Intersection queries in sets of disks

Marc van Kreveld, Mark Overmars and Pankaj Agarwal

RUU-CS-90-13
April 1990

Utrecht University

O O, »
; ‘__‘ Department of Computer Science
<
7 \5‘5’ Padualaan 14, P.O. Box 80.089,
T 3508 TB Utrecht, The Netheriands,
Tel. : ... + 31- 30 - 531454

Intersection queries in sets of disks

Marc van Kreveld, Mark Overmars and Pankaj Agarwal

Technical Report RUU-CS-90-13
April 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
the Netherlands

o
o :
. et
» : o~
) (2]
o I M. :
E : o
L e o
B - : ..
s L e -
X . -4
o)
-t

data structures exist that store axis-parallel objects like horizontal line segments or
rectangles.

Only recently structures have been designed that store sets of arbitrarily oriented
line segments and allow for intersection queries with arbitrary line segments (see
[1, 6, 10, 13)).

Almost no work has been done on intersection searching in curved objects. The
only result we are aware of is a forthcoming paper by Sharir for searching with a
point in a set of disks [14]. In this paper we will give some first data structures for
storing sets of disks such that intersection queries with lines and line segments can
be performed efficiently.

The results in this paper use as underlying data structure the so-called conju-
gation tree designed by Edelsbrunner and Welzl [9]. This structure is based on an
elegant way to partition the plane recursively. (The structure is also called a ham-
sandwich tree in [7].) We augment this structure by associating data structures to
internal nodes that store subsets of the disks. These associated structures are based
on hierarchical convex hulls of disks.

The rest of this paper is organized as follows. ,

In Section 2 we briefly recall the main properties of the conjugation tree we use.
Moreover we indicate the basic method of storing disks in the conjugation tree.

In Section 3 we restrict ourselves to sets of non-intersecting disks. First we
describe how intersection queries with a line can be performed in time O(n® + k)
using only linear storage, where 8 = log,(1+4/5)—1 < 0.695 and k is the number of
reported answers. Next, we extend this result to queries with line segments instead
of lines. The query time becomes O(nP*e 1+ k) for any € > 0, while still using only
O(n) storage.

In Section 4 we handle intersection queries in arbitrary (i.e., intersecting) disks.
In this case we use a quite different approach. We transform the problem to a three-
dimensional problem, mapping the disks to points in R®. The structure we obtain
uses O(nlogn) storage and has a query time of O(n?3log?n + k).

In Section 5, we look at the related problem of ray shooting. Here we are given
a query ray emanating from a point ¢ in direction d, and we ask for the first disk
we hit as we move from ¢ along the ray. We give a data structure for this problem
that uses linear storage (for arbitrary disks) and has a query time of O(nf+¢), for
any € > 0.

Finally, in Section 6, we conclude with some extensions and open problems. In
particular, we briefly indicate how the query time of the algorithms, described in
Section 3 and Section 5, can be improved to O(n?/3+<), for any e > 0, without
increasing the space requirement.

2 The conjugation tree

The basic data structure for most solutions presented in this paper is the conjugation
tree (also called the ham-sandwich tree), introduced by Edelsbrunner and Welzl in
[9] (see also [7]). The tree was originally used for storing a set of points in the plane,
and for solving half planar range queries: how many (or which) points lie in a query
halfplane. The structure can also be used to determine how many (or which) points
lie in a triangle, or on a query line. The conjugation tree is a binary tree in which
each node corresponds to a convex region of the plane. The root corresponds to
the whole plane. The region corresponding to a node § is divided by a straight line
ls, called bisecter, into two subregions, each containing about the same number of
points. These subregions correspond to the sons of §. The important property of
conjugation trees is that any line intersects with the region of at most O(n?) nodes,
where 8 = log,(1+ V5)—1 < 0.695. As a result one can efficiently determine regions
that are completely contained inside the query halfplane or lie completely outside
the halfplane. In this way only O(nP) nodes have to be visited when performing a
query. A conjugation tree can be constructed in O(nlogn) time. (For details see
[9].)

In this paper, we will use conjugation trees to store disks rather than points.
Let D= {D,,...,D,} be a set of disks, and let P = {py,...,p,} be the set of their
centers. We construct a conjugation tree T on P. For each disk D, we search with
its center p in the tree T and locate the highest node § on the path, such that the
bisecter l5 intersects D. We store D in some type of associated structure Ss at this
node. This associated structure S; depends on the type of query we want to answer.
Each disk is stored in the structure Ss for exactly one node § in the tree.

