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Abstract: The rapid motorization of cities has led to the increasingly serious contradiction between
supply and demand of road resources, and intersections have become the main bottleneck of traffic
congestion. In general, capacity and delay are often used as indicators to improve intersection
efficiency, but auxiliary indicators such as vehicle emissions that contribute to sustainable traffic
development also need to be considered. It is necessary to evaluate intersection traffic efficiency
through multiple measures to reflect different aspects of traffic, and these measures may conflict with
each other. Therefore, this paper studies a multi-objective urban traffic signal timing problem, which
requires a reasonable signal timing parameter under a given traffic flow condition, to better take into
account the traffic capacity, delay and exhaust emission index of the intersection. Firstly, based on the
traffic flow as the basic data, combined with the traffic flow description theory and exhaust emission
estimation rules, a multi-objective model of signal timing problem is established. Secondly, the target
model is solved and tested by the genetic algorithm of non-dominated sorting framework. It is found
that the Pareto solution set of traffic indicators obtained by NSGA-III has a larger domain. Finally,
the search mechanism of evolutionary algorithm is essentially unconstrained, while the actual traffic
signal timing problem is constrained by traffic environment. In order to obtain a better signal timing
scheme, this paper introduces the method of combining hybrid constraint strategy and NSGA-III
framework, abbreviated as HCNSGA-III. The simulation experiment was carried out based on the
same target model. The simulated results were compared with the actual scheme and the timing
scheme obtained in recent research. The results show that the indices of traffic capacity, delay and
exhaust emission obtained by the proposed method have more obvious advantages.

Keywords: intersection; signal timing; multi-objective; evolutionary algorithm; NSGA-III

1. Introduction

With the quick development of science techniques and industrial society in China, the
city population scale and city ground extend continuously. Produce and life are highly
concentrated and cities develop quickly. However, with the rapid process of motorization,
the demand for urban transportation is increasing. The original balance between supply
and demand of urban traffic is broken, leading to worsening urban traffic congestion [1].
According to the United Nations Department of Economic and Social Affairs (DESA), more
than 68% of the world’s population is expected to move to urban city areas by 2050 [2].
Because the feasibility to newly build or expand roads has become less and less, it is more
important to improve the management and control of the traffic [3]. Transportation is
one of the main contributors to global energy consumption, accounting for 29% of global
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energy consumption and 24% of global carbon dioxide emissions [4]. Low-speed driving
and frequent start-up and parking increase energy consumption, carbon emission and
pollutant emission. The frequent occurrence of traffic congestion is so damaging both to
mobility and environment. It is expected that emissions will increase significantly in the
next few years, further exacerbating climate change unless properly addressed [5]. In this
situation, managing and mitigating traffic congestion is one of the great challenges for
urban management [6]. Therefore, it is urgent to study intersection signal timing, improve
intersection efficiency, make traffic infrastructure more convenient for users and make the
environment sustainable.

According to the current situation of urban traffic control system, urban traffic control
system can be divided into fixed time control, actuated control and adaptive signal con-
trol [7]. At present, most signalized intersections in developing countries such as China [8]
and developed countries such as the United States [9] are equipped with fixed-time con-
trollers and semi-actuated or actuated controllers. Usually, the effectiveness of the urban
traffic control system depends on the performance of traffic dynamic evolution prediction
model, traffic efficiency index model and its timing optimization method. Because the
traffic demand is highly random, the intersection traffic signal timing problem (ITSTP) is a
challenging and complex nonlinear problem for engineers and researchers [10]. Generally,
the higher the accuracy of the model, the more complex the structure, and the more difficult
it is to solve the optimal timing parameters. For the optimization methods, we distinguish
and discuss the gradient based deterministic method and heuristic method. Since there
are a large number of local optima in the signal timing solution space of ITSTP, the deter-
ministic method is helpful to deeply understand the problem, but it is generally difficult
to obtain an available solution in an affordable time [11]. Although heuristic methods
such as genetic algorithm and fuzzy logic cannot provide the optimal solution, they are
very useful for complex optimization problems when deterministic methods are difficult to
calculate. Jin et al. [12] and Vogel et al. [13] developed a traffic light controller at isolated
traffic intersections based on fuzzy logic. The results in terms of reducing congestion
and travel time are very encouraging. However, according to [14,15], the traffic controller
based on fuzzy logic and machine learning is not economically feasible and requires a
lot of investment in configuration and maintenance. Evolutionary algorithms (EAs) are
stochastic search methods that mimic the natural biological evolution and/or the social
behavior of species [16]. The evolutionary algorithm has three main links: population
maintenance in parallel optimization; each individual has a gene expression or coding,
and the corresponding fitness value; each individual in the population can simulate gene
changes through a series of different operations [17].

