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Intersect ion theory on moduli spaces  

of holomorphic bundles of arbitrary rank  

on a Riemann surface  

By LISA C. JEFFREYand FRANCESC. KIRWAN* 

1. Introduction 

Let n and d be coprime positive integers, and define M(n ,  d) to be the 

moduli space of (semi)stable holomorphic vector bundles of rank n, degree d 

and fixed determinant on a compact Riemann surface C. This moduli space is a 

compact Kahler manifold which has been studied from many different points of 

view for more than three decades (see for instance Narasimhan and Seshadri 

[41]). The subject of this article is the characterization of the intersection 
pairings in the cohomology ring1 H*(M(n,  d)). A set of generators of this ring 

was described by Atiyah and Bott in their seminal 1982 paper [2] on the Yang- 

Mills equations on Riemann surfaces (where in addition inductive formulas for 

the Betti numbers of M (n, d) obtained earlier using number-theoretic methods 

[13], [25] were rederived). By Poincar6 duality, knowledge of the intersection 

pairings between products of these generators (or equivalently knowledge of the 

evaluation on the fundamental class of products of the generators) completely 

determines the structure of the cohomology ring. 

In 1991 Donaldson [15] and Thaddeus [47] gave formulas for the intersec- 

tion pairings between products of these generators in H*(M(2,1)) (in terms 

of Bernoulli numbers). Then using physical methods, Witten [50] found for- 

mulas for generating functions from which could be extracted the intersection 

pairings between products of these generators in H*(M(n,  d)) for general rank 

n. These generalized his (rigorously proved) formulas [49] for the symplectic 

volume of M(n,  d): For instance, the symplectic volume of M ( 2 , l )  is given 

by 

*This material is based on work supported by the National Science Foundation under Grant 

No. DMS-9306029, and by grants from NSERC and FCAR. 

lThroughout this paper all cohomology groups will have complex coefficients, unless specified 

otherwise. 
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where g is the genus of the Riemann surface, ( is the Riemann zeta function 

and B2g-2 is a Bernoulli number (see [49], [47], [15]). The purpose of this 

paper is to obtain a mathematically rigorous proof of Witten's formulas for 

general rank n. Our announcement [32] sketched the arguments we shall use, 

concentrating mainly on the case of rank n = 2. 

The proof involves an application of the nonabelian localization principle 

[31], [50]. Let K be a compact connected Lie group with Lie algebra k, let 
(M,w) be a compact symplectic manifold equipped with a Hamiltonian action 

of K and suppose that 0 is a regular value of the moment map p: M + k* 

for this action. One can use equivariant cohomology on M to study the coho- 

mology ring of the reduced space, or symplectic quotient, Mred = ~- ' (o) /K,  
which is an orbifold with an induced symplectic form wo. In particular, it is 

shown in [36] that there is a natural surjective homomorphism from the equiv- 

ariant cohomology Hk(M) of M to the cohomology H*(Mred) of the reduced 

space. For any cohomology class 70 E H*(Mred) coming from 7 E Hg(M) via 

this map, we derived in [31] a formula (the residue formula, Theorem 8.1 of 

[31]) for the evaluation qo[Mred] of 70 on the fundamental class of Mred. This 

formula involves the data that enter the Duistermaat-Heckman formula [17], 

and its generalization the abelian localization formula [3], [8], [9] for the action 

of a maximal torus T of K on M: that is, the set 3 of connected components 

F of the fixed point set M" of the action of T on M ,  and the equivariant Euler 

classes eF of their normal bundles in M. Let t be the Lie algebra of T; then 

the composition ,wr: M + t*of p: M +k* with the natural map from k* to 

t* is a moment map for the action of T on M.  In the case when K - SU(2) 

and the order of the stabilizer in K of a generic point of p-'(0) is no, the 

residue formula can be expressed in the form 

where the subset 3+of 3 consists of those components F of the fixed point 

set M" on which the value taken by the T-moment map p ~ :  M -+ t*2 R is 

positive, and for F E 3+the inclusion of F in M is denoted by iF and the 

meromorphic function hz7 of X t C is defined by 

when X E @ has been identified with diag(27ri, 27 r i )X  € t @ C.Here Z is the 

extension w + p of the symplectic form w on M to an equivariantly closed 2- 

form, while as before wo denotes the induced symplectic form on Mred. Finally 

ResxZo denotes the ordinary residue at X = 0. 

The moduli space M ( n ,  d) was described by Atiyah and Bott [2] as the 

symplectic reduction of an infinite-dimensional symplectic affine space A with 
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respect to the action of an infinite-dimensional group G (the gauge group).2 

However M(n ,  d) can also be exhibited as the symplectic quotient of a finite- 

dimensional symplectic space M(c) by the Hamiltonian action of the finite- 

dimensional group K = SU(n). One characterization of the space M(c) is 

that it is the symplectic reduction of the infinite-dimensional affine space A by 

the action of the based gauge group Go (which is the kernel of the evaluation 

map G + K at a prescribed basepoint: see [28]). Now if a compact group 

G containing a closed normal subgroup H acts in a Hamiltonian fashion on a 

symplectic manifold Y, then one may "reduce in stages": the space p];f1(O)/H 

has a residual Hamiltonian action of the quotient group G/H with moment 

map ~ G I H :~G'(O)/H-+(g/h)*,and p z l ( 0 ) / ~  is naturally identified as a 

symplectic manifold with p-' (O)/(G/H). Similarly M(c) has a Hamiltonian 
GIH 

action of G/Go S K ,  and the symplectic reduction with respect to this action 

is identified with the symplectic reduction of A with respect to the full gauge 

group G. 

Our strategy for obtaining Witten's formulas is to apply nonabelian local- 

ization to this extended moduli space M(c), which has a much more concrete 

(and entirely finite-dimensional) characterization described in Section 4 below. 

Unfortunately technical difficulties arise, because M(c) is both singular and 

noncompact. The noncompactness of M(c) causes the more serious problems, 

the most immediate of which is that there are infinitely many components F 

of the fixed point set ~ ( c ) " .  These, however, are easy to identify (roughly 

speaking they correspond to bundles which are direct sums of line bundles), 

and there are obvious candidates for the equivariant Euler classes of their nor- 

mal bundles, if the singularities of M(c) are ignored. In the case when n = 2, 

for example, a na'ive application of the residue formula (1.2), with some sleight 

of hand, would yield 

This does give the correct answer (it agrees with (1.1) above). However it is 

far from obvious how this calculation might be justified, since the infinite sum 

does not converge in a neighbourhood of 0, where the residue is taken, and 

2 ~ oobtain his generating functionals, Witten formally applied his version of nonabelian local- 

ization to the action of the gauge group on the infinite dimensional space A. 
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indeed the sum of the residues at 0 of the individual terms in the sum does 

not converge. 