Storing the disks in the way described above has an important property: When-
ever a line [intersects a disk D stored in Ss, then [intersects the region associated
with 6. This easily follows from the fact that D is stored at the highest possible
node. As a result D will lie completely inside the region associated with §. Hence,
I must intersect the region if D intersects I, Thus, all disks intersecting a line [
can be determined by querying the S; structures at only O(n?) nodes. Let R(n)
denote the query time of the associated structure storing n disks. It easily fol-
lows from [9] that the total query time of the structure is given by the recurrence
Q(n) < Q(n/2) + Q(n/4) + R(n). Also, if the storage requirement of an associated
structure is M(n), then the whole structure needs O(n) + O(M(n)) storage.

The following lemma will be useful in estimating time bounds for the data struc-
tures we obtain:

Lemma 1 Let T be a data structure storing n objects, having a query time of Q(n).
If Q(n) satisfies Q(n) < Q(n/2) + Q(n/4) + ¢ n" for constants ¢ > 0 and 5 < B,
then Q(n) = O(n®) (where B = log,(1 + v/5) — 1).

Proof. Claim: Q(n) < ¢/(n® — n#), where 5 < k< pB=logy,(1++/5)~1,and ¢ is

3

some fixed constant.

Q(n) Q(n/2) + Q(n/4) +c- n"

¢((n/2)° = (n/2)*) + ¢((n/4)® = (n]4)*) + c - "

¢ -n((1/2)° + (1/4)°) = ¢ - n#((1/2)* + (1/4)) + ¢ -
dnf—dnf—d . Conbtconn (for a positive constant ()

d(n® —n*) (for ¢ > c/¢).

VAN VAN VAN VAN V)N

3 Intersection queries in disjoint disks

We will first consider intersection queries with a line in a set of disjoint disks. We
are given a set D = {D,,..., D,} of n non-intersecting disks of arbitrary size. We
wish to preprocess D for the following type of query: Given a query line I, report
all disks in D that intersect . '

To solve the problem, we use the conjugation tree for disks, as described in the
previous section. So we only have to describe the associated structure Ss. Note that
all disks stored in Sj intersect the bisecter Is. Let p = IsN1 be the intersection point
of the query line and I;, We first describe a solution to a special case in which all
disks intersect /s on the same side of P, and then extend it to the general case.

Suppose a set D’ of disks Dy,...,D,, is given, all of which intersect the fixed line
ls (which we assume to be horizontal), and we perform an intersection query with
a line I which intersects I5 in a point p, left of all intersections of disks with ls (see
Figure 1). Let I} (resp. I;) denote the halfplane lying above (resp. below) I5. Define
the sets D'* = {D} | Df = D;ni},1 Si<m}and D~ = {D; |D; = D;ni;,1<
t <m}. Df # D; (or Dy) is the intersection of a disk with a halfplane, which we
will call a disk part. We describe how to preprocess D'*; D'~ can be preprocessed
similarly.

Compute the convex hull H; of D'+. The boundary of H; consists of a sequence
of circular arcs and connecting line segments. For all disk parts of D'+ that do not
contribute to H,, again compute the convex hull H;, and repeat it until all disk

parts contribute to some convex hull. The convex hulls H,,...,H; are called convez
layers of DY ,..., D¢,

Lemma 2 The convez layers H,,...,H; have the Jollowing properties with respect
to a line l:

o ifINH; =0, then INH; = 0 for all j > i,

o the disk parts of H; that intersect | are consecutive in the ordering along the
boundary of H;,

Figure 1: Disjoint disks intersected by a line.

o if INH; #0, then there is a disk part contributing to H; which intersects .

Proof. The first part follows because H. j» for all § > i, lies in the interior of H;.

To prove the second part, suppose that there are three disk parts D},D}, D in
some layer H;, which intersect l5 in this order from left to right, and that [intersects
only Dt and Df. Then D lies inside the convex hull of D} and D#, and therefore
does not contribute to H;, a contradiction.

