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INTERSECTION HOMOLOGY AND TORUS ACTIONS 

FRANCES KIRWAN 

It is well known that the homology of a nonsingular complex projective va-
riety X with a C* action is determined by the homology of the connected 
components F1 , ••• ,F[ of the fixed point set Xc· and the action of C* near 
xC" . In fact there are isomorphisms 

(0.1 ) Hj(X;Z) ~ E9 H i_ 2m,(F,/;Z) , 
I~'/~[ 

where m,/ is the complex codimension of the stratum 

S = {x E XI lim A. • x E F,,} 
'/ A-+O ' 

in the Bialynicki-Birula decomposition of X (see {5, 6, 10, 13]). The same 
formula holds for appropriate integers my when C* is replaced by a torus 
T = (c*f. 

In [9] it is shown that the formula (0.1) is valid even when X is singular, pro-
vided that the Bialynicki-Birula decomposition is "good". The aim of this paper 
is to generalize (0.1) to the case when X is singular in a different way, which 
involves replacing ordinary homology by intersection homology (with respect 
to the middle perversity). However only rational coefficients are considered. 
When X is nonsingular its intersection homology and ordinary homology coin-
cide, but when X is singular its intersection homology behaves better in many 
respects than its ordinary cohomology. 

It is shown that when X is singular, just as when X is nonsingular, the ratio-
nal intersection homology of X is determined by the action of T on an arbi-
trarily small neighborhood of the fixed point set XT . As might be expected, the 
formula (0.1) does not carry over directly when intersection homology replaces 
ordinary homology. The terms H j _ 2m, (F,/ ; Z) appearing in the right-hand side 
are replaced by hypercohomology groups of certain complexes of sheaves over 
the F,/ which depend upon how the F,/ meet the singularities of X (see The-
orem 2.3). 

§ 1 of this paper contains a review of a proof of (0.1) for rational coefficients 
which uses equivariant Morse theory. In §2 it is shown how this proof can be 
extended to apply to singular varieties when intersection homology is used. The 

Received by the editors April 15, 1987. 
1980 Mathematics Subject Classification (1985 Revision). Primary 14L30. 

385 

© 1988 American Mathematical Society 
0894-0347/88 $1.00 + $.25 per page 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



386 FRANCES KIRWAN 

argument depends on the existence of a T -equivariant resolution of X, which 
is a consequence of Hironaka's equivariant resolution of singularities theorem 
announced in [24]. 

1. 

In this section let X be a nonsingular complex projective variety with an 
algebraic action of a torus T = (C·/. Let {F,.Il ~ Y ~ /} be the connected 
components of the fixed point set XT of T in X. Then each Fy is a nonsin-
gular closed subvariety of X. 

Consider first the case T = C·. For each x E X the morphism C· - X 
given by A. - A.·x extends uniquely to a morphism C - X [21, II, 4.7]. Denote 
by lim). ...... o A. • x the image of 0 under this morphism: it is always a fixed point 
of the action. The Bialynicki-Birula decomposition of X is a decomposition 
of X as a disjoint union of nonsingular locally closed subvarieties S!, ... ,Sf 
where 

(1.1) S" = {x E XI lim A. . x E F } . 
F ). ...... 0 'I 

Each Sy retracts onto the corresponding Fy so the homology of Sy is isomor-
phic to the homology of Fy • 

The Fubini-Study form w is a Kahler form on X. By averaging we may 
assume that w is invariant under the action of the maximal compact subgroup 
S! of C·. Thus the action of S! preserves the symplectic structure on X 
defined by w. There exists a momentum map p,: X _ (Lie S!)· for this action. 
That is, p, satisfies p,(A.. x) = p,(x) and 

( 1.2) 

for all A. E S! , x EX, ~ E TxX and a E LieS! , where x 1-+ ax is the vector 
field on X defined by the infinitesimal action of a (see [10, 13,26]). 

