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Intersection of Convex Objects in Two and Three 

Dimensions 

B. CHAZELLE 

Yale University, New Haven, Connecticut 

AND 

D. P. DOBKIN 

Princeton University, Princeton, New Jersey 

Abstract. One of the basic geometric operations involves determining whether a pair of convex objects 
intersect. This problem is well understood in a model of computation in which the objects are given as 
input and their intersection is returned as output. For many applications, however, it may be assumed 
that the objects already exist within the computer and that the only output desired is a single piece of 
data giving a common point if the objects intersect or reporting no intersection if they are disjoint. For 
this problem, none of the previous lower bounds are valid and algorithms are proposed requiring 
sublinear time for their solution in two and three dimensions. 

Categories and Subject Descriptors: E.l [Data]: Data Structures; F.2.2 [Analysis of Algorithms]: 
Nonnumerical Algorithms and Problems 

General Terms: Algorithms, Theory, Verification 

Additional Key Words and Phrases: Convex sets, Fibonacci search, Intersection 

1. Introduction 

This paper describes fast algorithms for testing the predicate, 

Do convex objects P and Q intersect? 

where an object is taken to be a line or a polygon in two dimensions or a plane or 
a polyhedron in three dimensions. The related problem 

Given convex objects P and Q, compute their intersection 

has been well studied, resulting in linear lower bounds and linear or quasi-linear 
upper bounds [2, 4, 11, 15-171. Lower bounds for this problem use arguments 
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claiming that linear time is required to read all inputs or report the output. For the 
problem that we pose, such arguments do not apply. We only require a witness to 
the intersection or nonintersection of P and Q, and we further assume that the 
objects we wish to intersect are available (i.e., in random-access memory [ 11) so 
that we cannot rely on input time to yield a linear lower bound. 

Figure 1 summarizes our results, most of which are fully original. The time 
bounds are achieved by using the standard array representation for twodimensional 
objects and a special representation of polyhedra that requires O(n’) operations to 
reach from the standard representation (where n denotes the total number of 
vertices). An O(nlogn) preprocessing of the standard representation is actually 
sufficient, but the running times given here must then be multiplied by a logn 
factor [7]. Note that convex polyhedra have the structure of planar graphs, so the 
number of vertices, edges, and faces are linearly related, and any of these measures 
can be used to represent the input size. Although the times given in Figure 1 are 
asymptotic, the constants involved are sufficiently small to make the algorithms 
viable in practice. Furthermore, many of the applications for which such algorithms 
might be used require a knowledge of only portions of the intersection or of the 
existence of an intersection, rather than a complete description of any intersection 
(A. Forrest, private communication). For example, in computer graphics, 
when we wish to clip or window a scene [ 121, algorithms of the form given 
here would be sufficient for identifying the polygons that would require further 
processing. Also, many applications for which such algorithms might be used in 
design rule checking for VLSI [4], computer geography [8], (D. Tomlin, private 
communication), computer-aided design, and computer animation require a gross 
procedure that detects the possibility of an intersection, from which relined 
procedures can handle the small number of cases in which an intersection has been 
reported and must be computed. 

All these algorithms rely on a small number of unifying concepts. Convexity 
combined with random-access capabilities allows for binary and Fibonacci search, 
and it is with an explanation of these basic principles that we start our analysis. 
Section 2 is devoted to the two-dimensional case, while Section 3 investigates the 
problem cast in three dimensions. 

2. Computing Planar Intersections 

2.1 NOTATION. Polygons are represented by arrays with their vertices given in 
clockwise order. Polygon P will have vertices pl, . . . , p,, and polygon Q vertices 
41, * - -, qy. We assume that no three vertices of a polygon are collinear. All indices 
of P (respectively, Q) are taken modulo p (respectively, q) in the obvious fashion. 
A line is specified by any two of its points and a segment by its two endpoints. AB 
always refers to the segment from A to B, and “line(AB)” represents the infinite 
line containing AB. We define d(x, L) as the orthogonal distance from the point x 
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FIG. 2. The distance from a convex polygon to a 
line is bimodal. 
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to the line L and h(x, L, v) as the oriented distance from x to L with respect to 
point v. This latter quantity is defined as -d(x, L) if x and v lie on opposite sides 
of L and as d(x, L) if they lie on the same side. Both d and h can be computed 
in constant time. F; represents the ith Fibonacci number with FO = F, = 1 and 
FN= F,+, + FNW2, forN> 1. 

2.2 FIBONACCI SEARCH ON BIMODAL FUNCTIONS. A real functionfdefined on 
the integers 1, 2, . . . , n is said to be unimodal if there exists an integer m (1 I m 
I n) such that f is strictly increasing (respectively, decreasing) on [ 1, m] and 
decreasing (respectively, increasing) on [m + 1, n], with f(m) 2 f(m + 1) 
(respectively, f(m) I f(m + 1)). Kiefer [9] showed that Fibonacci search was an 
optimal method of finding m, the turning point of a unimodal function, requiring 
1.44 . . logn probes. We extend his algorithm to find the turning points of 
a bimodal function. For our purposes, it suffices to define a bimodal function as 
one for which there is an r in [ 1, n] such that f(r), f(r + I), . . . , f(n), f( l), . . . , 
f(r - 1) is unimodal. Our interest in bimodal functions stems from the following: 

LEMMA 1. Let P be a convex polygon with p vertices pI, . . . , pp in clockwise 
order. For any line L and any point v not in L, the function defined for i = 1, . . . , 
p by f (i) = h( pi, L, v) is bimodal. 

PROOF. Let pk be the vertex of P that minimizes f (i) for i = 1, . . . , p. In case 
of a tie, we choose k so that the only other integer that achieves the same value of 
f is k - 1. We can do this because P is convex. We show that the sequence f (k), 
f(k+ I), . . ..f@- 1) is unimodal, which suffices to prove the lemma. Let us 
choose a directing vector r of the line L such that the angle (r, pkpk+,) is less than 
180. All angles are measured between 0 and 360 degrees in a counterclockwise 
motion. We define the oriented angles ai = (r, pipi+,) and bi = (pipi+, , pi-l, pi) for 
i= 1 >***, p as in Figure 2. By construction, the following relations hold for all i: 

f(i + 1) = f(i) + 1 pipi+ Isinai; 
ai+l = ai - bi+l[mod360]. 

Since P is convex, all bi are less than 180 degrees; therefore the sequence 
sin(ak), sin(ak+,), . . . , sin(ak-J will be positive then negative, thus showing that 
f(k), f(k + l), . . . , f(k - 1) is unimodal. Cl 

Since a unimodal sequence has exactly one maximum and one minimum, and 
each of them is achieved in at most two points which must be consecutive modulo 
n, bimodal functions have the same property. However, finding the extrema of a 
bimodal function may not be so easy, since we do not know the starting point of 
its unimodal sequence in advance. To circumvent this difficulty, given a bimodal 
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function f; we construct a unimodal function g as follows: First, let T be the line 
through the points (1, f( 1)) and (n, f(n)), that is, 

T(x) = 5 (f(n) -f(l)) +ft1). 

Iff( 1) = f(n), then f( 1) is an extremum and fis unimodal, showing that the 
extrema can be found with the previous method. Otherwise, we assume that 
f( 1) < f(n) (the case f(1) > f(n) being similar). If f(2) 2 f(l), then f( 1) is a 
minimum and the subsequence f(2), . . . , f(n) is unimodal, which solves our 
problem. Else, iff(2) <f(l), the function g defined by 

g(x) = min(fW, T(x)) 

can be evaluated in constant time and is unimodal. This follows, since for all x, 
g(x) I f(n) 5 max( f(t)), so g first decreases, then rises, and is therefore unimodal. 
It follows that the minimum of g (which is also the minimum off) can be found 
with a Fibonacci search. If x is the point at which g achieves its minimum, the 
sequencef(x + l), f(x + 2), . . . , f(n) is unimodal, and the maximum offcan also 
be determined through a second Fibonacci search, yielding 

LEMMA 2. The extrema of a bimodal function f (I), . . . , f (n) can be computed 
in O(log n) time, which involves at most 2.88 . . log2n + 0( 1) function evaluations. 

