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Abstract

Today much is known about cytochrome P450 (P450) enzymes and their catalytic specificity, but 

the range of reactions catalyzed by each still continues to surprise. Historically P450s had been 

considered to be involved in either the metabolism of xenobiotics or endogenous chemicals, in the 

former case playing a generally protective role and in the latter case a defined physiological role. 

However, the line of demarcation is sometimes blurred. It is difficult to be completely specific in 

drug design, and some P450s involved in the metabolism of steroids and vitamins can be off-

targets. In a number of cases, drugs have been developed that act on some of those P450s as 

primary targets, e.g., steroid aromatase inhibitors. Several of the P450s involved in the metabolism 

of endogenous substrates are less specific than once thought and oxidize several related structures. 

Some of the P450s that primarily oxidize endogenous chemicals have been shown to oxidize 

xenobiotic chemicals, even in a bioactivation mode.

1. INTRODUCTION

Historically the field of cytochrome P450 (P450) research developed from early work on the 

metabolism of carcinogens,1,2 drugs,3,4 and steroids.5 The biochemical studies were initiated 

with investigations on the pigmented proteins in rat liver.6,7 Through extensive biochemical 

studies in the 1960s–1980s, an extensive knowledge base on P450s developed. Biochemical 

and recombinant DNA studies on the human P450s led to increased understanding of these 

enzymes and their relationships to their animal orthologues. With the Human Genome 

Project and knowledge of the signature cysteine sequence of P450s, the number of human 

P450 genes is set at 57 (Table 1).

As the field developed, thoughts about the functions of P450s developed around two main 

themes. One was the roles of P450 in the metabolism of endogenous compounds, as 

exemplified by steroids.10 Indeed, some inborn errors of metabolism could be related to 

deficiencies in these enzymes.10–12 The other general function of P450s was in the 
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metabolism of xenobiotics, predominantly in detoxication13,14 but sometimes 

bioactivation.2,15 In general, these two groups of P450s were considered almost unrelated 

except in their overall structural similarity.

However, more recently two general concepts have changed. One is that many of the P450s 

involved in the metabolism of endogenous substrates are not as highly specific as once 

thought. For example, some of the P450s that oxidize cholesterol will also utilize several 

related sterols (Table 2).16,17 7-Dehydrocholesterol is a substrate for P450 7A1 and is 

oxidized to 7-ketocholesterol (Figure 1).18 Recently a number of additional oxidation 

reactions have been attributed to P450 17A1 (Figure 2)19 and P450 46A1 (Figure 3).16,17 

The second point is that the line of demarcation between endogenous and xenobiotic 

substrates is not so sharp as once thought, a topic which will be the subject of the remainder 

of this Perspective.

2. P450S THAT OXIDIZE BOTH ENDOGENOUS AND XENOBIOTIC 

SUBSTRATES

In a sense the P450s that oxidize both endogenous and xenobiotic substrates are like 

centaurs in Greek mythology, who had the upper body of a human fused to the body of a 

horse. They operated in two worlds at once, although the P450s are not exactly the same in 

that respect—they are doing the same chemistry in both worlds, and how they act is 

apparently only determined by the shape (and size) of what they encounter. A list of P450s 

in this category is presented in Table 3. The point can be made that numerous P450s have 

been demonstrated to catalyze fatty acid hydroxylation,8 but the physiological relevance of 

most of these reactions is unknown with the possible exception of the ω-hydroxylation of 

arachidonate (P450 4A11).23,24

P450 1B1 was first characterized in adrenals and was of interest due to its ability to oxidize 

polycyclic hydrocarbons.25 Subsequently it was shown to be capable of activating a large 

variety of procarcinogens,26 to be the major “aryl hydrocarbon hydroxylase” involved in the 

trimodal induction response in human lymphocytes,27–29 and to be the major estrogen 4-

hydroxylase,30 which has implications of its own in chemical carcinogenesis.31 Exactly 

what the most critical physiological role of P450 1B1 is remains unknown, but genetic 

deficiency is related to congenital glaucoma.32,33

P450s 1A2 and 3A4 are best known for their abilities to oxidize drugs and carcinogens34,35 

but also oxidize estrogens.36,37 P450 3A4 oxidizes Δ4 steroids, including progesterone, 

testosterone, and androstenedione.38 For instance, P450 3A4 catalyzes 1β-, 2 β-, 6 β-, and 

