL[u]=

SL{v], and so L{u]=L[v].

Finally, if 4 and v are Q nodes then the labels for « and v produced by
PQRLabel can be obtained by orienting « and v so that the isomorphism
§ maps u; to v;, 1==1, . ..k, and then reversing v and v if S1 > S2, or
S1=52 and E1 > E2. Because (Zy,A,) and (Z,,A,) are isomorphic,
PQRLabel will reverse u iff it reverses v. Therefore, by arguments

similar to those for R nodes, L{u|=L[v]. #

The procedure PQRLabel can be implemented to run in time proportional to the
number of nodes in Z plus the sums of the sizes of the elements of A plus the sizes
of their labels. We can find the characteristic nodes of the elements of A in linear
time. The sorting steps of the algorithm can be implemented to run in linear time

through standard techniques (see [1], [35], [14]).

109

5.2. Pariiai rath Tree Respecting Isomorphisms

Let .H and H'! be directed path hypergraphs, and let P and P' be PPT’s for H
and H'. For aﬁy subset U of V[H) and any edge e=FE(H[U})(i) (where ¢ €
I(E(H[U]))), the degree of e in H is degyle)=|E(H)(i)| (similarly for e'=
B(H'U)).

An isomorphism (4,4) from H[U] to H'[U'] respects P and P' if (1) for any
vertices z and y in U, Plr) is a descendant of Fy) iff P'(4(z)) is a descendant of
‘P'(ﬁ(y)), and (2) for any edge e in E(H[U]), degy(e)=degy{¢(e)). Theorem
3-5 implies that any isomorphism from H to H' that maps root(P) to root(P’)

respects P and P'.

Our problem, then, is to determine if there is an isomorphism from H to H' that
respects P and P’. This will be done by another variant of the tree isomorphism
algorithm. This algorithm works by finding labelling each vertex in P and P’ with
a canonical representation for the hypergraph H|Below(z)] (or H'[Belou(y)]). The
canonical representations are found by computing the canonical representation for
the child of the vertex (in the PPT), then using the indices of these canonical
representations as labels to label the PQR tree for the interval hypergraph HZ (or,
H'Y). The computation of canonical representations is done by procedure Canon.
The canonical representations of the labelled PQR trees is done with PQRLabel,
presented above, and the procedure Trav, which traverses the PQR tree produced

by PQRLabel, converting it to a parenthesized string.

110

Theorem 5-4: |
Le.t ‘z and y be vertices in P and P’, depth(z)=depth(y). There is an
isomérphism from H[Below(z)) to H'[Below(y)] respecting P and P iff

1. z and y have the same number of children, say k.

2. If k> 0, there is a bijection = from zj, . .. ,z4, the children of z,
to y1, . . . ,Yk, the children of y, and for each i=1, . . . /k, there is
an isomorphism (6;,¢;) from H[Below(z;)] to H'|Below(r(z;))] that
respects P and P’.

3. There is an isomorphism (6p,¢9) from Hiz] to H[y| that respects P
and P' such that, for every i=1,...k, an edge e in E(H)

intersects both z and z; iff its image ¢(f)o(e) intersects both y and

n(z;).

Proof:
(=) Let (6,4) be an isomorphism from H[Below(z)] to H'[Belou(y)] that

respects P and P'. Let

#0(t)=4¢(1), e; an edge in E(H) intersecting z,
¢ {1)=4¢(t), e; an edge in E(H) intersecting Below(z;),

fo(a)=¢6(a), a a vertex in z,
8{a)=+4(a), a a vertex in Below(z;).

Since (6,4) respects P and P’, the map

n(2)={6(a):a € z}, z a descendant of z in P

is an isomorphism from the subtree of P rooted at z to the subtree of

111

P’ rooted at y, and = restricted to the children of z is a bijection from

those children to the children of .

(60,¢0) is an isomorphism from H[z| to H'[y]: since ¢ maps to y, g is
é bijection, and since every edge in E{H) intersecting z is mapped to an
edge in E(H') intersecting y (and vice versa), ¢g is a bijection from the
family E(H[z]) té E(H'[y]). For every a in z, and every edge e in E(H),
a € e iff dg(a)=+6(a) € ¢(e), and since ¢g(e)}=¢(e)Ny and 6(a)Ey, a €z
iff 8p(a) € ¢o(e). Since (4,4) respects P and P', degy(e)=degp (so(e)) for

any edge e in E(H][z]).