2.3 INTERSECTION OF A LINE WITH A CONVEX POLYGON (IGL). Combining 
previous facts yields an algorithm for determining the intersection (null, 1 point, a 
segment, or an edge of P) of an infinite line L and a convex polygon P. 

THEOREM 3. The intersection of an infinite line with a convex polygon with p 
vertices can be computed in O(log p) time. 

PROOF. We can always assume that p1 does not lie on L. Then it follows from 
Lemma 1 that the function f (pi) = h( pi, L, p,) is bimodal; therefore, the algorithm 
of Lemma 2 allows us to find a vertex w of P that minimizes f: We know that P 
and L intersect if and only if f (w) is negative or zero. In the latter case, w or an 
edge including w is the unique intersection of P and L. In the former case, the 

signs off(pAf(pd, . . . , f(w) and f(w),f(w + I), . . ..f(p.) can be searched by 
binarysearchtodetermineiandjsuchthatf(pi)=O>f(p;+l),f(pj)IO<f(pj+l) 
from which the two points of intersection are determined. 0 

Our algorithm involves approximately 2.8808 logzp + 0( 1) computations off: 
The extension to the case in which L is a line segment does not increase the time 
bound. Since O(log p) has been shown to be a lower bound on the time complexity 
for testing the inclusion of a point in a convex polygon, which is constant time 
reducible to our problem, the algorithm we have described is optimal in the 
minimax sense [ 161. In what follows, we refer to this algorithm as IGL. Though 
our algorithms are m.ore complex than IGL, they are based on principles similar 
to those used to derive this algorithm. 

2.4 INTERSECTION OF Two CONVEX POLYC~NS (IGG). The algorithm for com- 
puting the intersection of a line and a polygon suggests methods that might be 
used to speed up algorithms for intersecting two polygons P and Q. If we could 
determine the sides of P closest to Q (and vice versa), we would be able to reduce 
the problem to a small number of tests of segment intersections. Our method 
reduces the number of remaining edges of one of the polygons by a factor of 2 at 
each iteration. The algorithm we present (referred to as IGG) returns NO if P and 
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FIG. 3. AYBX formed as a bounding 
quadrilateral in which P n Q lies if it 
exists. 

W 

Q do not intersect and (YES, K) if they do, where K is a point of their intersection. 
When a NO answer is returned, it is possible to generate in constant time a pair of 
parallel lines that separate the polygons. 

We begin by limiting the intersection of P and Q to a quadrilateral or a pentagon. 
This requires O(logpq) steps and also tests for simple intersections (e.g., Pcontained 
in Q). From the quadrilateral we form two chains of vertices L, and L, that 
intersect if and only if P and Q intersect. The iterative step of the algorithm is a 
division in which we eliminate half of either L, or L,. This step is reached as one 
of five possible cases determined from the structure of the remaining vertices. 

It is important to keep in mind that by intersection of P and Q we mean the 
intersection of the regions P and Q and not of the polygonal boundaries. We shall 
prove further that the latter problem requires linear time, whereas our problem 
can be solved in O(log(p + q)) time. We first give a description of the algorithm 
and prove its correctness, and then we establish its running time. 

Algorithm IGG (intersecting two polygons): 

(I) “Cover Q (respectively, P) with two lines of support intersecting in P 
(respectively, Q).” 

(a) Let q be a point interior to Q (say the center of mass of three vertices) such 
that q is not interior to P (if q is interior to P, we have found an intersection). 
Compute the intersection of Q with line ( plq). This line always intersects Q in two 
points a and b, which the algorithm IGL can find, as well as the edges of Q where 
a and b lie, say qjqi+l and qjqj+l, respectively (see Figure 3a). 

(b) If pi lies on the segment ab, it also lies in Q and the algorithm can return 
(YES, p,). Otherwise, we do a Fibonacci search on the sequence of oriented angles 
(p,q, p,qk), for all qk between qi+l and qj in clockwise order, in order to find the 
maximum angle. Call t the corresponding vertex of Q. Such a Fibonacci search is 
legitimate since the sequence is unimodal. If it were not, we could find an ordered 
list of three consecutive vertices of Q with the angle relative to the middle vertex 
smaller than both of the others. Then the line joining p1 to this vertex would cut 
Q in more than two points, contradicting the convexity of Q. Similarly, by 
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considering the sequence qj+l, . . . , q;, we find the vertex u which minimizes the 
angle (p, q, pI qJ. Call CI the pencil ( p1 U, p1 t) so defined (see Figure 3b). 

(c) Apply the previous procedure (Steps a, b) with q1 relative to P. If the 
algorithm does not return, it will determine another pencil, CZ, centered in q1 and 
covering P. Since C, (respectively, C2) contains q1 (respectively, p,), the intersection 
of C, and C2 is a convex quadrilateral, p1 YqlX, as shown in Figure 3b. Note that 
X or Y may not be defined; in which case we can replace the missing intersection 
by a segment joining the two pencils, thus obtaining a pentagon. 

(II) Note that the portion of the boundary of P that lies in C, is a contiguous 
polygonal line from the intersection of plX and P to the intersection of p, Y and P, 
and lies also in C,. Determine its two endpoints (note that one or even both of 
these endpoints may be p,). Renumber the vertices of P so that L, = ( vI , . . . , vn) 
gives the vertices of this polygonal line in clockwise order (we have v1 on pI Y and 
v,, on p&). Throughout this section, any renumbering is implicit, that is, does not 
involve any scan through the vertices. It may simply consist of the setting of an 
arithmetic expression redefining the mapping. The same procedure is carried out 
with Q defining L,,. = (wl, . . . , w, ). In what follows, we rename the former pI and 
ql , A and B, respectively, as in Figure 3b. Note that although L, intersects A Y and 
AX, it may also intersect BX or BY (in at most one point, though). 

(III) We have now reduced the original problem to checking the intersection of 
L, and L,,.. 

Let x (respectively, y) denote the polygonal line AXB (respectively, AYB). To 
simplify the exposition, for two points F and G, we say that F < G if F and G are 
both on x or both on y and F is on the path from A to G. 

At this stage, we call upon the function INTERSECT(L,, L,) defined recursively 
as follows: 

INTERSECT(L,, L,,,) 

Assume that n, m > 5, where n = 1 L, 1 and m = 1 L, 1, using the procedure of the 
previous section if this is not the case: 

Let F and G (respectively, E, H) denote the two intersections of line(vivi+l) 
(respectively, line(wjwj+l)) with the boundary AYBXA. The point F (respectively, 
H) is chosen such that vi+1 (respectively, wj+J lies on the segment viF(respectively, 
WjH) (see Figure 4a). 

The algorithm distinguishes between cases depending on the relative positions 
of GF and EH. Each case reduces the size of L, and/or L,, after which a recursive 
call is made. (Cases are not mutually exclusive and each should be tested.) 

Case 1. Either GF or EH lies on the same side of AB (Figure 4a). 

ifGandFlieonx 
then L,. = (v,, . . . , vi+1, v,) 
else if G and F lie on y 

then L,. = (v,, v,, . . . , v,) 
ifEandHlieonx 

thenL,=(w,,wj,...,~~l 
else if E and H lie on y 

then L,,. = (w, , . . . , wj+], w,, J 
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FIG. 4. The algorithm INTERSECT. (a) Case 1. GF (EH, respectively) lies on the same side of AB, in 
which case half of L, (L.., respectively) is eliminated. (b) Case 2. A, F, E, /3 and A, G, H, B occur in this 
order on x and y, respectively, in which case there is no intersection. (c) Case 3. GF and EH intersect. 
(d) Case 4. Av, and Bw, intersect, in which case P n Q contains their intersection point. (e) Case 5. Avi 
lies strictly “above” (or “below”) BWj. 