For the third part, assume that ! intersects two edges hy and h; of H;. If hy or
ks is the boundary of some disk part, we are done, so assume that both k; and h,
are line segments connecting circular arcs of H;. Obviously, hy,hy C I}, hy 3 h,,
and there must be a circular arc 7 between h; and A, on H;. Since the disk part
D*, whose boundary contains 7, is also incident upon I5, I has to intersect D+. [

In view of the above lemma, the disk parts of D'* intersecting ! can be reported
as follows. Let i = 1. If I does not intersect H;, we are done, otherwise report the

answers of H;, and continue with i = i+ 1. Similarly, we can search in 7’~. Observe
that no disk is reported twice.

A straightforward implementation of the search algorithm leads to O((k+1)log m)
query time, where k is the number of answers to the query. An application of frac-
tional cascading (see [3]), using the ordering on the slopes of lines touching the
convex hulls, leads to an improved query time of O(k + logm). The space required
to store the convex layers is easily seen to be O(m).

Now we drop the assumption that p lies on the same side of all disks. Let
D,,...,D,, be the disks intersecting l5 from left to right. Partition the disks into

subsets {Dy,... 23 {D:/m+1s---» D}, where i < /m. Hence, each subset
consists of at most \/m disks. For each subset, build a structure as described above.

5

When performing a query with a line I, determine in O(log m) time, the subset in
which disks intersect 5 on both sides of p = ls N l. Traverse this subset completely
and report all disks that intersect I. For all the other subsets, p lies completely to
one side of the disks in that subset, and they are queried as described above. This

gives us an O(m) space data structure that solves the associated query problem in
O(v/mlogm + k) time.

Theorem 1 Let D be a set of n non-intersecting disks in the plane. There ezists a
linear space data structure that stores D, such that all k disks in D intersecting a
query line, can be reported in time O(n® + k).

Proof. Construct the conjugation tree for disks and the associated structures,
as described above. It uses linear space, as each disk is stored in the associated
structure Ss of only one node, and S; requires only linear space.

All associated structures that may return non-empty sets are visited, because
a query line that avoids some region of the conjugation tree will never intersect a
disk lying completely in that region. Correctness in the associated structures follows
from the first and the second part of Lemma 2, and the above discussion.

The bound on query time follows from the third part of Lemma 2, the above
discussion, and Lemma 1. O

Let us now consider queries with a line segment rather than with a line. The
key to our solution is the following lemma.

Lemma 3 Let s be an arbitrary line segment in the plane, and let R be the infinite
strip containing s, whose bounding lines are perpendicular to s, and contain the end-
points of s. Then any disk D that intersects 8, either contains one of the endpoints
of s, or has its center in R, or both.

Proof. Let s and R be as in the lemma. Suppose there is a disk D that intersects
s, but does not have its center m in R. Let ¢1 and ¢; be the endpoints of s, and let
g be an intersection point of s and D. Since m is not in R, it is easy to see that the
point of s closest to m is one of its endpoints, say say ¢;. Then the distance from

m to ¢ is not greater than the distance from m to any point on s, in particular, to
q. Thus ¢; is contained in D. a

The lemma shows that if we want to report all disks in a set that intersect a
line segment s, it suffices to report the disks that: (i) contain one of the endpoints
of s, and (ii) intersect the line containing the segment s and have their centers in
the strip R. Notice that these two sets of disks are not disjoint, but it is easy to
circumvent reporting a disk more than once, and we leave the details to the reader.

The set D of non-intersecting disks D, ..., D, partitions the plane into n + 1
regions. Add to this partition n horizontal line segments, starting at the leftmost
point of every disk, and extending leftward until it hits another disk. Similarly,

6

add horizontal segments at the rightmost points of the disks. This results in a
subdivision of the plane into O(n) regions, which is monotone in the horizontal
direction. Preprocess this subdivision for efficient point location, choosing one of
the methods that works for circular arcs too, such as Cole’s [5], or the structure of
Edelsbrunner et al. [8]. This solves the problem of finding the disks that contain
the endpoints of the query segment s in O(n) space and O(log n) query time (there
are at most two answers).

To find the other disks that intersect s, the following structure is used. Let T
be a standard conjugation tree on the centers of the disks to be stored, such that
every center of a disk is stored with one leaf. Every internal node corresponds to a
set of centers that lie in the subtree rooted at this node. Choose a small constant
€ > 0. For every internal node § on the level i - I_%elog n|, 1 < i< [2/e], associate
with 6 a conjugation tree for the disjoint disks to which & corresponds, as described
above. This main tree is used to extract the disks with their center in the strip R.
The other internal nodes have no associated structure. (This technique of building
hierarchical structures is based on ideas of Dobkin and Edelsbrunner [6].)