These difficulties can be overcome by making use of a different approach 

to nonabelian localization given recently by Guillemin-Kalkman [23] and inde- 

pendently by Martin [39]. This is made up of two steps: the first is to reduce 

to the case of a torus action, and the second, when K = T is a torus, is to 

study the change in the evaluation on the fundamental class of the reduced 

space p?'(J)/T of the cohomology class induced by q, as I varies in t*. It is 

in fact an immediate consequence of the residue formula that if T is a max- 

imal torus of K and J E t* is any regular value sufficiently close to 0 of the 

T-moment map p ~ :  M + t*, then the evaluation qo[Mred] of q~ € H*(Mred) 

on the fundamental class of Mred = ~- ' (o) /Kis equal to the evaluation of a 

related element of H*(p?'(J)/T) on the fundamental class of the T-reduced 

space p,;'(J)/T. This was first observed by Guillemin and Kalkman [23] and 

by Martin [39], who gave an independent proof which showed that qo[Mred] is 

also equal to an evaluation on 

where Mt = ppl  (t). In our situation the space Mt turns out to be "periodic" 

in a way which enables us to avoid working with infinite sums except in a very 

trivial sense. This is done by comparing the results of relating evaluations on 

(Mt f l p?'([))/~ for different values of J in two ways: using the periodicity 

and using Guillemin and Kalkman's arguments, which can be made to work 

in spite of the noncompactness of M(c). The singularities can be dealt with 

because M(c) is embedded naturally and equivariantly in a nonsingular space, 

and integrals over M(c) can be rewritten as integrals over this nonsingular 

space. 

In the case when n = 2 our approach gives expressions for the pairings 

in H*(M(2,1)) as residues similar to those in (1.3) above. When n > 2 we 

consider the action of a suitable one-dimensional subgroup of T ,  with Lie 

algebra i1say, on the quotient of pP1(t1) by a subgroup of T whose Lie algebra 

is a complementary subspace to t1 in t. This leads to an inductive formula 

for the pairings on H*(M(n, d)), and thus to expressions for these pairings as 

iterated residues (see Theorems 8.1 and 9.12 below, which are the central re- 

sults of this paper). Witten's formulas, on the other hand, express the pairings 

as infinite sums over those elements of the weight lattice of SU(n) which lie 

in the interior of a fundamental Weyl chamber (see Section 2). These infinite 

sums are dificult to calculate in general, and there is apparently (see [50, Sec- 

tion 51) no direct proof even that they are always zero when the pairings they 

represent vanish on dimensional grounds. However, thanks to an argument of 
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Szenes (see Proposition 2.2 below), Witten's formulas can be identified with 

the iterated residues which appear in our approach. 

Over the moduli space M(n ,  d) there is a natural line bundle C (the 

Quillen line bundle [43]) whose fibre at any point representing a semistable 

holomorphic bundle E is the determinant line 

of the associated a-operator. Our expressions for pairings in H*(M(n,  d)) as 

iterated residues, together with the Riemann-Roch formula, lead easily (cf. 

Section 4 of [45]) to a proof of the Verlinde formula for 

dim HO (M(n, d), Ck) 

for positive integers k (proved by Beauville and Laszlo in [6], by Faltings in 

[20], by Kumar, Narasimhan and Ramanathan in [38] and by Tsuchiya, Ueno 

and Yamada in [48]). 

This paper is organized as follows. In Section 2 we describe the generators 

for the cohomology ring H*(M(n,  d)) and Witten's formulas for the intersec- 

tion pairings among products of these generators. In Section 3 we outline tools 

from the Cartan model of equivariant cohomology, which will be used in later 

sections, and the different versions of localization which will be relevant. In 

Section 4 we recall properties of the extended moduli space M(c) ,and in Sec- 

tion 5 we construct the equivariant differential forms representing equivariant 

Poincark duals which enable us to rewrite integrals over singular spaces as inte- 

grals over ambient nonsingular spaces. Then Section 6 begins the application 

of nonabelian localization to the extended moduli space, and Section 7 analyses 

the fixed point sets which arise in this application. Section 8 uses induction to 

complete the proof of Witten's formulas when the pairings are between coho- 

mology classes of a particular form, Section 9 extends the inductive argument 

to give formulas for all pairings, and in Section 10 it is shown that these agree 

with Witten's formulas. Finally as an application, Section 11gives a proof of 

the Verlinde formula for M (n, d). 

We would like to thank the Isaac Newton Institute in Cambridge, the 

Institute for Advanced Study in Princeton, the Institut Henri Poincark and 

Universitk Paris VII, the Green-Hurst Institute for Theoretical Physics in Ade- 

laide and the Massachusetts Institute of Technology for their hospitality during 

crucial phases in the evolution of this paper. We also thank A. Szenes for point- 

ing out an error in an earlier version of the paper; since the original version of 

this paper was written, Szenes has obtained new results [46] which are closely 

related to the results given in Section 11of our paper. 
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2. The cohomology of the moduli space M ( n ,  d) and 

Witten's formulas for intersection pairings 

In order to avoid exceptional cases, we shall assume throughout that the 

Riemann surface C has genus g ) 2. 

A set of generators for the cohomology3 HH*(M(n,  d)) of the rnoduli space 

M ( n , d )  of stable holomorphic vector buiidles of coprime rank n and degree 

d and fixed determinant on a compact Riemann surface C of genus g ) 2 is 

given in [2] by Atiyah and Bott. It may be described as follows. There is a 

universal rank n vector bundle 

which is unique up to tensor product with the pullback of any holomorphic line 

bundle on M ( n ,  d); for definiteness Atiyah and Bott impose an extra normal- 

izing condition which determines the universal bundle up to isomorphism, but 

this is not crucial to their argument (see [2, p. 5821). Then by [2, Prop. 2.201 the 

following elements of H*(M(n,  d)) for 2 5 r 5 n make up a set of generators: 

Here, [C] E H2(C) and aj E HI@) ( j  = 1 , .. . ,2g) form standard bases 

of H2(C,Z) and Hl(C,Z), and the bracket represents the slant product 

HN(C x M (n, d)) @ Hj(C) t HN-j(M (n, d)). More generally, if K = SU(n) 

and Q is an invariant polynomial of degree s on its Lie algebra k = su(n) then 

there is an associated element of H*(BSU(n)) and hence an associated element 

of H*(C x M (n, d)) which is a characteristic class Q(w) of the universal bundle 

W. Hence the slant product gives rise to classes 

and 

(1,Q(W) E H ~ ~ ( M ( ~ ,4 ) .  

In particular, letting 7, E sT(k*)" denote the invariant polynomial associated 

to the rthChern class, we recover 

"In this paper, all cohornology groups are assumed to be with complex coefficients. 
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and 

a, = (1,?(U)). 

A special role is played by the invariant polynomial 72 = -(., .)/2 on k given 

by the Killing form or invariant inner product. We normalize the inner product 

as follows for K = SU(n): 

(2.2) (X,X) = - ~ r a c e ( ~ ~ ) / ( 4 ~ ~ ) .  

The class f2 associated to -(., .)/2 is the cohomology class of the symplectic 

form on M (n, d). 

As was noted in the introduction, Atiyah and Bott identify M ( n ,  d) with 

the symplectic reduction of an infinite dimensional affine space A of connec- 

tions by the action of an infinite dimensional Lie group G (the gauge group). 