The Bialynicki-Birula decomposition of X can also be defined as the Morse 
stratification associated to the function p,: X _ (Lie S!)· = R, which is a non-
degenerate Morse function in the sense of [7] (see [2]). That is, a point x E X 
lies in Sy if and only if the limit of its forward trajectory under the gradient 
flow of p" with respect to the Kahler metric, lies in Fy (see [10]). In particular 
the Fy may be indexed in such a way that 

( 1.3) 

for each y. This means that each union 

( 1.4) 
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is an open subset of X which contains Sy as a closed complex submanifold, 
and satisfies Uy - Sy = Uy_ 1 • Thus there is a long exact sequence (the Thom-
Gysin sequence) 
(1.5) . 2 . . . 1 2 
... --+ H '- m;,(Sy ;Q) --+ H'(Uy ;Q) --+ H'(Uy_ 1 ;Q) --+ HH - m7(Sy ;Q) --+ ... 

where my is the complex codimension of Sy. The stratification {Sy11 ~ Y ~ /} 
of X is called perfect over Q if these long exact sequences all break up into 
short exact sequences 

0--+ H i- 2m;,(Sy ;Q) --+ Hi(Uy ;Q) --+ Hi(UY_ 1 ;Q) --+ O. 

This happens if and only if there are isomorphisms 

Hi(X;Q) ~ ffi Hi- 2m;,(Sy ;Q) ~ ffiHi-2m7(Fy ;Q) 
'I 'I 

for each i. 
Thus to prove that the formula (0.1) is valid with rational coefficients it suf-

fices to show that the stratification {Sy 11 ~ y ~ /} is perfect. Before describing 
how this can be done using equivariant cohomology, let us consider what hap-
pens when C* is replaced by a torus T = (C* t . Let To = (S 1 t be the maximal 
compact subgroup of T. There exists a To-invariant Kahler structure on X 
with a momentum map #: X --+ (Lie Tot. If a is a generic element of Lie To 
(to be precise, if exp Ra is dense in To) then the function f: X --+ R defined 
by f(x) = #(x) . a is a nondegenerate Morse function in the sense of [7], and 
its critical points are precisely the fixed points of the action (see, e.g., [2]). So 
there is a stratification {Sy11 ~ Y ~ /} of X such that a point x E X lies in 
Sy if and only if the limit of its forward trajectory under the gradient flow of 
f, with respect to the Kahler metric, lies in Fy • Equivalently 

(1.6) Sy = {x E XI lim exp(ita) . x E F }. 
(-+00 'I 

(The limit of exp(ita) . x as t E R tends to infinity exists because iax = 
gradf(x) for every x E X and f is a nondegenerate Morse function.) If this 
stratification is perfect over Q then we have 

(1.7) Hi(X;Q) ~ ffi Hi- 2m;,(Sy ;Q) ~ ffiHi-2m;'(Fy ;Q) 
y 'I 

where my is the complex codimension of Sy. Note that different choices of a 
may give different values for my. 

The rational To-equivariant cohomology of a space Y on which To acts is 
by definition 

H;/Y;Q) = H*(Y xTo ETo;Q), 
where ETo --+ BTo is a universal classifying bundle for To. Because X is a 
nonsingular projective variety it follows from [11] or [26, 5.8] that 

(1.8) H;o(X;Q) ~ H*(X;Q) ®H*(BTo;Q) 
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and also 
(1.9) 

for each y. 
Since the strata S'I defined at (1.6) are T -invariant there exist equivariant 

Thom-Gysin sequences 

(1.10) ... -> H~;2m;,(S'I ;Q) -> H~o(U'I ;Q) -> H~o(U'I_1 ;Q) -> .... 

The stratification is called equivariantly perfect over Q if these long exact se-
quences break up into short exact sequences so that 

(1.11) H~o (X; Q) ~ EB H~;2m;, (S'I ; Q) ~ EB H~;2m;, (F'I ; Q) 

for all i. It follows from (1.8) and (1.9) that the stratification is perfect over 
Q if and only if it is equivariantly perfect over Q. 

Atiyah and Bott have given a criterion for a stratification such as {S'Ill ~ 
y ~ /} to be equivariantly perfect. By [3, Corollary 1.8 and Proposition 13.4] 
it suffices that for each y the induced action of To on the normal to S'I at any 
point x E F'I should have no nonzero fixed vectors. This condition is satisfied 
because near x the action is diffeomorphic to a linear action (see, e.g., [2, 2.2]). 
Thus we can conclude that the stratification {S'Ill ~ y ~ /} is both perfect and 
equivariantly perfect over Q, and hence that (1.7) holds. 