A query with the line segment s = gig; is performed as follows. Let l; and [, be
the lines perpendicular to 8, containing ¢, and ¢, respectively. Search with I/, and Iy,
by recursively continuing the search in the children of a node § if the corresponding
region is intersected by I; or l,. If the region associated with & lies completely on
one side of both I, and I;, then return from recursion. If the region lies completely
between !; and [;, then descend from § to the first (highest) level in the tree where

associated structures are stored. Search in these associated structures with the line
containing s as the query line.

Theorem 2 Let D be a set of n non-intersecting disks in the plane. D can be stored
in a linear size data structure, such that all k disks in D intersecting a query line
segment can be reported in O(nP+¢ + k) time, for any e > 0.

Proof. The tree described above, together with the point location structure, yields
the bounds. The point location structure takes care of the disks containing an
endpoint of the query segment, and the tree T is used to report the other disks. In
the main tree all disks are selected for which the center lies between [, and l;. For
these disks, searching with the line segment or the line containing this segment gives
the same answers (cf. Lemma 3).

To prove the space bound, observe that every | 3€log n) level of the tree stores
each disk in exactly one associated structure. Consequently, the total space require-
ment is O(2n/e) = O(n).

The query with the lines /; and I, on the main tree select O(nf) - O(2lzelogn]) =
O(nf*</?) nodes of the main tree in which the associated structure is searched.
The total query time (excluding the number of answers) Q(n) satisfies Q(n) <
Q(n/2) + Q(n/4) + O(nP+</2) = O(nP+<) (cf. Lemma 1), for any € > 0. O

4 Intersection queries in intersecting disks

We will now generalize our algorithms to sets of arbitrary (possibly intersecting)
disks. Again we will first consider the case of queries with a line and then extend it
to line segments. The solutions we obtain are based on a quite different approach.
We will use transformations that map disks to points in three-dimensional space,
and then apply known techniques to answer the query. We are given a set D of
n possibly intersecting disks in the plane, and we want to report all intersections
between D and a query line /.

Let ¢ be a function that maps a disk D in the plane with center (a, b) and radius
r to a point in IR3 such that

¢(D) = (a,b,r).

Let D* = {¢(D)| D € D} be the set of n points in IR®. For a given line ! define the
wedge W as follows. If [is the vertical line z = ¢, then

Wi = {(z,y,2) |z 2 |z — [}.
On the other hand, if [is the line y = mz + ¢, then

mz—y+c}
vm2+1 '

Lemma 4 A disk D intersects a line | if and only if D* € W,.

w,={(z,y,z)|zz

Proof. Follows from elementary geometry. O

Thus the problem reduces to reporting the points of D* lying inside the wedge
Wi. Chazelle and Welzl [4] have shown that a given set of n points in IR® can be
preprocessed into a data structure of size O(nlogn) so that all k points lying inside
a query tetrahedron can be reported in time O(n?/3 log?n + k). Clearly, the wegde
is a special case of a tetrahedron. Therefore we have

Theorem 3 Given a set D of n disks in the plane, one can preprocess D into a

data structure of size O(nlogn), so that given a query line | one can report all k
disks intersecting | in time O(n*/*log?n + k).

Let us now consider queries with a line segment s. Using Lemma 3 we can again
split the problem into two subproblems: (i) find the disks that contain an endpoint
of s, and (ii) find the disks with center in the strip R perpendicular to s, which
intersect the line ! containing s. To solve the second subproblem, we transform the
problem to IR?, and let the line segment s lie in the zy-plane. Let H, be the vertical
slab in IR? that contains the segment s, and is bounded by vertical planes normal
to s and passing through the endpoints of s. Define A, = W;n H,. It is easy to see
that a disk D whose center lies in R intersects s if and only if o(D) € A,. Since A,

8

is bounded by four planes, we can use Chazelle and Welzl’s result [4] to report all
k1 points of D* N A, in time O(n?/?log? n + k;) using O(nlogn) space.