They show that associated to this identification there is a natural surjec- 

tive homomorphism of rings from the equivariant cohomology ring Hi(A)  to 

H*(M(n, d)), where is the quotient of G by its central subgroup S1. There 

is a canonical G-equivariant universal bundle over C x A, and the slant prod- 

ucts of its Chern classes with 1 E Ho(C), aj € H1(C) for 1 < j 5 2g and 

[C] E H2(C) give generators of Hi(A) which by abuse of notation we shall also 

call a,, b3, and f,. (In fact H$(A) is freely generated by a l ,  .. . , an ,  f2 , .  .. ,f, 
and b3, for 1< r 5 n and 15 j 5 29, subject only to the usual commutation 

relations.) The surjection from G to induces an inclusion from H$(A) to 

HZj(A) such that 

Hi(A) -HF(A) 8H*(Bs') 

if we identify H*(BS')with the polynomial subalgebra of HT;(A) generated by 

a l ,  and then the generators a,, f, and b3, for 1< r < n determine generators of 

Hi(A) and thus of H*(M(n,  d)). These are the generators we shall use in this 

paper. The normalization condition imposed by Atiyah and Bott corresponds 

to use of the isomorphism 

obtained by identifying H*(Bs') with the polynomial subalgebra of Hd(A) 

generated by 2(g - l )al  + fi; they choose this condition because it has a nice 

geometrical interpretation in terms of a universal bundle over C x M ( n ,  d). 

In Sections 4 and 5 of [50], Witten obtained formulas for generating func- 

tional~ from which one may extract all intersection pairings 

na? fpr fl (b:)~~,~. [M(n, d)] . 

Let us begin with pairings of the form 
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When m, is sufficiently small to ensure convergence of the sum, Witten obtains4 

(2.4)
\ , 

n 

a? exp f2 [M(n, d)] = C ~ r ( - l ) n + ( g - l )  
c - ~n;=,pr( 2 7 r ~ X ) ~ ~  

I-=2 D2g-2 (27riX) 

where 

is a universal constant for K = SU(n) and K1 = K/Z(K), and the Weyl odd  

polynomial D on t* is defined by  

where y runs over the positive roots. Here, p is half the sum of the positive  

roots, and n+ = n(n - 1)/2 is the number of positive roots. The sum over X in  

(2.4) runs over those elements of the weight lattice AW that are in the interior  

of the fundamental Weyl ~ h a m b e r . ~   The element 

is a generator of the centre Z(K) of K ;  so since X E t* is in Hom(T, U(1)), 

we may evaluate X on c as in (2.4); cX is defined as exp A(?) where c" is any 

element of the Lie algebra of T such that exp E = c. Note that in fact when d 

is coprime to n (so that when n is even d is odd) we have cP = (-l)n-l. 

Witten's formula [50, (5.21)] covers pairings involving the f, for r > 2 and 

the @ as well as f2 and the a,. He obtains it by reducing to the special case 

of pairings of the form (2.3) above (see [50, $51, in particular the calculations 

(5.11)--(5.20)) and then applying [50, (4.74)] to this special case. In the special 

case of'pairings of the form (2.3), Witten's formula [50, (5.21)] follows from 

our Theorem 8.1 using Proposition 2.2 below. Moreover our formula (Theo- 

rem 9.12) for pairings involving all the generators a,, b: and f, reduces to the 

special case just as Witten's does (see Propositions 10.2 and 10.3). Thus Wit- 

ten's formulas are equivalent to ours, although they look very different (being 

expressed in terms of infinite sums indexed by dominant weights instead of in 

terms of iterated residues). 

For the sake of concreteness it is worth examining the special case when 

rank n = 2 so that the degree d is odd. In fact, since tensoring by a fixed 

line bundle of degree e induces a homeomorphism between M ( n ,  d) and 

41n fact M(n,d) is an n"-fold cover of the space for which Witten computes pairings; this 

accounts for the factor n29 in our formula (2.5). Taking this into account, (2.4) follows from a special 

case of Witten's formula [50, (5.21)]. 

"he weiglit lattice AW C t* is the dual lattice of tlie integer lattice A' = Ker(exp) in t. 
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M(n,d +ne), we may assume that d = 1. In this case the dominant weights X 

are just the positive integers. The relevant generators of H*(M(2 , l ) )  are 

(which is the cohomology class of the symplectic form on M ( 2 , l ) )  and 

these arise from the invariant polynomial 7-2 = -(., .)/2 by a2 = 7-2 (I) ,  f2 = 

7-2([C]) (see (2.1)). We find then that formula (2.4) reduces for m 5 g - 2 to6 

([50, (4.4411 

Thus one obtains the formulas found by Thaddeus in Section 5 of [47] for the 

intersection pairings a? fF[M (2, I)]; these intersection pairings are given by 

Bernoulli numbers, or equivalently are given in terms of the Riemann zeta 

function ( ( s ) = l /nS. AS Thaddeus shows in Section 4 of [47], this is 

enough to determine all the intersection pairings in the case when rank n is 

two, because all the pairings 

are zero except those of the form 

where m + 2n + 3q = 39 - 3 and 1 < il < . . . < iq < g. This expression 

equals the evaluation of a?fF on the corresponding moduli space of rank 2 

and degree 1bundles over a Riemann surface of genus g - q if q < g - 2, and 

equals 4 if q = g - 1. 

Szenes [45] has proved that the expression on the right-hand side of (2.4) 

may be rewritten in a particular form. To state the result we must introduce 

some notation. The Lie algebra t = t, of the maximal torus T of SU(n) is 

Define coordinates = ej(X) = Xj - Xj+1 on t for j = 1, ... ,n - 1. The 

positive roots of SU(n) are then yjk(X) = Xj - Xk = Y , + .. . + Yk-1 for 

1< j < k 5 n. The integer lattice A' of SU(n) is generated by the simple roots 

ej,j = 1,.  . . ,n - 1. The dual lattice to A' with respect to the inner product 

(., .) introduced at (2.2) is the weight lattice AW c t; in terms of the inner 

6Here, we have identified -az with Witten's class Q and fi with Witten's class w. 
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product (.,.), it is given by AW = {X E t :  5 E Z for j =  1,. . . ,n-1 ) .  We 

define also A&(tn) = {X E AW: % # 0 for j = 1,. . . ,n - 1and yjk (X) # 0 

for any j # k ) .  

Definition 2.1. Let f :  t @I @ 4 @ be a meromorphic function of the form 

where y(X) = ylY1 + .. . +7,-lY,-1 for (71, .. . ,?,-I) E &!in-'. We define 

to be the element of Rn-' for which 0 < [[?]Ij < 1 for all j = 1, .  . . ,n - 1and 

[[y]]= y mod 2Zn-'. (In other words, [[y]] = ~71:[[y]ljej is the unique element 

of t E Rn-' which is in the fundamental domain defined by the simple roots 

for the translation action on t, of the integer lattice, and which is equivalent 

to y under translation by the integer lattice.) 