(0:,6;) (¢i=1,...,k) is a bijection from H[Below(z;)] to
H'[Below((z;))]. Since = is an isomorphism from the subtree of P
rooted at z to the subtree of P’ rooted at y, Below(x(z;)) = {
a € n(2)) : z a descendant of z;}. So, 6; is a bijection from Below(z;) to
Below(r(z;)). By an argument similar to that for (dg,¢9) one can show
that ¢; is a bijection from E(H[Below(z;)]) to E{H'|Below((z;))]), and

(64,¢;) is in fact an isomorphism respecting P and P’

Finally, observe that, because (4,4) is an isomorphism, an edge e in

E(H) intersects z and z; iff the edge ¢(e) intersects y and Below((z;)).

(<) Let =, (8;,60) (=0, . . . ,k) be as stated. We build (4,¢4) as follows.

112

8(aj==dg(a), if a is a vertex in z,
#{a}=4;(a), if a is a vertex in Below(z;),

=¢j(e), if e is an edge in E(H) intersecting Below(z;),
¢(e)=+ole), if e is an edge in E(H[z]) not intersecting any z;.

This definition is consistent because z and the sets Below(z;) are all
disjoint, and because any edge e intersects at most one Below(z;) (from
definition 3-4, part 3). Clearly, ¢ is a bijection. The function ¢ is a
bijection because ¢g restricted to the edges in E[H] that intersect z but

not any child of z is a bijection.

(4,6) is an isomorphism: one need only show that if v is in an edge e (v
in Below(z), e in E{H)) then §(v) is an element of #(e). The other case is
symmetrical (replace each bijection by its inverse and interchange H and
P with H' and P').

1. If vis in z and e does not intersect any Below(z;) then 6(v)=6g(v) is
an element of ¢g(e)=¢(e).

2.If v is in z and e intersects some z; then #(v)=4p(v), ¢(e)=g;(e).
We know that

a. ¢o(e) and ¢;(e) intersect y and Below(r(z;)),

o

- len z|=[¢o(e) N I,
c. degp(so(e))=degp (#i(e)), and
d. |eN Below(z;)|=|¢i(e) N Below(x(z;))|.

Therefore, |¢;(e) Nyl = |#o(e) Ny|, and since P’ is a PPT these

113

two sets must be equal. Therefore, 6(v)=6g(v) is an element of

3. If v is in Below(z;) for some ¢, then 6(v)=46;(v) € ¢;(e)=¢(e).

(6,¢) respects P and P': clearly, degre)=degp (4(e)) for all edges e in
E(H[Below(z)]), since each (6;,¢;) respects P and P'. For the same
reason, ¢ maps vertices u and v in z (z a vertex in V[P)) to vertices in the

same vertex in P'. #

This theorem will be used to prove the correctness of the directed path graph

isomorphism algorithm DPHIso, presented below (figures 5-2, 5-3 and 5-4).

Theorem 5-5:
Let Z and Z' be PQR trees, A and A’ families of subsets of
FRONTIER(Z) and FRONTIER(Z'), and Ibl and Ibl' functions mapping
A and A' to labels. PQRCanon(Z,A,lbl)=PQRCanon(Z' A" lbl") iff

there is an edge labelled isomorphism from (Z,A4) to (Z',A").

