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Abstract

For a given hypergraph, an orientation can be assigned to the vertex-edge
incidences. This orientation is used to define the adjacency and Laplacian
matrices. Continuing the study of these matrices associated to an ori-
ented hypergraph, several related structures are investigated including:
the incidence dual, the intersection graph (line graph), and the 2-section.
The intersection graph is shown to be the 2-section of the incidence dual.
Also, any simple oriented signed graph is the intersection graph of an
infinite family of oriented hypergraphs. Matrix relationships between
these new constructions are also established, which lead to new questions
regarding associated eigenvalue bounds. Vertex and edge-switchings on
these various structures are also studied. A connection is then made
between oriented hypergraphs and balanced incomplete block designs.

1 Introduction

An oriented hypergraph is a hypergraph where each vertex-edge incidence is given
a label of +1 or −1. Shi called this type of hypergraph a signed hypergraph and
used it to model the constrained via minimization (CVM) problem for two-layer
routings [25, 26]. Oriented hypergraphs were independently developed to generalize
oriented signed graphs [27] and related matroid properties [22, 24]. A generalization
of directed graphs, known as directed hypergraphs, also have this type of vertex-
edge labeling (see for example [14], and the references therein). What distinguishes
oriented hypergraphs from these other related incidence structures is the notion of
an adjacency signature that naturally allows the adjacency and Laplacian matrices
to be defined and studied [5, 21, 22]. This is an alternative approach to studying
matrices and hypermatrices associated to hypergraphs [6, 8, 9, 13, 17, 18, 19], that
does not require a uniformity condition on the edge sizes and allows reasonably
quick spectral calculations. Rodŕıguez also developed a version of the adjacency and
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Laplacian matrices for hypergraphs without a uniformity requirement on edge sizes
[23]. The definition of adjacency signature and the derived matrices could be applied
to directed hypergraphs and their many applications.

This paper is a continuation of the investigation of matrices and eigenvalues
associated to oriented hypergraphs and their related structures. Specifically, a variety
of intersection graphs of oriented hypergraphs are defined and algebraic relationships
are found.

In Section 2 relevant background is provided. In Section 3 new oriented hyper-
graphs are defined, including the intersection graph (or line graph) of an oriented
hypergraph. Some results on oriented hypergraphs that have particular signed graphs
as their intersection graphs are shown. Sections 4 and 5 develop matrix and other
algebraic relationships between an oriented hypergraph and its dual and intersection
graphs. These matrix identities are then used to study the eigenvalues associated to
the adjacency and Laplacian matrices of the same incidence structures. In Section
6 a connection between oriented hypergraphs, balanced incomplete block designs
(BIBD) and their incidence matrices is given.

In [3] the line graph of a directed hypergraph (called a line dihypergraph) is stud-
ied. This construction extends the notion of the line digraph [16] to the hypergraphic
setting in order to study connectivity problems with applications to bus networks.
The definition of the line graph of an oriented hypergraph that we will introduce in
this paper is quite different than the line dihypergraph. However, it would be an
interesting future project to see connections between these constructions.

The reader may be interested in two other related investigations. A general-
ization of the line digraph, called the partial line digraph, is defined in [12]. This
too was generalized to directed hypergraphs [10, 11] with connectivity and expand-
ability results. Acharya studied signed intersection graphs [1], where an alternative
hypergraphic version of signed graphs is introduced.

2 Background

2.1 Oriented Hypergraphs

Let V and E denote finite sets whose respective elements are called vertices and
edges. An incidence function is a function ι : V ×E → Z≥0. A vertex v and an edge
e are said to be incident (with respect to ι) if ι(v, e) 6= 0. An incidence is a triple
(v, e, k), where v and e are incident and k ∈ {1, 2, 3,. . . , ι(v, e)}; the value ι(v, e) is
called the multiplicity of the incidence.

Let I be the set of incidences determined by ι. An incidence orientation is a
function σ : I → {+1,−1}. An oriented hypergraph is a quadruple G = (V,E, I, σ),
and its underlying hypergraph is the triple H = (V,E, I). We may also write V (G),
E(G), I(G) and σG if necessary. Let n := |V | and m := |E|.