Traffic signal timing usually needs to deal with multiple conflicting targets. In order to
enable decision makers to find the best solution, it is often inevitable to optimize multiple
objectives at the same time. Many EAs are adopted to promote the smooth and efficient
traffic operation at intersections. In the second part, we sort out and analyze the relevant
research on traffic signal timing in recent years. Although previous studies considered mul-
tiple traffic efficiency indicators, most of them took traffic efficiency indicators as a single
objective or converted multiple efficiency indicators into a single objective by weighting.
The research on the efficiency improvement of intersection from the perspective of multi-
objective has gradually become a research hotspot. Although for the traffic optimization
problem, it is best to consider multiple objectives of multiple intersections at the same time,
the multi-objective optimization problem of isolated intersections is the basis.

In order to optimize multiple objectives in ITSTD, it is usually necessary to establish
a mathematical model of intersection traffic efficiency index to connect the optimization
objectives with decision variables. After correctly expressing the problem and determining
the decision variables, it is very important to design a multi-objective algorithm with good
performance [18].The main contributions of this study are summarized in two aspects:
(1) the total delay, vehicle emission and capacity are used as traffic efficiency indicators
to establish a model, and the performance of common non dominated sorting algorithms
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NSGA-III and NSGA-II for solving multi-objective optimization problems in traffic signal
timing is compared. It is found that NSGA-III has potential in diversity. (2) Aiming at
the problem that the multi-objective optimization algorithm is easy to fall into the local
optimum or the diversity becomes worse, and then the convergence becomes worse when
solving the actual traffic signal timing problem, by combining the hybrid constraint strategy,
the HCNSGA-III algorithm is proposed to avoid falling into the local optimum or improve
the diversity to ensure the convergence. By comparing the algorithm with the recent traffic
signal timing methods, the results show that the algorithm has better competitiveness.
The rest of this paper is structured as follows. Section 2 provides a detailed literature
review on traffic signal timing optimization. Section 3 describes the study area and its
data, and introduces the established model of optimization objectives, including constraint
settings. Section 4 introduces the basic concepts of NSGA-III and constraint processing, and
the basic steps of their combination. Section 5 details the results and discussion. Section 6
summarizes the main conclusions of this study and prospects for future research.

2. Related Work

Since the introduction of the simple automatic signal controller, the traffic signal con-
trol (TSC) System has been continuously improved to solve the problem of improving the
level of TSC. In recent research, Jamal et al. selected average vehicle delay as the main
performance index of the intersection and used GA and differential evolution (DE) algo-
rithm to optimize the signal timing scheme to improve the service level of the intersection.
The results show that although the DE converges to the objective function much faster, GA
is better than DE in the quality of solution (i.e., minimum vehicle delay) [19]. However,
as McKenney and White mentioned, there is no single absolutely dominant method for
the study of ITSTP [20]. Table 1 provides a comparative summary of applying EAs to
ITSTP, including problem formulation and related solutions. It is hoped that it will be
helpful for researchers to understand the research progress of ITSTP and better understand
our work. Dezani et al. used GA to find the best route of vehicles at the same time and
optimize the setting of green light interval of traffic signal in real time [21]. Jung et al.
developed an ecological traffic signal system, in which a two-level optimization model was
proposed [22]. The ecological signal operation layer is responsible for optimizing the total
delay by manipulating the timing plan. The lower-level ecological driving algorithm layer
optimizes the total fuel consumption by controlling the vehicle speed and acceleration.
Li et al. used the green time and offset between intersections as optimization variables to
control the 4-phase 3-intersections network and used the improved GA with conditional
optimal retention strategy and adaptive mutation strategy to solve it. The experimental
results show that compared with the standard genetic algorithm, the search time required
by the algorithm is reduced by 38% and the number of iterations is reduced by 1/3 [23].

Particle swarm optimization (PSO) is a well-known algorithm, which can quickly
converge to the appropriate solution [24]. In reference [25], PSO is used to find the optimal
cycle plan (OCP) of all traffic lights in an urban area. The OCP is encoded as an integer
vector, where each element represents the phase duration of a state of the traffic light. The
fitness function is used to maximize the number of vehicles arriving at the destination and
minimize the global travel time of all vehicles in the simulation time. The algorithm is
applied to two large and heterogeneous metropolitan areas in Spain. The results show
that compared with the deterministic algorithm, the number of vehicles arriving at the
destination on time and travel time are increased by 0.13% and 15.7%, respectively. In
Ref. [26], the authors extended the same work by comparing with the standard PSO and
DE, in which their algorithm produced better results statistically.

However, most of the previous studies deal with the traffic signal control optimization
problem from the perspective of single objective or double objective, without considering
multiple objectives at the same time. There are studies on multi-objective optimization
problems. In Refs. [27,28], the signal control multi-objective optimization problem is
processed by using the weighted sum method. Its advantage is that it is simple to realize,
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only the scaled value is used to represent the original objective, and it is relatively easy
to solve. The defect is that they are directly added by scaling and then weighting, which
has a certain loss and omission of the information of the original target. In addition, the
scaling process needs to know the target information in advance, such as maximum value,
minimum value or average value, which is often difficult to determine. It is also difficult
to know the user’s preference for different goals in advance. Even when the degree of
preference is known, how to accurately formulate the weight is still a thorny problem, and
it is difficult to ensure the Pareto solution set [29].

