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INTERSECTION THEORY OF MODULI SPACE OF 
STABLE N-POINTED CURVES OF GENUS ZERO 

SEAN KEEL 

ABSTRACT. We give a new construction of the moduli space via a composition 
of smooth codimension two blowups and use our construction to determine the 
Chow ring. 

INTRODUCTION 

This paper concerns the intersection theory of the moduli space of n-pointed 
stable curves of genus 0 (n-pointed stable curves will be defined shortly). In 
[Kn] Knudsen constructs the space, which we call Xn , and shows it is a smooth 
complete variety. We give an alternative construction of Xn", via a sequence of 
blowups of smooth varieties along smooth codimension two subvarieties, and 
using our construction: 

(1) We show that the canonical map from the Chow groups to homology 

(in characteristic zero) 

ci 
A*(Xn) c H*(Xn ) 

is an isomorphism. 
(2) We give a recursive formula for the Betti numbers of Xn . 
(3) We give an inductive recipe for determining dual bases in the Chow 

ring A*(Xn). 
(4) We calculate the Chow ring. It is generated by divisors, and we express 

it as a quotient of a polynomial ring by giving generators for the ideal 
of relations. 

Once we have described Xn via blowups, our results follow from application 
of some general results on the Chow rings of regular blowups which we develop 
in an appendix. 

We now sketch Knudsen's construction of Xn", and then discuss our alterna- 
tive method. Finally, we state explicitly the results on the intersection theory 
announced at the outset. 

Fix an algebraically closed field k, (of arbitrary characteristic) over which 
all schemes discussed are assumed to be defined. Let Mn be the contravariant 
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functor which sends a scheme S to the collection of n-pointed curves of genus 
O over S modulo isomorphisms. 

Where by definition, a flat proper morphism F A) S with n distinct sec- 

tions sl, 52 ... , sn is an n-pointed stable curve of genus 0 provided: 
(1) The geometric fibers Fs of r are reduced connected curves, with at worst 

ordinary double points, each irreducible component of which is isomorphic to 
pl 

(2) With Pi = si(s), Pi 7 Pj for i # j. 
(3) Pi is a smooth point of Ws. 
(4) For each irreducible component of Ws, the number of singular points of 

Fs which lie on it plus the number of Pi on it is at least three. 

(5) dim HI(Fs , &?,) = O. 
((1) and (5) imply that each Fs is a tree of PIs) 

1 5 

2 6 

3 

In the sequel, we will abbreviate the expression n-pointed stable curve of genus 0 
by n-pointed curve, or simply curve if n is clear from context. Two n-pointed 

curves ' -f S, 51, 52I , , Sn and W n S, s' s' 5 sS are isomorphic 
if there exists an isomorphism f: iF -* Wi over S such that f o Si = s. 

Knudsen demonstrates that Mn is represented by a smooth complete va- 
riety Xn together with a universal curve Un A Xn, and universal sections 

l a U2 a * * a a n - 

In addition to representing Mn, Xn gives an interesting compactification of 
the space of n distinct points on P1 modulo automorphisms of P1 which is 
isomorphic to 

PI\{O, 1, oo} x PI\{O, 1, oo} x x PI\{O, 1, oo} \A 

n-3 factors 

since an automorphism of P1 is determined by its action on three distinct 
points. This space is contained in Xn as the open subset over which r is 
smooth, hence the open set parameterizing n-pointed curves over spec(k) for 
which the curve is PI . 

In this compactification, when two points come together, the limit is a curve 
with a new branch, containing the two points which came together. 

II I _ 1 I 
1 2 3 4 5 

4 and 5 both approach the point labeled * and the limit is 
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4 

1 2 3 

5 

with the two branches meeting at *. 

Knudsen's construction of X, is inductive. He shows that the universal 
curve U, -* X, is in fact X,+I, and that the universal curve over X,+1 can be 
constructed by blowing up X,+1 xx ,X,+i along a subscheme of the diagonal. 
His method relies on two functors, contraction and stabilization: 

Given an n+ 1-pointed curve F A S with sections SI, S2, . S. , sI , an n- 

pointed curve "' -) S with sections s', s5 ..., sn is a contraction of 

S provided there is a commutative diagram 

@, c ) W/ 

7r 1 

S S 

satisfying 
(1) cosi=si for i<n. 
(2) Consider the induced morphism c, on a geometric fiber W. Let P = 

Sn+I (s) and suppose P lies on the irreducible component E. If the number 
of sections si(s) other than P, plus the number of other components which E 
meets, is at least three then c5 is an isomorphism. Otherwise, c5 contracts E 
to a point, and the restriction of c5 to Fs\E is an isomorphism. 

Thus if W, with P1, P2, ... , Pn is an n-pointed curve, then contraction 
leaves it alone. Otherwise, the component containing Pn+I is contracted, and 
the resulting space together with P1, P2, ..., Pn is an n-pointed curve. 

2 2 2 2 

3 
-- 34 

4 -14 4 
4 

4 ~~4 

5 3 3 

Knudsen shows that for any n + 1-pointed curve, there exists up to unique 
isomorphism, exactly one contraction. 

As for stabilization: Suppose ' 7A S with sI, S2, ..., sn is an n-pointed 

curve with an additional section s. (s can be any section whatsoever.) Knudsen 
shows that there exists (up to a unique isomorphism) a unique n + 1-pointed 
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curve W S with sections s', ...S, si1 such that ' is the contraction of 

Ws along s'+, and such that s1+1 is sent to the section s. Fs is obtained n+1~~~~~ 
from ' by a blowup which he describes explicitly. Knudsen also shows that 
contraction and stabilization commute with pullbacks. 

The functorial upshot of these remarks is as follows: Suppose Un -+ Xn with 
sections a1 ... , an represents Mn (i.e. Un -* Xn is the universal n-pointed 
curve). Then 

Un XX, Un -4 Un 

with the pulled back sections a1, ... , an and the additional section A (the 
diagonal map) is the universal n-pointed curve with an additional section and 
its stabilization 

(Un XXn Un)s 
- Un 

is the universal n + 1-pointed curve. In particular, Xn+I = Un, and Un+I is a 
blowup of Xn+, XXn Xn+X, 

Since P I-* pt with sections 0, 1, oo represents M3 it follows that X3 = pt, 
X4 = PI and Xn+2 can be constructed inductively by blowing up Xn+1 X xXn+ 1 

The principal drawbacks, from our perspective, of this construction, are that 
Xn+1 xx, Xn+1 is not smooth, and the blowup is not along a regularly embedded 

subscheme. (Knudsen shows that the map Xn+i - Xn looks locally on Xn+I 

and Xn like U x H -- U x A' , where U is smooth, H is the subvariety of A3 
defined by xy = t, and the morphism H -- A1 sends (x, y, t) to t. Thus 
locally Xn+i XXn Xn+1 is the product Ux (the affine cone xy = zw), and with 
this presentation A .-+ Xn+ xX,, X,+I is locally the inclusion U x (x = z, y = 

w) c-* U x (xy = zw).) We circumvent this obstacle by showing that 7r can be 
factored as 

Xn-i Xn X X4 

Xn 

where 7r1 is projection on the first factor, and p is a composition of blowups 
of smooth varieties along smooth codimension two subvarieties. 