Note that in particular we have proved the following lemma. 

(1.12) Lemma. The restriction maps 
H*(U'I ;Q) -> H*(U'I_I ;Q) 

and 

are surjective for all y. 

In the next section we shall adapt this argument to the case where X may 
be singular and cohomology is replaced by intersection cohomology. Let us 
finish this section with a few remarks about the definition of the stratification 
{S'Ill ~ y ~ /} when X is singular. 

If X is a normal variety, then by [29, Corollary 1.6] there is an embedding 
of X in some complex projective space Pm such that the action of T on 
X extends to a linear action on Pm' Let {<I>c: 1 ~ c ~ A.} be the connected 
components of the fixed point set P~ of T on Pm' Choose a E Lie To such 
that exp Ra is dense in To' and define a stratification {~c 11 ~ c ~ A.} of Pm 
by 

~c = {x E P mllim exp(ita) . x E <l>J 
/-+00 

as above. As before we may assume that 

(1.13) fc C U ~b 
b?c 
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for each c. If x El:cnX then exp(ito:)·x lies in X forall tER because X is 
T-invariant and hence lim l -+oo exp(ito:)·x E Cl>cnX because X is closed in Pm' 
Thus l:c nX retracts onto Cl>c nX. In particular each connected component of 
l:c n X contains a unique connected component of CI> c n X. Let {Fy 11 :5 y :5 /} 
be the connected components of the fixed point set XT = X n P~. Then for 
each y there is a unique c = c(y) such that Fy is a connected component of 
Cl>c n X . Let 

(1.14) Sy = {x E XI lim exp(ito:) . x E Fy}. 
1-+00 

Then Sy is a connected component of l:C(YJ n X and hence is a locally closed 
subvariety of X which retracts onto Fy • Moreover we may assume that p < y 
if c(P) < c(y), so that (1.13) implies 

(1.15) Sy ~ U Sp 
P?y 

for all y. 
Definition (1.15) of the strata Sy depends on the choice of 0: E Lie To but 

not on the embedding of X in projective space. It will be assumed for the rest 
of this paper that an appropriate choice has been made of 0:. 

2. 
For any quasi-projective variety Y let IHi(Y; Q) and IHi (Y; Q) denote the 

ith rational intersection homology and cohomology groups of Y with respect 
to the middle perversity, as defined by Goresky and MacPherson in [16, 17, 
28]. IHi(Y; Q) is the ith homology group of a sub complex IC. (Y; Q) of 
the complex of ordinary locally finite chains on Y. The intersection chains 
are those chains ~ such that ~ and its boundary a~ intersect the strata of 
a Whitney stratification of Y in sets of suitably small dimension. Because 
these conditions on ~ are local, there is a sheaf of co chain complexes IC~ 
on Y, satisfying IC~(U) = IC_i(U;Q) for U open in Y, whose (-i)th 
hypercohomology group ;r-i (Y; IC~) is IHi(Y; Q) (see [17, 2.1]). 

A more sophisticated definition of intersection homology which does not de-
pend on choosing a Whitney stratification involves giving criteria which uniquely 
characterize the complex of sheaves IC~ up to quasi-isomorphism [17, 4.1]. It 
is also possible to define intersection cohomology with coefficients in a local 
system on the nonsingular part of Y. 

The intersection cohomology of a singular projective variety satisfies many 
of the properties satisfied by the ordinary cohomology of nonsingular projective 
varieties, such as Poincare duality, the hard Lefschetz theorem, the Lefschetz hy-
perplane theorem and Hodge decomposition. One important result concerning 
intersection cohomology which will be needed in this paper is the decomposition 
theorem of Beilinson, Bertstein, Deligne and Gabber, which was conjectured in 
[14] and proved in [4, 6.25] (see also [20, 28]). This theorem tells us that if 
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f: A --+ B is a proper projective map of complex varieties then there exist closed 
subvarieties ~ of B and local systems La. on (~)nonsing such that 

(2.1 ) 
a. 

for suitable integers /(a). When f is birational one of the summands 
IHi-/(a.)(Va.,La.) is IHi(B;Q) , so that IHi(B;Q) is a direct summand of 
IHi (A; Q). This will be important later. The decomposition of IHi (A; Q) 
given by the theorem is not a priori canonical, but there is a natural choice of 
decomposition associated to any factorization of f: A --+ B as an embedding 
of A in B x Pm for some m, followed by projection onto B (see [28, §12] 
and [4, 5.4]). 