We also define the meromorphic function [[f]]:t @I @ 4 @ by 

PROPOSITION Let f :  @ be defined by 2.2 (Szenes). t @I @ 4 

Provided that the m, are suficiently small to ensure convergence of the sum, 

where W,-l E SnP1is the Weyl group of SU(n - 1) embedded in SU(n) in the 

standard way using the first n - 1 coordinates X I , .  . . ,X,-1. 

Remark 2.3. Here, we have introduced coordinates % = e j  (X) on t using 

the simple roots 

{ej: j =  1,. . .n - I }  

of t ,  and A& denotes the regular part of the weight lattice AW (see be- 

low). Also, we have introduced the unique element E of t which satisfies 
e27rzE - c and which belongs to the fundamental domain defined by the sim- -

ple roots for the translation action on T, of the integer lattice A'. This 

simply means that (E, X )  = ylYl + . . . + ynPl Y,-I where 0 5 yj < 1 for 

1 5 j 5 n - 1. (In the notation introduced in Definition 2.1 this says that 

c" = [[ (dln, dln,  . .. ,-(n - l)d/n)]].) Also, t+ denotes the fundamental Weyl 

chamber, which is a fundamental domain for the action of the Weyl group on t. 
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If g(Yk,. ..,Y,-l) is a meromorphic function of Yk,.. . ,Yn-1, we interpret 

Resy, = o  g(Yk,... ,YnU1)as the ordinary one-variable residue of g regarded as 

a function of Yk with Yk+1,.. .,Y,-1 held constant. 

The rest of this section will be devoted to a proof of Proposition 2.2. 

We shall prove the following theorem: 

THEOREM2.4. Let f :  t n@C-+ @ be a meromorphic function of the form 

f (X) = g ( ~ ) e - r ( x )where y(X) = y ~ Y l +.. . +yn-lYn-l with 0 5 7,-1 < 1, 

and g(X) is a rational function of X with poles only on the zeros of the roots 

yjk and decaying suficiently fast at infinity. Then 

where Wn-l is the We91 group of SU(n -1) embedded i n  SU(n) using the first 

n - 1 coordinates. 

Remark 2.5. Notice that if f is as in the hypothesis of the theorem (but 

here one may omit the hypothesis that 0 5 7,-1 < 1)then 

where [ [ f ] ]is as in Definition 2.1. 

Proof of Proposition 2.2 given Theorem 2.4. The function 

satisfies the hypotheses of the theorem, provided that the m, are small enough 

to ensure convergence of the sum. Notice that if X t A&(t,) then e2Ti"("= 

c-A satisfies cpA = cpWAfor all elements w of the Weyl group W. Thus for 

this particular f we have that 

Thus, 

which is the statement of Proposition 2.2. 
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It remains to prove Theorem 2.4. By induction on n it suffices to prove: 

LEMMA2.6. Let f = f(,): tnt @ be as i n  the statement of Theorem 2.4. 

Define f (n-l):  tn-1  @ by 

Then 

where qj is the element of the Weyl group WnPl"Sn-l represented by swap- 

ping the coordinates X j  and XnP1.  

Remark 2.7. Note that by Remark 2.5, the sum ~71:( q jf )(n-l) ( 2 n d )  

is equal to 
n-1 

Remark 2.8. Note that the function [[(qj f )  (n-l)]]satisfies the hypotheses 

of Theorem 2.4. 

Proof of Lemma 2.6. Let l j  ( j  = 1, . . .,n - 2)  be integers such that 

Define L(ll,.,,,ln-,) to be the line ( (2~211 ,. . . ,2~~1,-2 ,Yn-1): Yn-1 E C}. The 

condition (2.12) states that all the roots yjs for 15 j < k In - 1 are nonzero 

on L(ll,...,ln-z). 
Let f :  t 8@ + @ be a meromorphic function as in the statement of 

Theorem 2.4, having poles only at the zeros of the roots yjk. We shall think off 

as a function f (fi, . . . ,Yn-l)of the coordinates f i ,. . . ,YnP1.Define Areg(ll,...rln-~)
to be 

' ~ j s ( X )# 0 for any j # k}.  

The sum of all residues of the function g(ll,,.,,,,,,1n-2) on @ given by  

is zero and these residues occur when YnP1E 2niZ. Therefore we find that the 

sum 
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is given by 

PROPOSITION2.9. Let pj be the point X E L( l l,,,.,ln-,) for which Yn-1 = 

-27ri(lj + .. . + lnP2),  or  equivalently X n  = X j .  Then  

Here, we define an  involution qj: t -+ t ( for  j = 1 , .  . . ,n - 1)  by 

The integers l y ) ,  . . . ,l!ll are defined by the equation 

Proof. For j < n - 2,  the involution qj is given in the coordinates 

(Yl,.. . ,Yn-1) by qj: (Yl,. . . ,Yn-1) H (Yl,. . . ,YAP1)where YL = Yk for 

k # j - 1, j , n  - 2 , n  - 1 and 

For j = n - 1,  qj is the identity map. Notice that YA-l is the only one of the 

transformed coordinates that involves YnP1.Notice also that qj takes pj to a 

point where = 0. 

We now examine the image of L(ll,,..,ln-2) under qj. The integers 

l y ) ,.. . ,l:l1 were defined by the equation (2.14): in fact 1:) = lk for k # 
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j - l n - 2 , n - 1  and 

(2.19) 3-1( j )  = lj-1 + . - .+ lnP2, 

We have that 

K Z Z ~ ,  . ..,2riln-2, Yn-l)
Resy, -1 =-2xi(l,+ ...+1,-2) e-Yn-l - 1 

(because e2"i1" = 1 for all k = j ,  . ..,n - 2 )  

by the formulas (2.15-2.18) where we have defined ~ 2 ) ~= YnPl+ 
( j )27ri(lj + . ..lnP2)so that dYnP1 = dYn-l. This completes the proof. 

where the integers l y ) ,.. .,z:?~are as defined in (2.193.21)  

Proof. This follows by addition of the results of Proposition 2.9 over all 

j = 1 , .  .. ,n- 1; on one side this yields the sum on the right-hand side of (2.13) 

(which according to (2.13) is equal to C p E A r e g  f ( p ) ) ,  and on the other 
(11,. . .>1,-2) 

side yields the sum on the right-hand side of (2.23). 

We shall complete the proof of Lemma 2.6 by summing the equality given 

in Corollary 2.10 over all possible ( I l ,  . . . , In-2)  satisfying (2.12); the proof 

reduces to the following lemma. 

LEMMA2.11. I n  the notation of Proposition 2.9, ( 1 ,  . . l 2 t 

A&(t,-,). Moreover for any (1'1,.  . . ,1kP2) E A g g ( t n P l )  there is exactly one 

sequence of integers (11,  . .. ,lnP2) satisfying (2.12) such that 

( j )( l y ' ,  . .. ,lnp2) = ( l i ,  . . . ,lbP2). 
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Proof. This follows immediately from the proof of Proposition 2.9 and the 

fact that the restriction of qj to t,-1 is given by the action of an element of 

the Weyl group WnP1 and hence maps hgg(tnPl)to itself bijectively. 