In order to present this blowup description it is necessary to introduce various 
"vital" divisors on Xn . For each subset T c { 1, 2, ... , n} with I TI > 2 and 
I TcI > 2 (I TI indicates the number of elements in T) we let DT > Xn be the 
divisor whose generic element is a curve with two components, the points of T 
on one branch, the points of Tc on the other. 

Observe that DT = DTC . In order to eliminate this duplication it will occa- 
sionally be useful to assume ITn {l, 2, 3}1 < l . 

Knudsen shows that DT is a smooth divisor, and in fact is isomorphic to 
the product XI1JT1 X XXTc1J (the branch point counts as an "extra" point for 
each factor). 

7r: Xn+1 Xn 

factors through 
7t1: Xn+i -4 Xn X X4 
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where r1 is induced by r and the map 

lr1,2,3, n+1: Xn+1 I X4 

which is obtained by composing contractions, in such a way that every section 
but the first, second, third, and (n + 1 )th is contracted. Let B1 = Xn x X4. The 
universal sections a 1, a2 ... , cn of r induce sections 

1 1 

C1 =rf1o C, ..., an=f a 

of B1 . Embed DT c* B1 as aqi(DT) for any i E T (we show that the restric- 

tions of Ti and a( to DT are the same for any i, j E T) and let B2 be the 
blowup of B1 along the union of DT with ITCI - 2. (These turn out to be 
disjoint.) Inductively, having defined 

Bk -* Bkl -I B1 

we let Bk+1 be the blowup of Bk along the union of the strict transforms of 
the DT - B1 , under Bk -* B1, for which I TcI = k + 1 . We prove inductively 
that these strict transforms are disjoint, and isomorphic to DT. (Thus in each 
case we blow up along a disjoint union of codimension two subvarieties each 
of which is isomorphic to a product Xi x Xj for various i, j < n.) The key 
result of the chapter is that Xn+1 

P B1 is isomorphic to Bn-2 -* B1. 

From this blowup description we prove the following: 
(1) cl: A, (Xn) -* H, (Xn) is an isomorphism, in particular, Xn has no odd 

homology and its Chow groups are finitely generated and free abelian. 
(2) For any scheme S, A*(Xn x S) is canonically isomorphic to A*(Xn) 0 

A* (S) . 

(3) 

Ak(Xn+1) Ak(Xn) D A (Xn) 0 9 A (DT) 
TC{ 1, 2, *-, n} 

ITI, ITCI>2 
ITn{i,2,3}1<1 

where P is induced by 

Akl(Xn)+) AkA(Xn+n , 

Ak (Xn) *) Ak- (Xn+l1) "'I 3,n+ Ak (Xn ) 

Ak-i(DT) 4 Ak-I(DT,n+l) X Ak(Xn+l). 

Here Il, 2, 3, n+l indicates the first Chern class of the pullback of the canonical 

bundle under r1,2,3,n+1: Xn -* X4 that is 

nl,2,3,n+1 df(C((l))) 

and j and g are defined by the commutative diagram: 

DT,n+l - Xn+1 

gj TX 

DT i - )x,n 
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Theinverseof ' is (7l*?l1, 2,3, n+I-7T*,-g*j) 

(4) The Chow groups Ak (Xn) are free Abelian and their ranks 

ak d=f rank of Ak(Xn) 

are given recursively by the formula 

n-2 l=k-1 

2 2(k) 
J2 1=0 

ak(3) = 
1 if k =O 

( 0 otherwise, 

for the particular case of divisors we have 

al(n) = 2 (n) -1 

(5) Via ' dual bases for A* (Xn) and A* (DT) induce dual bases for A* (Xn+1) 
as follows: 

Let m = n - 2 be the dim of X,+1 and let 

al eA k(Xn), a2 eAk-l(Xn) 3EAk-I(DT 

91 E Am-k (Xn) 9 2E Am-k-I (Xn) 9 3E Am-k-I(DT); 

then we have a multiplication table in A* (Xn+1), 

* T'(a2) T(aj) T(a3) 

T(flj) a2 0 01 ? ? 

T(/12) 0 a1 * fl2 0 

T(13) 0 0 &3 * 3 

Furthermore if y E Ak- l(DT) and 5 E Am-k-l(Ds) with T $ S then 'T(y). 
T(6) = 0. 

(6) 
_ Z[DSS C {1 2, ...,n}ISI, ISCI 2] 

A* (Xv) - the following relations 

(1) Ds=DsC, 

(2) For any four distinct elements i , j k, I e { 1, 2, .. , 

E Ds= E Ds= E Ds. 
i, jES i,kES i,lES 

k,l S j,l S j,k S 

(3) DSDT = 0 unless one of the following holds: 

ScT, TC S, SC TC, TC C S. 

Under the isomorphism, Ds is sent to the class of the corresponding vital 
divisor, while the three sums of (2) are the pullbacks of the vital divisors 

Di", Di,k Di, 1-X4 

under the morphism i, j,k ,1: Xn -* X4 which contracts all the sections except 
for the ith, jth, kth and lth. 
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With this understanding these relations have the following "geometric" con- 
tent: 

(1) This corresponds to the fact that Ds and DSC are the same divisor. 
(2) X4 is isomorphic to P1 and the three vital divisors Di, i, Di, k and Di, 

are points. The relation thus corresponds to the fact that the three points are 
linearly equivalent in PI. 

(3) This relation expresses the fact that the divisors Ds and DT are disjoint 
unless one of the stated conditions holds. 

I wish to thank Bill Fulton for bringing this space to my attention and for 
providing considerable advice and encouragement throughout my investigations. 

The paper is organized as follows. We begin with a catalogue of useful results 
on the vital divisors. Section 1, which is the heart of the chapter, contains our 
alternate construction of X, . In ?2 we study the cl map, obtaining results (1) 
and (2). In ?3 we obtain (3), (4) and (5). In ?4 we obtain (6), our expression 
for A*(X,). In the appendix a number of general results on the Chow rings 
of regular blowups are developed. Within a section the results are numbered 
beginning with one while for example in ? 3, the second theorem of ? 1 would be 
referred to as Theorem 1.2. 

CATALOGUE OF RESULTS ON THE VITAL DIVISORS DT 

This section consists of a series of results dealing with the vital divisors 
which will be useful throughout the chapter. We will often consider the map 
X- ` X,-k obtained by contracting some collection of k sections. In case we 
contract aqk+l s k+2, ..., an we will sometimes denote the map 

11, 2, 3 ...,. n} -- {1, 25 3, ...,~ k}. 

Of particular interest are the maps 

Xn 
7rj 

kIX4 

(for i, j, k, 1 four distinct elements of 1, 2, ..., n ), which contract every 

section but the ith, jth, kth, and lth. We will most often consider the maps 
71, 2, 3, i which we denote qi5, or qi if we wish to make clear that the domain 
is Xm . We also define 01, q2 and 03 to be the constant maps 

D=J 4 X4 P1 

for j between one and three. Recall from the introduction that Dnf " Xn 
is the divisor whose generic element consists of curves with two branches, the 
points of T on one branch and the points of Tc on the other. We always 
assume that ITI, I Tc I > 2. 

Fact 1. The collection of DT is a family of smooth divisors in Xn with normal 
crossings. 

Proof. See [Kn, Theorem 2.71. 