Two, not necessarily distinct, vertices vi and vj are said to be adjacent with
respect to edge e if there exist incidences (vi, e, k1) and (vj, e, k2) such that (vi, e, k1) 6=
(vj, e, k2). Therefore, an adjacency is a quintuple (vi, k1; vj, k2; e), where vi and vj
are adjacent with respect to edge e via incidences (vi, e, k1) and (vj, e, k2).
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An adjacency (vi, k1; vj, k2; e) in an oriented hypergraph has an associated sign,
(or adjacency signature), defined as

sgn(vi, k1; vj, k2; e) = −σ(vi, e, k1)σ(vj, e, k2). (2.1)

Instead of writing sgn(vi, k1; vj, k2; e), the alternative notation sgne(vi, k1; vj, k2) will
be used.

An oriented hypergraph is incidence-simple if ι(v, e) ≤ 1 for all v and e, and
for convenience we will write (v, e) instead of (v, e, 1) for incidences in such cases.
Similarly, we will write σ(v, e) for the orientation of incidence (v, e), and sgne(vi, vj)
for the sign of the adjacency (vi; vj; e). Thus, Equation 2.1 becomes

sgne(vi, vj) = −σ(vi, e)σ(vj, e). (2.2)

Unless otherwise stated, for the remainder of this paper all hypergraphs and ori-
ented hypergraphs are assumed to be incidence-simple. Some general results where
incidence-simple is not assumed can be found in [5, 24]. Let V (e) denote the set
of vertices incident with edge e. A hypergraph is linear if for every pair e, f ∈ E,
|V (e) ∩ V (f)| ≤ 1. See Figure 1 for an example of an oriented hypergraph.

G G

+1 +1

+1

+1

+1 +1

+1 −1−1

Figure 1: An incidence-simple oriented hypergraph G drawn in two ways.
On the left, the incidences are labeled with σ values. On the right, the
σ values assigned to the incidences are drawn using the arrow convention
of +1 as an arrow going into a vertex and −1 as an arrow departing a
vertex.

The degree of a vertex vi, denoted by di = deg(vi), is equal to the number of
incidences containing vi. The maximum degree is ∆(H) = ∆ := maxi di. The size
of an edge e is the number of incidences containing e. A k-edge is an edge of size k.
A k-uniform hypergraph is a hypergraph such that all of its edges have size k. The
rank of H, denoted by r(H), is the maximum edge size in H.

The incidence dual (or dual) of a hypergraph H = (V,E, I), denoted by H∗, is
the hypergraph (E, V, I∗), where I∗ := {(e, v) : (v, e) ∈ I}. Thus, the incidence dual
reverses the roles of the vertices and edges in a hypergraph.

As with hypergraphs, an oriented hypergraph has an incidence dual. The in-
cidence dual of an oriented hypergraph G = (H, σ) is the oriented hypergraph
G∗ = (H∗, σ∗), where the coincidence orientation σ∗ : I∗ → {+1,−1} is defined
by σ∗(e, v) = σ(v, e), and the coadjacency signature defined by

sgn∗
v(ei, ej) = sgn∗(ei; ej; v) = −σ∗(ei, v)σ

∗(ej, v) = −σ(v, ei)σ(v, ej).

The notation σG∗ may also be used for the coincidence orientation. See Figure 2 for
an example of the incidence dual.



N. REFF/AUSTRALAS. J. COMBIN. 65 (1) (2016), 108–123 111

G∗

Figure 2: The incidence dual G∗ of G from Figure 1.

2.2 Oriented Signed Graphs

A signed graph is a graph where edges are given labels of either +1 or −1. Formally,
a signed graph Σ = (Γ, sgn) is a graph Γ together with a sign function (or signature)
sgn: E(Γ) → {+1,−1}. An oriented signed graph (Σ, β) is a signed graph together
with an orientation β : I(Γ) → {+1,−1} that is consistent with the sign function
via the relation

sgn(eij) = −β(vi, eij)β(vj, eij). (2.3)

Oriented signed graphs were developed [27] to generalize Greene’s bijection between
acyclic orientations and regions of an associated hyperplane arrangement [15]. This
generalization is intimately connected with the theory of oriented matroids [4].

Notice that Equation 2.3 is the same formula used to calculate the adjacency
signs in an oriented hypergraph. This is merely because oriented signed graphs are
the model for the generalization of oriented hypergraphs. It should therefore be no
surprise that a 2-uniform oriented hypergraph is an oriented signed graph. If we say
that G is a simple oriented signed graph, then G has no loops or multiple edges. Put
another way, G is a 2-uniform incidence-simple linear oriented hypergraph.