Next we describe how to solve the first subproblem: given a set D of disks,
store them so that for a query point p, the disks of D containing p can be reported
efficiently. Let ¢’ be a function that maps a disk D with center (a,b) and radius r
to the point (a,b,a? + b2 — r?) in R®. Let D = {¢/'(D)|D € D}. Also, map a point
p = (c,d) to the plane § : 2z = 2cz + 2dy — (c? + d2). Now the following lemma holds:

Lemma 5 A point p € D if and only if the point ¢'(D) lies below the plane p.

Using the results of Chazelle and Welzl [4], we obtain a data structure of size
O(nlogn) that reports, in time O(n2/3log?n + k), all k, points of D lying below a
query plane. Combining this with the result for subproblem (ii) we obtain

Theorem 4 Given a set D of n (possibly intersecting) disks in the plane, we can
construct a data structure of O(nlogn) size, such that for a query segment s, all k
disks of D intersecting s can be reported in time O(n?/3log?n + k).

5 Ray shooting in a set of disks

A ray shooting query in a set D of disks asks for the first disk hit by a ray in a given
direction d, emanating from a given point ¢. Such a query is well-defined only when
the starting point ¢ does not lie in any disk of D. So in the sequel we assume that
the starting point ¢ for the shooting query lies outside the union of the disks. This
can easily be tested in O(logn) time by building a point location structure on the
union of the disks, which has linear size (see [8], [12]). We use the following lemma
to simplify the problem:

Lemma 6 Given a set D of (possibly intersecting) disks, and a ray shooting query
with point g and direction d, then the first disk that is hit (i.e., the answer to the
query) has its center in the halfplane H, which is bounded by the line through q and
perpendicular to d, and contains the query ray.

Proof. Immediate by Lemma. 3.]

To solve the ray shooting problem, we construct a two-level data structure. The
first level is used to extract the disks that have their centers in the correct halfplane.
The second level is used to determine the first disk hit when we shoot in these disks
from ‘minus infinity’ along the line containing the query ray.

As in the previous sections, we build a conjugation tree T on the set of centers
of the disks, and every node § on a level i - [-lielog n) has an associated structure,
to be described below, for shooting from infinity in the disks whose centers lie in
the subtree rooted at 6. To perform a shooting query we first determine the correct

nodes whose associated structures contain the disks with center in the halfplane H
and perform a shooting query from infinity in the associated structures.

Shooting from infinity asks for the first disk intersected by a directed line I. To
solve this problem we store all disks in a conjugation tree as described in Section
2, that is, we construct a conjugation tree on the set of centers and a disk D is
associated with the highest node § where I intersects D. Let D5 be the set of disks
associated with the node §. We now visit each node § whose region intersects ! and,
using the associated structure Ss, determine the first disk of Djs hit by I.

It remains to describe the structures S5. We will show that Ss requires linear
storage and answers a query in time O(log?n). A similar analysis as in Section 3
will show that this leads to a linear size data structure with query time of O(nB+e),
for any € > 0.

All disks in Dj intersect l;. Without loss of generality we assume that I5 is
horizontal. Let I be the query line. Assume that [intersects /5 in a point p and
that the starting point ¢ of the ray lies above I;. (The special case that | does not
intersect I; can easily be dealt with.) Now there are two cases: either ! intersects a
disk above l5 or not. To determine the first case, let C be the outer-contour of the
set of disks plus the halfplane below /5. C is a (infinite) polygon with circular arcs
and straight line segments (also called a splinegon) of linear complexity. See Figure
2 for an example. Shooting inside a splinegon can be done relatively easy in time
O(log® n) using O(nlogn) storage by adapting the shooting algorithm for simple
polygons by Chazelle and Guibas [2]. Using the special nature of the splinegon
involved, the storage can be reduced to linear. Details are left to the reader. If we
hit a circle arc, the corresponding disk is the required answer. On the other hand,
if we hit I (in point p), then ! does not intersect any disk of D; above Is.

)

Figure 2: The top splinegon.

Note that the contour of the disks below /5 can be viewed as a number of ‘pockets’.
The pockets are the connected components of the boundary of the outside of the
union of the disks, intersected by the halfplane I;. See Figure 3. Each of these
pockets is a splinegon itself. Each of these splinegons we preprocess for shooting.
We first determine the pocket p belongs to. This can easily be done in time O(logn)

10

by binary search on the line Is. Next we shoot from P in the corresponding splinegon.
In this way we find in time O(log? n) either an answer or know that no answer exists
(when we don’t hit anything). Because the total size of all the splinegons is linear
(because the contour of a set of circles has linear size) S5 uses linear storage.

pocket

Figure 3: The pockets.