Fact 2. 

n XITI+1 X XITcI+1 

via the restriction to DT of the map 

Xn - XITI+1 X XITCI+1 
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which is the product of contracting all but one section of Tc and of contraction 
all but one section of T. (The restriction is independent of which two sections 
we choose not to contract, in any case the effect is to choose the branch point.) 

Furthermore, if we label the points of the XITI+I factor by the points of TUl{b} 
with the "'extra" section going to b and the points of the XITCI+1 factor by the 
points of Tc u {b} then the restriction of 7ri,j,k,l to D7T is 

7ti,j,k,1 0P1 if i, jk,IET, 

7ri,j,k,I0P2 if i, j,k,lETC, 
7ti,j,k,b oPI if i, j, k e T andl E TC, 

7i,j,k,b 0P2 if i, j, k E Tc andI E T, 
constant if l{i, j, k,/ } n TI = 2. 

(The other cases when I{i, i, k, l} n TI = 3 or {i] j, k, 1} n TCl = 3 are 
described analogously.) 

Proof. See [Kn, Theorem 3.7]. 

Remark. In particular Fact 2 shows that the inclusion of DT in Xn has a 
section and thus pullback and pushforward and Chow groups are surjective and 
injective respectively. 

For two subsets S and T of { l, 2, 3,..., n} we write S **T iff one of 
the following holds: 

ScT, TcS, TnS=0, TUS={1,2,3,...,n}. 

(Observe that ifwe assume ITn {1, 2, 3}1 < 1 and ISn {l, 2, 3}1 < 1 the last 
equality is impossible.) 

Fact 3. For some subset I of { 1, 2, 3, ..., n} with n - k elements let 

Xn Xn-k 

contract the elements of Ic. Then 

I (D-k)= S Dn. 
TCS 

SCTUIC 

Proof. By induction it is enough to consider 

Xn+1 Xn 

contracting the (n+ l )th section. It is clear that r* (DT) is a sum of vital divisors 

and it is clear from the pointwise description of the contraction map given in the 

introduction that only D[T+1 and D T, n+4 appear in the sum. Finally, Knudsen's 

Theorem 2.7 shows that Xr has geometrically reduced fibers (a local description 

of Xi is given in the introduction) and hence iT* (D7T) is reduced. It follows that 

7* (D-T) = DT,n+l + D T 

which completes the proof. 5 

Fact 4. 

DTfnDs#,40 if T**S 
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and in this case 

DT nDs =Ds xX ifS cT 
ITI+1 XITCI+1 

= XITI+1 x Ds 1 ifS c TC 

= XITI+1 x Dsc 1+1 if SC c TC. 

Proof. For the first point we show that if T does not ** S then DT n Ds 
is empty. By assumption there are elements i, j, k, 1 E {1, 2, 3, ... , n}, 
i E T\S, j E S\T, k E TnS, 1 ? TUS. Thenby Fact 3 7ri,j,k I sends DT 

i k A S Ik ,k an ,k to D4' and sends Ds to DI, . As D4' and D are distinct points of P1 
it follows that DT and Ds are disjoint. 

For the second point we may assume T = {1, 2, ..., j} and that S C T. 
Consider the commutative diagram 

n = XITI+1 X XITCI+1 - T-- Xn 

XlT1+1 XlTI+1 

where g is the map 

{1, 2, 3, ... , n} -* {1, 2, 3,.. j+ 1}. 

By Fact 3 

g* (Dqsl=n Dv. 

scv 
VCSU{j+2,j+3,...,n} 

But by the first part of Fact 4 each element in the sum is disjoint from DT. (For 
any such V we have S c Vn T, j+ 1 TU V, Vn{j+ 1, j+2, ..., n}$ 0 
so V$tT, VnT=S#&Tso T$tV);thus 

i*(Ds) = p*(DJ )= DisJ T x+1 X1 TCI+1 

as required. E 

Fact 5. For anysubset I c {1, 2, 3, ..., n} the scheme q =Xi for all i, j E I 

is the sum of the divisors 

Z DT 

ICT 
ITn{1 ,2,3}1<1 

Proof. One easily reduces (using the above facts) to the case where I has only 
two elements. If both are in { 1, 2, 3} then the sum is empty, as expected. If 
one of these is 1, 2, or 3, then we may assume I = { 1, 4}. The scheme 0q1 = 04 
is 

U1,2, 3,4(D4'4) =nD 
1 ,4ET 

2,3 ? T 
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by Fact 3, which is the desired result. For the final case we may thus assume 
I = {4, 5}. Consider the commutative diagram 

Xn 
f 

Xs 

X4 x X4 X4 x X4 

where f is the map 

{1, 2, 3 ... , n}-+ {1 , 2, 3, 4, 5}. 

The scheme q4$ = q$n is (g4n, q$5)*(6) where (5 is the diagonal. One can check 

explicitly (by using Knudsen's method of constructing X5 ) that 

(04 , 05) *((5) = Ds4,S5 + Ds 4 5 +D2, 4,5 + D3, 4,5s 

and the result follows by applying f* according to Fact 3. a 

1. DESCRIPTION OF Xn AS A COMPOSITION OF SMOOTH BLOWUPS 

In this section, whenever we indicate a subset 

Tc {1, 2, 3,..., n}. 

We will assume that ITn {1, 2, 3}1 < 1. 

Xn+1 Xn 

factors as 
Xn+ 1 Xn X X4 

Xn Xn 

where Pi is the projection onto the first factor and 7r, is induced by ir and 
qn+1 . Observe that 

P)n+i =k4 o 7t for i E {1 , 2, 3, ... , n} 

and n+ l+1 = P2 ? ol1 (P2 the projection onto the second factor). In view of this 

we will drop the subscripts, and write Xi. The domain scheme, which may 
be any of Xn , Xn+1, Xn x X4, or some intermediate scheme through which r I 
factors, will be clear from context. ir has n universal sections ql ...n, 

which induce sections a of P I, with P2 0 = Xi. 

Lemma 1. The collection of 
DT,n+l t 

" X 
n+1 

with 
Tc {, 2, 3, , n} 

are exactly the exceptional divisors of 7r1. 
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Proof. 7r1 is an isomorphism away from the union of the vital divisors of X,+1 
and these are of the form D7T+l or D Tln+l or Dn+j n1 . By Fact 2 ir carries 

D4+ isomorphically onto Xn (in fact Dnl1 = &7i(Xn)). By Fact 3 

7r- 
I 

(D T 
) = DnTI+ D T+ Dn+1 

while by Fact 5 qn+l agrees with qi on D7T4 n+1 for any i E T. This implies 
that 

(D n+ 1) = (DT). 

Also since 

7rT1(DT X4) = DnT+ + DTn+l 

we necessarily have 

71,(DT+ 1) = DnT X X4. 

This completes the proof. 1 

Inductively we now define schemes Bk with subschemes 

s T for ITCI > k+ 1, 

RT for kTC > k + ?l, 

ET for ITCI < k, 

Y, for i I 2 , . .. ,n, 

and maps 
fk+1 

Bk+l - Bk. 

For k= 1 let 
B1 =Xn X X4, 
ST = 

I71(DI) for any i E T, 

?i4 = c(Xn) for any i E T, 
R1T= the scheme Xi = -J for all i,j E T u {n + 1 1. 

Observe that 

RT = a' (the scheme qI = frVi, i E T) for any 1 E T. 