In reality, TST often needs to consider some different optimization objectives, such as
vehicle delay, driving time, stops, queue length, fuel consumption, exhaust emission, etc.,
intended to find as many near optimal signal timing parameters as possible, which is related
to a set of Pareto optimal solutions. NSGA-II [30] has better performance than other multi-
objective evolutionary algorithms [31]. Among EAs, only GA has been successfully applied
to commercial traffic signal control system [32]. NSGA-II is used in Ref. [33] to optimize
supersaturated traffic signal intersections, with the goal of maximizing throughput and
minimizing queue length. The simulation results show that compared with the commonly
used signal timing optimization software Synchro, the timing scheme has good efficiency
under the condition of supersaturation. In Ref. [34], a multi-objective optimization method
is proposed by using Pareto optimization combined with PSO algorithm to optimize per
capita delay, vehicle emission and intersection capacity. The algorithm is applied to a
simple four-way intersection in Jinzhou, China. Compared with the solution generated by
NSGA-II, the generated Pareto frontier solution has better consistency and diversity. In
addition, under the same hardware environment, the calculation time of the algorithm is
better than that of NSGA-II. When solving multi-objective problems with a large number
of objectives, the increase in the number of objectives makes the number of non-dominated
solution individuals in the population increase exponentially, which seriously weakens the
ability of selection and search based on Pareto ranking, and the cost of measuring diversity
becomes higher [35].

Table 1. Reported EAs approaches for the ITSTP.

.. . Optimized Problem Solution
Reference  Decision Variable(s) Objective(s) Formulation Method
Vehicle routes. Time taken to
[21] The green time for . . Network-SO Integer GA
- dispatch vehicles.
each traffic lights.
[22] Length of current Total delay Isolated-SO Binary GA
green spit.
The green light time.
[23] Phase differences. The delay Network-SO Integer GA
Number of vehicles
[25,26] Optimized cycle reachmg ‘thelr Network-SO Integer PSO
programs destinations.
Global trip time.
Green time of each Emissions. Network-MO
[27] hase Total delay. as SO Integer GA
P ' Number of stops. using weights
oD mul’Flphers. Network capacity. Network-MO as Continuous
[28] Cycle times. . L . . .
- Vehicles emissions. SO using weights ~ and integer
Stage green timings.
The green time for Throughput. Real-coded
(331 each phase. Queue length. Isolated-MO NSGA-II
Sienal cvcle Per capita delay.
[34] & ycle. Vehicle emission. Isolated-MO Integer-IPSO

Green time.

Intersection capacity
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The framework of NSGA-III [36] is basically the same as that of NSGA-IL. It also uses
fast nondominated sorting to classify population individuals into different nondominated
frontiers. The difference is that for environmental selection in the critical layer, NSGA-II
uses crowding comparison operation to maintain diversity. The biggest change of NSGA-III
is to change the crowding distance to the reference point method. The well distributed
reference points are used to maintain the diversity of the population in the selection process.
Based on the optimization objectives in the literature report, by paying attention to traffic
and environmental problems to further solve the TST problem, we need to adopt more
powerful optimization methods to balance diversity and convergence. In the fields of
intelligent control and traffic optimization, many conditional constraints (constraints) are
often encountered which bring great challenges to the solution of the problem [37,38].
However, the essence of EA is an unconstrained optimization technology. In order to better
solve the complex constrained traffic signal optimization problem, a certain constraint
processing mechanism must be combined. In recent years, researchers have proposed many
constraint processing methods that combine constraints with evolutionary algorithms.
According to the constraint processing mechanism in constraint optimization evolutionary
algorithms, they can be divided into six categories [39] (penalty function method, feasibility
rule, random sorting method, € constraint processing method, multi-objective optimization
method and hybrid method). It may be feasible to design a different constraint processing
mechanism for different search states and adaptively select different constraint processing
technologies [40,41].

3. Study Scenario and Data Description

In order to verify the effectiveness of this method in improving traffic efficiency
at intersections, intersections with high-traffic pressure should be selected for testing.
According to the survey, the total length of main roads and secondary roads in the main
urban area of Jinzhou City (Liaoning Province, China) is 118.7 km, and the total length of
branch road network is 110 km. The main urban area covers an area of 74.4 km?. According
to the calculation, the density of trunk road network is 1.60 km/ km? and that of branch
road network is 1.48 km/km?. There is a large gap between the current road network
density in the main urban area of Jinzhou City and the reasonable density recommended in
the specification, especially the branch network density, which is still 1.52 km/km? lower
than the offline recommended in the specification. The intersection used in this study is
formed by the intersection of Shifu Road, an east-west trunk road, and Chengdu Street, a
south-north secondary trunk road. Shifu Road is one of the main entrance and exit trunk
roads in the urban area, and Chengdu Street is one of the main streets in the urban area.
This intersection is a typical intersection in Jinzhou City. Its traffic efficiency and safety
play an important role in whether the traffic flow in the suburban corridor is smooth. In
addition, there are a large number of houses, businesses, schools and hospitals around the
intersection. Therefore, it is necessary to evaluate the environment and optimize the signal
control of the intersection.