Another minor technical note: in order to create an oriented signed graph (Σ, β)
for a given signed graph Σ, many different orientations β can be chosen so that
Equation 2.3 is satisfied.

2.3 Matrices and Oriented Hypergraphs

For generalized definitions of the following matrices where incidence-simple is not
assumed, see [5].

Let G = (H, σ) be an oriented hypergraph. The adjacency matrix A(G) = (aij) ∈
R

n×n is defined by

aij =







∑

e∈E

sgne(vi, vj) if vi is adjacent to vj,

0 otherwise.

If vi is adjacent to vj, then

aij =
∑

e∈E

sgne(vi, vj) =
∑

e∈E

sgne(vj, vi) = aji.

Therefore, A(G) is symmetric.
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The incidence matrix H(G) = (ηij) is the n×m matrix, with entries in {±1, 0},
defined by

ηij =

{

σ(vi, ej) if (vi, ej) ∈ I,

0 otherwise.

As with hypergraphs, the incidence matrix provides a convenient relationship be-
tween an oriented hypergraph and its incidence dual.

Lemma 2.1 ([22],Theorem 4.1). If G is an oriented hypergraph, then H(G)T =
H(G∗).

The degree matrix of an oriented hypergraph G is defined as D(G) := diag(d1, d2,
. . . , dn). The Laplacian matrix is defined as L(G) := D(G) − A(G). The Laplacian
matrix of an oriented hypergraph can also be written in terms of the incidence matrix.

Lemma 2.2 ([22], Corollary 4.4 and [5], Theorem 2.2). If G is an oriented hyper-
graph, then

1. L(G) = D(G)− A(G) = H(G)H(G)T, and

2. L(G∗) = D(G∗)− A(G∗) = H(G)TH(G).

Since the eigenvalues of a symmetric matrix A ∈ R
n×n are real, we will assume

that they are labeled and ordered according to the following convention:

λmin(A) = λn(A) ≤ λn−1(A) ≤ · · · ≤ λ2(A) ≤ λ1(A) = λmax(A).

3 Intersection Graphs

The k-section (clique graph) of an oriented hypergraph G = (V,E, I, σ) is the ori-
ented hypergraph [G]k with the same vertex set as G and edge set consisting of f
with V (f) ⊆ V that satisfies either of the following:

1. |V (f)| = k and V (f) ⊆ V (e) for some e ∈ E, or

2. |V (f)| < k and V (f) = V (e) for some e ∈ E.

The incidence signs for each f are carried over from e so that σ[G]k(v, f) = σG(v, e).
The k-section of an oriented hypergraph is a generalization of the k-section of a
hypergraph (see, for example, Berge [2, p.26]).

The strict k-section is the oriented hypergraph JGKk that is the same as [G]k, but
without condition (2).

The intersection graph (line graph, or representative graph) of a linear oriented
hypergraph G is the oriented hypergraph Λ(G) whose vertices are the edges of G, and
edges of the form ef whenever V (e)∩V (f) 6= ∅ in G. The incidence signs are carried
over to the intersection graph so that if v ∈ V (e) ∩ V (f) in G, then σΛ(G)(e, ef) =
σ(v, e). The intersection graph of an oriented hypergraph simultaneously generalizes
the intersection graph of a hypergraph [2, p.31] and the line graph of a signed graph



N. REFF/AUSTRALAS. J. COMBIN. 65 (1) (2016), 108–123 113

Λ(G)JGK2[G]2

Figure 3: The 2-section [G]2, strict 2-section JGK2 and intersection graph
Λ(G) of G from Figure 1.

introduced by Zaslavsky [28]. See Figure 3 for an example of a 2-section, strict
2-section and intersection graph of an oriented hypergraph G.

The following theorem shows how to obtain the intersection graph of an oriented
hypergraph G by finding the strict 2-section of the dual G∗. This generalizes Berge’s
known result for hypergraphs [2, Prop. 1, p.33].

Theorem 3.1. If G is a linear oriented hypergraph, then Λ(G) = JG∗K2.