In fact (2.1) is a consequence of applying hypercohomology to a stronger 
result on complexes of sheaves on B. There is a quasi-isomorphism 

(2.2) 

where ia.: ~ --+ Ba. is the inclusion. 
If a compact group K acts on a quasi-projective variety Y then there is a 

natural way of defining the equivariant intersection cohomology IHi(Y; Q) of 
Y (see [8, 25]; also (2.12) below). 

Our aim is to prove the following result. 

(2.3) Theorem. Let X be a normal projective variety and let T = (C*/ be a 
torus acting algebraically on X. Then the rational intersection homology groups 
of X are isomorphic to the hypercohomology groups of a complex of sheaves on 
the fixed point set XT. This complex of sheaves is determined by the action of the 
maximal compact subgroup To of T in any neighborhood of XT in X More 
precisely let {Sy 11 :5 y :5 I} be the stratification of X defined at the end of § 1, 
let {Fyi 1 :5 y :5 I} be the corresponding components of XT, and let jy: Fy --+ Sy 
and iy: Sy --+ X be the inclusions. Then 

IHi(X;Q) = EB~-i(Fy,j;i~ICx) 
y 

for each i. 

(2.4) Remark. The assumption that X is normal is not important here, since the 
intersection homology of any variety is isomorphic to the intersection homology 
of its normalization [16, 4.2]. 

(2.5) Remark. Suppose that XT meets the singularities of X transversely, so 
that Fy and Sy have tubular neighborhoods in X and the inclusions jy: Fy --+ 

Sy and iy: Sy --+ X are normally nonsingular [17, 5.4.1]. Under these conditions 
there are quasi-isomorphisms 

I.. * . 
i~ICx = ICs, and jyICS, ~ ICF)2cyL 
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INTERSECTION HOMOLOGY AND TORUS ACTIONS 391 

where cl' is the codimension of FI' in SI" Thus Theorem (2.3) tells us that 

IHi(X ;Q) == $IHi- 2cr (FI' ;Q) . 
I' 

Applying Poincare duality to both sides we also get 

IHi(X; Q) == (J)/Hi- 2mr (FI' ; Q) , 

where my is the codimension of SI" In particular when X is nonsingular we 
recover (0.1). 

The first step in the proof of (2.3) is to consider the stratification {S1'11 
~ y ~ I} of X defined at the end of §1. For each y, VI' = Up~1' Sp is an open 
T -invariant subset of X containing SI' as a closed subvariety with VI' - SI' = 
VI'_I . There is a long exact sequence of intersection cohomology 

... ____ IHi(V V 'Q) ____ IHi(V 'Q) ____ IHi(V 'Q) ____ ... 
1" 1'-1' 1" 1'-1' 

[18, 1.3]. 

(2.6) Lemma. This long exact sequence breaks up into short exact sequences 

0---- IHi(VI'; VI'_I ;Q) ---- IHi(VI' ;Q) ---- IHi(VI'_1 ;Q) ---- O. 

Since VI' = X and Vo = 0 this lemma has the following immediate corol-
lary. 

(2.7) Corollary. IHi(X; Q) == ffil' IHi ( VI" VI'_I ; Q) for all i. 

Proof of(2.6). It is enough to prove that the restriction maps 

IHi(VI' ;Q) ____ IHi(VI'_1 ;Q) 

are all surjective. 
Let 11:: Y ---- X be a resolution of singularities of X. Then for each y the 

restriction 
-I 

11:: 11: (VI') ---- VI' 

of 11: to 11: -I (VI') is a resolution of singularities of VI" Since 11: -I (VI') is 
nonsingular its intersection cohomology coincides with its ordinary cohomol-
ogy. Hence it follows from the decomposition theorem (see (2.1) above) that 
I Hi (VI' ; Q) is a direct summand of Hi (11: -I ( VI') ; Q). Moreover we may choose 
the decompositions in such a way that the corresponding projections from 
H i (1I:- I (VI') ;Q) onto IHi(V;Q) fit into commutative diagrams 

H i (1I:- I (VI');Q) ____ H i (1I:- I (VI'_I);Q) 
1 1 

IHi(VI' ;Q) ____ IHi(VI'_1 ;Q) 
where the horizontal maps are induced by the inclusions of VI'_I in VI' and 
11: -I (VI'_I) in 11: -I (VI') . Since the vertical maps are surjective, in order to prove 
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that the restriction map IHi(Uy ;Q) ---+ IHi(UY_ 1 ;Q) is surjective it suffices to 
prove the following lemma. 