In addition, according to the survey of measured signal period, the signal control of
the intersection is 4-phase timing. Each phase of the intersection consists of two opposite
lanes, namely east-west straight, east-west left turn, north-south straight and north-south
left turn. Among them, right turning vehicles are not controlled by a signal lamp. The
phase sequence and corresponding traffic flow are shown in Figure 1. The traffic flow in
each direction is framed with boxes, and the corresponding number of lanes is marked with
brackets. In the original timing scheme, the green light time of east-west straight travel
phase is 34 s, the green light time of east-west left turn phase is 30 s, the green light time of
north-south straight travel phase is 41 s, the green light time of North-South left turn phase
is 36 s, and the duration of the whole signal cycle is 161 s. The minimum green light time
of the phase is 10 s, so that pedestrians have enough time to cross the road. The minimum
cycle duration is 60 s and the maximum cycle duration is 200 s. The phase saturation of
motor vehicles is set at 1200 pcu/h. The objective of exhaust emission is considered in this
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study. The emission factor of standard car exhaust is 5 g/(pcu-km), the standard car idle
emission factor is 45 g/(pcu-h).
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Figure 1. Sequence of four signal stages and its traffic flow diagram.

4. Methodology

Due to the limitation of traffic environment, traffic signal timing problem usually
belongs to constrained multi-objective optimization problems (CMOPs). CMOP can be
expressed by mathematical formula as:

minimize [f(x) = (fi(x), fa(x),- -+, fn(x))]
subject to gj(x) < 0,i = 1,2,--- ,9

hi(x) =0,i=12,---,p

wherex = (x1,x2,-+ ,xp) € X

x = {x|ly < x <y ek=12--,n
1 = (l1,lz,-~~,ln), u = (ul,uz,--- ,un)

M

where f(x) is the output/objective function to be optimized, g;(x) represents the inequality
constraint set and /1;(x) represents the equality constraint. A constraint is a restriction that a
variable can change. The variable (x1,xp,- - - ,x;) € R" (solution space) is a control variable
or a decision variable. By convention, optimization means a minimization problem, but it
can also be designed as a maximization problem by negating the symbol of the objective
function. The above optimization problem can be regarded as a decision problem, which
involves finding the best vector of all control variables from the solution space.

In this study, NSGA-III algorithm and ¢ constraint optimization technology are used to
take the total vehicle delay, capacity and exhaust emission of isolated signalized intersection
as the objective function, and take multiple variables (i.e., traffic demand, existing phase
scheme, split, saturated flow, etc.) as the input variables, which meet the traffic environ-
ment constraints. The green time of each signal phase and signal cycle length are decision
variables or control variables. The main objective is to meet the traffic demand to the great-
est extent and reduce pollution by selecting the best possible combination of signal timing
plans. The following sections briefly summarize the objective functions and constraints
to be optimized and introduce the principles of NSGA-III algorithm and € constrained
optimization technology, as well as the optimization steps for the current problems.
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4.1. Construction of Optimization Objective Model

A multi-objective programming model is established based on the three objectives of
delay, traffic capacity and exhaust emission. The objective function can be expressed as:

f(x) = min [D(x), —CAP (x), E(x)] 2)

where: D(x) is the total delay, CAP(x) is the traffic capacity and E(x) is the exhaust
emission. The negative expression symbol before CAP(x) does not mean that the value of
CAP(x) is negative but indicates the Pareto relationship between CAP(x) and the other
two goals.

1.  Delay at signalized intersection

This work adopts the total delay as the optimization objective of intersection delay,
which can be written as follows:

D =Y VD, ()
i
where D; is the average delay of each vehicle in the ith phase. ARRB model is a delay

model of signalized intersection suitable for variable demand conditions [42]. D; can be
written as follows according to this framework:

g)?
— ot
Nc(l C] N Njjixij

D; = 7%.+Z - 4)

re(i-g) T

Siji 2 12(xj—x;
Nyj={ [(X:‘f—l)ﬂ/(ﬂj—l) +(si-]-gl-]0)]fxif>xifo 5)
0, Xij < Xijo
qij

- 6
=5 (6)
xijo = 0.67 + 6’60’ 7)

where D; is the average delay of vehicles in ith phase, V; is the number of vehicles in ith
phase, c is the signal cycle length, g; is the effective green time in ith phase, g;; is the traffic
volume of jth entrance lane in ith phase, S;; is the lane saturation flow of entrance jth lane
in ith phase, N;; represents the number of vehicles stranded in unit time of jth entrance lane
in ith phase and x;; is the traffic saturation flow rate of the jth entrance lane in the ith phase.

2. Traffic capacity

The traffic capacity of signalized intersection is estimated according to each entrance
lane of the intersection. The capacity of an entrance lane in one direction is the sum of the
capacity of each lane of the entrance lane. The capacity of an entrance lane is multiplied
by the green signal ratio of its signal phase based on the saturated flow rate of the lane.
Expressed as:

CAP = Y Sihi = LSy ( % ) ®)
] ]
CAP = ZCAPi )

where: CAP, is the capacity of ith entrance lane and A; is the green signal ratio of the signal
phase of ith entry lane.