Proof. The equivalences

v ∈ V (Λ(G)) ↔ v ∈ E(G) ↔ v ∈ V (G∗) ↔ v ∈ V (JG∗K2),

verifies V (Λ(G)) = V (JG∗K2). Similarly, the equivalences

eiej ∈ E(Λ(G)) ↔ ∃ei, ej ∈ E(G) such that ∃v∈V (G) such that v ∈ V (ei) ∩ V (ej),

↔ ∃ei, ej ∈ V (G∗) such that ∃v ∈ E(G∗) such that ei, ej ∈ V (v),

↔ ∃ei, ej ∈ V (JG∗K2) such that∃v∈E(JG∗K2) such that ei, ej∈V (v),

↔ eiej ∈ E(JG∗K2),

confirms E(Λ(G)) = E(JG∗K2). Finally, along with the inherited incidences, the
equivalences

σΛ(G)(ei, eiej) = σG(v, ei) = σG∗(ei, v) = σJG∗K2(ei, eiej),

show that the incidence signs are the same for Λ(G) and JG∗K2. Therefore, Λ(G) =
JG∗K2.

Corollary 3.2. If G is a linear oriented hypergraph, then Λ(G∗) = JGK2.

As a generalization of Berge’s result, for any simple oriented signed graph G,
there is a linear oriented hypergraph H that has G as its intersection graph. It turns
out that H = G∗ is one such oriented hypergraph.

Corollary 3.3. If G is a 2-uniform linear oriented hypergraph (that is, G is an
simple oriented signed graph), then Λ(G∗) = G.

Moreover, for any simple oriented signed graph G, there are infinitely many linear
oriented hypergraphs with G as their intersection graph.



N. REFF/AUSTRALAS. J. COMBIN. 65 (1) (2016), 108–123 114

Corollary 3.4. If G is a 2-uniform linear oriented hypergraph (that is, G is an
simple oriented signed graph), then there exists an infinite family of linear oriented
hypergraphs H such that for any H ∈ H, Λ(H) = G.

Proof. Consider the dual G∗ and pick an edge e ∈ E(G∗) that has nonzero size i.
Let j ∈ {i + 1, i + 2, . . .} and let Hj be the oriented hypergraph that is identical to
G∗ except edge e is has an additional j − i new vertices of degree 1 incident to it.
These additional vertices also create j − i new incidences, all of which can be given
an orientation of +1 (this choice is arbitrary). Since these new vertices do not create
any new edges, or new edges incident to e, it must be that the intersection graphs
of G∗ and Hj are the same. By Corollary 3.3, G = Λ(G∗) = Λ(Hj). Therefore, the
infinite family H := {Hj : j ≥ i} satisfies the corollary.

If k ≥ ∆(G), the process of enlarging the edge sizes can be continued to obtain
a k-uniform oriented hypergraph that has G as its line graph.

Theorem 3.5. If G is a 2-uniform linear oriented hypergraph (that is, G is an
simple oriented signed graph), then for all k ≥ ∆(G), there exists a k-uniform linear
oriented hypergraph Hk with Λ(Hk) = G.

Proof. Same construction as the previous proof, but enlarge all the edges to have
size k. Since k ≥ ∆(G) it is guaranteed that all the edges can be enlarged to the
desired size.

To illustrate Corollaries 3.3 and 3.4, and Theorem 3.5 see Figure 4.

G = Λ(G∗) = Λ(H5) G∗ H5

Figure 4: A 2-uniform linear oriented hypergraph G, which is also the
line graph of the dual G∗ and the 5-uniform oriented hypergraph H5.

Berge shows that every graph is the intersection graph of some linear hypergraph
[2, Prop. 2, p.34] as is true for simple signed graphs. In general, a signed graph Σ is
the intersection graph of infinitely many linear oriented hypergraphs.

Theorem 3.6. If Σ is a simple signed graph, then there is some linear oriented
hypergraph H, with Λ(H) = Σ. Moreover, for all k ≥ ∆(Σ), there exists a k-uniform
linear oriented hypergraph Hk with Λ(Hk) = Σ.

Proof. A simple signed graph Σ has many possible orientations β such that G =
(Σ, β) is a 2-uniform linear oriented hypergraph. The result is immediate by Theorem
3.5.
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For a 2-regular oriented hypergraph G, the intersection graph Λ(G) and the
dual G∗ are identical. Also, there are infinitely many k-uniform linear oriented
hypergraphs whose intersection graphs are G∗.

Corollary 3.7. If G is a 2-regular linear oriented hypergraph, then Λ(G) = G∗.
Moreover, for all k ≥ r(G), there exists a k-uniform linear oriented hypergraph Hk

such that Λ(Hk) = G∗.