15 β-hydroxylations of testosterone39 and 4β-hydroxylation of cholesterol.40,41 The in vivo 

significance of these reactions with the steroids is not clear, particularly in light of the inter-

individual variation of over an order of magnitude in the levels of these enzymes.42

P450 11A1 has been documented to oxidize a drug candidate, which is discussed later in this 

article.21
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P450 46A1 is a cholesterol 24-hydroxylase localized in brain, and transgenic mice missing 

the enzyme have learning defects.43 Pikuleva’s group has demonstrated that this enzyme 

binds a number of drugs tightly and oxidizes them (albeit slowly), including 

dextromethorphan, diclofenac, and phenacetin, as well as progesterone and testosterone 

(Figure 4).22 Voriconazole is an effective inhibitor, with a Ki of 11 nM.44 Crystal structures 

are now available with P450 46A1 bound to the drugs voriconazole, tranylcypromine, 

thioperamide, and clotrimazole.45 The nitrogen-containing heterocyclic rings of these drugs 

bond to the heme iron. An unusual mode of drug binding to P450 46A1 was seen in the 

crystal structures with bicalutamide, in which a water molecule is sandwiched between the 

heme iron and a nitrile on the drug.46 Interestingly, some drugs were found to be positive 

effectors, and efavirenz was shown to produce this effect on cholesterol turnover in vivo (in 

mice).47 A combination of hydrogen-deuterium exchange kinetics and other methods was 

used to conclude that the effector (efavirenz) site borders that occupied by the redox partner 

NADPH-P450 reductase.48

3. DRUGS THAT INHIBIT P450S

3.1. Drug-metabolizing P450s

The matter of inhibition of drug metabolizing P450s (Table 1) has received considerable 

attention for many years and will not be treated in depth here. The major concern is drug-

drug interactions (of course, drug-drug interactions can also result from enzyme 

induction).49 Extensive reviews of the mechanisms and consequences of drug-drug 

interactions have been published.50–53

3.2. Carcinogen-metabolizing P450s

Shortly after the discovery that P450s were involved in the bioactivation of chemical 

carcinogens, efforts at chemoprevention were initiated. The concept is to develop drugs as 

inhibitors or to identify foods that contain such inhibitors. This field of “chemoprevention” 

is considerable54–56 and, as in the case of drug-drug interactions, it will not be reviewed in 

detail.

In reviewing Table 1, the P450s that have been of most interest in this field are 1A1, 1A2, 

1B1, 2A6, 2A13, 2E1, and 3A4, understandably because they are involved in the bulk of 

activation reactions with carcinogens.34 Both reversible and irreversible inhibitors have long 

been considered for some time, particularly with the Family 1 P450s.57,58 Oltipraz is an 

inhibitor of P450 1A2 and can block aflatoxin metabolism.59,60 Watercress and several 

vegetables, which contain isothiocyanates, have been considered for inhibition of P450 

2E1.61 There has been interest in inhibiting P450s 2A6 and 2A13 because of their relevance 

in tobacco-specific nitrosamine activation.62–64 Much of the work has been done in vitro, 

and the relevance of in vivo work with animal models has to be considered carefully. Some 

of the inhibitors show strong inhibition, e.g., certain stilbenes with P450 1B1.65 An issue of 

concern is that, depending on the situation, P450s are also prominent in the detoxication of 

many carcinogens.34 Realistically it will be difficult to have new chemopreventive agents 

approved for use, and there is merit in finding foods that contain natural inhibitors, e.g., 

grapefruit with intestinal P450 3A4.66,67
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3.3. P450s That Catalyze Important Endogenous Reactions