3. Vehicle emissions

Vehicle emissions at urban road intersections have attracted more attention from
traffic management departments. It is reported that the fuel consumption and emissions of



Sustainability 2022, 14, 1506

8 of 16

vehicles near intersections are usually higher than those of other sections [43,44]. Research
shows that by improving and optimizing the traffic management system, fuel emissions can
be significantly reduced [45,46]. Over the years, the estimation models of fuel consumption
and emissions have developed greatly. From the perspective of signal control optimization,
the following mathematical formula has been widely used as the objective function of
vehicle emission [47,48]. Carbon monoxide accounts for a large proportion of vehicle
emissions, and its emissions are usually calculated using the following relationship:

N
1
Eco =Y [ EFF x g x Lo+ 5o (EFI™Y x g, D-)] 10
CcO Zl:[ X i X 0+3600 X i X Uj ( )

In the formula, Ecp represents the emission of carbon monoxide, and the meanings
of D; and g; are the same as those mentioned in Equation (4). EF” CU is the unit emission
coefficient converted to the driving state of standard vehicle, with a value of 5 g/(pcu-km),
and EFIPY is the unit emission coefficient converted to the idling state of standard vehicle,

with a value of 45 g/(pch-h). Ly is the length of the entrance lane.
4. Constraint condition

Signal cycle length. If the signal period is too short, it will affect the vehicles passing
through the intersection. If the period is too long, it will increase the delay of vehicles.
Considering the rationality of signal timing, the signal cycle time is limited to a range.
Constraints can be written as:

Crin < C < Cinax (11)

where C,,;, is the shortest signal cycle time and C,,y is the longest signal cycle time.

Generally speaking, the minimum green light time is the shortest passage time of
pedestrians at the intersection. The minimum green light time depends on the intersection
design and pedestrian walking speed. The minimum value is given here, which can be
expressed as:

8i > Si—min (12)

Signal cycle time limit. The sum of green time g; and loss time L; for each phase shall
be equal to the cycle time. The formula is expressed as:

Y(gi+L)=C (13)

1

4.2. NSGA-III Algorithm Using Hybrid Constraint Mechanism
1.  Multi-objective non-dominated sorting genetic algorithm (NSGA-III)

NSGA-III is a genetic algorithm based on reference points, which are predefined
according to Das [49], and the pseudo code of its basic framework is shown in Algorithm 1.
NSGA-III randomly generates population P; with size N from the search space and gener-
ates offspring population Q; by performing crossover, mutation and selection operations
on individuals of parent population P;. Assuming that this is the tth iteration of the
population, a new population U (U; = Py U Q) is obtained by mixing P; and Q, and
the size of U; is 2N. Then, the individual solutions in U; are nondominated sorted and
divided into different nondominated levels (Fy, Fy, ..., Fj, ..., Fp). Starting from Fj, a
new species group S; is formed by moving one level at a time until |S;| > N for the
first time, and | S; | is the number of solutions in S;. Suppose the level at this time is F,
St=(F1 UF, U... UF). Next, the solution is selected from the population S; to generate
the next generation parent population Py,q. If |S¢| = N, S¢ is directly regarded as the next
generation parent population Py.q. Otherwise, it is necessary to combine the I level and
select (N — |F{ UFp U ... UF;_1|) solutions according to the association between each
solution and the predefined reference point to keep the size of the original population still
N. This method first finds the ideal point x* of population S;. (x* = (x], x5, ..., x}, ... ), x*
is the minimum value of the ith target among all individuals of population Si). Then, it
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standardizes the overall and reference points. In this case, the ideal point is a zero vector,
and the reference line is a line connecting the ideal point and the reference point. We need
to calculate the vertical distance from each solution in S; to each reference line, and then
connect the solution to the reference point with the shortest vertical distance. On this basis,
a new niche maintenance operation is used to select individuals in F;. Niche count p; is
the number of individual solutions connected to the jth reference point in population S;.
The basic goal of adopting niche technology here is to improve the diversity of NSGA-III.
Therefore, it is first necessary to find the reference point i with the lowest niche count value
p;. Then check whether there is an individual connected to the reference point i in F;. If an
individual is connected to the reference point i, select an individual as a member of Py,
according to the value of p;. If there is no individual connected to the reference point, the
reference point will not be considered in this iteration, and the niche maintenance operation
will be repeated with another reference point with the lowest niche count value until | Py, |

= N. For other details, please refer to Deb’s literature [36].