Proof. If G is 2-regular, then G∗ is 2-uniform, hence the results are immediate by
Corollaries 3.3 and 3.5.

See Figure 5 for an example that illustrates Corollary 3.7.

G

G∗ = Λ(G) = Λ(H3) H3

Figure 5: A 2-regular linear oriented hypergraph G and its dual G∗.
The dual G∗ is the line graph of both G and the 3-uniform oriented
hypergraph H3.

4 Matrices of Intersection Graphs

The strict 2-section JGK2 is essentially the oriented hypergraph created from the
adjacencies in G, so on the level of adjacency matrices the oriented hypergraphs G
and JGK2 record the same information.

Theorem 4.1. If G is an oriented hypergraph, then A(G) = A(JGK2) = A([G]2).

Proof. By definition, V (G) = V (JGK2), so both have adjacency matrices of the same
size. If vi and vj are not adjacenct in G, then they are not adjacent in JGK2 and the
(i, j)-entries of A(G) and A(JGK2) are 0. Otherwise, vi and vj are adjacent and the
(i, j)-entry of A(G) is

∑

e∈E(G)

sgne(vi, vj) =
∑

e∈E(G)

−σG(vi, e)σG(vj, e)

=
∑

f∈E(JGK2)

−σJGK2(vi, f)σJGK2(vj, f)
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=
∑

f∈E(JGK2)

sgnf (vi, vj),

which is the (i, j)-entry of A(JGK2). This is also the (i, j)-entry of A([G]2) since any
extra edges of smaller size present in [G]2 would not introduce any new adjacencies
to consider.

This adjacency matrix relationship carries over to the dual in a significant way,
showing that the dual and intersection graph have the same adjacency matrix.

Corollary 4.2. If G is a linear oriented hypergraph, then A(G∗) = A(Λ(G)).

Proof. The result is an immediate consequence of Theorems 3.1 and 4.1.

If G is a k-uniform, we can specialize Lemma 2.2 as follows.

Lemma 4.3 ([22],Corollary 4.5). If G is a k-uniform oriented hypergraph, then

L(G∗) = H(G)TH(G) = kI − A(G∗).

Theorem 4.4. Let G be a k-uniform linear oriented hypergraph. If λ is an eigenvalue
of A(Λ(G)) (or A(G∗)), then λ ≤ k.

Proof. By Corollary 4.2 A(Λ(G)) = A(G∗), so these matrices can be used inter-
changeably. Suppose that x is an eigenvector of A(Λ(G)) with associated eigenvalue
λ. By Lemma 4.3 the following simplification can be made:

L(G∗)x = H(G)TH(G)x =
(

kI − A(Λ(G)
)

x = (k − λ)x.

Hence, k − λ is an eigenvalue of L(G∗) = H(G)TH(G). Since L(G∗) is positive
semidefinite it must be that k − λ ≥ 0 and therefore, k ≥ λ.

Question 1: Suppose you are given a signed graph Σ with all adjacency eigenval-
ues satisfying λ ≤ k. Does this mean Σ is the intersection graph of some k-uniform
oriented hypergraph? We already know this is always the case if ∆(Σ) ≤ k. For
all signed graphs, it is known that all eigenvalues of A(Σ) satisfy λ ≤ ∆(Σ) [20,
Theorem 4.3]. So the question remains for situations when all adjacency eigenvalues
satisfy λ ≤ k < ∆(Σ) for some integer k.

Example 1: Consider the signed graph Σ in Figure 6. In this example
λmax(A(Σ)) ≈ 2.03967 < k < ∆(Σ) = 5. So is Σ the intersection graph of a 3-
uniform or 4-uniform oriented hypergraph? We already know that if k ≥ 5 we can
find a k-uniform oriented hypergraph Hk with Λ(Hk) = Σ by Theorem 3.6. However,
it is possible to construct a 3-uniform oriented hypergraph H with Σ as its intersec-
tion graph, as shown in Figure 6. This construction can be modified to the 4-uniform
case as well. If, however, we consider the signed graph Σ2 in Figure 6, the situation
is different. For this signed graph, λmax(A(Σ2)) ≈ 2.31364 < k < ∆(Σ2) = 5, but it
does not seem possible to have a 3 or 4-uniform oriented hypergraph with Σ2 as its
intersection graph. Is there a nice classification of the exceptional cases?