Case 2. From now on, F and E (respectively, G and H) lie on x (respectively, 
y) (Figure 4b). 

if F < E and G < H then return (NO) 

Case 3. If the segments GF and EH intersect, let I be this intersection 
(Figure 4~). 

ifG<HandE<F 
then if v, lies on GI 

then L,. = Iv,, vi, . . . , vn) 
if w,+~ lies on HI 

thenL,.=(~~,...,wj+~,w,) 
ifH<GandF<E 

then if Vi+1 lies on FI 
thenL,={v,,..., vi+i, vnl 

if w, lies on EI 
thenL,,.=(~,,w~,...,w,,,) 
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Case 4. Avi and Bwj intersect (Figure 4d). 

if Av, and Bw, intersect in R 
then return (YES, R) 

else 

Case 5. Let R be the intersection of Avi and HE (Figure 4e). 

if w, lies on ER 
then 

L,. = {VI, v,, . . . , vn) 
LH = {WI 3 Wj, . . . 9 Wm) 

else 
L= (VI,. . . I Vi+17 Vn] 

Lt.= (WI, f. * 9 Wj+l, Wm) 

Recursive call with parameters of smaller size. 

INTERSECT (L,., L,,.) 

Next we show that INTERSECT runs correctly within the given time bound. For 
correctness, it sufftces to show that INTERSECT@,, ~5~) indeed tests for the 
intersection of L,. and L,,. and possibly outputs a point common to P and Q. 

Case 1. Suppose that G and F lie on y (the three other cases being similar) 
(see Figure 4a). By construction, line(BY) intersects P at exactly one point, which 
lies on the same side of B as Y. Now, since P lies totally on the same side of 
line(GF) as X, the intersection of P with line(BY) lies on the segment BF. Therefore, 
if L,, and L,,. intersect, at least one intersection point lies on the polygonal line 
{Vi, - * . Y v,]. By making L, equal to (vr , vi, . . . , v,,), we reset the initial conditions 
required by the algorithm. Moreover, we note that since the region delimited by 
the new setting of L, is included in P, any intersection point later output will surely 
be in P. This remark prevails in all the remaining cases. 

Consider the two polygons delimited by (A, X, FG, y) and (B, X, EH, y) and call 
V their intersection (see Figure 4b). Since P and Q are convex, their intersection 
lies totally in I/. 

Case 2. Corresponds to V empty (see Figure 4b). 

Case 3. The first if statement supposes that E and F belong to Vand the other 
that H and G belong to K Since both cases are similar, we treat only the first. 
Suppose that Vi does not lie in I’. Then, since Gvi lies outside of EHyBxE, L, can- 
not intersect this segment; therefore, if L, intersects the polygonal line vl, . . . , vi, 
it also intersects v1 vi. Thus the new setting of L, is legitimate. The same is true of 
Wj+i . From now on, we know that both viVi+r and wjwj+r lie on the boundary of V. 

Case 4. Assumes that Av; and BWj intersect (see Figure 4d). Since these two 
segments lie in P and Q, respectively, their intersection lies in the intersection of P 
and Q, which is then nonempty. 

Case 5. First, we note that since E lies on x and Vi lies in V, R is well defined. 
We also know that Avi and Bwj do not intersect. The algorithm supposes successively 
that Avi lies “above” and “below” BWj. The two cases being similar, we treat only 
the first. L,,. cannot intersect the polygonal line vl, . . . , Vi without first crossing 
vlVie Similarly, L,. cannot intersect wl, . . . , wj without first crossing WI wj. Con- 
versely, if either L,,. crosses v1 Vi or L, crosses w1 Wj, the intersection belongs to both 
P and Q. Finally, since wl, . . . , wj (respectively, vI, . . . , vi) cannot intersect v1 vi 
(respectively, wI wj), the new setting of L, and L,, is legitimate. 
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FIG. 5. Computing a 

pair of separating lines. 

To prove the time bound, we observe that the algorithm runs in constant time 
between consecutive recursive calls. Every call reduces the size of one or both 
polygonal lines by roughly half, and when either becomes smaller than 6, the 
algorithm returns after O(log(p + q)) operations. Therefore, the main algorithm 
detects the intersection of P and Q in O(log( p + q)) time. 

We can regard the intersection of a line with a polygon as a special case of this 
problem, and the results of the preceding section show that the algorithm described 
above is optimal in the minimax sense. 

We have achieved our main goal. However, we now wish to reline the algorithm 
IGG so that it produces a pair of parallel separating lines (LP, Lo) when it fails to 
detect an intersection. We have preferred to present this procedure separately since 
there are applications in which this additional information is not needed. Instead 
of a complicated formal definition, Figure 5a best illustrates what we mean by a 
pair of separating lines. 

Recall that the algorithm IGG fails to detect an intersection in two cases: 

(1) It falls into case 2 of the INTERSECT procedure (see Figure 4b). Since P 
does not intersect Q, as is easily checked, AyBx must be a bounded quadrilateral, 
and so, EH joins BX, BY, or FG joins AX, A Y. Assuming the former (without loss 
of generality), we find that line(EH) is a separating line LQ. To compute Lp, we 
observe that it passes through the vertex of P, which minimizes the distance to Lo. 
This distance is a bimodal function of the vertices of P; therefore, Lp can be 
determined in O(log p) time. 

(2) Either L,, or L, (say Ly) is reduced to fewer than six vertices (n < 6). We say 
that the intersection of line(pipi+,) with Q is positive, if it is not empty, and lies 
entirely on the same side of pi as P;+~. If it is not empty and lies totally on the same 
side of pi+1 as pi, it is called negative. It is clear that if P and Q do not intersect, 
any intersection of line(pipi+l) with Q (called Qi) is positive, negative, or empty. 
The algorithm proceeds in stages, each consisting of the reduction of one or both 
polygonal lines L,,, L,.. Let vI = pk; at any stage, we show that, if v2 = PI, then, for 
each u between k and I - 1, the intersection Q1, is either empty or positive. Starting 
with the obvious observation that initially v1 and v2 are consecutive around P 
(, = k + 1) and, therefore, that the fact is true at the first stage, we prove the 
assertion by induction on the number of stages. Clearly, the only stages of interest 
are those that reduce L,. from (v, , . . . , v,) to (vi, Vi, . . . , v, ). As before, let v1 be p,4. 
and v2 be pl, and let vi be ~1,. Using the induction hypothesis, it suffices to show 
that Q1, is empty or positive for each u between I and h - 1. Assume that one of 
them is negative. Then the intersection must occur in the triangle v1 Gvi: A trivial 
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FIG. 6. Intersecting polygonal lines. 
C 

examination of case 3 shows this to be impossible. Cases 2 and 4 are ruled out by 
assumption. As to cases 1 and 5, the presence of Q,, in the triangle v1 Gvi implies a 
nonempty intersection between L,. and L,,., which is excluded. 