114

Comment Algorithm for determining if there is an isomorphism from H to H'
respecting the partial path trees P and P/,

proc DPHIso(P,P')

begin

- 1. if P and P’ do not have the same number of vertices at any depth

2. then return(false);

3. d := depth(P); [* = depth(P') */

4. for 1 := d downto 0 do

5. D := {v|vavertex in Por P', depth[v|=1};

6. for each vin A do PPTLABEL[v] := Canon(v);

7. for each vin A do

®

PPTINDEX]v] := the index of PPTLABEL[v] in the set
9. {PPTLABEL[u]:u € A},
10. return(PPTINDEX]root(P)|=PPTINDEX[root(P')})

end DPHIso;

Figure 5-2: Procedure DPHIso

115

Comment Produce a canonical form for H[z] (the case for H'[z] is similar,
replace H* and Z* with H'Y and Z'¥);

proc Canon(z)

| begin

11. H* := Hz]+{e(y,2):y a child of z in P, [CONMy)|>1};

12. for each edge e in E(H*) do

13. if e intersects a child y of z

14. then lbi(e) := “(" || degmle) ||) || PPTINDEX]y] || “)”
15. else lbl(e) := degyle);

16. Z® = a PQ tree for H?;

17. for each child y of z, |CONN(y)|>1 do

18. Z* := ORIENT\e(y,2),c{y,1),2%);

19. return (PQRCanon(Z% E(H?),Ibl))

end Canon;

Figure 5-3: Procedure Canon

116

Comment PQRCanon produces a canonical form for edge-labelled PQR trees;
proc PQRCanon(Z A,lbl)

begin |

20. Z := PQRLabel(Z,A,lbl);

21. return (Trav(2));

end PQRCanon;

_ proc Tray(2)

begin
22. Let root(Z) have children zy, . . . ,zg;
23. return (L{root(2)] || “(" || Trav(zy) || ... || Trav(zg) ||)")
end Trav;

Figure 5-4: Procedures PQRCanon and Trav
Proof:

Examining the proof of theorem 5-3, we see that after running
PQRLabel, for each node z in Z the children of z are oriented in a way
that is independent of their original orientation and that is completely
determined (up to isomorphism of the subtrees rooted at the children) by
the label L[x]. We can reconstruct the tree Z from the canonical form
produced by PQRCanon, so if two trees Z and Z' are edge labelled

isomorphic they will have the same canonical forms. #

117

Theorem 5-6:
Let P and P' be PPTs for directed path hypergraphs H and H'. Let
H and H' have directed path trees with roots in root(P) and root(P’).
There is an isomorphism from H to H' respecting P and P' iff

DPHlIso(P,P') returns true.

Proof:
If P and P’ do not have the same number of vertices at any depth then

there cannot be an isomorphism from H to H' respecting P and P'.

Let z and y be vertices in P and P’, depth(z)=depth(y). We prove by
induction on depth(P)-depth(z) that there is an isomorphism from
H[Below(z)] to H'[Below(y)] respecting P and P' iff DPHIso makes

PPTLABEL|z]=PPTLABEL[y).

Let z and y be as above. Assume the induction hypothesis has been

proved for all deeper vertices.

(&) Assume PPTLABEL[z|=PPTLABEL[y|. Then, by theorem 5-3,
there is an edge labelled isomorphism from the PQR tree for H® to the
PQR tree for H'Y. Because of the choice of edge labels in procedure
Canon, this isomorphism maps respects P and P’ and maps edges that
intersect in E[H] z and some child of u of z to edges that intersect in

E[H'| y and some child v of y. Moreover, if an edge of this second type

118

intersects u and is mapped to an edge intersecting v then PPT. INDEX]u]
=PPTINDEX][v], so PPTLABEL[{u|=PPTLABEL[v] and, by the
induction hypothesis, there is an isomorphism from H[Below(u)] to

H'[Below(v)] respecting P and P'.

We are unable to immediately apply theorem 5-4 because the
isomorphism from H? to HY may map edges that are in the same
connector in P to edges that are in different connectors in P/. We show

that in this case the connectors are identical.

Let u be a child of z and v and w children of y, and let PPTLABEL[u]
=PPTLABEL[v|=PPTLABEL[w]. The connectors of u, v and w are
therefore isomorphic. Let (4,¢) be an isomorphism from H* to H'
preserving edge labels. Let e and f be edges that intersect both z and u
in H, and suppose that ¢(e) intersects y and v in H' while ¢(f) intersects

y and w.

If CONN(u) is trivial then so are CONN(v) and CONN{w), and since

e=f, ¢(e)=4¢(f), so CONN(v) and CONN(w) are identical.