Algorithm 1 General Framework of NSGA-III

1  Generate an initial population Py (t = 0, population size = N)

2 while the Stop Condition is not Satisfied do

3 Q¢ = Tournament Selection Procedure (P;)

4 Ut=Pt UQt (size of Ut=2N)

5 Performing nondominated sorting on Uy to form the different non-domination levels
(F1,Fp, ... ,F;, ... ,Fn)

6 S5i=0i=1

7 while |S;| <N do

8 StZStUFi;i=i+1;

9 end while

10 if 1S¢| =N then

11 S;is directly regarded as the next generation parent population Py

12 end if

13 if IS¢ > N then

14 select (N — |Ff UF, U... UF;_11) from F; to Py, according to the reference points found
according to niche technology

15 end if

16 end while

17 return non-dominated solutions P;,1

2. Hybrid constraint mechanism

The problems in traffic optimization are usually constrained by traffic environment,
which belong to constrained optimization problems. The main idea of the multi-objective
optimization method is to transform the original m-objective optimization problem with
constraints into an optimization problem with (1 + 1) objectives. The (m + 1)th objective
function is usually referred to as the constraint default function, which is defined as the
average of the normalized violations of all constraints:

o) — Ly Gily)
) qi_zlggpg{cxx)} (14)

where P, represents the initial population and G;(x) is the constraint violation degree of
the ith constraint of the decision variable x, and its formula is:

Gi(x) = max {g;(x),0},i = 1,2,...,q. (15)

where g;(x) is the ith constraint. The multi-objective optimization method avoids the
imbalance between the objective function and constraints, but in fact, the optimal solution
of most constrained optimization problems is located on the boundary of the feasible region.
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Therefore, we should make full use of not only the feasible solution, but also the infeasible
solution [50]. The € constraint processing method makes use of the information of the
infeasible solution with better objective function value in the infeasible region and has
better convergence performance. The constraints g;(x) are restated as follows:

CcP
gi(x) < &) = 0 (1%) b =0,12,...,T. (16)

where ¢ is the number of iterations, 850) > 81(-1) > > SET) =0, sgt) decreases gradually
with the increase in the number of iterations. The value of CP can usually be taken between

two and ten. The greater the CP value, the faster the sgt) value decreases. 850) is the
maximum value of constraint violation degree of all individuals in the population. In this

process, it is allowed to retain some infeasible solutions. When 8$T) = 0, it is equivalent
to the original constraints to find a better feasible solution. The flow chart of using this

mechanism to improve NSGA-III algorithm is shown in Figure 2:

Initial

constraint

boundary
(¢=0)

&

Primary
population

onvergence
condition?

Y
Pareto Set

Offspring S
»| population !
9, LJ

tournament
selection

Pruned population|with
constraint violation degree

Figure 2. Flow chart of NSGA-III with hybrid constraint mechanism.

Initialize the constraint boundary ¢("=0) so that all solutions in the population are

feasible and randomly generate the initial population P from the search space. In each
iteration, the ¢ constraint boundary will decrease with the increase in generation times.
Individuals in the population are divided into several levels (Fy, F», ... , Fn) according to
the dominant relationship between them. In an ideal case, every solution in any state of
the population is expected to be within the constraint boundary e(*), which means that all
solutions are ¢ feasible. Therefore, the multi-objective evolutionary algorithm can focus
on balancing the convergence and diversity in the feasible region without considering the
initial constraints. However, ¢ infeasible solutions are inevitable. In order to generate more
feasible sub solutions, in the process of generating offspring population Q;, the binary
tournament tends to choose ¢ feasible solutions rather than ¢ infeasible solutions or tends
to choose solutions with small constraint violation degree rather than solutions with large
constraint violation degree. In each generation t, the population R; composed of parent
population P and offspring population Q; is divided into feasible solution set Sg,, and

infeasible solution set S;, f, according to ¢(!). We tend to choose ¢ feasible solution set S Fea-
Specifically, we have the following two situations:

When ‘S fm‘ is larger than N, N solutions are selected from S¢.; to Pryq through
nondominated sorting and elite selection based on reference points. It consists of two steps:
(1) nondominated sorting from feasible set Sg,,, the nondominated solution is selected
to approach its Pareto Front; (2) the purpose of elite selection based on reference points
is to maintain the diversity of population by providing a group of evenly distributed
reference points.

If ‘S fea| < N, it means that the number of feasible solutions is less than the overall

)

size N, then all solutions in Sy, are directly added to P;;1. The remaining (N - ‘S fea
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is selected from S;;f.,. Here, we rank the solutions in S;; s, according to the degree of

constraint violation, and then add the first (N — ‘S Fea ) solutions to Py, 1.

So far, it has been obtained to generate a new parent population P;,; according to
the rules of steps 10-14 in Algorithm 1 and continue the next iteration until the maximum
number of iterations is reached. At this time, all solutions in the population converge to
the original feasible region, and g;(x) < sgt) in Equation (16) becomes g;(x) < 0. For the
computational complexity, it is equivalent to adding one more target to the algorithm in
the process of nondominated sorting. The computational complexity changes O (mN?)
to O((m +1)N?), N is the number of populations, m is the number of targets, and the

constraint strategy itself does not need a lot of computational resources.