(2.8) Lemma. The resolution n: Y ---+ X can be chosen so that the restriction 
maps 

Hi(n-I(Uy ) ;Q) ---+ Hi(n-I(UY_ 1 ;Q) 

are surjective for all y and i. 

The proof of this lemma will depend on Hironaka's equivariant resolution of 
singularities theorem, announced by Hironaka in 1976 [24, 9, Remark 8], which 
tells us that it is possible to resolve the singularities of X by a finite sequence 
of blow-ups along nonsingular T -invariant closed subvarieties. There does not 
seem to be a complete published proof of this theorem, but it is noted in [24, 
Bibliography with comments, 24] that a proof follows from the results of [1, 22, 
23,24]. 

Proof of (2.8). By Hironaka's equivariant resolution of singularities theorem 
there exists a resolution n: Y ---+ X of X which factorizes as 

where n/ Yj _ 1 ---+ Yj is the blow-up of Yj along a nonsingular T-invariant 
closed subvariety Vj. In particular the action of T on X lifts to an action of 
T on Y. The fixed point set yT of this action is contained in n-I(XT ). Let 
the connected components of yT be {cf>cI1 ::; c ::; A}. Then for each c there 
exists a unique y = y(c) such that 

-I 
cf>c ~ n (Fy(C))' 

As in § 1, Y decomposes as the disjoint union of strata 

l:c = {x E Yllim exp(ita) . x E cf>c} , 
/ ..... 00 

where a is the same element of Lie 
{Sy11 ::; y ::; I} of X. Then 

n-I(Sy)= U l:c 
y(c)=y 

for each y. Moreover for each c 

To as was used to define the stratification 

and n-I(Uy) = U l:c 
y(c)::;y 

fc ~ U l:b' 
y(b)~y(c) 

Indeed we can reorder the indexing of the l:c in such a way that 

fc ~ U l:b 
b~c 
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and y(b) ~ y(c) if b ~ c. In particular for each y there is some cy E 
{1, .... A.} such that 

n-I(Uy) = U l:c = U l:c· 
y(c)~y C~Cy 

We have to prove that for each i and y the restriction map 
j -I j -I H(n (Uy);Q)~H(n (Uy_I);Q) 

is surjective. This is the composition of the restriction maps 

for cy ~ C > cy_ 1 • But these restriction maps are all surjective by (1.12). This 
completes the proof of (2.8), and thus also of (2.6). 

The next step is to study the relative intersection cohomology groups 
IHj(Uy' Uy_1 ;Q). Recall that Fy is a closed subset of Sy' which in tum is 
a closed subset of Uy and Uy - Sy = Uy_ l • Let iy:Sy ~ X, jy:Fy ~ Sy' 
i~: Uy ~ X and ly:Sy ~ Uy be the inclusion maps. Then 

-j ,. 
IHj(Uy• Uy_ 1 ;Q) -;;:. jf' (Sy ;1~ICu) 

[17, 1.11]. Moreover 
IC· -;;:. (iu)!IC· 

Uy y x 
because Uy is open in X [17, 1.13 (12)]. Thus 

(2.9) 

(2.10) Lemma. jf'j (Sy ; i~IC x) -;;:. jf'i (Fy ; j;;~IC~) for all i. 