If CONN(u) is not trivial then the characteristic nodes of e(u,1), e(v,1)
and e(w,1) in their PQR trees must be R nodes. Since the PPTLABEL'’s
of u, v and w are identical, | CONN(u)|=|CONN(v)|=|CONN(w)|=k
> 1. Let eNz==c(u,?), fN z=c(u,j) (assume j < ¢, otherwise, swap e

and f and v and w). Since each connector is oriented outwards, the

119

vertices in c¢(u,8) are the final |c(u,i)| vertices in e(u,1) in any ¢ in
CONSISTENT(Z"') (similarly for v and w). We conclude that the final
|e(u,j)| vertices in e(v,1) and e(w,1) are the same in any ¢ in
CONSISTENT(Z"), and therefore e(v,1)=e(w,1), so the connectors are

identical.

Therefore, two edges e and f in the same connector CONN(u) are
mapped to different connector CONN(v) and CONN(w) iff CONN(v)
and CONN(w) are identical. By suitably modifying ¢ we can ensure
that e and f intersect some child u of z iff ¢(e) and ¢(f) intersect some
child v of y, PPTLABEL|u|=PPTLABEL[v]. We can now use theorem
5-4 to conclude that there is an isomorphism from H[Below(z)] to

H'[Below(y)] respecting H and H'.

(=) Assume there is an isomorphism from H[Below(z)| to H'{Below(y)]
respecting P and P’. By theorem 5-4, z and y have the same number of
children, say k, there is a bijection » from the children of z, z;, ... ,zg
to the children of y and a collection of isomorphisms (4;,4;) (i=1, . . . ,k)
respecting P and P' from H[Below(z;)] to H'[Below(r(z;))], and there is
an isomorphism (dg,49) from H[z] to Hly| respecting P and P’ such that

for every edge e in E[H] intersecting = and z;, ¢(e) intersects y and =(x;).

Since H and H' have directed path trees with roots in roo#(P) and

root(P'), they have path trees in which all the connectors CONN(z;)

120

(CONN(n(z;)) are oriented outwards. Therefore, there exist PQR trees
Z% and Z'Y for H®* and H'Y in which all connectors are oriented
outwards; the function gy from z to y can be extended to an isomorphism
from Z% to Z'Y. Moreover, because of the three conditions of theorem
5-4, and because PPTINDEX][z;|=PPTINDEX]x(z;)], clearly this also
yields an edge labelled isomorphism from Z% to Z'¥ (and the edge labels

as given in Canon). #

6. Conclusions and Directions for Future
Research
Linear time algorithms for finding partial path trees and directed path trees for
directed path hypergraphs have been presented. Together with a linear time
algorithm for extracting the maximal cliques of a chordal graph, this yields a linear

time algorithm for directed path graph recognition.

A polynomial time algorithm for directed path graph isomorphism was presented.
The algorithm used canonical labelling ideas from tree isomorphism, and can be
thought of as a combination of the usual tree isomorphism algorithm and Lueker
and Booth’s interval graph isomorphism algorithm. This may not be surprising, as

the class of directed path graphs include both trees and interval graphs.

The algorithms Find-PPT and the procedure for finding directed path trees from

PPT’s are overly complicated; it would be nice to have simpler algorithms.

An open problem is to find a linear time isomorphism algorithm for directed path
graphs. There is no obvious way to modify DPHIso to run in linear time, because
(unlike in trees, where the center may be used) there is no obvious isomorphism-
invariant way to find a set of vertices in a directed path hypergraph that form a
root of a PPT. A possible direction of research is to modify Find-PPT so that it

discards vertices in the same way on isomorphic hypergraphs.

Call a hypergraph H=(V,E) out-degree one if there is a directed graph D=(V,A)

121

122

in which all vertices have out-degree 1 and in which every edge in E induces a
directed path. Truszczynski has given a polynomial time algorithm for recognizing
these hypergraphs [42]; perhaps the techniques given in this thesis can be extended
to yield a linear time algorithm, just as PQ trees can used to solve the problem of

recognizing circular arc hypergraphs.

Another open problem is to find a linear time algorithm for recognizing
undirected path graphs. It is known that isomorphism of undirected path graphs

'is isomorphism-complete.