5. Results and Discussion
5.1. Comparison of NSGA-II and NSGA-III for Intersection Traffic Signal Timing

NSGA-II and NSGA-III are popular multi-objective genetic algorithms at present.
NSGA-II algorithm ensures the population diversity of offspring through crowding op-
erator, while NSGA-III algorithm ensures the population diversity of offspring through
reference point operator. Tables 2 and 3 respectively show the signal timing plan optimized
by the two algorithms and the corresponding delay, traffic capacity and emission values.
The first column in Tables 2 and 3 is the number of solutions, and the second column is the
signal timing plan. The corresponding optimization target total delay, capacity and emis-
sion values are shown in columns 3-5, respectively. The experiment was completed on an
Intel®® Core™ i5-6500 CPU (3.2 GHz/8 GB RAM) PC with a Windows 7 operating system,
and MATLAB R2017a version was used. In the experiment, the number of Pareto solutions
obtained in each run was 50 and the number of iterations was 200. The data of 10 solutions
and corresponding decision variables were randomly selected for display. Generally, the
performance indicators used to measure the performance of these algorithms are divided
into four categories [51]. The first is the capacity measure, which calculates the number of
nondominated solutions that meet the preset conditions in the optimal solution set. The
second is the convergence measure, which measures the distance between the solution in
the optimal solution set and the solution in the real PF approximation set. The third is the
diversity measure, which measures the distribution of solutions in the optimal solution
set. The fourth is the convergence diversity measure, which measures the convergence and
diversity of solutions at the same time. In order to avoid the optimization results falling
into local optimization due to constraints, the method in this paper adopts the constraint
processing strategy. For the traffic signal timing problem to be solved in this paper, we
pay more attention to which of NSGA-II and NSGA-III obtains a wider range of traffic
efficiency index values. In Table 2 (obtained by NSGA-II), the results show that the delay
values range from 650,660 to 894,530, the capacity values 3760 to 4450, and the emission
values 9300 to 12,350. In Table 3 (obtained by NSGA-III), the results show that the delay
values range from 588,910 to 908,260, the capacity values 3560 to 4550 and the emission
values 8520 to 12,520. The range of delay, capacity and emission values optimized by
NSGA-III is wider than that optimized by NSGA-IL In order to be more intuitive, Figure 3
shows the three-dimensional diagrams of delay, traffic capacity and emission values from
Tables 2 and 3. In Figure 3, black square () is marked as NSGA-II optimized index, and
red star (%) is marked as NSGA-III optimized index, which is connected with black lines.
It is easy to see from Figure 3 that the black closed curve surrounds almost all the points
marked black square ([J). The analysis shows that if combined with the constraint strategy,
NSGA-III has more potential to find more appropriate decision variables and obtain the
corresponding traffic efficiency indicators.
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Table 2. Signal cycle length and green time optimized by NSGA-IL
. .. Delay Capacity Emission
No The Signal Timing Plans ©) (pcu/h) (g/h)
1 {68.1658 69.7081 11.9946 16.5632 170.7807} 728,820 4450 10,270
2 {53.1881 12.758 75.4945 29.5342 175.7652} 721,420 4270 10,180
3 {31.5357 51.5544 62.0261 17.2942 165.8719} 714,430 4450 10,090
4 {26.4569 93.7567 48.9091 23.7874 197.2732} 894,530 4400 12,350
5 {14.0952 41.8625 75.4945 29.5342 165.8130} 736,750 4230 10,370
6 {26.2201 66.1706 44.6423 38.6122 180.7325} 825,870 4150 11,490
7 {68.7607 53.9954 11.9199 23.5186 162.2287} 689,010 4330 9780
8 {84.9584 58.7558 18.9508 27.4643 194.4299} 816,070 4350 11,360
9 {30.2102 34.903 68.2779 17.1499 153.7959} 650,660 4430 9300
10 {67.8421 34.448 9.1593 74.7003 189.9675} 855,230 3760 11,850
Table 3. Signal cycle length and green time optimized by NSGA-III
. .. Delay Capacity Emission
No The Signal Timing Plans ©) (pcu/h) (g/h)
1 {39.0975 43.0555 73.5753 10.0621 169.4974} 704,900 4550 9970
2 {36.3100 80.036 35.5746 22.5388 179.1794} 802,310 4370 11,190
3 {11.6566 103.0964 56.8978 21.6485 197.0691} 908,260 4440 12,520
4 {37.0027 79.1176 35.6203 22.5388 178.7817} 798,960 4380 11,150
5 {35.4893 10.4646 114.5714 16.7496 180.5020} 726,930 4490 10,250
6 {44.2563 78.7388 26.0255 22.6166 175.2643} 778,540 4390 10,900
7 {42.2068 22.7983 16.0178 72.4447 157.9363} 732,350 3560 10,320
8 {62.6925 22.5479 37.4215 19.4436 145.564} 588,910 4370 8520
9 {53.3657 129113 15.9612 71.0452 157.9234} 713,450 3580 10,080
10 {62.3572 57.5751 46.3018 21.8967 192.4912} 813,620 4420 11,330
14,000
12,000
S 10,000
é 8000
6000 O NSGAI
NSGA-III
o O HCNSGA-IIl
- °© g0
4600 > o é() -
4400 o0 © /(/9/\10
4000 //{ 8
3800 //\//<5 6 10°

3600

capacity 3400 2

delay

Figure 3. Comparison of traffic capacity, delay and emission values optimized by NSGA-II, NSGA-III

and HCNSGA-III.