In particular RT __+ yi for any i E T and by Fact 2 as a subscheme of ?4 it 
is the sum of divisors 

R1T =EDns 

TCS 

Having defined this data for k let 

fk+ 1 

Bk+1 - Bk 

be the blowup of Bk along the union of SkT with ITcj = k + 1 . (We will show 
that these S/T are disjoint.) Let SkT+I for ITCI > k + 2 and V for i = 

1, 2, ... , n be the strict transforms (under fk+i) of SkT and El respectively. 
(Thus they are the strict transforms under the composition 

Bk+1 -- Bk - B 

of SjT and 1i respectively.) Let 

EkT+= A+ll(OT) for ITc = k + 1 
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and 

E T+l= fA+11(E T) for lTCd < k. 

(Thus the EkT are the exceptional divisors of Bk B1.) Let RJT+1 be the 
residual scheme 

TcS 

ESk+fi 

=kjVijIETU 

{n+l}) 
TcS 

< SC <k+lJ 

(In general, if we have a scheme Y with a subscheme X and a cartier divisor 
D of Y which is itself a subscheme of X 

then we obtain a scheme 5 = M?(D, X) the residual scheme to D in X, we 
locally dividing equations for X by a defining function for D. In terms of the 
ideal sheaves, R is characterized by the equation 

X' * ," = ,X-) 

Observe that 
STc?i4 foranyiET. 

It follows that 

SkT [k for any i E T. 

(ITIc > k + 1). 
With this notation the key result of the chapter is the following: 

Theorem 1. The following hold for all k: 

(1) 7r1 factors through Bk 

Xn+1 - k - Bk 

7rij 

B1 B1 

and so in particular Bk - B1 has sections ak, ak' . kn induced by the 
universal sections a1, a2 ,n 

V2 X k-7k(Xn - Xn 

(3) SkT =kn(DT) for any i ET. 
(4) The SkT with ITCI = k + 1 are disjoint. 

(5) 7r-l(SkT) = DT,n+l for ITcl = k + 1 and 7ir-(Ek) = Dsjn+l for lSCj ? 
k. 

(6) R T is a subscheme of Xk for all i E T and as a subscheme it is the sum 
of the divisors 

Z Dsn 
TcS 

SCt>k+l 

The proof will require two lemmas. 
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Lemma A. If X - Y is a map of schemes and 

D -+W --+Y 

is a composition of subschemes of Y with D a cartier divisor of Y then we have 
an equality of subschemes of X: 

9R(f1-(D), f-1(W)) = f-1(M9(D, W)). 
Proof. This is immediate from the definitions: By assumption we have the 

equality of ideal sheaves on Y 

-,w'(D, W) * -,gD = -,gW 

which implies the equality of ideal sheaves on X 

f-1(>(D, W)) * f-1(-D) = f (-W) 

as required. 

The second lemma requires a definition: 

Definition. A subscheme X '-+ Y with ideal sheaf I c 6'y is said to be linearly 
embedded if the canonical surjection from the dth symmetric power of I to 
Id 

Sym?d(I) )) Id 

is an isomorphism for all d. 

Linear embeddings are studied in [Ke2]. 

Lemma B. If {Di}iEI is a family of cartier divisors with normal crossings, then 
for any j E I the embedding 

Di Di 

iEI 

is a linear embedding. 

Proof. The question is local and follows from the following: 

Sublemma. If fl, f2, ..., fm, g is a regular sequence in a ring A. Then the 

embedding 
V(g) -- V(fl * f2 * fm * 9) 

is linear. 

Proof of the Sublemma. Since g, fi * f2 * fm is a regular sequence we may 
assume that m = 1 . In any ring, a principal ideal (g) is of linear type if and 
only if the annihilator of gd is the same as the annihilator of g. Thus to show 
that 

V(g) '-k V(f * g) 

is a linear embedding we need only check that modulo f * g the annihilators 
of g and gd are the same. This follows easily from the definition of a regular 
sequence. 5 

The proof of Theorem 1 relies on the following result: 

Result. Let 

X L Y C Z 
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be a composition of embeddings with i linear. Let 

be the blowup of Z along X and let Y be the blowup of Y. Then Y is the 
residual scheme to the exceptional divisor in r-1 (Y), 

Y = (E, 7z-'(Y)). 

Proof. This is a special case of [Ke2] Theorem 1. 

Proof of Theorem 1. We proceed by induction. k = 1: 
(1)1, (2)i, (3)i and (6)i have already been observed. When lTc = 2, 

ST=R T and 

7r-l(SlT)-= 7r'(RT) 

=theschemeqY-=qjVi, jETU{n+I}, 

= DT,n+l 
n+1 

(By Fact 5 

the scheme Xl=q $jVi, j E T U {n + }, 

E Ds+ 
SC{1,2,...,n+1} 

T,n+1CS 

But since lTc - 2 if T, n + 1 c S then S = T U {n + 1} .) This establishes 
(5)1 . Since D7T4n+l and D,n+l are disjoint in Xn+1 if ITI = ISI (by Fact 4) 
it also establishes (4)1. 

Now for the induction step, we assume the theorem for k. Notice that (5)k 

implies (1)k+1 since it shows that the inverse image under 7k of the locus 
blown up by 

Bk+1 fk+1 Bk 

is a divisor of Xn+1 . (l)k+l implies (2)k+l and (3)k+1 . Also (5)k+1 implies 

(4)k+l as above. It remains to establish (5)k+l and (6)k+l- 

We begin with (6)k+l . We have for ITc > k +2 

Rk+/1=3 ( Z Ek+,J q=qjVi, j E TU{n+ 1}) 
TCV 

IVcI<k+l 

=9 ( E Ek+l ' S k+J S O = OjVi v j E TU{In + 1})) 
TCV TCV 

lVcl=k+l IVCI<k 
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which by Lemma A is 

fk+l (Sf ( E E , = EV =O j TT U {n + 1)) 

TOCV 

VCI <k 

Also 

EkV'+,= fNl ( U'j-+ sk . 
TCV TOV 

kk 1A~ I c| k 

Thus 

Now, by (6)k 

RkT'- k 4= ak(Xn) for any i eT 

is the sum of divisors 
Z DE 

TCS 
SC I?k+1 

and 

U Sk-SY4=a k(Xn) 
TO V 

I VC= l=k+ 1 

is the sum of the disjoint divisors 

Z Dn. 
TC V 

Vc I =k+ 1 

Thus, by Lemma B 

U SkV RT 

TCV 
IVCI=k+1 

is a linear embedding and so by the result stated above RkT+1 is the blowup of 

RkT7 along 

TCV 
ISc>k+1 
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or in terms of subschemes of 1i , the blowup of 

Z Ds 
TcS 

SC I>k+l 

along 

Z Dnv 
TCV 

IVCI=k+1 

which is clearly 
Dns ' > 

Ik+1 
= 

Uki(Xn) 
TCS 

SC I>k+2 

(for any i E T). 
This establishes (6)k+l . For (5)k+1: If iSc1 < k + 1 then 

7k+ l (Eks+ ) =7 -'Il ( fC+'l (EkS) 
I 

klks) 

- Ds n+1 (by induction). 