Let us now come back to the first stage where L, has fewer than six vertices. Let 
pi be the vertex y and pj the vertex v,-~. We have just shown that Q;-, is empty or 
positive. Similarly, a symmetric reasoning would show that Qj is empty or negative. 
It follows that, if some Q/; among Q;-I , . . . , Qj (note that there are at most four of 
them to consider) are empty, Lp can be set to Qk (see Figure 5a). Otherwise, there 
exists a pair (Qk-, , Qk) with Qk+ positive and Q,+ negative (see Figure 5b for the 
case k = I- 1). Observing that the angles (pkq, , pkq,) are bimodal for I= 1, . . . , q 
(here we measure angles counterclockwise with values between -180 and + 180 
degrees), we can find the vertex x (respectively, v) of Q that minimizes (respectively, 
maximizes) that angle in O(log q) time. A simple argument shows that Lp may be 
set to the line passing through pk and perpendicular to the bisector of (pkx, pky). 
The line LQ is then obtained by minimizing the distance to P as we did earlier (1). 
We can conclude: 

THEOREM 4. An intersection between two convex polygons with p and q vertices, 
respectively, can be detected in O(log(p + q)) time. When the polygons intersect, a 
common point is returned, and a pair of parallel separating lines otherwise. 

Although the previous algorithm can decide whether P and Q intersect, it is 
unable to tell whether one polygon lies strictly inside the other, that is, whether or 
not the boundaries of P and Q intersect. This is because the more general problem 
of deciding whether two convex polygonal lines intersect requires linear time to be 
solved. To see this, consider two polygons P and Q given in the complex plane 
with vertices of P being the roots of z” - 1 = 0 and the vertices of Q the roots of 

z” 
1 n 

- ( 1, = 
2 2cos(27r/n) 

1 0. 

It can be easily verified that for any consecutive vertices a, b, c on the boundary 
of Q, neither the edge ab nor bc intersects the boundary of P, whereas the segment 
ac does (see Figure 6). So, any vertex of Q can be moved along a radius to create 
an intersection without altering any of the n - 1 remaining vertices. Therefore, 
any algorithm checking the intersection of the boundaries of P and Q has to look 
at all the vertices of Q yielding the claimed lower bound. This is assuming, as 
usual, that the points are given in an array, with no additional information except 
the size of the polygons. 
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THEOREM 5. Testing the intersection of two convex polygonal lines requires 
linear time. 

Thus no general extensions of the algorithm in the plane are possible. However, 
there are many cases to which the algorithm can be applied to give a description 
of the region of intersection suflicient for its reconstruction. 

3. Detecting Three-Dimensional Intersections 

3.1 INTRODUCTION. Although detecting intersections becomes substantially 
more difficult in three dimensions, the algorithms that we are about to describe 
are based on principles similar to those used in the previous sections. We still use 
Fibonacci searches to find extrema of bimodal functions and answer questions of 
the form: Does object A lie entirely on one side of a given hyperplane? Similarly, 
binary searches are used to reduce the size of a problem by a constant factor. 

Since all these techniques assume some random-access capabilities, we must give 
our three-dimensional objects a special representation to provide these features. 
From the observation that the surface of a convex polyhedron has the structure of 
a planar graph, a standard method has been to represent convex polyhedra by a 
description of the planar graph, along with the geometric location of the vertices 
[ 111. Unfortunately, this representation does not meet all of our requirements, and 
some preprocessing is needed. We represent each polyhedron as a set of parallel 
convex polygons. These polygons, called preprocessing polygons, consist of a cross- 
section of the polyhedron for each vertex. Each cross-section is the intersection of 
the polyhedron with a plane parallel to the xy-plane passing through the vertex 
(see Figure 7). This reduces a polyhedron P of p vertices to a set of p (or fewer) 
convex polygons P,, . . . , P,, and p - 1 convex drums (we call a drum a convex 
polyhedron with all the vertices lying on two parallel faces). Since each drum can 
be tested for intersection with a convex polygon in logarithmic time, and projections 
and intersections of those drums with a plane give convex objects, only O(log p) 
preprocessing polygons need be considered for all of our purposes, which yields the 
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desired results. Before describing the preprocessing more precisely, we briefly 
outline the various algorithms that we shall present. 

(1) IHP-Intersection of a Polyhedron P with a Plane T. The projections of P 
and T on a plane perpendicular to T and the preprocessing polygons form, 
respectively, a convex polygon and a line that intersect if and only if P and T 
intersect. We call IGL to test the intersection. This requires O(log p) steps, each 
step involving O(log p) operations, since the access to any vertex of the projected ‘, 
polygon involves maximizing a linear combination of the x- or y-coordinates of a 
preprocessing polygon, that is, maximizing a bimodal function. 

(2) IHG-Intersection of a Polyhedron P with a Polygon R. If IHP fails to 
detect an intersection between P and the plane T supporting R, we are finished. 
Otherwise, T intersects a set of consecutive preprocessing polygons which we can 
compute implicitly in O(log2p) time by a binary search whose basic step involves 
intersecting a polygon with a line. Letting Q be the intersection of P and T, we first 
test the intersection of R with the subpolygon of Q formed by the preprocessing 
polygons determined earlier. If we fail, IGG will return a separating line adjacent 
to Q. We can show that this line is adjacent to two consecutive drums of P, which 
must intersect R if P does. We can test each drum for intersection in turn; thus the 
whole algorithm runs in time O(log2N), ifNis the total number of vertices involved 
in P and R. 

(3) IHH-Intersection of Two Polyhedra P and Q. By intersecting P and Q 
with a plane, a series of binary searches will reduce P successively to a drum, a 
“slice,” and a pentahedron. Each step of the binary searches involves O(log2N) 
operations, thus leading to an O(log3N)-time algorithm, with N the total number 
of vertices in P and Q. 

3.2 REPRESENTATION OF THREE-DIMENSIONAL OBJECTS. All of our polyhedra 
are assumed to be in a standard representation as p (or fewer) polygonal cross- 
sections. These cross-sections are created by setting a planar direction K and 
intersecting the polyhedron with a plane in that direction passing through each of 
its vertices (see Figure 7). The naive representation of this structure would require 
O(p2) preprocessing time and O(p2) storage space in the worst case. In [7] a 
representation using O(plog p) time and space is given. Accessing this data 
structure, however, adds a factor of O(logp) to the running times of our algorithms. 
We do not consider the details of this algorithm here and assume that questions of 
the form: 

What is the ith vertex of the jth cross-section? 

may be answered in constant time. In a model where the accesses actually require 
0( f( p)) operations, our upper bounds of 0( g( p)) are actually O(f( p)g( p)). 

For the polyhedron P, we denote its cross-sections as PI, P2, . . . , Pp and let Pi,j 
represent the part of the polyhedron between P; and Pj (inclusive). A key feature 
of this representation is that we make no assumption about the preprocessing 
direction. Therefore, the representation (in terms of PI, P2, . . . , P,,) is invariant 
under scaling, rotation, or translation. Furthermore, when we consider the inter- 
section of two preprocessed polyhedra, we need not assume that their polygonal 
cross-sections lie in parallel planes. Since it is almost the case that each vertex of 
P; is adjacent to a unique vertex of Pi+, , we nearly have a one-to-one correspond- 
ence between P; and P,,, , and these two polygons almost fully describe the drum 
Pi.i+, . Unfortunately, the vertices of Pi that are also vertices of P may be adjacent 
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to several vertices of Pi+, , and to remedy this discrepancy, we add dummy vertices 
and dummy edges of length 0. More precisely, let Xi,j be the jth vertex of Pi and let 
el, . . . , ek be the lateral (i.e., joining Pi and Pi+,) edges of Pi,i+, emanating from 
Xi,j, given in clockwise order around Pi+, (whichever order on Pi+, can be called 
clockwise, as long as this is done consistently with all the cross-sections). In general 
k = 1. If, however, k > 1, we conceptually duplicate Xi,j into k vertices yi , . . . , yk, 
all of which have the same geometric location as Xi,j. Each y,,, however, is made 
incident to exactly one edge e,,. 