If G is r-regular, the dual relationship of Lemma 2.2 can also be simplified.
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Σ = Λ(H)

H

Σ2

Figure 6: A signed graph Σ can be oriented so it is also the intersection
graph of the depicted 3-uniform oriented hypergraph H. A dashed edge
denotes a sign of −1 and a solid edge denotes of a sign of +1. The second
signed graph Σ2 is discussed in Example 1.

Lemma 4.5. If G is an r-regular oriented hypergraph, then

L(G) = H(G)H(G)T = rI − A(G).

Theorem 4.6. Let G be a r-regular oriented hypergraph. If λ is an eigenvalue of
A(G), then λ ≤ r.

Proof. Suppose that x is an eigenvector of A(G) with associated eigenvalue λ. By
Lemma 4.5

L(G)x = H(G)H(G)Tx =
(

rI − A(G)
)

x = (r − λ)x.

Hence, r− λ is an eigenvalue of the positive semidefinite matrix L(G). Therefore, it
must be that r ≥ λ.

An oriented hypergraph and its incidence dual have the same nonzero Laplacian
eigenvalues.

Lemma 4.7 ([21],Corollary 4.2). If G is an oriented hypergraph, then L(G) and
L(G∗) have the same nonzero eigenvalues.

Question 2: If G is 2-regular, then Λ(G) = G∗ (see Corollary 3.7 above). In
this situation L(G), L(G∗) and L(Λ(G)) all have the same nonzero eigenvalues by
Lemma 4.7. If G is not 2-regular, when are the eigenvalues of L(Λ(G)) and L(G∗)
different? By Corollary 4.2 the only difference between L(Λ(G)) and L(G) in general
is:

L(G∗)− L(Λ(G)) = D(G∗)−D(Λ(G)).

Hence, a sufficient condition can be easily stated, yet a full classification using the
structure of G alone would be more interesting.
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Proposition 4.8. Let G be an oriented hypergraph that is not 2-regular.

1. If
∑m

i=1 d
G∗

i >
∑m

i=1 d
Λ(G)
i , then ∃j ∈ {1, . . . ,m}, with

λj(L(G
∗)) > λj

(

L(Λ(G))
)

.

2. If
∑m

i=1 d
G∗

i <
∑m

i=1 d
Λ(G)
i , then ∃j ∈ {1, . . . ,m}, with

λj(L(G
∗)) < λj

(

L(Λ(G))
)

.

Proof. The trace of L(G∗) is tr(L(G∗)) =
∑m

i=1 d
G∗

i =
∑m

i=1 λi(L(G
∗)) and the trace

of L(Λ(G)) is tr(L(Λ(G))) =
∑m

i=1 d
Λ(G)
i =

∑m

i=1 λi(L(Λ(G))). Therefore, a strict
increase in trace must result in a strict increase in at least one of the eigenvalues.

Example 2: Consider the oriented hypergraph G in Figure 1. The dual G∗ and
intersection graph Λ(G) are depicted in Figures 2 and 3. Condition (2) of Proposition
4.8 is met and the conclusion can be seen in the Laplacian eigenvalues approximated
in Table 1.

Example 3: Consider the oriented hypergraph G2 in Figure 7 together with its
dual G∗

2 and intersection graph Λ(G2). Condition (1) of Proposition 4.8 is met and
the conclusion can be seen in the Laplacian eigenvalues approximated in Table 1.

L(Λ(G)) L(G∗) L(Λ(G2)) L(G∗
2)

λ1 4.73205 4.56155 2 4
λ2 3.41421 3.73205 0 2
λ3 1.26795 0.43845
λ4 0.58579 0.26795
tr 10 9 2 6

Table 1: Approximate Laplacian eigenvalues of Λ(G) and G∗ from Figures
2 and 3, as well as Λ(G2) and G∗

2 in Figure 7 .

Example 4: Consider the oriented hypergraph G3 in Figure 7. Here G3 is not
2-regular, and yet the eigenvalues of L(G∗

3) and L(Λ(G3)) are the same. In fact,
L(G∗

3) = L(Λ(G3)). A full classification of when the Laplacian eigenvalues are the
same for G∗ and Λ(G) would be of interest.