If ITc = k + 2 then (6)k+l implies in particular that SkT+ = Rk+1 and so 

zk+ 1 ST k+ 1(kT+1). 

which by Lemma A is equal to 

j ( jz( Es+1) ,0q= 0jVi, jETU{n+l1}) 

ISc I<k+ I 

By Fact 5 and (*) this last expression is 

= S7 ( E Ds n+1 Dsn+1 DTn+l 

TCS TCS 
SC <k+l 

This completes the proof. a 

An immediate corollary of Theorem 1 is 

Theorem 2. 

Xn+1 
1 
n- 

2 Bn-2 

is an isomorphism. 

Proof. Observe first that by (3) Bk+1 is obtained from Bk by blowing up along 
a smooth subvariety, and hence each of the Bk are smooth. By Lemma 1, the 
only possible exceptional divisors of 7rn-2 are the divisors D7T4n+ 1 but by (5), 

7rn-2(DT,n+l ) E- n1 = En7!2 

and ET-2 has the same dimension as D T+ln+ . Thus 7rn-2 has no exceptional 
divisors, and hence is an isomorphism. a 
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Notice that since X4 = PI . Theorems 1 and 2 in particular exhibit X, as a 
composition of smooth blowups of 

PI x P x ..x P. 

2. HOMOLOGICAL RESULTS 

Definition. A scheme of characteristic zero is said to be an HI (for homology 
isomorphism) scheme if the canonical map from the Chow groups to homology 
is an isomorphism. 

Theorem 1. If Y is an HI scheme then so is Y x Xn. 

Proof. We proceed by induction. X4 is isomorphic to P1 and so the result is 
clear. Now assume the theorem for all k less than or equal to n . By Theorem 
1.2 the map 

Y x '+1 -) Y -X 

is a composition of blowups along regularly embedded subvarieties each of 
which is isomorphic to 

Y x Xi x Xj 

for various i, j less than or equal to n - 1 . In any case, by induction the base 
loci of each blowup is an HI scheme and the result follows from Theorem 2 of 
the appendix. a 

Theorem 2. For any scheme Y the canonical map 

A* (Xn) X A* (Y) A* (Xn x Y) 

is an isomorphism. 

Proof. We proceed by induction on n . The result is clear for n equal to three 
or four. The general case follows by induction using Theorem 1.2 and the next 
lemma. 

For the next lemma, we will say that a scheme Y is simple if for any other 
scheme S the canonical map 

A*(Y) X A*(S) - A*(Y x S) 

is an isomorphism. 

Lemma. If X '--- Y is regular embedding and X and Y are simple then so is 
Y the blowup of Y along X. 

Proof. The result follows from the canonical exact sequence for the bivariant 

groups of a regular blowup [F, p. 333]. 

3. BETTI NUMBERS AND DUAL BASIS 

Theorem 1. We have an isomorphism 

A(Xn +1 Chi (Xn) (E A (Xn) ( @ (D 
TC{1 ,2,.--,n} 

ITI, ITCI>2 
ITn{1i,2,3}1<1 
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where P is induced by 

Ak (Xn) 7'A (Xn+I), 

Ak (Xn) 7Ak-1 (Xn+ Il , ,nl) Ak (Xn ) 

Ak-i (DT) k Ak-l(DTSn+l) J*Ak(Xn+I) 

Here H1 2,3, n+1 indicates the first Chern class of the pullback of the canonical 
bundle under 7r1,2,3, n+I: Xn - X4 that is 

rll,2, 3,n+l - Jl, 2, 3,n+l (c1 (d(f ))) 

and j and g are defined by the commutative diagram: 

DT,n+l i xn+l 

gj 

DT 
i X 

The inverse of T is (7r* o rl,2,3,n+l , -7r*, g*j*) 
Via TP dual bases for A*(Xn) and A* (DT) induce dual bases for A*(Xn+l) 

as follows: 
Let m = n - 2 be the dim of Xn+I and let 

al1 EiA k(Xn), a2 E A k- (Xn), a3 E Ak-i (D T) 

/Il e Am-k (Xn), fi2 E Am k- (Xn), fi3 E Am-k-1(DT); 

then we have a multiplication table in A* (Xn+1) 

*T(a2) T(aj) T(a3) 

T(jJ1) a2 *1 0 0 

T(/2) 0 a1 * f2 0 

T(f3) 0 0 a3 * 3 

Furthermore if y E Ak-l(DT) and 3 E Am-k-l(Ds) with T $ S then T'(y) 
T(d) = 0. 

Proof. The result follows essentially immediately from Theorem 1.2 and The- 
orem 3 of the appendix. From these theorems it follows that for each k we 
have an isomorphism 

Ak(Bk) @ Ak-I (DT) 
Tk 

Ak(Bk+l) 
ITCI=k+l 

via which dual bases for Bk and D T induce dual bases for Bk+1 . Induction 
then gives an isomorphism 

Ak(BI) A Ak- (D T) -,~Ak(Xn+I) 

TC{1,2,3,...,n} 

via which dual bases are analogously induced. The isomorphism given in the 
theorem now follows from the fact that B1 is Xn x PI . 
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4. CALCULATION OF A*(X,) 

Until we reach the statement of Theorem 1 of this section we will always 
assume when considering T c { 1, 2, 3, ... , n} (in addition to the assumption 
which we are making throughout the chapter that T and its complement have 
at least two elements) that IT n { 1, 2, 3}1 < 1 . Also we will frequently be 
simultaneously discussing the vital divisors of Xn and Xn+I . When we write 
D4?n+l 

I we implicitly assume that T c {1, 2, 3,..., n}. 
Our calculations depend on our presentation of 

X 4i D 
Xn+ I r-" n-2 

and the following lemma. 

Lemma 1. Suppose that a subscheme X Y of a scheme Y is the complete 
intersection of two divisors D1 and D2 and that the pullback 

A*(Y) i A*(X) 

is surjective. Let Y -- Y be the blowup of Y along X. Then the bivariant 

(also called Chow cohomology) ring of Y is 

A*(Y)-- =A*(Y)[T] 
(DI - T)(D2- T), T.keri* 

The isomorphism is induced by 7r* and by sending T to the class of the excep- 
tional divisor. 

Proof. This is a special case of Theorem 1 of the appendix. 

We will also need the following three lemmas: 
Let PkT be the strict transform of ST X X4 under 

Bk - B1. 

Lemma 2. For each k and for any i in T, SkT is the complete intersection of 
the divisors Sk and PkT. Furthermore the restriction 

A*(Bk) -- A*(SkT) 

is surjective. 

Proof. By Theorem 1.1 V is isomorphic to Xn and this isomorphism realizes 
the subvariety SkT of Sk as the subvariety D T of Xn. As remarked in the 
preliminaries after Fact 2 the restriction 

A* (Xn) A* (DnT) 

is surjective. The restriction 

A* (Bk) A* ( 

is also surjective (since the inclusion of Sk in Bk has a section given by the 
projection to X, ). Thus the given restriction is a composition of surjections. 
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The first remark is proved by induction. The case of k = 1 is clear. We 

have (by induction) a commutative diagram 

pT ni 
' 

Pkk+1 k+1 k+1 

k I 

By Theorem 1.1 the map 24 + -2 is an isomorphism, carrying S[1 iso- 

morphically onto ST. The left column is an isomorphism generically on SkT. 

Thus P41 n 24+ is a subscheme of and generically equalto S/j+1. Since SfT+ 

is integral it follows that the two are equal. El 

Lemma 3. 

f1 T(P )=TP1 for ITCI/k+l, 

fIT (P[)=E 1 +PT1 forITCI=k+l. 