Proof. For each x E Sy the trajectory 

{exp(ita) ·xlt ~ O} 

is contained in Sy and it has a unique limit point which belongs to Fy • By 
pushing along these trajectories we can construct a homeomorphism of an open 
neighborhood of Sy in X onto an arbitrarily small open neighborhood W 
of Fy in X, which restricts to a homeomorphism of Sy onto Sy n W. Since 
intersection homology is invariant under homeomorphism [17, 4.3] and satisfies 
excision [18, 1.5], this means that 

IHj(Uy• UY_ 1 ;Q) -;;:. IHj(W, W - Sy ;Q) 

for arbitrarily small neighborhoods W of Fy in X. Thus 

jf'j (Sy ; i~IC x) -;;:. jf'j (W n Sy ; j:Vi~IC x) 
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for arbitrarily small neighborhoods W of Fy in X, where jw: W n Sy --> Sy 
is the inclusion. But it follows from [21, III, 2.9 and 2.10; 30, 4.5.7] and the 
existence of the spectral sequence for hypercohomology [15, II, §4.6], that if 
!T' is any complex of sheaves on Sy then 

J?f"i (Fy ; j;!T') = !i!!J J?f"i (W n Sy; j:V!T') , 

where the limit is over any directed set of open neighborhoods W of Fy in X 
whose intersection is F y • Thus we can conclude that 

J?f"i (Sy ; i~IC x) ~ J?f"i (Fy ; j; i~IC x) 

as required. 
This completes the proof of Theorem (2.3). 

If we replace intersection cohomology I H* by equivariant intersection coho-
mology IH;o throughout the proof of (2.6), we find that there exist short exact 
sequences 

(2.11 ) 

for all i and y. The only point to check is that the decomposition theorem of 
Beilinson, Bernstein, Deligne and Gabber is valid for equivariant intersection 
cohomology, so that IH~ (U ;Q) is a direct summand of IH~ (n-I(U) ;Q) 

'0 y '0 y 
for each y. This can be deduced from the ordinary decomposition theorem as 
follows. Let T = (C*)' act on Eq = (Cq+1 - {O}) for each q 2: 0 via 

(II' ... ,I,) . (XI' ... ,x,) = (tIXI , ... ,I,x,). 

This action is free and proper, and the quotient is (Pq )'. Suppose that Y 
is any quasi-projective variety and T acts linearly on Y. Then the diagonal 
action of T on Y x Eq is free and proper for each q 2: 0, and the quotient 
Y x T E q is a complex analytic variety which fibers over (P q)' with fiber Y. The 
quotient can also be regarded as an algebraic scheme in a natural way [29, 1.9 
and 1.8 (4)], and the fibration Y x T Eq --> (Pq)' is algebraic. The comparison 
theorem for spectral sequences [31] implies that the intersection cohomology 
group IHi(y x T Eq; Q) is independent of q provided that 2q 2: i. Since T 
is homotopy equivalent to To and its classifying space is r copies of infinite 
projective space (P cx,)' it is natural to make the following definition: 

(2.12) 

for any q > 1 i. Alternatively one can use the more sophisticated definition 
of equivariant intersection cohomology given in [8, §2] (see also [25]): then it 
is easy to check that (2.12) holds. Finally note that if f: A --> B IS a proper 
projective map of complex varieties then so is the induced map 

fT:A X T Eq --> B X T Eq 
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for any q. Thus the decomposition theorem for equivariant intersection coho-
mology follows immediately from the ordinary decomposition theorem (2.1). 

From (2.11) we obtain 

(2.13) Lemma. The stratification {Sr11 ~ y ~ I} is equivariantly perfect for 
intersection cohomology, i.e. 

IH~o(X;Q) == EB IH~o(Vr' Vr- I ;Q), 
y 

for each y and i. 

Since 

(2.14) IH;o(X;Q) == IH*(X;Q) ® H*(BTo ;Q) 

(by [8, 4.2.2; 29, Corollary 1.6; 16, 4.2]) this gives us an alternative way to 
obtain a formula for the intersection Betti numbers of X. Moreover if we 
compare this formula with the formula of Corollary (2.7) above, we get the 
following result. 

(2.15) Corollary. IH;o(Vy' Vr- I ;Q) == IH*(Vr' Vr- I ;Q) ® H.*(BTo;Q) for 
each y. 

Proof. For each y there is a spectral sequence abutting to IH;o (VI' ' Vr- I ; Q) 
with the Ef·q term given by 

HP(BTo ;Q) ® IHq(Vr , Vr- I ;Q), 

and hence there are inequalities 

dimIH~o(Vy' Vy_ 1 ;Q) ~ L dimHP(BTo;Q) ®IHq(Vr , Vr- I ;Q) 
p+q=i 

(see [8, 4.2]). It follows from (2.7), (2.13) and (2.14) that these inequalities 
are all equalities, and hence that the spectral sequence degenerates. The result 
follows. 