Using the special properties of the splinegons obtained the shooting can in fact
be done in time O(logn). Because this does not influence the total time bound we
did not describe this technique. Putting all of it together, using a similar analysis
as in Section 3 we conclude:

Theorem 5 Given a set D of n (possibly intersecting) disks in the plane, it can be
stored in a data structure of linear size, such that the first disk hit by a query ray
can be determined in O(nf+) time, for any € > 0.

6 Conclusions

In this paper we have presented some new data structures for storing sets of disks,
which allow for efficient intersection queries. For sets of disjoint disks we obtained
structures that use only linear storage and answer a query in time O(nP*e + k),
where 8 = log,(1 + +/5) — 1, k is the number of answers, and € > 0 an arbitrarily
small positive constant. For arbitrary disks, we constructed data structures of size
O(nlog n) with query time O(n?/3log? n + k). We also presented efficient algorithms
for shooting queries.

The query time of algorithms described in Section 3 and Section 5 can in fact
be improved. To this end we replace the conjugation tree by a structure based
on e-nets as described by Haussler and Welzl [11]. This structure is also based on
convex decomposition of the plane. Structures can be associated to internal nodes
in a similar way as described above, although the details are a bit more involved.

11

This improves all time bounds to O(n?/3+¢) rather than O(nP*) without increasing
the space requirement.

In the preceding sections we have never mentioned preprocessing time bounds
for the data structures and only talked about query time and amount of storage
required. All structures however can be constructed deterministically in polynomial
time.

Many directions for further research remain open. At the moment we are working
on improved data structures based on spanning trees with low stabbing number
(see e.g. [1]). Query times in such structures lie close to O(y/n) but the storage
consumption is normally a bit higher. An important open problem concerns the
extension to more general objects than disks. Although some of the results presented
can be extended to more general objects (in particular the intersection queries with
lines), most results depend on the fact that we deal with disks. Structures for
intersection queries that store more general objects are still unavailable. Another
direction for further research involves queries with curved objects, e.g. circle arcs.

References

(1] Agarwal, P.K., Ray shooting and other applications of spanning trees with low stab-
bing number, Proc. 5% ann. symp. on Comp. Geometry (1989), pp. 315-325.

[2] Chazelle, B., and L.J. Guibas, Visibility and intersection problems in plane geometry,
Proc. 1%t ann. symp. on Comp. Geometry (1985), pp. 135-146.

[3] Chazelle, B., and L.J. Guibas, Fractional cascading: I. A data structuring technique,
Algorithmica 1 (1986), pp. 133-162.

[4] Chazelle, B., and E. Welzl, Quasi-optimal range searching in spaces of finite VC-
dimension, Discr. & Comp. Geometry 4 (1989), pp. 467-489.

[5] Cole, R., Searching and storing similar lists, J. of Algorithms 7 (1986), pp. 202-220.

[6] Dobkin, D.P., and H. Edelsbrunner, Space searching for intersecting objects, J. of
Algorithms 8 (1987), pp. 348-361.

[7] Edelsbrunner, H., Algorithms in Combinatorial Geomeiry, Springer-Verlag, Berlin,
1987.

[8] Edelsbrunner, H., L.J. Guibas, and J. Stolfi, Optimal point location in a monotone
subdivision, STAM J. Comput. 15 (1986), pp. 317-340.

[9] Edelsbrunner, H., and E. Welzl, Halfplanar range search in linear space and O(n0-695)
query time, Inf. Proc. Lett. 23 (1986), pp. 289-293.

[10] Guibas, L., M. Overmars, and M. Sharir, Ray shooting, implicit point location, and

related queries in arrangements of segments, Techn. Rep. No. 433, New York Univer-
sity, 1989.

12

[11] Haussler, D., and E. Welzl, e-nets and simplex range queries, Discr. & Comp. Ge-
ometry 2 (1987), pp. 127-151.

(12] Kedem, K., R. Livne, J. Pach, and M. Sharir, On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles, Discr. & Comp. Ge-
ometry 1 (1986), 59-71.

(13] Overmars, M.H., H. Schipper, and M. Sharir, Storing line segments in partition trees,
BIT, to appear.

[14] Sharir, M., Efficient algorithm for reporting disc stabbing by points in the plane,
preliminary note, 1989.

13