Iterating on this process for all vertices of Pi and all preprocessing polygons, we 
rename the vertices thus obtained for each Pi,i+, , xl,, xl2 , . . . in clockwise order. 
Similarly, we consider all the lateral edges of P;,i-1 emanating from xi,j and duplicate 
Xi,j accordingly. We thus defme a refinement of Pi with respect to the drum Pi-l,i, 
renaming all the vertices of Pi, XC,, xi.2, . . . . Note that there is a one-to-one 
correspondence between {xc,, xT2, . . .) and (x;+,J, xi+~, . . .), and all the pre- 
processing can be done in O(p2) time. 

3.3 INTERSECTION OF A PLANE WITH A POLYHEDRON (IHP). Let P be a convex 
polyhedron with p vertices pl, p2, . . . and let T denote the plane under considera- 
tion. Let K be a plane containing a (nondegenerate) preprocessing polygon. If K 
and Tare parallel, then we can find which drum the plane T intersects by binary 
search and, in the affirmative, intersect T with any edge of the drum nonparallel 
to K and output an intersection point. So, let us assume in the following that the 
intersection K n T is a line 1. Let M be a plane normal to 1; P and T intersect if 
and only if their projections on M intersect (see Figure 8). 
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Let a; (respectively, b;) be the vertex of Pi with minimum (respectively, maxi- 
mum) coordinate in the direction K fl M. In general, a; and bj are unique, although 
there may be two of them if Pi has an edge parallel to the l-axis. In any case, the 
orthogonal projection of ai (respectively, b;) on the M-plane, denoted a,! (respec- 
tively, b,f) is unique. We first show that the polygon Q = a; . . . uib; - - - b; is 
convex (see Figure 8). 

LEMMA 6. The polygon Q is convex. 

PROOF. We show that none of the angles (bLbL+,, b;bL-,) is reflex. Let B be 
the intersection of the segment bkV1 bk+, , with the plane P;,* supporting Pk. Since P 
is convex, B lies on Pk; therefore its K fl M-coordinate cannot be greater than the 
K n M-coordinate of bk. The projection of B on A4 being also the intersection of 
b;-, b;,, with Pf, it follows that the angle (b;b;+, , bibi-,) is no greater than 180 
degrees. We have the same result with the vertices a;, and it is easy to conclude 
that Q is convex. Cl 

This leads to 

LEMMA 7. Let L be the intersection of T with M. Then P and T intersect if and 
only ifQ and L intersect. 

PROOF. If P and T intersect, we distinguish between two cases: 

( 1) T intersects some Pi. Then the intersection of Pi and T is a line segment parallel 
to 1, and its projection on M is a point that lies on the segment a,! bl. It follows 
that Q and L intersect. 

(2) If T does not intersect any Pi, it lies strictly between two consecutive 
preprocessing polygons P; and P;+,; thus L intersects .~,!a;+,, that is, 
intersects Q. 

Conversely, if L intersects Q, it must intersect one of its edges. Its endpoints are 
the projections on A4 of two vertices u and v on the boundary of P, and it is clear 
that T must intersect the segment UV, that is, intersect P. Note that u and v are not 
necessarily vertices of P. Cl 

From the previous results, we can easily derive the algorithm IHP. 

Algorithm IHP 
If P and T do not intersect, the algorithm returns NO; otherwise, it returns (YES, 
A), where A is a point of the intersection. 

Lemma 7 shows that we can test the intersection of P with T by applying the 
IGL algorithm to Q and L. We have an implicit description of Q, since we have 
random acess to any of its vertices in O(log p) time. This is due to the fact that the 
A4 fl K-coordinates of the vertices of any preprocessing polygon form a bimodal 
function since the polygon is convex. Therefore, any a; or bi can be obtained in 
O(log p) time, from which a,! and bJ are computed in constant time. If Q and L 
do not intersect, IHP will return NO, else IGL provides, in O(log p) time, an edge 
of Q intersecting L, say b,f bi’,, . Since knowing b j and b,f+, implies that bi and bi+l 
have already been computed, we can immediately determine the intersection A of 
T with the segment bibi+, and return (YES, A). Note that in this case, the segment 
bibi+, always intersects T. Since the algorithm IGL runs in logarithmic time and 
each basic step requires @log p) operations, we can conclude: 

THEOREM 8. The intersection of a plane with a preprocessed convex polyhedron 
of p vertices can be detected in O(log2p) operations. 
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FIG. 9. Intersection of a polyhedron and 
a polygon. 
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FIG. 10. The two cases of intersection of Q and R. 

3.4 INTERSECTION OF A POLYGON WITH A POLYHEDRON (IHG). We start with 
an analysis of the problem, concentrating only on the most difficult points. Let P 
be a preprocessed convex polyhedron of p vertices and R a convex polygon of q 
vertices. Call Q the intersection of P with the plane T supporting R (see Figure 9). 
By first calling upon IHP, we can check whether Q is empty. Assume that this is 
not the case. It is equivalent to test the intersection of P and R or Q and R. 
Although Q is not readily available, the preprocessing of P permits us to compute 
an implicit description of it. We first observe that from the convexity of P, T 
intersects a set (possibly empty) of consecutive Pi, say, P,, . . . , P,,, (I I m). Let 
w;, w,! be the endpoints of the intersection of T and Pi, and Wdenote the polygon 
w; . . . whw, . . . WI (see Figure 10). Since W is a subpolygon of Q (i.e., W lies 
inside Q and all its vertices lie on the boundary of Q), it is easy to see that the 
convexity of Q implies the convexity of W. If U, v are two consecutive vertices of 
W in clockwise order, we define QU,, to be the convex polygon (outside of W) 
delimited by the edge uv and the boundary of Q (see Figure 11). 

The following result shows how to reduce our main problem to two easier 
subproblems. 

LEMMA 9. If Q and Ware not empty, P and R intersect ifand only if either of 
the following conditions is satisfied: 

( 1) W and R intersect. 
(2) Let L be a separating line of W and R passing through a vertex a of W, and let 

b, c be the vertices of Wadjacent to a (b = c if W’ is reduced to a line segment). 
Then R intersects Qb,” or QU.c (see Figure 10). 

PROOF. It suffices to observe that when R intersects Q but not W, the only parts 
of Q that L does not separate from R are Qh.u and Qo,c. The remainder of the proof 
is straightforward. Cl 
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FIG. 11. The polygons Q, W, Q “,“. 
0) 

Case 1 being easy to handle, let us turn to the other case. We wish to compute 
an implicit description of Q,,.U and QU,c in order to test these polygons for inter- 
section with R. We describe the method for Q ,,,rr, the other case being similar. Call 
41, - *. , q/; the vertices of Qh,U, that is, the vertices of Q lying between b and a. Note 
that ql, . . . , qk are the intersections of the plane T with consecutive lateral edges 
of some drum Pi.;+, , say, et, . . . , ek. Since all the edges el, . . . , ek must pass 
through consecutive vertices of Pi, x1, . . . , xk, it suffices to determine x1 and & to 
have an implicit description of Qh,U. In order to have a one-to-one correspondence 
between the xi and the e;, we must consider Pi with its vertices of the form 
x;, ) XT,, . . . . . . We distinguish between two cases: 

(1) The segment ab is parallel to the preprocessing polygons (horizontal); it is 
then the top or bottom edge of W, say, the top edge (without loss of generality). 
Consider the three-dimensional strip S of Pi,;+, formed by ail its lateral faces. The 
intersection of T with this strip is a continuous broken line D running from Pi to 
Pi without intersecting Pi+, (see Figure 12a). Therefore any path from the portion 
of the boundary of Pi between a and b to Pi+, must intersect D. It follows that 
XI,..., xk are exactly all the vertices of Pi between a and b. To decide whether it 
is between a and b or b and a in clockwise order around Pi, we simply observe that 
on one part of the boundary all the lateral edges intersect T, whereas none does on 
the other. Thus, testing any lateral edge for intersection with T will resolve the 
ambiguity in constant time. 