Booth and Johnson have given a linear time algorithm that, given a
characteristic tree for a directed path graph, finds a maximum dominating set for
the graph [8]. It would be interesting to find other problems that are NP-complete

on chordal graphs yet can be solved efficiently on directed path graphs.

The complexity of the hamiltonian circuit problem is unknown on chordal graphs
and interval graphs. Fast algorithms or proofs of NP-completeness would be

interesting.

References

[1] Aho, A.V., Hopcroft, J.E. and Ullman, J.D.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

[2] Benzer, S.
On the Topology of the Genetic Fine Structure.
Proceedings of the National Academy of Sciences 45:1607-1620, 1959.

[3] Bertele, U. and Brioschi, F.
Mathematics in Science and Engineering. Volume 91: Nonserial
Dynamic Programming.
Academic Press, New York, 1972.

- [4] Berge, C.
Graphs and Hypergraphs.
North Holland, New York, 1973.

[5] Bertossi, A.A.
Finding Hamiltonian circuits in proper interval graphs.
In formation Processing Letters 17:97-101, 1983.

[6] Bondy, J.A. and Murty, U.S.R.
Graph Theory with Applications.
North Holland, New York, 1976.

[7] Booth,K.S. and Colbourn,C.J.
Problems polynomzially equivalent to graph isomorphism.
Technical Report CS-77-04, University of Waterloo, 1979.

[8] Booth, K.S. and Johnson, J.H.
Dominating Sets in Chordal Graphs.
SIAM Journal of Computing 11(1):191-199, February, 1982.

[9] Booth, K.S. and Lueker, G.S.
Testing For the Consecutive Ones Property, Interval Graphs and Graph
Planarity Using PQ-Tree Algorithms.
Journal of Computer and System Sciences 13:335-379, 1976.

[10] Booth, K.S.
PQ-Tree Algorithms.
PhD thesis, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1975.

123

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

124

Buneman, P.
A Characterization of Rigid Circuit Graphs.
Discrete Mathematics 9:205-212, 1974.

Busacker, R.G. and Saaty, T.L.
Finite Graphs and Networks.
McGraw-Hill, New York, 1965.

Colbourn, C.J. and Booth, K.S.

Linear Time Automorphism Algorithms for Trees, Interval Graphs, and
Planar Graphs.

Technical Report CS-79-06, University of Waterloo, 1980.

Diamond, J.S. and Booth, K.S.

Implementation of a Linear Time Isomorphism Test for Interval Graphs.

In Yahiko Kambayashi (editor), Proceedings of the Con ference on
Consecutive Retrieval Property: Theory and Applications, pages 56-67.
ICS Polish Academy of Sciences, Warsaw, Poland, July, 1981.

Dietz, P.F., Furst, M. and Hopcroft, J.E.

A Linear Time Algorithm for the Directed Tree Problem and Directed Path
Graphs.

1984.

Even, S.
Graph Algorithms.
Computer Science Press, Rockville, MD, 1979.

Fujishige, S.

An Efficient PQ-Graph Algorithm for Solving the Graph-Realization
Problem.

Journal of Computer and System Sciences 21(1):63-86, 1980.

Fulkerson, D.R. and Gross, O.A.
Incidence Matrices and Interval Graphs.
Pac: fic Journal of Mathematics 15:835-855, 1965.

Garey, M.R. and Johnson, D.S.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, 1979.

Gavril, F.

Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering
by Cliques, and Maximum Independent Set of a Chordal Graph.

SIAM Journal of Computing 1:180-187, 1972.

21)

[22]

23]
124
25]
[26]

[27]

[28]

[29]

[30]

125

Gavril, F.
The Intersection Graphs of Subtrees in Trees Are Exactly the Chordal

Graphs.
J. of Combinatorial Theory (B) 16:47-56, 1974.

Gavril, F.
A Recognition Algorithm for the Intersection Graphs of Directed Paths in
Directed Trees.

Discrete Mathematics 13:237-249, 1975.

Gavril, F.
A Recognition Algorithm for the Intersection Graphs of Paths in Trees.
Digcrete Mathematics 23:211-227, 1978.