(2.16) Corollary. Let a be any element of Lie To and let F be a connected 
component of the fixed point set of the subtorus ToO. of To which is the closure 
of exp Ra. Let 

S = {x E XI lim expUta)·x E F}. 
1-00 

Then 
IH;o(V, V - S) == IH*(V, V - S) ® H*(BTo) 

for any To-invariant open neighborhood V of S in X such that S is closed in 
V. 

Proof. By excision [18, l.5], both IH;o (V, V - S) and IH* (V, V - S) are 
independent of V provided that V is a To-invariant open neighborhood of 
S in X and S is closed in V. Therefore when a is generic in the sense 
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that exp Ra is dense in To then the result follows immediately from (2.15). 
Exactly the same proof gives the result in general, if one makes the following 
two observations. Definition (1.6) of the stratification {Sy 11 ~ y ~ I} of X 
makes sense when a is not generic, although now the indices correspond to the 
connected components of the fixed point set of ToOl. Furthermore the criterion 
of Atiyah and Bott [3, Corollary 1.8 and Proposition 13.4] shows that when X 
is nonsingular this stratification is equivariantly perfect for the actions of both 
To and ToOl. 

(2.17) Remark. The original proof in [6] of the identity 

dimHi(X;Q) = L dim Hi- 2m,(Fy ;Q) 
I~yg 

when X is nonsingular was based on the Weil conjectures which were proved 
by Deligne. These enable one to compute the Betti numbers of a nonsingular 
projective variety by counting the number of points in associated varieties de-
fined over finite fields. This method generalizes to give the intersection Betti 
numbers of singular projective varieties, although now it is necessary to count 
points in a more sophisticated way which takes account of the singularities. The 
basic idea goes as follows. 

We may assume that X is defined over the ring of integers & of an algebraic 
number field [4,6.16]. For suitable primes n in & one has 

(2.18) dimQIHi(X;Q) =dimQ/Hi(Xn;Q/), 
where Xn is the reduction of X modulo nand 

Xn=XnxFqFq 

where Fq is the algebraic closure of Fq = & In. The right-hand side of (2.18) 
is l-adic intersection cohomology for suitable I (see [4, 6.1.2 and 6.1.9]). 
Then one applies the Lefschetz fixed point theorem to the Frobenius mor-
phism J: X n -+ X n which sends a point with coordinates (ao:"': am) to 
((ao)q:-. -: (am)q). For each r 2: 1 the Lefschetz number L(Jr ;X) = L(J) 
of J r satisfies 

L(Jr) = L(-I)iTr((Jr)*:IHi(Xn ;Q/) -+ IHi(Xn ;Q/)) . 
i 

When X n is smooth, L(Jr) is just the number of fixed points of Jr, or 
equivalently the number of points of X n with coordinates in the finite field 
F qr. In general L(Jr) is the sum over the fixed points x E Xn (F qr) of numbers 
determined by the local intersection homology of X n at x (see [12, 19 and 17, 
2.4]). 

Let 
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Then 
Z(X, t) = II Pi(t)(-I)i , 

i 

where Pi(t) is the polynomial 

P/t) = det(1 - tJ:IHi(X1( ;Q) -+ IHi(X1( ;Q)) 

(see [21, Appendix C, 4.1]). Thus 

Pi(t) = II (1 - Qijt), 
J 
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where the Q iJ are the eigenvalues of the endomorphism] of IHi(X1( ;Q), 
and 

degPi(t) = dimIHi(X;Q). 

Since IQijl = qi/2 for all j (see [4,5.4.1]) the polynomials Pi(t) and therefore 
the intersection Betti numbers of X are uniquely determined by Z(X, t), and 
hence by the Lefschetz numbers L(f'). 