This completes the proof of Lemma 2.6 and hence of Theorem 2.4 and 

Proposition 2.2. 

3. Residue formulas and  nonabelian localization 

Let (MIw )  be a compact symplectic manifold with a Hamiltonian action 

of a compact connected Lie group K with Lie algebra k. Let p: M tk* be a 

moment map for this action. 

The K-equivariant cohomology with complex coefficients Hk(M) of M 

may be identified with the cohomology of the chain complex 

of equivariant differential forms on MI equipped with the differential7 

where X# is the vector field on M generated by the action of X (see Chapter 7 

of [7]). Here (R*(M),d) is the de Rham complex of differential forms on 

M (with complex coefficients), and S(k*) denotes the algebra of polynomial 

functions on the Lie algebra k of K .  An element q E Rk(M) may be thought 

of as a K-equivariant polynomial function from k to R*(M), or alternatively 

as a family of differential forms on M parametrized by X E k. The standard 

definition of degree is used on R*(M) and degree two is assigned to elements 

of k*. 

In fact as a vector space, though not in general as a ring, when M is a 

compact symplectic manifold with a Hamiltonian action of K then Hg(M)  is 

isomorphic to H*(M)@I HT( where H k  = R&(pt) = S(k*)Kis the equivariant 

cohomology of a point (see [36, Prop. 5.81). 

The map Rk(M) 4 Rk(pt) = S(k*)Kgiven by integration over M passes 

to Hk(M).  Thus for any D-closed element q E Rk(M) representing a coho-

mology class [q], there is a corresponding element JIMq E Rk(pt) which de-

pends only on [q]. The same is true for any D-closed element q = Cj17jwhich 

is a formal series of elements qj in R&(M) without polynomial dependence on 

X: we shall in particular consider terms of the form 

7 ~ h i sdefinition of the equivariant cohomology differential differs by a factor of i from that used 

in [50] but is consistent with that used in [31]. 
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where q E Ok(M) and 

Here p: M -+ k* is identified in the natural way with a linear function on 

k with values in O O ( ~ ) .  It follows directly from the definition of a moment 

map8 that Dw = 0. 

If X lies in t ,  the Lie algebra of a chosen maximal torus T of K ,  then 

there is a formula for JM q(X) (the abelian localization formula [2], [7], [8], [9]) 

which depends only on the fixed point set of T in M. It tells us that 

where F indexes the components F of the fixed point set of T in M ,  the 

inclusion of F in M is denoted by iFand e F  E H;(M) is the equivariant Euler 

class of the normal bundle to F in M. In particular, applying (3.3) with q 

replaced by the formal equivariant cohomology class qe" we have 

where 

Note that the moment map p takes a constant value p(F) E t*on each F EF, 

and that the integral in (3.5) is a rational function of X. 

We shall assume throughout that 0 is a regular value of the moment map 

p: M -. k*; equivalently the action of K on pP1 (0) has only finite isotropy 

groups. The reduced space 

is then a compact symplectic orbifold. The cohomology (with complex coef- 

ficients, as always in this paper) H*(Mred) of this reduced space is naturally 

isomorphic to the equivariant cohomology ~ ; i ( ( p ~ ' ( 0 ) )  of ppl(0), and by Theo- 

rem 5.4 of [36] the inclusion of ppl(0) in M induces a surjection on equivariant 

cohomology 

H;i((M) +~ ; i ( ( ~ - l ( o ) ) .  

Composing we obtain a natural surjection 

which we shall denote by 

T To. 

'we follow the convention that d p ( X )= ~ ~ p w ;  = - L ~ ~ w .some authors have d p ( X )  
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When there is no danger of confusion we shall use the same symbol for 7 E 

H k ( M )  and any equivariantly closed differential form in R&(M)which repre- 

sents it. Note that ( w ) ~E H * ( M r e d )  is represented by the symplectic form wo 

induced on Mredby w. 

Remark. Later we shall be working with not only the reduced space 

Mred= ,L-'(o)/K with respect to the action of the nonabelian group K ,  but 

also ppl  (o) /Tand M ~ ~ ( J )= p ~ '( [ ) ITfor regular values < of the T-moment 

map p~ which is the composition of p with restriction from k* to t*.We shall 

use the same notation 70 for the image of 7 under the surjective homomor- 

phism @ for whichever of the spaces ~ - ' ( o ) / K ,~ - ' ( o ) / T  we are or p @ l ( ~ ) / ~  

considering, and the notation if we are working with (<) IT .  It should 

be clear from the context which version of the map @ is being used. 

The main result (the residue formula, Theorem 8.1) of [31]gives a formula 

for the evaluation on the fundamental class [Mred]E H, (Mred),  or equivalently 

(if we represent cohomology classes by differential forms) the integral over 

Mred,of the image qoeWoin H * ( M r e d )  of any formal equivariant cohomology 

class on M of the type vew where 7 E H&(M).  

THEOREM Let 7 E H & ( M )  induce3.1 (Residue formula, [31,Th. 8.11). 

70E H* (Mred).Then  

where the constan&' CK i s  defined by 

and no i s  the order of the stabilizer in K of a generic point10 o fp- ' (0)  

g ~ h i sconstant differs by a factor o f  (-1)S(27r)Sp1 from that o f  [31, T h .  8.11. T h e  reason for 

the factor o f  (27r)SpL is that in this paper we shall adopt the  convention that weights t t* send 

the integer lattice A' = Ker(exp: t 7- T )  t o  z rather than t o  27rz, and that the roots o f  K are the 

nonzero weights o f  its complexified adjoint action. In [31] the roots send A' t o  27rz. The  reason 

for the factor of  (-1)' is an error in Section 5 o f  [31]. In the  last paragraph o f  p.307 o f  [31] the 

appropriate form t o  consider is n:=l(%Jdz( l ) ,  and since 1-forms anticommute this is (-l)'/iS times 

the term in exp(idzl(%)) which contributes t o  the integral (5.4) o f  [31]. T h e  constant also differs 

by  a factor o f  is from that o f  [33, T h .  3.11, because in that paper the convention adopted on the  

equivariant cohomology differential is that o f  [50], not that o f  [31]. 

1°Note that in [31] and [32] no is stated incorrectly t o  be the  order o f  the subgroup o f  K which 

acts trivially on pP1(0) (i.e. the kernel o f  the action o f  K on p p l ( 0 ) ) ;  see the  correction in Section 3 

o f  [33]. W h e n  K =T is abelian, however, the stabilizer in K o f  a generic point o f  p p l ( 0 )  is equal t o  

the kernel o f  the action o f  K on p- l (0) .  Moreover since the  coadjoint action o f  T on t* is trivial, 

when K = T this subgroup acts trivially on the normal bundle t o  p p l ( 0 )  in M and hence is the 

kernel o f  the action o f  K on M .  
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In this formula JWJis the order of the Weyl group W of K ,  and we have 

introduced s = dim K and 1 = dim T ,  while n+ = (s - 1)/2 is the number of 

positive roots. The measure [dX] on t and volume vol(T) of T are obtained 

from the restriction of a fixed invariant inner product on k, which is used to 

identify k* with k throughout. Also, 3denotes the set of components of the 

fixed point set of T,  and if F is one of these components then the meromorphic 

function h; on t 63 @ is defined by (3.5). The polynomial 23: t +R is defined 

by 

where y runs over the positive roots of K .  Note that it would perhaps be more 

natural to combine (-l)n+from the constant CK with D ~ ( x )and replace 

them by the product 

of all the positive and negative roots of K .  