Gavril, F. and Tamari, R.
An Algorithm for Constructing Edge-Trees from Hypergraphs.
Networks 13:377-389, 1983.

Ghosh, S.P.
File Organization: The Consecutive Retrieval Property.
Communications of the ACM 15:802-808, 1972.

Gilmore, P.C. and Hoffman, A.J.
A Characterization of Comparability Graphs and of Interval Graphs.
Canadian Journal of Mathematics 16:539-548, 1964.

Gilbert, J.R. and Rose, D.J.

A Separator Theorem for Chordal Graphs.

Technical Report TR 82-523, Cornell University Department of Computer
Science, October, 1982.

Golumbic, M.C.
Algorithmic Graph Theory and Perfect Graphs.
Academic Press, New York, 1980.

Hoffmann, C. M.

Lecture Notes in Computer Science. Volume 136: Group-Theoretic
Algorithms and Graph Isomorphism.

Springer-Verlag, New York, 1982.

Kashiwabara, T.

Algorithms for Some Intersection Graphs.

In Saito, N. and Nishizeki, T. (editors), Graph Theory and Algorithms.
Springer-Verlag, October, 1980.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

126

Lekkerkerker, C.G. and Bolana, J. Ch.
Representation of a Finite Graph By a Set of Intervals on the Real Line.
Fundamenta Mathemalticee 51:45-64, 1962.

Lipski, W. Jr.

The Consecutive Retrieval Property, Interval Graphs and Related Topics
- a Survey.

In Yahiko Kambayashi (editor), Proceedings of the Con ference on
Consecutive Retrieval Property: Theory and Applications, pages
110-141. ICS Polish Academy of Sciences, Warsaw, Poland, July, 1981.

Contains an extensive bibliography on problems related to the consecutive
retrieval problem.

Lipton, R.J. and Tarjan, R.E.

Applications of a Planar Separator Theorem.

In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science, pages 162-170. IEEE Computer Society, 1977.

Lipton, R.J. and Tarjan, R.E.
A Separator Theorem for Planar Graphs.
SIAM J. of Appl. Math. 36(2):177-189, April, 1979.

Lueker, G.S. and Booth, K.S.
A Linear Time Algorithm for Deciding Interval Graph Isomorphism.
Journal of the ACM 26(2):183-195, April, 1979.

Lueker, G.S.

Efficient Algorithms for Chordal Graphs and Interval Graphs.

PhD thesis, Program in Applied Mathematics and the Department of
Electrical Engineering, Princeton University, 1975.

Luks, E.M. :

Isomorphism of Graphs of Bounded Valence Can be Tested in Polynomial
Time.

In Proceedings of the 21st Annual Symposium on the Foundations of
Computer Science, pages 42-49. IEEE Computer Society, October,
1980.

Mirkin, B.G. and Rodin, S.N.
Biomathematics. Volume 11: Graphs and Genes.
Springer-Verlag, New York, 1984.

Rose, Donald J.
Triangulated Graphs and the Elimination Process.
Journal of Mathematical Analysis and Applications 32:597-609, 1970.

[40]

[41]

[42]

[43]

[44]

[45]

127

Rose, D.J., Tarjan, R.E. and Lueker, G.S.
Algorithmic Aspects of Vertex Elimination on Graphs.
SIAM Journal of Computing 5:266-283, 1976.

Tanaka, K.

Tree-Structured Data Organization With Consecutive Retrieval Property.

In Yahiko Kambayashi (editor), Proceedings of the Con ference on
Consecutive Retrieval Property: Theory and Applications, pages
220-225. ICS Polish Academy of Sciences, Warsaw, Poland, July, 1981.

Truszezynski, M.

On Admissible Families of Sets.

In Yahiko Kambayashi (editor), Proceedings of the Con ference on
Consecutive Retrieval Property: Theory and Applications, pages
246-266. ICS Polish Academy of Sciences, Warsaw, Poland, July, 1981.

Truszczynski, M.

On Acyclic Consecutive Retrieval Organizations.

In Yahiko Kambayashi (editor), Proceedings of the Con ference on
Consecutive Retrieval Property: Theory and Applications, pages
267-276. ICS Polish Academy of Sciences, Warsaw, Poland, July, 1981.