5.2. Comparison of HCNSGA-III Timing Scheme with Other Methods

Table 4 shows the signal timing plan and its corresponding traffic efficiency index
value obtained by HCNSGA-III algorithm in this paper, which is a representative of Pareto
solution. It can be seen from Table 4 that the values of delay, capacity and emission are in
the range of [290,260-414,960], [3690-4130] and [4790-5700], respectively. In Figure 3, the
blue circle (O) is marked as HCNSGA-III optimized index, which can be more intuitively
compared with the optimization value of NSGA-III. Observe the values on the emission
coordinate axis and delay coordinate axis in Figure 3, and the value corresponding to
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HCNSGA-III decreases significantly. Looking at the capacity axis in Figure 3, although
there is no significant improvement in the maximum capacity obtained by HCNSGA-III, the
number of points close to the maximum capacity is more than that obtained by NSGA-IIL
We select a solution from Table 4 (the method in this paper) to Table 5. In order to further
illustrate the effectiveness of the algorithm, in Table 4, in addition to the results of the
actual signal timing scheme, we implemented the improved particle swarm optimization
algorithm (IPSO) for this case [34]. By using a difference operator and dynamic relaxation
strategy, the diversity of the algorithm is improved, and a better efficiency index value is
obtained. Our HCNSGA_III method considers the constraint processing strategy in solving
the TST problem to avoid the impact of constraints on the search process. See Table 5 for the
comparison with the results of existing signal timing scheme and recent IPSO method. The
method in our work significantly reduces vehicle emissions and vehicle delays. Although
the total capacity decreases slightly due to the shortening of signal cycle.

Table 4. Signal cycle and green time optimized by HCNSGA-III

Delay Capacity Emission

No The Signal Timing Plans ©) (pcu/h) (g/h)
1 {10.4776 21.6493 21.6624 18.7874 76.5761} 351,130 3960 5550
2 {28.8036 15.5800 14.7789 13.3130 76.4672} 324,600 4130 5220
3 {34.2579 10.4774 12.1400 18.0794 78.9423} 332,830 4010 5320
4 {28.9858 11.1999 13.4130 11.8399 69.4260} 290,260 4120 4790
5 {10.8266 14.2697 19.6550 27.2291 75.9651} 353,770 3690 5590
6 {15.0242 19.9494 14.4709 16.2260 69.6441} 315,420 3970 5110
7 {31.0451 20.0957 11.2536 27.0959 93.4617} 414,960 3900 6350
8 {29.6870 11.5128 12.2332 19.2062 76.5886} 329,200 3950 5280
9 {20.9733 14.9134 12.9194 16.4478 69.1949} 305,060 3960 4980
10 {10.4312 10.2325 26.7305 27.7060 79.0254} 362,600 3720 5700

Table 5. Signal timing comparison results of the current method, IPSO and HCNSGA-IIL

. . Delay Capacity Emission
The Signal Timing Plan ©) (pcu/h) (g/h)
Current {34 30 41 36 161} 732,100 4889 12,237
IPSO {25 20 22 13 100} 454,130 4704 11,848
HCNSGA-III {29 11 13 12 69} 290,260 4120 4790

6. Conclusions and Future Prospects

Aiming at delay, capacity and emission, this paper studies the multi-objective opti-
mization of intersection signal timing scheme design. The traffic optimization problem has
many objectives and is constrained by the traffic environment. The optimization results
of signal timing parameters are easy to fall into local optimization. Based on NSGA-III
algorithm, by combining multi-objective constraint and € constraint strategy, this paper
verifies the effectiveness of the algorithm through an actual intersection example. By com-
paring the optimized timing results of NSGA-III and NSGA-II, the advantages of NSGA-III
algorithm in traffic signal timing are verified. Compared with the timing results of NSGA-
III algorithm, it is verified that the quality of timing results is further improved after the
introduction of constraint strategy. In addition, by comparing with the current actual
timing scheme and the IPSO optimized timing scheme, the effectiveness of the algorithm
is verified, and the optimal/approximately optimal Pareto solution for signal timing is
obtained, which improves the traffic efficiency and provides support for the sustainable
development of urban traffic.

The limitations of the current research can be considered in future research. Firstly, we
should explore the applicability of NSGA-III algorithm improved according to this strategy
in network optimization. Secondly, this paper only considers the impact of conventional
traffic flow, mixed traffic flow and road vehicle cooperation environment, which can also
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be considered in upcoming research. Similarly, it is recommended to consider additional
traffic efficiency indicators such as queue length. In addition, further research can also
focus on the impact of non-maneuvering modes to solve similar optimization problems.
In addition, more effective computing technologies should be explored. All these are the
direction of our future efforts.
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