The formula (3.6) was called a residue formula in [31] because the quantity 

Res (whose general definition was given in Section 8 of [31]) can be expressed as 

a multivariable residue1', whose domain is a class of meromorphic differential 

forms on t 8 @. It is a linear map, but in order to apply it to individual 

terms in the residue formula some choices have to be made which do not affect 

the residue of the whole sum. Once the choices have been made one finds 

that many of the terms in the sum contribute zero, and the formula can be 

rewritten as a sum over a certain subset 3+of the set 3of components of the 

fixed point set M ~ .When the rank of K is one and t is identified with R, we 

can take 

3+= > 0).{FE 3 :  ~ T ( F )  

In this paper we shall be particularly interested in the case where K has rank 

one, for which the results are as follows. 

COROLLARY I n  the situation of Theorem 3.1, let3.2 [35], [51], [31]. 

K = U(1). Then 

where no i s  the order of the stabilizer in K of a generic point in ppl(0). Here, 

the meromorphic function h> o n  C i s  as dejined by (3.5), and R ~ S ~ , ~denotes 

the coeficient of 1/X, where X E R has been identijied with 27riX E k.  

llAn alternative definition in terms of iterated 1-variable residues is given in Section 3 of [33]. 
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Remark. The notation Resx,0 is intended to indicate the variable X with 

respect to which the residue is calculated, as well as the point 0 at which the 

residue is taken, so that, for example, R ~ S - ~ , ~  f (X) = -ResxZo f (X). It  

would perhaps be more natural to use the notation ResxZo f (X)dX, but we 

shall have numerous formulas involving iterated residues of this type which 

would then become too long and unwieldy. 

3.3 (cf. [31, Cor. 8.21). 

K = SU(2). Then 

COROLLARY In the situation of Theorem 3.1, let 

Here, no, ResxZo, h",nd F+ are as in Corollary 3.2, and X E R has been 

identified with diag(27ri, - 27ri)X E t .  

Remark 3.4. Note that if the degree of q is equal to the dimension of 

Mred then 

r]OewO[Mred] = TO [Mred] . 

Alternatively for K = U(1) or K = SU(2), if we multiply w and p by a real 

scalar E > 0 and let E tend to 0 we obtain 

The results we have stated so far require the symplectic manifold M to be 

compact, and this condition is not satisfied in the situation in which we would 

like to apply these results (in order to obtain formulas for the intersection 

pairings in the cohomology of moduli spaces of bundles over compact Riemann 

surfaces). Luckily there are other related results due to Guillemin and Kalkman 

[23], and independently, Martin [39], which as we shall see can be generalized 

to noncompact symplectic manifolds. 

Guillemin and Kalkman and Martin have approached the problem of find- 

ing a formula for 

in terms of data on M localised near M~ in a slightly different way from that 

described above. As Guillemin and Kalkman observe, it follows immediately 
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from the residue formula that if J t t*is a regular value of the T-moment map 

p ~ :M tt*which is sufficiently close to 0 then 

where no (respectively n;) is the order of the stabilizer in K (respectively 

T) of a generic point of pP1(0) (respectively pF1(0)) and ~ T ' ( J ) / T  is the 

reduced space for the action of T on M with respect to the shifted moment 

map p~ - J. Also E H*(pF1(J)/T) is the image of D2rl under the 

surjection cP: H,T-,(M)tH*(Mred). Here q E H&(M) and D ;, S(t*)= H$ 

are regarded as elements of H,T-,(M) via the natural identification of H&(M) 

with the Weyl invariant part ( H $ ( M ) ) ~of H$(M) and the natural inclusion 

H$ tH$(M). Martin gives a direct proof of (3.8) without appealing to the 

residue formula, which shows also that for any J sufficiently close to 0 

where nb is the order of the stabilizer in T of a generic point in ppl(0), provided 

that ppl(J)/T is oriented appropriately. 

Remark 3.5. The symplectic form w induces an orientation on M,  and 

the induced symplectic forms on Mred = p-'(O)/K and on ,uT'(J)/T induce ori- 

entations on these quotients. We have made a choice of positive Weyl chamber 

for K in t; this determines a Bore1 subgroup B (containing T)  of the complexi- 

fication G of K ,  such that the weights of the adjoint action of T on the quotient 

g /b  of the Lie algebra g of G by the Lie algebra b of B are the positive roots 

of K .  We then get an orientation of the flag manifold K I T  by identifying it 

with the complex space G/B. Modulo the action of finite isotropy groups we 

have a fibration 

P-'(o)/T p - ' ( o ) l ~+ 

with fibre KIT; thus the symplectic orientation of p-'(o)/K and the orienta- 

tion of K I T  determined by the choice of Weyl chamber induce an orientation 

of p-'(o)/T. Since 0 is a regular value of p, if J is sufficiently close to 0 there 

is a homeomorphism from p-'(O)/T to pp1(J)/T induced by a T-equivariant 

isotopy of Ad;so we get an induced orientation of ~- ' ( J ) /Tto be used below. 

Note that given a positive Weyl chamber we have another choice of ori- 

entation on p-'(J)/T which is compatible with the symplectic orientation on 

~? ' ( J ) /Tand the orientation of the normal bundle to ~- ' ( J ) /Tin &~'(J)/T 
induced by identifying it in the natural way with the kernel of the restriction 

map k* + t*,thence via the fixed invariant inner product on k with k / t  and 

thus finally with the complex vector space g / b  as above. Because we have 
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used the inner product to identify k / t  with its dual here, this orientation dif- 

fers from the one chosen above by a factor of (-l)n+where n+ is the number 

of positive roots. 

PROPOSITION If3.6 (Reduction to the abelian case, [S. Martin], [39]). 

T is  a maximal torus of K and K acts eflectively on  M ,  then for any regular 

value < of p~ sufficiently close t o  0, we have that 

where no is  the order of the stabilizer in K of a generic point of ,upl(0) a,nd n; 

(respectively nb) is  the order of the stabilixer in T of a generic point of pF1(0) 

(respectively p-' (0)). 

Remark 3.7. Note that (-1)n+D2 is the product of all the roots of K, 

both positive and negative. 