Proof. In any case 

k= Pl+ sum of various E+' with I Vc k + 1 . 

Further a particular Ev+1 appears in this sum if and only if Sk[ is contained 

in Pk . By the previous lemma this holds if V is equal to T and since the 

images of the two subvarieties in X, are Dv and DT this is the only way it 

can hold. Ol 

Lemma 4. If VC consists of k + 1 elements and Tc of strictly more elements 
then SkV meets Sk if and only if T is contained in V. In this case the inter- 
section is a smooth cartier divisor of each. 

Proof. If T c V then by Theorem 1.1 (3), Sk and Sk are subvarieties of 24 
for any i in T and under the isomorphism of 24 with Xn they correspond 

to the divisors Dnv and D7T which intersect in a smooth cartier divisor of each 

by Fact 4. 

Now assume that SkV and Sk have nonempty intersection. Let i be any 

element of T. We will show that it is in V. Necessarily 2i meets SkV and 

since ik+1 . is isomorphic to 24 by Theorem 1. 1(3), necessarily the intersection 

is a cartier divisor of 24. We conclude by dimension considerations that SkV 

is a subvariety of Xi (otherwise the intersection is of pure codimension one in 

Skv), necessarily the subvariety Dv[. Let j be some element of V. In particular 

we conclude that 

a i(Dv) = -lJ(L 

and thus qi and q$ agree on Dv. (The above sections are the graphs of the 

restrictions of these maps to Dv .) It follows from Fact 5 that i is in V as 

required. O 

Claim. 

A*(Bk) 
- A* (Bk) [Ek+I for ITCI? k + kP, k+ for T, i c {1, ...,n}] 

kk+l) - the following relations 

(I) PT= PT[-E[T+ for ITC = k + I, 
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(2) pT =p1T for ITclTd k + 1, 
(3) ET -=EkT for lTCd < k 
(4) 

k+ =k- Z 4k+l 
iET 

ITCI=k+l 

(5) ET * Ekv+ =O if T, n+l doesnot **V,n+l, 

(6) Y4+v * +l= for i E T, ITCI < k + 1 
(7) E[T+*PV = 0 if T, n + l does not **V, IVcl < k + , 

(8) EkT+1 * ker(A* (Bi) -? A* (ST)) = 0. 

Proof of Claim. The map is induced by sending each of the variables to the 

corresponding divisor class in A1 (Bk+l) and by the pullback 

fk +: A*(Bk)-* A* (Bk+l). 

It is clear from Theorem 1.1, our results on the vital divisors and the preced- 
ing lemmas that the map is well defined (i.e. that each of the relations holds). 
The proposed ring is a quotient of the polynomial ring 

A* (Bk)[EkT+lI I7'TC = k + 1] 

by the quadratic relations. We need only check that the relations described in 
Lemma 1 are contained in the proposed relations. The relations of Lemma 1 
are 

ET+ 1 ker(A* (Bk ) A* (SkT)) for lTcl = k + 1 

and 

(Y- E[T ) (PkT- EkT+[ ) for |Tc| = k + 1. 

The second can be expressed as 

lZ+l + EV T+l1 

iEV 
T:iW 

IVCI=k+l 

which is a sum of the relations of types (6) and (7). 
We next show that 

ker(A* (Bk) A* (SkT)) 

is generated by 
ker(A*(Bi) A (ST)) 

and 
Ekv-D,v forTcV, lVcl<k. 

By Lemma 3 the second expression is the class of -Pkv (since Dnv is the class 

of pv) and so this expression (and relation (2)) yields the relation 

E[T *P+1 for Tc V 
which is a relation of type (7). Thus establishing this expression for the kernel 
finishes the proof of the claim. 
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It is enough by induction to show that 

ker(A* (Bk) A* (Sk[)) 

is generated by 

ker(A*(Bkl1) A* (Sk-+ I)) 

and 
Ekv-D,v forTcV, IVcl=k. 

This is obtained by the remark immediately following this proof. We choose 
some ordering on the Skj'I with I Vc k (these are the disjoint components 
of the locus which is blown up by fk) and make each blowup one at a time. 
By Lemma 4 the remark may be applied to each of these blowups with SklI 
(or more precisely its strict transform at each stage) playing the role of W, the 
chosen SkJ! I playing the role of X and DV playing the role of a. O 

Remark. Let Y be the blowup of a scheme Y along a regularly embedded 
subscheme X. Let W be a subscheme of Y such that the intersection Xn W is 
a cartier divisor of W (so that W is isomorphic to its strict transform). Assume 
that the restriction from A* (Y) to A* (X) is surjective and that a E A1 (Y) pulls 
back to the class of X n W in A1 (W) . Then 

kerA*(Y) A*(W) 

is generated by 
kerA*(Y) - A*(W) 

and E - a, (where E is the class of the special divisor). 

Proof of Remark. It is clear that each of the given elements is in the kernel of 
the restriction to A* (W) . Thus we have a map from the quotient of A* (Y) by 
these elements to A* (W) and we need to show that this map is injective. But 
by Theorem 1 of the appendix this quotient is itself a quotient of A* (Y) by 
the kernel of the restriction of A* (Y) to A* (W) and the composition is the 
natural injection. This yields the result. Dl 

Repeatedly applying the above result, and using our isomorphism of Xn+I 
with Bn-2 we obtain 

A A*(B1)[DTn+l , DT Dn+1 T, i C { , 2, 3,..., n}] 
A* (Xn+) - n+ +'t+1 

the following relations 

(1) DT I + DDfn+l DT =nT 

(2 n+I+ + EiET n+I + I, 

(3) D7T, n+IDv4n+l+ =0 if T, n+l doesnot **V,n+l, 

(4) D n+nl.DjTj =0 for iET, 
(5) DT+ * Dv'+, = O if T does not **V, 

(6) DT'n+l * ker(A* (BI) -) A* (ST)) - 0 

(Recall that under the isomorphism of Bn-2 with Xn+I, E;: 2 2n- and PnT2 

correspond to D T, n+l1 Di,n+lI and DT respectively.) n+I n+I n+i 

Since B1 is isomorphic to Xn X P1 we have the expression 
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Here lI,2,3,i denotes the pullback class 7r 23, i(cl(1))) Under this iso- 
morphism we have that 

ker(A*(Bi) - A* (ST)) 

is generated by 

ker(A* (Xn) A* (DnT)) 

and X1 - I11,2,3, i . With this our expression for A* (Xn+l) becomes 

A*(Xn+l) = (n)[Dfl+ liV{l' 1 't +' }] 
the following relations 

(1) DTj+ +DT,n+l = DnT. nI n+1 nl 

(2) For each i E {1, 2, 3, ... n} 

Di, n+I +ED T,n+l 
I- 1,2,3,i 

+ 
Dln+l 

+ E 
DT.n+l n zInr -n+1 + 'n+i 

iET IET 

2 

(3) Dn+ + E DTn+l) 

(4) D[T4n+l . ker(A* (Xn) 3 A* (D T)). 

(5) DTn+l (D n+1 +ZD Tn+l -rll,2,3,i") 
iET/ 

(6) DWI-Dv * if W does not * *V. 