(2) The segment ab is not a horizontal edge of W. Then Pi,/+, now designates 
the drum lying between a and b. The intersection of T with the strip S consists of 
two broken lines, one of which runs from a to b (see Figure 12b). Let x~,x~~+~ 
(respectively, y,,y,.+,) be the edge of Pi (respectively, Pi+l), given in, clockwise order, 
which contains a (respectively, b). Note that these edges will have already been 
computed when a and b are obtained. Since we wish to access the edges of Pi,i+, 
from the vertices of Pip it is important to have a one-to-one correspondence between 
the vertices of Pi and Pi+ 1; therefore, we consider the polygon Pi (respectively, Pi+!) 
with its vertices xt,, XT*, . . . (respectively, xi+,,, , xi+,,~, . . .). Let xl be the vertex 
of Pi in correspondence with yy, that is, the vertex lying with y, on the same lateral 
edge of Pi,i+, . It is clear that if the lateral edge of Pi,/+, passing through x~, intersects 
T, then ql , . . . , q/; are exactly the intersections of T with the lateral edges emanating 
from XI+~, x1+2, . . . , x,, (see Figure 12b). Otherwise, if the lateral edge emanating 
from x,,+~ intersects T, the vertices ql, . . . , qk of Q are determined by the set of 
vertices x~,+~, . . . , xl (see Figure 12~). Finally, if neither of the above cases arises, 
no lateral edge intersects T between a and b, and Qb,rr is reduced to the single edge 
ub; therefore no testing is necessary. 

Putting all these results together and handling the remaining cases is straight- 
forward. We can now set out the algorithm IHG, whose correctness is established 
by these results. 
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FIG. 12. Computing Qb,.. 

Algorithm IHG 
The algorithm takes a convex polygon R and a preprocessed convex polyhedron P 
as input and returns NO if P and R do not intersect or (YES, A) if they do, with A 
a point of the intersection. 

Step 1. Test the intersection of P with the plane T supporting R by calling 
upon IHP. If P and T do not intersect, return NO; else the algorithm IHP will 
provide a point I of the intersection, as well as the preprocessing plane Py, such 
that I lies in the drum Pi,;+, . If IGL indicates that T intersects neither Pi nor Pi+*, 
go to Step 2; else go to Step 3. 

Step 2. “T lies strictly between Pi and Pi+,.” Q being the intersection of T and 
P, the vertices of Q are exactly the intersections of T with all the lateral edges of 
Pi.i+I. Therefore Pi gives an implicit description of Q, and it is possible to test the 
intersection of Q and R with the IGG algorithm, returning NO if it is empty or 
(YES, A) if it is not, where A is a point of the intersection returned by IGG. 

Step 3. “T intersects Pi or Pi+, .” Without loss of generality, assume that 
T intersects Pi. Since T intersects a set of consecutive preprocessing polygons 
PI, ***, P,,,, we can determine P, and P,,, through a binary search by testing the 
intersection of Pk and T with the IGL algorithm. This gives an implicit description 
of IV, from which we can test the intersection of R and W with IGG. Note that to 
access a vertex of IV, we must compute the intersection of T with some prepro- 
cessing polygon, using the IGL algorithm. If the intersection of R and W is not 
empty, IGG will provide a common point A, and we can return (YES, A). 
Otherwise, IGG will return a separating line L of W and R passing through IV, 
thus providing the vertices a, b, c. 
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FIG. 13. Computing a pair of separating 
lines for Q and R. 
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Step 4. “If R intersects P, it intersects Qb.U or QaSc.” Apply the procedure 
described above for QhTrr and Qa.= successively, and test these polygons for inter- 
section of R (RX), returning NO or a common point accordingly. 

Before analyzing the running time of IHG, we wish to extend the algorithm 
slightly so that it returns a pair of parallel separating-lines when P and R do not 
intersect, that is, a pair of separating lines for Q and R. When IHG returns NO in 
step 1, no such pair can be defined, but the plane T is itself a separating hyperplane 
and is sufficient information for our purposes. In all of the other cases, a noninter- 
section of P and R is detected after testing both Qb,a and Qa,c for intersection has 
failed. Instead of testing these two polygons successively, we can simply use the 
implicit description of Qb,a and Qcl.< to test the intersection of Qb.‘. with R (Qb,C is 
defined as the union of Qh.“, QU,c, and the triangle abc). If no intersection is found, 
the algorithm IGG will return a pair of separating lines (D, D ‘) for Qhqc and R. Let 
v be the vertex of Ql,.c lying on the separating line D. 

If v is distinct from b and c, (D, D ‘) is also a pair of separating lines for Q and 
R since Q is convex, and fits our purposes (see Figure 13a). 

If v is b or c (say 6, without loss of generality), D may intersect Q outside of v, 
thus not separate Q and R. In that case, let d be the vertex of Qb,c adjacent to b 
and distinct from c. We can show that the line F passing through bd separates Q 
from R. Then computing a line F’ adjacent to R and parallel to F so that (F, F’) 
forms a pair of separating lines will take only @log q) time, as described earlier. 
We now prove our claim. 

Recall that the algorithm has already computed a line L that is adjacent to the 
vertex a of Q and that separates Wand R. Call L+, D+, F+ the halfspaces delimited 
by L, D, F, respectively, that do not contain the vertex c (see Figure 13b). Since 
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both L and D separate R from the triangle abc, R lies in the intersection of L+ and 
D+, denoted LD. Since Qb,C does not intersect the interior of D+, the line F cannot 
intersect LD; therefore R is completely inside F+. This implies that Fis a separating 
line of R and Q, which proves our claim. 

Step 1 calls upon IHP and IGL and thus requires O(log’p) operations. Step 2 
is a simple application of IGG and takes O(log(p + q)) time. Step 3 involves a 
binary search on the preprocessing polygons with a call on IGL at each step, 
which amounts to O(log2p) time. Testing the intersection of IV and R takes 
O((log p)log(p + q)) time, since each vertex of W is obtained by intersecting T 
with some Pk (IGL), which takes O(logp) time. Finally, step 4 performs a 
constant-time case analysis and then call on IGG, which requires O(log(p + q)) 
operations. We can finally state our main result. 

THEOREM 10. The intersection of a preprocessed convex polyhedron of p vertices 
with a convex polygon of q vertices can be detected in O((logp)log(p + q)) 
operations, that is, in O(log2N) time, where N is the total number of vertices in 
both objects. 

3.5 INTERSECTION OF A LINE WITH A POLYHEDRON (IHL). We now consider 
the problem of detecting an intersection between an infinite line (or a line segment) 
L and a convex polyhedron ofp vertices preprocessed as usual. We can contemplate 
a solution that is a straightforward application of the method described in the 
previous section. 

We first test the intersection of P with any plane T supporting the line L, using 
IHP. If we fail to detect an intersection, we obviously return NO. Otherwise, we 
define the polygon Q as usual (i.e., the intersection of P and T), and we compute 
an implicit description of its subpolygon W formed by the preprocessing polygons 
of P. Next, we test the intersection of Wand L (IGL), and in the event of a failure 
compute a separating line adjacent to W and derive the polygons Qh,a and &,. 
Finally, we test these polygons for intersection with L, calling upon IGL. 

Note that in the case of an intersection, we can compute the segment S of L that 
lies in P in O(logp) time. There are essentially two cases to consider: 

(1) If an intersection is detected while intersecting Qb,a (respectively, Qa,C) with L, 
then S is exactly the intersection of Qh.a (respectively, Qa,r) with L, and we can 
compute it in O(logp) time (IGL) (see Figure 14a). 