Martin proves this result by considering the diagram 

where the homeomorphism from p-'(o)/T to ,L-'(<)/Tis induced by a T- 

equivariant isotopy of M (for < sufficiently close to O). For simplicity we 

shall consider the case when no = nb = n; = 1. As before we use a fixed 

invariant inner product on k to identify k* with k,  which splits T-equivariantly 

as the direct sum of t and its orthogonal complement tL .  The projection of 

p: M + k* " k onto t' then defines a T-equivariant section of the bundle 

M x tL on M,  which has equivariant Euler class (-l)n+D if we orient t' LZ 

k/t  by identifying it with the dual of the complex vector space g/b as in 

Remark 3.5. Hence if < is a regular value of p~ then pp'(<)/T is a zero-section 

of the induced orbifold bundle pF1(<) XT tLon p?'(<)/T, whose Euler class is 

(-l)n+DE. Thus under the conventions for orientations described in Remark 

3.5, evaluating the restriction to p-'(<)IT of an element of H*( ,~~ ' (<) ) /T  

on the fundamental class [pp'(<)/T] gives the same result as multiplying by 

(- l)n+Dc and evaluating on the fundament a1 class [&' (<)IT]. 

Now Martin observes that since the natural map 

is a fibration with fibre KIT, modulo the action of finite isotropy groups which 

act trivially on cohomology with complex coefficients, and since the Euler 
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characteristic of K I T  is nonzero (in fact it is the order IWI of the Weyl group 

of K),  the evaluation of a cohomology class 70 E H*(Mred)on [Mred]is given by 

the evaluation of an associated cohomology class on [ppl(0)/T]. More precisely 

we have 

where e(V) is the Euler class of the vertical subbundle of the tangent bundle to 

pp1(0)/T with respect to the fibration n.As this Euler class is induced by D 

under the orientation conventions of Remark 3.5, this completes the proof. 

Remark 3.8. In this proof we saw that DE is the cohomology class 

in H*(,UT'(<)/T)which is Poincark dual to the homology class represented 

by p-'(<)IT. Thus Dt may be represented by a closed differential form on 

,uT1(<)/T with support in an arbitrarily small neighbourhood of pp1(<)/T. If 

we interpret in this way, Martin's proof of Proposition 3.6 is valid even 

whcn M is noncompact and has singularities, provided that for < near 0 the 

subset pP1(<) is compact and does not meet the singularities of M. 

Note also that K and hence T act with at most finite isotropy groups on 

a neighbourhood of ppl(0) in pT1(0), and so ,UT'(O)/T has at worst orbifold 

singularities in a neighbourhood of p-'(o)/T. This means that in Proposi-

tion 3.6 we do not need to perturb the value of the T-moment map , u ~from 0 

to a nearby regular value ( if, as above, we represent Do by a differential form 

on ~T ' (o ) /Twith support in a sufficiently small neighbourhood of p-'(o)/T. 

This result reduces the problem of finding a formula for 70[Mred]in terms 

of data on M localized near MT to the case when K = T is itself a torus. 

Guillemin and Kalkman, and independently Martin, then follow essentially 

the same line. This is to consider the change in 

for fixed 7 t HG(M), as < varies through the regular values of p ~ .This is 

sufficient, if M is a compact symplectic manifold, because the image pT(M) 

is bounded; so if < is far enough from 0 then pF1(<)/T is empty and thus 

7 t [ ,uF1(~) /~1= 0. 
More precisely, the convexity theorem of Atiyah [I] and Guillemin and 

Sternberg [24] tells us that the image pT(M) is a convex polytope; it is the 

convex hull in t*of the set 

of the images pT(F) (each a single point of t*)of the connected components F 

of the fixed point set MT. This convex polytope is divided by codimension-

one "walls" into subpolytopes, themselves convex hulls of subsets of 
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{ ~ T ( F ) :F E F),whose interiors consist entirely of regular values of p ~ .  

When ( varies in the interior of one of these subpolytopes there is no change 

in 17E[,u~1(()/~],  SO it suffices to understand what happens as ( crosses a 

codimension-one wall. 

Any such wall is the image pT(M1) of a connected component MI of the 

fixed point set of a circle subgroup Tl of T .  The quotient group TITl acts on 

MI, which is a symplectic submanifold of M ,  and the restriction of the moment 

map , u ~  to MI has an orthogonal decomposition 

PT 1 MI = P T / ~@ PTi 

where ,%TITl : + (t/tl)*is a moment map for the action of TITl on MI 

and PT~:MI -+ tT is constant (because TI acts trivially on MI). If J1 is a 

regular value of /LT/T~ then there is a reduced space 

Guillemin and Kalkman show that if T acts effectively on M (or equivalently 

if n; = 1; see Footnote 9) then, for an appropriate choice of (I, the change in 

(()IT]as ( crosses the wall pT(Ml) can be expressed as 

( r e s ~ i( ~ ) ) [ 1[(Ml)redl 

for a certain residue operation (see Footnote 11below) 

r e s ~ ,: H$ (M) + H;,$: (MI) 

where dl = codimMI - 2. (Of course care is needed here about the direction 

in which the wall is crossed; this can be resolved by a careful analysis of 

orientations.) By induction on the dimension of T this gives a method for 

calculating q[[ ,u~~(() /T] in terms of data on M localized near MT. 

It is easiest to see how this version of localization is related to the residue 

formula of [31] in the special case when K = T = U(1). In this case 

is the tensor product of a polynomial ring in one variable X (representing a 

coordinate function on the Lie algebra t)  with the algebra of T-invariant de 

Rharn forms on M. The Guillemin-Kalkman residue operation 

is then given in terms of the ordinary residue on @. by 

where qlMl (X) and the equivariant Euler class eMl (X) of the normal bundle 

to MI in M are regarded as polynomials in X with coefficients in H*(Ml). 
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More precisely we formally decompose this normal bundle (using the splitting 

principle if necessary) as a sum of complex line bundles vj on which T acts 

with nonzero weights ,Oj E t*"R, and because cl(vj) E H*(Ml) is nilpotent 

we can express 

as a finite Laurent series in X with coefficients in H*(Ml). Then resMl (q) is 

simply the coefficient of 1/X in this expression.12 Since TI = T acts trivially 

on MI, we have MI,,,^ = MI and MI is a connected component of the fixed 

point set M ~ ,i.e. MI t3.Therefore 

Of course as K = T = U(1) the convex polytope pT(M) in t*2 R is a closed 

interval, divided into subintervals by the points {pT(F): F E F).Thus the 

argument of Guillemin and Kalkman just described, amplified by some careful 

consideration of orientations, tells us that if < > 0 is a regular value of p~ and 

n; = 1then the difference 

can be expressed as 

(3.11) C (q) [MI] =r e s ~ ~  Resx,~ 

M l € F  O<PT(MI)<< F E F :  O<~T(F)<< 

If we take < > s u p ( p ~ ( M ) )then this gives the same result as Corollary 3.2 (cf. 

Remark 3.4). 

PROPOSITION3.9 (dependence of symplectic quotients on parameters 

(Guillemin and Kalkman 1231, S. Martin 1391)). I f  K = T = U(1) and n: i s  

''When the dimension I of T is greater than one the Guillemin-Kalkman residue operation 

resM, : H$ (M) -H_*H_* (MI) 

is defined in almost exactly the same way, by choosing a coordinate system X = (XI, .. . ,X1)on t 

where X1 is a coordinate on tl, and taking the coefficient of l/Xl in expanded formally as 

a Laurent series in X1 with coefficients in C [ X ~ , ...,Xi]@ R*( M ) ~ .  
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the order of the stabilizer in T of a generic point of ,u?'(O) then13 

where X E C has been identzfied with 27riX E t 18C and to< 6 are two regular 

values of the moment  map.  