In looking at Table 1, P450s that one would not want a new drug candidate to inhibit include 

most of those in the columns with the headings of steroids, eicosanoids, and vitamins. There 

are exceptions relative to certain disease states, but in general these enzymes are involved in 

physiological processes (Table 4). Some inhibition can be tolerated, however, and as in all 

toxicology and safety assessment it is the dose that matters. For instance, a proteasome 

inhibitor in development for cancer (carfilzomib) was found to covalently bind to and inhibit 

P450 27A1 (Table 5)68 However, the IC50 was ~ 1 μM, which is slightly lower than the 

initial plasma concentration of this drug following i.v. infusion at the maximum tolerated 

dose (3 μM), but the t1/2 is ~ 1 h.69,70 Carfilzomib (Figure 5) is an epoxide that also reacts 

with other targets. To identify targets in cell culture, an analog with an acetylene side chain 

(OP-829, Figure 5A) was synthesized and “click chemistry” was used to recover the 

adducted proteins. In this case P450 27A1, a sterol 27-hydroxylase (Table 2), and GSH 

transferase O1–1 were identified; both purified enzymes were also inhibited. The inhibition 

of P450 27A1 was not enhanced by pre-incubation of the enzyme with the epoxide for 60 

min prior to the assay (Figure 5B). This may mean that the extent of inhibition was maximal 

during the incubation. The covalent binding did not appear to be specific, in that P450 27A1 

residues Cys-127, Cys-426, and Cys-475 were all modified.68

Several P450s involved in steroid metabolism in the adrenals have been shown to be 

inhibited by drugs or other xenobiotic chemicals and to cause adrenal toxicity. The concept 

of drugs causing adrenal toxicity, or at least inhibiting adrenal steroidogenesis, is not new 

and goes back >50 years.71 A list21 includes aminoglutethimide/P450 11A1,72 metyrapone 

and etomidate/P450 11B1,73,74 etomidate/P45011B2,74 atrazine and letrozole/P450 

19A1,73,75 and ketoconazole/P450s 17A1 and 11B1 (11β-hydroxylase).76 Examination of 

the structures of these inhibitors shows a distinct lack of similarity to sterols. In some cases 

the adrenal P450s not only bind xenobiotic molecules but also bioactivate them. P450 11B1 

has been reported to activate several compounds (to cause adrenal toxicity), including 

mitotane,77,78 a methylsulfone derivative of 4,4′-dichlorodiphenyldichloroethylene 

(DDE),79,80, and 7,12-dimethylbenz[a]anthracene.81,82

One of the more unusual chemicals bioactivated by both rat and human P450 11A1 is a 

Bristol-Myers Squibb compound (“BMS-A”) considered for development (Figure 6).21 

Covalent binding to the protein was demonstrated, and a proposed pathway involves an 

epoxide (in a heterocyclic ring) (Figure 6). Adrenal toxicity of the compound was 

demonstrated in rats. The binding was considerably less in adrenal cells of human origin 

(H295R) than mouse cells, suggesting a major species difference. The relevance to any 

possible human adrenal toxicity has not been established.

3.4. P450s as Drug Targets

Several P450s are established drug targets, including P450s 5A1, 17A1, and 19A1 (Table 4). 