We perform a few algebraic manipulations to obtain: 

Inductive Lemma. A* (Xn+1) is a quotient of the polynomial ring over A* (Xn) 
with indeterminants 

D[v, forVc{1,2, ..., n + 1} 

defined by the following relations: 
I. DT9n+I_ +DT =DT 
II. For i, , 1 distinct elements of {1, 2, ... , n + 1}, 

Z wDwDw1 E D~nW+I= E Dn+l= E DnW+I 
i, jEW,k,l 0 W i,kEW, j,l 0 W i,lEW, j,k 0 W 

or or or 
i,1j W,k,lEW i,k 0 W,j,lEW i,I 

0 W,j,kEW 

III. Dnw .DvI if W does not **V. 

Proof. Denote any of the sums in II by I1i, 9 ,k ,1 . Observe that by definition it 
is independent of the ordering of the elements. Its image in A*(Xn+l) is the 
class of the pullback of the canonical linebundle of P1 under the map 

X i, j,k,1 

by Fact 3 and the remark which immediately follows it. Let R be the proposed 
ring. We have a surjection of R onto A* (Xn+?) and we need only show that 
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the relations (2), (3), (4) and (5) of our expression for A*(X,+i) all hold in R. 
Relation (2) can be written as 

, nT+ rl = ,2,3,i + rl,2,3,n+1 - 

i,n+IET 

The left-hand side can be written 

E Dn+ n+ 
1,i,n+IET 2,i,n+IET 

2,3 T 1, 3 T 

+ D D I + Dj DT + E Dn+l + n+ 

2, i, n+IET i,n+IET 
1, 20T 1, 2,30T 

which in R is equal to 

rli,n+ 1, 1,3 + E n+l DnT+1. 
1, i, n+IET 3, i, n+IET 

2,3 0 T 1,2 T 

The right-hand side can be written as 

Z D I + D 
E n+ + E DnT+ 

1, i, n+IET 1, iET 
2, 30 T 2, 3, n+1 T 

+ D D I + ~j D T 
+ E Dn+l + n+ 

3,2, n+IET 3, n+IET 
1, ,2fT i, 1, ,2 T 

which in R is equal to 

rl,,i, 3,n+1 + E n+l DnT+1 
1, i, n+IET 3, i, n+ I ET 

2,3? T 1,2 T 

Thus we see the left- and right-hand sides are equal in R. 
In R relation (3) can be written FI23 n?l which in turn is equal to 

( E Dn+l) *( 2,3,nl) 

, n+lET 2, n+leV 

This is a sum of relations of type III. Finally we consider a relation from (4) 
which can be expressed in R as 

DT,n+l (H1,2,3,n+1-1,2,3,i) . n+1 123n+ 

We may assume that 1 is not an element of T. We can write this as 

DT,n+l Dv E DZ 
I , n+IEV 1,iEV 

i 0 V n+l 0 V 

which is a sum of relations of type III. El 

We are now ready to give an expression for A* (Xn). We no longer assume 
that any subset of {I1, 2, 3, ..., n} considered contains at most one of one 

two or three. 
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Theorem 1. 

A*(X ) - Z[Ds IS c {1, 2, ..., n}ISI, ISCI > 2] A* Xn) -the following relations 

Part I. 
(1) Ds = DSc 
(2) For any four distinct elements i, j, k, E{1, 2, .. ., n}: 

Z Ds= E Ds= E 
Ds. 

i, jES i,kES i,lES 
k,1 0 S j,l 0 S j,k 0 S 

(3) DsDT unless one of the following holds: 

Sc T, TcS, Sc Tc, TCcS. 

Part II. 

ker A* (Xn) 3 A* (DnT) 

is generated by Dv unless V * *T . 

Proof. Notice that all the relations are necessary from the inductive lemma and 
symmetry. 

The proof is by induction. The case of n = 4 is clear as X4 = P1. We 
assume the theorem for all k less than n and show that it holds for n. By 
the inductive hypothesis and the inductive lemma (together with some obvious 
algebra) it follows that Part I holds for n. In order to show that Part II holds 
for n we need to establish the form of 

ker A* (Xn) A* (DnT) 

DT is isomorphic to the product 

XITI+1 X XITCI+1 

and so (as is established in ?2), 

A* (D T) = A*(XITI+1) 0& A*(XITI+1) 

which by induction is described by Part I. Thus inductively we have explicit 
expressions for A* (Xn) and A* (DrT) and need only check that the kernel of the 
restriction map is generated by the proposed elements. 

Since our presentation is symmetric we may assume that T = { 1, 2, ... , j} 
so that 

DT = Xj+1 X Xn-j+l 

with points {1, 2, 3, . ..,j, b} on the first factor and {b, j+ 1, +2,. . ., n} 
on the second as described in Fact 2. The vital divisors of Xn pullback to DT 

as described in Fact 4. Let K be the ideal generated by the elements given 
in Part II. It is clear that K is contained in the kernel of the restriction. Let 
R = A* (Xn )/K and let H be the polynomial ring 

Z[Ds I S c {1, 2, 3.. ., n}, S T]. 

Let H' be the polynomial ring Z[DX1, Dw._l] where 

Vc{1,2,***,j+1}, Wc{j,j+1, ..w,hn}. 
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It follows from Part I that H maps surjectively onto R. (The only divisor 
which is not present is Dn and this is related to the other variables by relation 
(2).) Define a map 7X from H' to A*(DT) as follows: 

Dv,j+li+* DVb for V c {1, 2,...,j}, 
1+1 j+1 j 

D 'i+i D,w"ji for Wc {j+ 1,j+2,. ..,n}, 

Dv o-DV+1 for V c {1, 2, .,j}, 

Dwj-3 Dnwj+l for Wc{j+1,j+2,...,n}. 

This map is a surjection by our expression for A* (DT). 

Define a map 0 from H to H' by 

?b(Ds) = 0 unless S * *T 

=DS if Sc {1, 2, ...,j} 

=DSn{l,2,...,j+1} if S D{j + 1,. .., n} 
j?1 

= Ds if Sc {+1, ..., n} n-j?1 

Dsn{i,j+i,JXln. ifSD){1,2,..*,j} 
n-j?1 

0 is clearly surjective. 
We have (by Fact 4) a commutative diagram, with all maps surjections 

H ) H 

R - A*(Xj+,)&A*(Xn j+l) 

Observe that the kernel of q is generated by the DS where S does not * * T. 
In particular the kernel of 0 is contained in the kernel of p and thus in order 
to complete the proof it is enough (by any easy diagram chase) to demonstrate 
that ker(n) c q(ker(p)). The kernel of X is generated by contributions from 
each factor in X1+1 x Xn_j+l as described by Part I. We will consider those 
from the first factor (the second factor being analogous). 

A relation of type (1) is of form 

Djq+1 - DJ+j forS 5c c {1, 2, ... j+ 1}. 

We can assume that j + 1 is not in S. Then an inverse image under q is 
Ds - Dsc X j+2,.-- nwhich is in the kernel of p . 