G3 Λ(G3) G∗
3

G2 Λ(G2) G∗
2

Figure 7: Oriented hypergraphs considered in Examples 3 and 4.
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5 Switching

A vertex-switching function is any function ζ : V → {−1,+1}. Vertex-switching the
oriented hypergraph G = (H, σ) means replacing σ with σζ , defined by

σζ(v, e) = ζ(v)σ(v, e); (5.1)

producing the oriented hypergraph Gζ = (H, σζ).
An edge-switching function is any function ξ : E → {−1,+1}. Edge-switching

the oriented hypergraph G = (H, σ) means replacing σ with σξ, defined by

σξ(v, e) = σ(v, e)ξ(e); (5.2)

producing the oriented hypergraph Gξ = (H, σξ). To make things more compact we
will write G(ζ,ξ) = (G, σ(ζ,ξ)) when G is both vertex-switched by ζ and edge-switched
by ξ. Switching changes the the adjacency signatures in the following way:

sgn(ζ,ξ)
e (vi, vj) = −σ(ζ,ξ)(vi, e)σ

(ζ,ξ)(vj, e) = −[ζ(vi)σ(vi, e)ξ(e)][ζ(vj)σ(vj, e)ξ(e)]

= −ζ(vi)σ(vi, e)ξ(e)
2σ(vj, e)ζ(vj)

= ζ(vi) sgne(vi, vj)ζ(vj).

The adjacency signatures are conjugated by the vertex-switching ζ and invariant un-
der the edge-switching ξ. These switching operations can be encoded using matrices.

For a vertex-switching function ζ : V → {+1,−1}, we define the diagonal ma-
trix Dn(ζ) := diag

(

ζ(v1), ζ(v2), . . . , ζ(vn)
)

. Similarly for an edge-switching function
ξ : E → {+1,−1}, we define Dm(ξ) := diag

(

ξ(e1), ξ(e2), . . . , ξ(em)
)

. The following
shows how to calculate the switched oriented hypergraph’s incidence, adjacency and
Laplacian matrices extending [22, Propositions 3.1 and 4.3].

Lemma 5.1. Let G be an oriented hypergraph. Let ζ : V → {+1,−1} be a vertex-
switching function on G, and ξ : E → {+1,−1} be an edge-switching function on G.
Then

1. H
(

G(ζ,ξ)
)

= Dn(ζ)H(G)Dm(ξ),

2. A
(

G(ζ,ξ)
)

= Dn(ζ)A(G)Dn(ζ), and

3. L
(

G(ζ,ξ)
)

= Dn(ζ)L(G)Dn(ζ).

Moreover,

(4) H
(

(G∗)(ξ,ζ)
)

= Dm(ξ)H(G
∗)Dn(ζ),

(5) A
(

(G∗)(ξ,ζ)
)

= Dm(ξ)A(G
∗)Dm(ξ), and

(6) L
(

(G∗)(ξ,ζ)
)

= Dm(ξ)L(G
∗)Dm(ξ).

Since switching results in similarity transformations for both the adjacency and
Laplacian matrices, it also preserves the respective eigenvalues. A specialized version
of this situation appears in [21, Lemmas 3.1 and 4.1].
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Theorem 5.2. Let G be an oriented hypergraph. Let ζ : V → {+1,−1} be a vertex-
switching function on G, and ξ : E → {+1,−1} be an edge-switching function on G.
Then

1. A(G) and A
(

G(ζ,ξ)
)

have the same eigenvalues.

2. L(G) and L
(

G(ζ,ξ)
)

have the same eigenvalues.

Moreover,

(3) A(G∗) and A
(

(G∗)(ξ,ζ)
)

have the same eigenvalues.

(4) L(G∗) and L
(

(G∗)(ξ,ζ)
)

have the same eigenvalues.

Lemma 4.7 can be generalized to find a large family of oriented hypergraphs
which have the same nonzero Laplacian eigenvalues.

Corollary 5.3. Let G be an oriented hypergraph. Let ζ1 and ζ2 be vertex-switching
functions on G, and let ξ1 and ξ2 be edge-switching functions on G. Then L

(

G(ζ1,ξ1)
)

and L
(

(G∗)(ξ2,ζ2)
)

have the same nonzero eigenvalues.

If two oriented hypergraphs are the same up to a vertex or edge switching, then the
corresponding duals, strict 2-sections and intersection graphs have related switching
relationships.