(2) If Wand L intersect, then IGL will provide the two edges of W that intersect 
L, say, ab and a’b’ (see Figure 14b). It is clear that, if A (respectively B) is the 
point on the boundary of QU,h, (respectively, QO,h,) that intersects L and does 
not lie on ab (respectively, a’b’), then S is the segment AB. To obtain this 
segment, we need to compute implicit descriptions of QO,h and Qa,h, and 
intersect L with these two polygons (see Algorithm IHG for details of the 
procedure). Finally, IGL will provide A and B in O(logp) time. 

The total running time of the algorithm is clearly O(log2p), and we conclude: 

THEOREM 11. We can compute (explicitly) the intersection of a preprocessed 
polyhedron ofp vertices with an in.nite line or a line segment in O(log2p) operations. 

3.6 INTERSECTION OF Two POLYHEDRA (IHH). We now turn to the problem 
of detecting the intersection of two convex polyhedra P and Q of p and q vertices, 
respectively. We assume that both polyhedra have been preprocessed, yet we do 
not require that the preprocessing planes of P should be parallel to those of Q (see 
Figure 15a). Thus we can maintain a coordinate-free environment. If either P or 
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FIG. 14. The algorithm IHL. 
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Q is rotated, no new preprocessing will be necessary. The algorithm IHH proceeds 
by a series of binary searches, all very similar in nature, and reduces P to a drum, 
a “slice,” and a pentahedron successively. For the clarity of exposition, we start 
our analysis of the problem with some preliminary results related to lines and 
planes of support. We redefine a line of support of P more precisely as a line having 
exactly one point or one segment (not necessarily an edge) in common with the 
boundary of P. Similarly, a plane of support of P is defined as a plane with exactly 
one edge or one face in common with the boundary of P. 

For later purposes, we need to extend the preprocessing of P slightly. We require 
the existence, for each vertex of P, of an array listing the edges incident to it in 
clockwise order. This additional information is readily obtained once the polyhed- 
ron has been preprocessed. We begin with a preliminary result: 

LEMMA 12. If L is a line of support of P and one edge of P that intersects L is 
known, then it is possible to determine a plane of support of P containing L in 
O(logp) operations. 

PROOF. Call v the intersection of L with that edge e of P known to intersect L. 
We distinguish between two cases: 

(1) If v is not a vertex of P (check whether v is an endpoint of e), then the plane 
containing both e and L is a plane of support of P (see Figure 16a). 

(2) If v is a vertex of P, then the plane passing through e and L may unfortunately 
intersect the interior of P, and further analysis is needed (see Figure 16b). Let 
a,..., ek be a list of the edges of P adjacent to v, in clockwise order. Recall 
that the preprocessing of P ensures random access to these edges. Let Ui be the 
plane containing both L and ei. The planes Vi (i = 1, . . . , k) such that L and 
e; are not collinear form a bimodal angular sequence. The extrema are valid 
planes of support and can be computed in O(log p) time. Cl 
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FIG. 15. Reducing the size of P in IHH. 

We now turn to the crux of the algorithm IHH. Let us assume that P and Q 
intersect but neither contains the other. Let T be a plane intersecting P and Q but 
not their intersection. Call R (respectively, S) the intersection of T and P (respec- 
tively, Q), and let (LP, Lo) be a pair of parallel separating lines for R and S, 
respectively. If Tp (respectively, To) is a plane of support of P (respectively, Q) 
passing through Lp (respectively, Lo), observing the relative position of Tp and To 
will indicate on which side of T the intersection of P and Q lies. Indeed, since P 
and Q intersect but R and S do not, the intersection of P and Q lies entirely in one 
of the halfspaces delimited by T (see Figure 15). To determine which, we first 
observe that the intersection of P and Q must lie in the intersection H of the 
halfspace delimited by Tp, which contains P with the halfspace delimited by To 
containing Q. Since Lp and Lo are parallel, H lies totally on one side of T, and the 
intersection L of Tp and To (which must exist since H is nonempty) may be 
computed in constant time and indicates which side of T contains the intersection 
of P and Q. Note that L is an infinite line parallel to T (see Figure 1 Sb, c). The 
portion of P that does not lie on the same side of T as L can be rejected since it 
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FIG. 16. Computing a plane of support of P. (4 

(b) 

cannot intersect with Q. This gives us a means of reducing the size of the problem, 
so carrying out this process in a binary search fashion will guarantee efficiency. We 
now proceed to describe the algorithm. 

(1) Let P, be the middle preprocessing polygon of P (1 = [p/21). The first step 
consists of reducing P to PI.1 or P,,p. To do so, we test the intersection of Q with 
the preprocessing plane Py passing through PI, using the IHP algorithm. If it fails 
to detect an intersection, Q lies entirely on one side of PT, which can be determined 
in constant time. We then iterate on this process with PI., or P,.,,whichever lies on 
the same side of PT as Q. If PT and Q intersect, we call upon IHG to test the 
intersection of Q with the polygon PI, returning (YES, A) if IHG finds a point A 
of the intersection or providing a pair of separating lines (Lp, Lo) (see Figure 15b). 
Since in this last case, IHG will also indicate edges of P (respectively, Q) that 
intersect Lp (respectively, Lo), we can apply the result of Lemma 12 and compute 
a plane of support of P passing through L p, which we denote Tp. A similar 
computation will give a plane of support of Q passing through La, Tp (see Figure 
15~). Finally, our discussion above shows how locating the intersection of Lp and 
La with respect to PT permits us to substitute PI., or P,,l, for P accordingly. Of 
course, if Tp and TQ do not intersect (i.e., are parallel), neither do P and Q, so we 
can terminate. 

Iterating on this process will either produce a point of the intersection or reduce 
P to a convex drum Pi,;+, . Note that we may have i + 1 = 1 or i = p, in which case 
the algorithm can return NO since P and Q do not then intersect. 

(2) It now remains to test the intersection of Q and Pi,i+l . Let XI, . . . , xk be the 
vertices of Pi in clockwise order. We choose a lateral edge e of Pi-i+, , say, an edge 
passing through xl, and consider the plane Tj containing both Xj and the edge e. 
For any u, v, 1 < u < v 5 k, we define T U,y as the portion of Pi,i+, comprised 
between T,, and TV (i.e., the portion that contains the edge x,,xu+J. We have seen 
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FIG. 18. The cap Pi.,+, after reduction. 

in the description of the IHG algorithm how to compute an implicit description of 
the polygon 5“ formed by the intersection of Pi.;+, and q (see Figure 17). Recall 
that this involves computing the points a and b, as well as the lateral edges of Z’i,i+, 
that intersect Tj. Having an implicit description of Sj, we can apply the procedure 
described earlier, first using IHP with arguments c, Q and then IHG with 
arguments Sj, Q. This will either return a point of the intersection of S’ and Q, in 
which case we are done, or produce a pair of planes of support for P and Q, 
respectively, containing two parallel lines separating Sj and Q. 

Once again, locating the intersection of these two planes will permit us to 
substitute T2.j or Tj.k for P accordingly. We can perform a binary search on j in the 
interval [2, k]. If the algorithm does not terminate before, it will reduce Piqi+, to 
the convex polyhedron c;..j+l for some j (see Figure 18a). 

(3) Tj,j+I has one face lying on Pi (the triangle XI XjXj+l) and a parallel face on 
Pi+, , denoted F. Unfortunately, Figure 18a illustrates only the simplest case since 
F is not necessarily a triangle. However, we can remedy this discrepancy easily. 
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FIG. 19. Reducing the slice A in IHH. 