A typical relation in the kernel of X of type (2) is 

Z DJS.+1- E DJ+1. 
a,cES a,dES 

d,e S c,e S 
Sc{1, 2,..., j+1} I SC{1,2,..., j+1} 

Here a, c, d, e E {1, 2,..., j + 1}. 
We rewrite this as 

, DJS+ + , DJS+1- , D D , DJS1 
a,c,j+1ES a,cES a,d,j+1ES a,dES 

d,e 0 S d,e,j+l ? S c,e 0 S c,e,j+l OS 
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An inverse image under q of this is 

Z Ds+ Ds DDs- Ds. 
SD{j+1,...,n,a,c} a,cES SDfj+1,...,n,a,d} a,dES 

d,e 0 S d,e 0 S c,e 0 S c,e 0 S 
SC{ 1, 2,.*-, i} SC I1, 2,.*-, j} 

We rewrite this last expression as the difference of 

E Dn- E 

a, cES a, dES 
d,e 0 S c,e 0 S 

Sc{1,2,...,n} Sc{l,2,...,n} 

and 

S Dn- E Ds. 
a,cES a,dES 

d,e 0 S c,e 0 S 
S does not ** T S does not **T 

The first term in the sum is an expression of type (2) and so is in the kernel of 
p. The second is a sum of elements in the kernel of 0. 

Finally a relation of type (3) in the kernel of Xi is of the form DJ * DV 
where S, V c {1, 2, . j. ,j+ 1} and S does not ** V. Since we have already 
considered relations of type (1), in order to show that this is in the image of 
ker(q) we may if necessary replace S by SC and V by VC and so may assume 
that neither S nor V contains j + 1. In this case an inverse image under q 
is Ds * Dv which (since S does not * * V) is in the kernel of p . 

APPENDIX: REGULAR BLOWUPS 

In this section we relate intersection theoretic properties of Y, the blowup 
of a variety Y along a regularly embedded subvariety X, to corresponding 
properties of X and Y. 

Specifically, suppose i: X -+ Y is a regularly embedded subvariety. Let Y 
be the blowup of Y along X, and let X be the exceptional divisor. Define g 
and j by the commutative diagram: 

9 ~~~7r{ 

We establish the following results: 

Theorem 1. Suppose the map of bivariant rings 

i*: A* (Y) 3- A* (X) 

is surjective, then A* (Y) is isomorphic to 

A* (Y)[T] 
(P(T), (T . ker(i*)) 

where P(T) E A*(Y)[T] is any polynomial whose constant term is [X] and 
whose restriction to A* (X) is the Chern polynomial of the normal bundle Nx Y, 
i.e. 

(i*P(T) = Td + Td-Icl (N) + + cd-l(N)T +cd(N) 
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(where d = codim(X, Y)). This isomorphism is induced by 

7t*: A* (Y) -- A* (Y) 

and by sending - T to the class of the exceptional divisor. 

The next result requires a definition. 

Definition. A scheme X of characteristic zero is called an HI (for Homology 
Isomorphism) scheme provided that the canonical map from the Chow groups 
of X to the homology 

A* (X) cl, H* (X) 

is an isomorphism. 

Observe that if X is an HI scheme then in particular it has no odd homology 
and hence (by the universal coefficients theorem) its homology (and thus its 
Chow group) is torsion free. 

Theorem 2. If X and Y and HI schemes then so is Y. 

The theorem in this generality was suggested by Spencer Bloch. For the next 

theorem assume X C_L* Y is of codimension two. 

Theorem 3. The map 

Ak( ) k-1 (X)- k(Y 

defined by 
d=f * j* g* 

is an isomorphism, with inverse (X*, -g*j*). Furthermore if X and Y are 
nonsingular and dual bases exist for their Chow rings, then these bases determine 

dual bases for A* (Y) via T' as follows: 
Let n be the dimensions of Y, 

a1 E Ak(Y), a2 E Ak-l(X), 

fl E An-k(y), fl2 E An-k-(X). 

Then we have a multiplication table in A* (Y): 

T(a1 ) T(a2) 

T(fil) alil ? 0 

T(fl2) 0 a2fl2 

Also if y E An-k(Y), then 

y * T(a1) = a, 1*r*(y) y * T(a2) = -a2 *g*ij*(y) 

(This last remark is important since the expression for a cycle as a linear com- 
bination of bases elements can be determined by intersecting the cycle with the 
dual bases in the complimentary dimension.) 

PROOFS 

Proof of Theorem 1. Let 

A*(Y)[T] 
P(T), T.ker(i*) 
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and let f be the map 

A*(Y)[T] f A*(Y) 

induced by 7* and by sending T to c(c( 1)). We show first that f passes to 
R : 

If c E ker(i*) then 

f(c * T) = r*c * cl -j*(j*7f*c * [j]) 

= j*((g*i*c) []) = 0. 

Define Q(T) by 

P(T) = Q(T) * T + [X] 

so that 

i*(Q)[T] = Td-l + T cd-21 * (N) + + cd-l (N). 

Then 
f(Q(T) * T) = *(Q)(c I cI(6'(1)) 

= - i*(i* 7*(Q)(cl(6g(1))) * [j]) 

= - (Cd_I(g*N/d(- 0) * [A]) 

while 

f([X]) = 7*(i*[i]) = j*(g*[i]). 

By the excess intersection theorem [F], 

Cd_ (g*N/I6(-1)) * [j] = g*[i] 

and thus f(P(T)) = 0 and f factors through R. The induced map will also 
be called f . The following sequence is exact 

O A* (X) AA* (X) E A*(Y) /A*(Y) 3 0 

where 

a(c) = (Cd- I ( *N/6(- 1) ) *g*c, i* (c [i]) ), 

fl(r, s) = -j*(r. [j]) + 7*s, 

[F, p. 333]. By assumption (and standard intersection theory of bundles) 

A* (Y)[T] 
H A* (X) 

~~~~~ker(i*), P(T) 

(The isomorphism is induced by sending T to cl ((1)).) 
Multiplication by T induces a map from A* (X) to R and 7* induces a 

map from A* (Y) to R and together they give a factorization of ,B: 

A*(X) E A*(Y) ffi A*(Y) 

R R/ ker(f) 
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and it is clear from the definitions that 63' is surjective. Thus, in order to show 
that f is an isomorphism, it suffices to establish that /3' o a = 0. Choose 
c E A*(X), we may assume that c = i*y. Then (under the isomorphism (*)) 

/i'(a(c)) = f3'(y * Q(T), y - [X]) 
= y * (Q(T) * T + [X]) 
= y * (P(T)) = o. 

This completes the proof. 0 

Proof of Theorem 2. We have a commutative diagram with exact rows 

0 - A*(X) - - A*(X) E A*(Y) - - A*(Y) -v 0 

cl{ cle{cl cl{ 

0 -* H*(X) H* H*(X) H*(Y) H*(Y) 0 

(see for example the proof of Theorem 2.2 in [Ke ] from which the result 
follows. o 

Proof of Theorem 3. One checks immediately that the given map is a left in- 
verse to '. Thus to show ' is an isomorphism it suffices to show that ' is 
surjective. From the canonical exact sequence for the Chow groups of a regular 
blowup (see the proof of the preceding theorem) it suffices to show that j*(x) 
is in the image of ' for any x e A*(X) . x can be written as 

g* a + g*(b) * cl(g*(N)/1(-l)). 

As j*g*(a) is visibly in the image of 'P we need only concern ourselves with 
the second term. 

j* (g* (b) * cl (g* (N) /16(- l))) =7r* (i* (b)) 

which is in the image of ' as required. 
The statement regarding dual basis follows from familiar functoriality prop- 

erties of pushforward and pullback maps and is omitted. 0 
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