Truszczynski, M.
The Theorem Characterizing the Acyclic Families of Sets.
Technical Report 314, ICS Polish Academy of Sciences, 1978.

Young, S.M.
Implementation of PQ-Tree Algorithms.
Master’s thesis, Department of Computer Science, U. of Washington, 1977.

Index

(u,v)-directed path 6
Add-Edge 45
Adjt 6

Adj- 6

dt 6

d- 6
Find-Path-Tree 42
Find-PPT 42

Find-PPT-unth-Root 42, 44

Inct 6
Inc- 6
Adj 4

Adjacency in hypergraphs 8
Adjacent 4

Ancestor 7

Arcs 6

Automorphism 4, 6

Bertossi 21

Booth 18, 18, 20, 21, 22

128

129

Buneman 11

Characteristic node 79
Characteristic tree 11, 12

Child 7

Chord 5

Chordal graph 1,5

Circular-arc graph 10

Clique 5

Clique hypergraph 9

Colbourn 21

Conflicting Q node 98
Connected component of a hypergraph 9
Connected hypergraph 9
Consecutive retrieval problem 18
CONSISTENT 19, 77
Contracting an edge 10

CRP 18

Cycle 5

DAG 6
Degree 4

Depth 7

130

Descendant 7

Digraph 6

Directed acyclic graph 6
Directed cycle 6

Directed graph 6

Directed path 6

Directed path graph 2, 10, 21
Directed path tree problem 2, 21
Directed tour 6

Directed tree 7

Directed walk 6

DPTP 21

Dual hypergraph 9

Edge 4

Edge induced subgraph 5

Edge induced subhypergraph 8

Edge labelled isomorphism of PQR trees 101
Edge of a hypergraph 8

Ends (of a path) 5

Ends of an edge 4

Equivalence of PQ trees 19

Equivalence of PQR trees 77

131

Family 7

Frontier 7,77

Gavril 11, 21

Graph 4

Hamiltonian circuits 21
Helly property 9
Hypercycle 9
Hypergraph 8
Hyperpath 9
Hypertour 9

Hyperwalk 8

In-arc 6

In-degree 6

Inc 4

Incidence 4

Incidence in digraphs 6
Incidence in hypergraphs 8
Induced subgraph 4

Induced subhypergraph 8

132

Intersection graph 10

Intersection representation 10
Interval graph 1, 10

Isomorphism 4

Isomorphism (of directed graphs) 6
Isomorphism (of hypergraphs) 8
Isomorphism of PQ trees 101

Isomorphism of PQR trees 101
Johnson,J.H. 16, 22

Labelled isomorphism 4

Leaf 7

Lempel-Even-Cederbaum planarity algorithm 20
Lexicographic breadth-first search 13

Lueker 13, 16, 18, 20, 21, 22
Maximum cardinality search 13

Ordered tree 7
Out-arc 6

Out-degree 6

133

P node 18

Parent 7

Partial path tree 2

Path 5

Path graph 10, 21

Path tree problem 21
Perfect elimination scheme 13
PQ tree 18

PQR tree 18,77

Proper circular-arc graph 10
Proper interval graph 10

PTP 21

Q node 18

Q node, conflicting 98

R node 77
REDUCE 20
Root 7
Rooted tree 7
Rose 13

Rose-Tarjan-Lueker algorithm 13

134

Simple hypercycle 9
Simple hyperpath 9
Simplicial vertex 13
Simplification 25

Simplify 25

'SORTED 103

Subfamily 7

Subgraph 4
Subhypergraph 8

Subtree rooted at a vertex 7

Superfamily 7

Tarjan 13
Tour 5
Tree 5

Truszezynski 21, 42
Unrelated vertices 7

Vertex induced subgraph 4
Vertex induced subhypergraph 8
Vertex of a hypergraph 8

Vertices 4

135

Visit 43, 44

Visited 43

Walk 5

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif
	pdftemp/0142.tif
	pdftemp/0143.tif
	pdftemp/0144.tif
	pdftemp/0145.tif
	pdftemp/0146.tif
	pdftemp/0147.tif
	pdftemp/0148.tif