In particular, excellent third-generation inhibitors of P450 19A1 (the steroid aromatase) are 

widely used in estrogen receptor-positive breast cancer (e.g., letrozole, anastrozole, 

exemestane).83 Thromboxane levels can be reduced by inhibitors of P450 5A1, often known 

by its common name of thromboxane synthase. Inhibition of P450 17A1 is a relatively new 
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area, mainly related to prostate cancer, which is often androgen-stimulated. An issue in 

castration-resistant prostate cancer is the extra-testicular supply of androgens. Inhibition of 

P450 17A1 can be achieved with drugs (e.g., abiraterone).84,85 This is problematic in that 

P450 17A1 catalyzes two reactions, the 17α-hydroxylation of pregnenolone and 

progesterone and the subsequent 17α,20-lyase step that converts these to androgens (Figure 

2). 17α-Hydroxy steroids are also utilized for synthesis of glucocorticoids and 

mineralocorticoids, however, and therefore the use of P450 17A1 inhibitors has side effects. 

One goal is the selective inhibition of the lyase step of P450 17A1, therefore blocking 

androgen production but maintaining levels of other steroids. Claims of selective inhibition 

with the drug candidate orteronel (TAK-700, Takeda) have been published86 but apparently 

the candidate was dropped from development in Phase II clinical trials. Another candidate is 

VT-464 (Viamet/Innocrin).87 One issue in the matter is whether the two major reactions of 

P450 17A1 (17α-hydroxylation and 17,20-lyase action) are processive or distributive (i.e. 

the question is whether the 17α-hydroxy products leave the enzyme and re-bind).88 Our own 

results on the topic indicate a rather distributive reaction, for both the fish enzyme89 and 

human P450 17A1 (Gonzalez, E., and Guengerich, F. P., in preparation) which may suggest 

that reaction-specific drugs are possible.

P450 3A4 has been proposed as a drug target (Table 6), for different reasons. The enzyme is 

the major one involved in drug metabolism,35 and the concept is to retard metabolism, 

particularly of expensive drugs. This practice has already been used for 20 years with the 

drugs ritonavir and cobicistat, especially with drugs used to treat HIV patients.92 Rational 

design approaches are underway with ritonavir analogs.93

In addition to the above P450s, a number of others have been proposed as targets (Table 6). 

Some of these involve cancer chemoprevention, related to blocking bioactivation of 

chemical carcinogens, as mentioned earlier. Most of the remainder are involved in the 

production of steroids or vitamin D products that stimulate tumors.8 Another goal is 

blocking the metabolism of vitamin A, as an alternative to supplementing with the vitamin 

(Table 6).

4. SUMMARY

There are a number of implications of the findings presented here. In 1980 Jakoby presented 

an overview of the enzymes involved in detoxication.94 At that time the general consensus 

was that some of these enzymes, including P450s, had defined substrates and functions, e.g., 

metabolism of steroids, eicosanoids, and vitamins (Table 1). The question was what the rest 

are really for. One school held that these enzymes had “true” physiological substrates, which 

would ultimately be discovered. The other view, held by Jakoby and to which I have also 

adhered, is that animals (including humans) have this battery of lower-selectivity enzymes as 

a general defense mechanism against xenobiotics.94 Our food is not a simple mixture of 

amino acids, simple carbohydrates, and lipids (actually these would not have much taste). 

We consume gram amounts daily of a mixture of terpenes, alkaloids, flavones, and other 

assorted natural products.
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Cells have two major lines of defense against these “unnatural” natural compounds, 

materials that are not expected in the body. The cells can pump them out (transporters)95 or 

they can break them down (metabolize them using enzymes). In the 1980s, I began to follow 

the literature on a phenomenon termed multiple drug resistance, which had first been 

observed in tumors, and I even incorporated some of this material into my medical student 

lectures. The issue was a very practical one in that tumor cells became resistant to many 

drugs because of the induction of drug efflux transporters, either due to gene amplification 

or transcriptional regulation.95 As our own work on P450 3A4 developed, I realized that 

there was considerable overlap between the substrate repertoires of the newly discovered 

P450 3A4 and what was then called MDR-1.96,97 The MDR-1 protein turned out not be only 

associated with tumors but was also a normal plasma membrane constituent in liver, 

intestine, and brain.98,99 Since then, a number of other efflux transporters have been found 

to exist and pump many chemicals out of cells.100,101 Like P450s, there are a number of 

these proteins with overlapping substrate specificity. The substrates, as with the P450s, 

include both xenobiotic and endogenous substrate. Some of these transporters are regulated 

by the same compounds and elements, e.g., PXR. With regard to drugs, there is an 

interesting balance between intestinal transporters and P450s and hepatic transporters and 

P450s, as discussed elsewhere.102,103 Some of these interactions are probably also relevant 

to endogenous chemicals.