Let yl be the endpoint of the edge e that lies on Pi+, (e = xl y,) and let yl, . . . , y,, 
denote the vertices of Pi+, in clockwise order. F is a convex polygon yl, y, yl, . . . , 
y,,, y ‘, yl (see Figure 18b, c). We can determine y and y ’ in O(logp) time by 
intersecting P;+l with Tj and Tj+l, using the IGL algorithm (which actually must 
have been done already). If y and y ’ do not lie on the same edge of Pi+, , we carry 
on the previous binary search on the planes T;, . . . , TA, where T,f is now the 
plane containing e and yi. If the algorithm does not return, it will reduce P to a 
convex polyhedron B with two parallel faces on Pi and Pi+, , denoted xl& and 
y, a ‘b’, respectively, both of which are triangles (see Figure 19). Let Fj (respectively, 
Fj+I) be the face of B lying on q (respectively, T,,,). In addition to ab and a’b’, B 
may contain other edgesA, . . . ,1; intersecting both Fj and Fj+l . These edges lie on 
consecutive lateral edges of Pi,i+, , say, e, , . . . , e, in clockwise order. Our next task 
is to compute an implicit description of this set of edges, that is, to determine el 
and e,. 

The following fact will permit us to compute el and e, in constant time. We can 
always assume that a, b (respectively, a’, b’) occur in clockwise order in a traversal 
of the boundary Of Pi (respectively, Pi+,). Let g be a lateral edge Of Pi,i+, intersecting 
both Fj and Fj+l , with gl (respectively, gz) the endpoint of g lying on Pi (respectively, 
Pi+,). Note that by construction of B, any edge intersecting Fj intersects Fj+l as 
well, and vice-versa. We can observe that if g, occurs between xl and a (respectively, 
b and x,) in clockwise order, g2 must lie between b’ and yl (respectively, yl and a’) 
in clockwise order. Without loss of generality, suppose that g, occurs between xl 
and a. Let xz, be the vertex of Pi such that a lies on the edge xc,x;t,+, . Since lateral 
edges can only intersect at their endpoints, the lateral edge of Pi.i+l adjacent to xc, 
(which is uniquely defined by the preprocessing) also intersects both 4 and e+, . 
This shows that lateral edges of P.; , ,+, intersect Fj and Fj+l if and only if the lateral 
edge adjacent to XT, or xz,,, intersects Tj. This gives us a convenient way to 
determine el and ek’in constant time with the technique already used in the IHG 
algorithm. Namely, let x~+,,~,x~+~,,,+~ be the edge of Pi+, that intersects Fj and let 
x& be the vertex of P, in one-to-one correspondence with ~i+,,~,+~. It is then clear 
that el is the edge x;~,,x~+,.~,+, and e, the lateral edge adjacent to x:,. All the 
lateral edges between el and e, also intersect Fj and Fj+l , that is, the edges adjacent 
to x&n:m, &+1, - * *, xl,. Recall that the one-to-one correspondence between 

LG 3 $2, - * .) and L&I, x7+1+. . . ) established in the preprocessing allows random 
access to the lateral edges of P;J+, . 

(4) Having an implicit description of el, . . . , e,, we can define uj as the plane 
containing xl and e, and apply the procedure of (2) on this set of planes (see Figure 
19). This will either return a point of the intersection of P, Q, and Uj, or produce 
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a pair of planes of support from which we can decide which side of Uj contains the 
intersection of P and Q, if it exists. Note that the intersection of B and Uj is simply 
a triangle that we can compute in constant time. If the algorithm does not return, 
it will eventually reduce P to a pentahedron K lying between Tj, Tj+j, two 
consecutive triangles Ul, U,+,, and a lateral face of Pi,;+, . In fact, k can be 
“degenerate” and have fewer than five faces. 

(5) Finally, we have to test the intersection of K and Q. To do so, we can test 
each face of K successively, using the IHG algorithm. If we fail to detect an 
intersection, we determine whether Q lies entirely inside or outside of K by testing 
the inclusion of any point of Q in K, which can be done in constant time. 

We now give’s more formal outline of Algorithm IHH, which will also serve as 
a summary. 

Algorithm IHH 

The input consists of two preprocessed convex polyhedra P and Q, and the output 
is NO if P and Q do not intersect or (YES, A) if they do, where A is a point of the 
intersection. 

Step 1 

I=I;m=p 
while I< m - 1 

begin 
i = L(f + m)/2J 
if Pt does not intersect Q [IHP] 

then 
if q, lies above P: 

thenl=i 
else m = i 

else 
if Pi intersects Q [IHG] 

then return (YES, A = point returned by IHG) 
“IHG provides a pair of separating lines from which Tp and TQ are computed” 

if Tp and TQ do not intersect 
then return (NO) 

if T, and TQ intersect above P: 
then I = i 
else m = i 

end 
i=l 

Step 2. “P is reduced to a convex drum Pi,/+, .” Let e be a lateral edge of Pi,i+, 
and 7; the plane containing e and the vertex Xj of Pi. Apply step 1 with respect to 
the planes Tj. Finally set j to 1. 

Step 3. “P is reduced to a convex polyhedron lJ,j+l .” If the face of q,j+i lying 
on Py+, is not a triangle, apply step 2 with respect to the planes T;, . . . , TL 
(defined in the previous discussion). 

Step 4. “P is reduced to a polyhedron B bordered by two triangles, subpolygons 
of Pi and Pi+,.” Apply the procedure of step 1 with respect to the planes Uj 
passing through XI and ej, where xl is a vertex of Pi and ej is the jth lateral 
edge of B. 

Step 5. “P is reduced to a polyhedron K with at most five faces.” Check 
whether q1 lies inside K. If affirmative, return (YES, 4,). Otherwise, apply the IHG 
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algorithm to test whether Q intersects any of the faces of K. If this is the case, 
return (YES, A), where A is a point of the intersection; else return (NO). 

We can now state our main result 

THEOREM 13. The intersection of two preprocessed convex polyhedra of p and q 
vertices, respectively, can be detected in O((logp)(logq)log(p + q)) operations, that 
is, O(log3N) time, where N is the total number of vertices in P and Q. 

PROOF. At this stage, we simply have to evaluate the execution time of the 
algorithm. We review its various phases and derive its complexity: 

(1) This stage involves O(logp) applications of IHP (log2q), IHG ((logq)log(p + 
q)), and the algorithm of Lemma 12 (logpq). 

(2) We can obtain an implicit description of sj in constant time, once the inter- 
section of Tj with Pi and Pi+, has been computed (logp). The remainder of this 
step is similar to the previous one. 

(3) This stage has the same complexity as (2), since computing an implicit 
description of y,, . . . , y,,, takes constant time. 

(4) This stage is similar to (2). 
(5) This is essentially a repeated application of IHG to Q and a triangle or a 

quadrilateral (log2q). Cl 

4. Conclusions 

We have described a complete set of algorithms for detecting intersections in two 
and three dimensions. In all cases, we have avoided issues of efficiency beyond the 
asymptotic level. Although the algorithm for computing planar intersections is 
asymptotically optimal [ 161, we believe that a more sophisticated treatment of 
bimodal functions may improve its running time. Also, a more refined case analysis 
might permit us to reduce not only one of the polygons by half, but always both 
of them. 

In three dimensions, aside from speeding up the preprocessing [7], we believe 
that algorithm IHH would benefit from a more symmetric treatment of the two 
polyhedra (along the lines of the algorithm IGG, for example). There also remains 
the question of proving lower bounds, since none of these algorithms has been 
shown to be optimal. 

In all cases, we believe that improvements can be best discovered by imple- 
menting the algorithms and observing their behavior on real problems. There is 
also the possibility of using the methods presented here as the basis of fast 
probabilistic algorithms [ 141 or algorithms efficient on the average [3]. 

Note: While this paper was being refereed, some of the results were improved. 
In particular, terms of O(log3n) in Section 3.6 have been reduced to O(log2n) and 
terms of O(log2n) in Sections 3.3 and 3.5 have been reduced to O(logn) in [5]. 
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