Theorem 5.4. Let G1 = (H, σ1) and G2 = (H, σ2) be linear oriented hypergraphs.
Let ζ be a vertex-switching function on G1 and G2, and ξ be an edge-switching func-
tion on G1 and G2. If G1 = G

(ζ,ξ)
2 , then

1. G∗
1 = (G∗

2)
(ξ,ζ).

Moreover, there exist edge switching functions ξ̂ on JG2K2 and ζ̂ on Λ(G2) such that

(2) JG1K2 = JG2K
(ζ,ξ̂)
2 , and

(3) Λ(G1) = Λ(G2)
(ξ,ζ̂).

Proof. Since ζ is a vertex-switching function on G1 and G2, by duality, ζ is an edge-
switching function on G∗

1 and G∗
2. Similarly ξ becomes a vertex-switching function

on G∗
1 and G∗

2. Now (1) follows from the incidence simplifications:

σ
(ξ,ζ)
G∗

2

(e, v) = ξ(e)σG∗

2
(e, v)ζ(v) = ζ(v)σG2

(v, e)ξ(e) = σ
(ζ,ξ)
G2

(v, e) = σG1
(v, e)

= σG∗

1
(e, v).

The strict 2-sections JG1K2 and JG2K2 both have the same vertex set as H and there-

fore ζ is also a vertex-switching function for both oriented hypergraphs. Define the
edge-switching function ξ̂ : E(JG2K2) → {+1,−1} as an extension of ξ by the follow-
ing rule: if f ∈ E(JG2K2) is derived from e ∈ E(G2) by definition (see the beginning
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of Section 3), then ξ̂(f) = ξ(e). Now (2) follows from the following incidence calcu-
lation:

σ
(ζ,ξ̂)
JG2K2

(v, f) = ζ(v)σJG2K2(v, f)ξ̂(f) = ζ(v)σJG2K2(v, f)ξ(e) = ζ(v)σG2
(v, e)ξ(e)

= σ
(ζ,ξ)
G2

(v, e)

= σG1
(v, e)

= σJG1K2(v, f).

Finally, the result of (3) follows from (1), (2) and Theorem 3.1.

6 Balanced Incomplete Block Designs

The matrix relationships found in the above sections produce a connection to bal-
anced incomplete block designs. There is a similar standard matrix relationship that
appears in design theory which can be derived from a specialized oriented hyper-
graph. The definitions and design theory results below are taken directly from [7].

Suppose G = (H,+1) represents an oriented hypergraph G with underlying hy-
pergraph H and all incidences labeled +1.

Theorem 6.1. Suppose G = (H,+1) is a k-uniform, r-regular oriented hypergraph
where any two distinct vertices are adjacent exactly λ times.

L(G) = H(G)H(G)T = (r − λ)I + λJ.

Proof. Since G is r-regular, L(G) = H(G)H(G)T = rI −A(G), by Lemma 4.5. Since
all incidences are labeled +1, this forces all adjacency signs to be −1 by definition.
Therefore, since each distinct pair of vertices vi and vj are adjacent exactly λ times,
if i 6= j, then the (i, j)-entry of A(G) is

∑

e∈E sgne(vi, vj) = −λ. Otherwise, aii = 0.
Hence, the result follows by further simplifying the initial equation: rI − A(G) =
rI − (λI − λJ).

A balanced incomplete block design (BIBD) is a pair (V,B), where V is a v-set
(i.e., v = |V |) and B is a collection of b k-subsets of V (called blocks) such that each
element of V is contained in exactly r blocks, and any 2-subset of V is contained
in exactly λ blocks. The numbers v, b, r, k and λ are called the parameters of the
BIBD.

The incidence matrix of a BIBD (V,B) with parameters v, b, r, k and λ is a v× b

matrix C = (cij), where cij = 1 when the ith element of V occurs in the jth block
of B, and cij = 0, otherwise.

A BIBD (V,B) can be thought of as a k-uniform, r-regular oriented hypergraph
G = (H,+1) with V (H) = V , E(H) = B and any two distinct vertices vi and vj are
adjacent exactly λ times. From the Theorem 6.1, the same result known for BIBD
can be established.

Corollary 6.2 ([7],Theorem 1.8). Suppose C is the incidence matrix of a balanced
incomplete block design (BIBD) with parameters v, b, r, k, and λ. Then

CCT = (r − λ)I + λJ.
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