Thus, the role of the xenobiotic-metabolizing P450s can be seen as an adaptive response.94 

This seems to make good sense, but in light of what we know now even that may be too 

simple a view of the P450 world.

What should be done in pharmaceutical development? Are issues such as those raised here 

in Tables 4 and 5 serious enough to require extra screens in the discovery/early development 

phases? The answer, in the author’s opinion, is to be realistic and not add such extra assays 

immediately in screening. One of the good points of our current P450 knowledge is that a set 

of only a few P450s dominate the metabolism of xenobiotics, including drugs, and thus are a 

focal point in screening.35 One has to have priorities. A logical approach is that used at 

Bristol-Myers Squibb: when adrenal toxicity was seen in an animal model, investigators 

identified the P450 11A1 role.21 This is an example of a new strategy discussed by Blomme 

and Will in their review article in a recent Special Issue of Chem. Res. Toxicol.,104 which 

can be summarized as “testing the right things at the right time.”

In conclusion, we know a considerable amount about P450s, including human P450s, but 

there continue to be surprises. The P450s that have been characterized for their roles in the 

metabolism of steroids and fat-soluble vitamins are less specific than originally thought, and 

many interact with drugs and other xenobiotic chemicals. In the design of drugs, off-target 

interactions are hard to completely avoid (hitting one target out of > 20,000 is the issue). 

Thus, it is not surprising that some drugs interact with that set of P450s. Some of the P450s 

that are normally involved in the metabolism of endogenous compounds have become drug 

targets, especially for cancers. Surprisingly, some of the “endogenous” substrate P450s even 

activate drugs.
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Figure 1. 
Oxidations of lathosterol and 7-dehydrocholesterol by P450 7A1.18 (A) Lathosterol; (B) 7-

dehydrocholesterol. The a and b pathways indicate hydride transfer and closure to an 

epoxide, respectively.
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Figure 2. 
Multiple oxidations catalyzed by P450 17A1.19 Sites of oxidation are indicted in red. The 

site of oxidation in the structure in the lower right corner has not been ascertained.
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Figure 3. 
Multiple oxidations of sterols catalyzed by P450 46A1.16,17 Sites of oxidation are indicted in 

red. Sterol numbering is shown in the structure of cholesterol (upper left structure). The 

oxidations with 7-dehydrocholesterol had not been detected in a previous study, presumably 

due to limited sensitivity.20
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Figure 4. 
Multiple oxidations of non-sterol compounds catalyzed by P450 46A1.22
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Figure 5. 
Human P450 27A1 and carfilzomib.68 (A) Structure of carfilzomib and acetylenic analog 

(OP-829). (B) Inhibition of P450 27A1 by carfilzomib with (filled circles) and without 

(filled squares) preincubation (60 min at 37 °C, no cofactors present). IC50 with pre-

incubation: 1.3 ± 0.1 μM; IC50 without pre-incubation: 1.1 ± 0.1 μM.
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Figure 6. 
Activation of “BMS A” by P450 11A1.21 The site of the 14C label is indicated by an asterisk 

(*). Proposed reactive products are indicated in brackets.
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Table 2

Summary of Enzymatic Reactions with Cholesterol-oxidizing P450s and Various Sterols.16–18

P450 sterolsa products

P450 7A1

zymostenol (not determined)

lathosterol
7-ketocholestanol

cholestanol-7α,8α -epoxide

7-dehydrocholesterol 7-ketocholesterol

desmosterol 7α-hydroxydesmosterol

cholesterol 7α-hydroxycholesterol

P450 11A1

zymostenol (not determined)

lathosterol (not determined)