Let us assume that the action of T on X is defined over the ring of integers 
&'. There is an induced torus action on X 1( and an induced stratification of 
X 1( • The Lefschetz number L(f') is then the sum of contributions Ly coming 
from the strata Sy. Each Ly is in turn the sum of a contribution from the 
fixed point set Fy and a contribution from Sy - Fy . Assume for simplicity that 
T = C· . Then T acts properly and with finite stabilizers on Sy - Fy and the 
quotient is a projective variety ~ [29, p. 40 and 2.1]. In this way one finds 
that L(f') is a sum of contributions coming from the projective varieties Fy 
and ~,and hence one could hope to use the Weil conjectures to show that 

(2.19) dimIH~o(X;Q) = LdimIHi- 2J (X;Q) 
J?O 

= L dim(2'io (Fy ; i~IC~) EB ~~i (Sy - Fy ; k~IC x)) , 
y 

where ky: Sy - Fy -+ X is the inclusion. However one needs to know that the 
.1. 1 complexes dC x and k'IC x are pure. 

Equality (2.19) is equivalent to Theorem (2.3) combined with the breaking 
up of the long exact sequence 

. , , -+ IBi (U U - F . Q) -+ IHi (U . Q) -+ IBi (U - F . Q) -+ ... . To y' y y' To "I' To "I y' 

into short exact sequences for each y. This is always the case when X is 
nonsingular by the Atiyah-Bott criterion [3, 1.8 and 2.14]. More generally it 
can be shown to be true by the argument of (2.6) when there is a T-equivariant 
resolution of singularities n: Y -+ X such that n -I (XT) is nonsingular. 

(2.20) Example. Let X be the cubic hypersurface in P 4 defined by the equation 
3 3 3 2 

X +y +z =UV, 
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Let T = C* act on X via 
-, -, -, -3 3 (t, (x: Y: z: u: v)) -+ (t x: ( Y: ( x: ( u: ( v). 

Then XT has connected components 

F, = {(o: 0: 0: 1: on, 
3 3 3 F2 ={(x:y:z:O:O) EPsix +y +z =O}, 

F3 = {(o:o:o:o: I)}. 

If Sj = {x E Xllim/--+o (. x E Fj }, then 

S, = {(x: y: z: u: v) E Xlu =f. O}, 
S2 = {(x: y: z: u: v) E Xiu = 0, (x, y, z) =f. O}, 
S3 = {(O:O:O:O: I)}. 

The only singular point of X is the point P = (0: 0: 0: 0: 1) . Thus since S, has 
codimension 0 and S2 has codimension 1 

2-i(F, ;J~i;IC~) ~ IHi(F, ;Q) ~ Hi(F, ;Q) 

and 
2-i(F2 ; J; i~IC~) ~ IHi- 2 (F2 ;Q) ~ H i- 2 (F2 ;Q), 

where F, is a single point and F2 is a nonsingular cubic curve, hence a curve 
of genus 1, in P 2. Finally 

2i(F3; J;i~IC~) = IHi(X, X - {P}) 

which is 0 when i ~ dim X = 3 by the local intersection homology formula [17, 
2.4]. Poincare duality means that we do not have to calculate IHi(X, X - {P}) 
when i > 4. Let 

IP/(Y) = I)i dimIHi(Y;Q) 
i 

for any variety Y. Then from (2.3) we have 

IP/(X) = 1 + (2(1 + 2( + (2) + (4p(t) , 

where p(t) is a polynomial defined by 

(4p(t) = IP/(X,X - {P}). 

By Poincare duality we must have 

IP/(X) = 1 + (2 + 2(3 + (4 + (6 

and (4 p(t) = (6 . 

Note that if we count points over a finite field F q as in Remark (2.17) then 
S, contributes l' to L(f' ;X) while S2 contributes q'L(f' ;F2 ) and the 
contribution of S3 is 1. 
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(2.21) Remark. The proof given of Theorem (2.3) depends on the decompo-
sition theorem of Beilinson, Bernstein, Deligne and Gabber. At present the 
only published proof of this theorem depends on the relationship between the 
rational intersection cohomology of complex projective varieties and the /-adic 
intersection cohomology of varieties defined over fields of finite characteristic 
(and thus is closely related to the Weil conjectures). Because of this the proof is 
only valid for algebraic varieties and rational coefficients. It is expected that the 
decomposition theorem should be true for complex analytic varieties: if so the 
proof of Theorem (2.3) will apply when X is any compact analytic subvariety 
of a Kahler manifold. 
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