7-dehydrocholesterol 7-dehydropregnenolone

desmosterol pregnenolone

cholesterol pregnenolone

P450 27A1

zymostenol
25-hydroxyzymostenol

27-hydroxyzymostenol

lathosterol
25-hydroxylathosterol

27-hydroxylathosterol

7-dehydrocholesterol
25-hydroxy-7-dehydrocholesterol

27-hydroxy-7-dehydrocholesterol

desmosterol 27-hydroxydesmosterol

cholesterol 27-hydroxycholesterol

P450 46A1

zymostenol
24-hydroxyzymostenol

25-hydroxyzymostenol

lathosterol
24-hydroxylathosterol

25-hydroxylathosterol

7-dehydrocholesterol
24-hydroxy-7-dehydrocholesterol

25-hydroxy-7-dehydrocholesterol

desmosterol
24S,25-epoxycholesterol

27-hydroxydesmosterol

cholesterol 24S-hydroxycholesterol

a
Depending on whether cholesterol synthesis occurs via the Bloch or the Kandutsch-Russell pathway (i.e., whether reduction of the 24,25 double 

bond is early or late), the pathway from lanosterol will either involve the steps desmosterol—> cholesterol or zymostenol —> lathosterol—> 7-

dehydrocholesterol —> cholesterol, in terms of the substrates considered here.17
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Table 3

Some Human P450s that Oxidize Both Endogenous and Xenobiotic Substrates

P450 endogenous substrate xenobiotic substrate

1A2 estrogens arylamines, drugs

1B1 estrogens arylamines, polycyclic hydrocarbons

3A4 androgens, progesterone, estrogens many drugs

11A1 cholesterol “BMS-A” (Figure 6)21

46A1 cholesterol several drugs (Figure 4)22
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Table 4

Human P450s That Oxidize Endogenous Substrates and Should Not Be Inhibited Under Normal Physiological 

Conditions

P450 substrate

8A1 prostagalandin H2

11A1 cholesterol

11B1 11-deoxycortisol

11B2 corticosterone

17A1 pregnenolone, progesterone

19A1 testosterone, androstenedione

21A2 17α-hydroxyprogesterone

24A1 25-hydroxyvitamin D3

26A1 retinoic acid

26B1 retinoic acid

26C1 retinoic acid

27A1 vitamin D3, cholesterol

27B1 vitamin D3

39A1 24-hydroxycholesterol

51A1 lanosterol
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Table 5

Human P450s Known to be Covalently Modified and Inhibited by Drugs

P450 drug

1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5 numerous mechanism-based inhibitors53

11A1 BMS drug candidate (“BMS-A”) (Figure 6)21

27A1 carfilzomib (Figure 5)68
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Table 6

Some Human P450s That Are Established or Proposed Targets for Drugs8

established targets

P450 desired effect

5A1 decreased thromboxane levels (anti-platelet aggregation (thrombosis))

11B1 block cortisol production in Cushing’s syndrome

17A1 decreased androgen levels (prostate cancer)

19A1 decreased estrogen levels (several hormonal cancers, e.g., breast, ovarian)

targets in development

P450 intended effect

3A4 decreased drug metabolism and higher drug levels90

proposed targets

P450 intended effect

1A1, 1A2, 1B1 block carcinogen activation, cancer prevention

2A6, 2A13 block carcinogen activation, cancer prevention

4A11 block arachidonic acid ω-hydroxylation, treat hypertension

11A1 block androgen production in prostate cancer

11B2 treatment for elevated aldosterone levels

24A1 raise level of active vitamin D metabolites

26A1 block degradation of endogenous retinoids

26B1 block degradation of endogenous retinoids

26C1 block degradation of endogenous retinoids

51A1 block cholesterol synthesis (cancer)91
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