Remark 3.10. As we have already noted these results can be deduced 

easily from the residue formula of [31] when M is a compact symplectic man- 

ifold. However the proof of Proposition 3.9, just like that of Proposition 3.6 

(see Remark 3.8), can be adapted to apply in circumstances when M is not 

compact and the residue formula of [31] is not valid. Indeed, as Guillemin and 

Kalkman observe, in the case when K =T = U(1) the basis of their argument 

applies to any compact oriented U(1)-manifold Y with boundary such that 

the action of T = U(1) on the boundary BY is locally free. Let us suppose 

for simplicity that T acts effectively on M (i.e. that n; = 1; see Footnote 9) 

and let C be a U(1)-invariant de Rham one-form on Y -- yTwith the prop- 

erty that L,(() = 1, where the vector field v is the infinitesimal generator of 

the U(1)-action. Guillemin and Kalkman showed that, at  the level of forms, 

the map a: H;(Y) t H*(dY/T) which is the composition of the restriction 

map from H;(Y) to H;(BY) with the inverse of the canonical isomorphism 

HG(BY) tH*(BYIT) is given by 

(see (1.18) of [23], noting that Guillemin and Kalkman have a different conven- 

tion for the equivariant cohomology differential, which accounts for the minus 

sign). If tubular neighbourhoods Ul, . . . ,UN of the components Fl,. . . ,FN 

of the fixed point set yTare removed from Y, then Stokes' theorem can be 

applied to the manifold with boundary Y -uE1Uj using the formal identity 

Non Y -UjZl Uj to give, after using the fact that Jay Q = L,(Q) and taking 

13The convention of Guillemin and Kalkman for the sign of the moment map differs from ours 

(see Footnote 8). This accounts for a difference in sign between their formula and ours. 
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residues at X = 0, the formula 

where eFJ is the equivariant Euler class of the normal bundle to Fj in Y. 

The formula of Proposition 3.9 comes directly from this when the manifold 

with boundary Y is p ~ l [ ( ~ , ( ~ ]  for a moment map p ~ :  M t t* R with 

regular values So < 6,but there is no need for p~ to be a moment map 

or for M to have a symplectic structure for the formula to be valid. It is 

enough for p ~ :  M t R to be a smooth T-invariant map with regular values 

So < such that T acts freely on the intersections of p ~ l ( ( ~ )  and p ~ l ( ( ~ )  

with the support of the equivariant differential form 7. There is also no need 

to assume that M is compact; it suffices to suppose that p ~ :  M t R is a 

proper map. Indeed, the assumption that p~ is proper can itself be weakened; 

the same proof applies provided only that the intersection of ,LL$~[&,(11 with  

the support of the equivariant differential form 7 is compact.  

4. Extended moduli spaces 

In [28] certain "extended moduli spaces" of flat connections on a compact 

Riemann surface with one boundary component are studied. They have natural 

symplectic structures, and can be used to exhibit the moduli spaces M ( n ,  d) of 

interest to us as finite-dimensional symplectic quotients or reduced spaces. Our 

aim is to obtain Witten's formulas for intersection pairings on H*(M(n,  d)) by 

applying nonabelian localization to these extended moduli spaces. They have 

a gauge-theoretic description (cf. the introduction to this paper), but we shall 

use a more concrete (and entirely finite-dimensional) characterization given in 

[as].  
The space with which we want to work is defined by  

where IF is the free group on 29 generators 1x1, . . . ,zag);we identify IF with 

the fundamental group of the surface C with one point removed, in such a way 

that xl,  . . . , correspond to the generators al,. .. ,sag of Hl(C, Z) chosen 

in Section 2. Then E K :  Hom(IF, K )  tK is the evaluation map on the relator 

r = njgZl[xj,xj+,] and 

The map e,: k +K is defined by 
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where the generator c of the centre of K is as defined in (2.6) above. The 

diagonal in K x K is denoted A. The space M ( c )  then has canonical projection 

maps prl, pr2 which make the following diagram commute: 

In other words, M ( c )  is the fibre product of Hom(iE', K )  and k under the maps 

EK and e,. The action of K on M ( c )  is given by the adjoint actions on K and 

k. The space M ( c )  has the following properties (see [28]and [29]):  

PROPOSITION4.1.  (a) The space M ( c )  is  smooth near all ( h , A )  E 

Hom(F, K )  x k for which the linear space z ( h )  n ker (d exp ) A  # ( 0 ) .  Here, 

x ( h )  is  the Lie algebra of the stabilizer Z ( h )  of h. 

(b) There is a K-invariant 2-form w o n  Hom(F, K )  x k whose restric- 

t ion to  M ( c )  is closed and which defines a nondegenerate bilinear form o n  the 

Zariski tangent space t o  M ( c )  at every ( h , A )  in a n  open dense subset of M ( c )  

containing M ( c )  n ( ~ x ~ 9 Thus the form (J gives rise to  a symplectic ( 0 ) ) .  

structure o n  this open subset of M ( c ) .  

( e ) With  respect to  the symplectic structure given by the 2-form w, a mo- 

ment  map p: M ( c )  d k* for the action of K o n  M ( c )  is  given by the restriction 

to  M ( c )  of -pr2, where pr2: M ( c )  t k is  the projection map to  k (composed 

with the canonical isomorphism k t k* given by the invariant inner product 

on  k ) .  

(d) The space M ( c )  is  smooth in a neighbourhood of pP1(0) .  

(e) The symplectic quotient Mred = M ( c )  n p P 1 ( 0 ) / K  can be naturally 

identified with &kl(c )/ K  = M (n,d ). 

Remark 4.2. We shall also use p to denote the map 

defined by 

even though it is only its restriction to M ( c )  which is a moment map in any 

obvious sense. That is why we write M ( c )n~ - ' ( o ) / Kinstead of ~ - ' ( o ) / Kin 

(e) above. 

Remark 4.3. Using our description (4.4) of M ( c )  as a fibre product, it 

is easy to identify the components F of the fixed point set of the action of T. 

We examine the fixed point sets of the action of T on Hom(iE', K )  and k and 
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find 

(4.5) 

(Notice that EK sends Hom(F, T) to 1because T is abelian.) Thus 

(4.6) M ( c ) ~= Hom(F,T) x e,'(l) = T~~x (6 - C": 6 E A' c t} 

where C" is a fixed element o f t  for which exp E = c. (Here, A' denotes the integer 

lattice Ker(exp) c t.) If we ignore the singularities of M(c), this description 

also enables us to  find a plausible candidate for the equivariant Euler class 

eF, of the normal bundle of each component T2g x (6 - (indexedE) in ~ ( c ) ~  

by 6 E A'). This should be simply the equivariant Euler class of the normal 

bundle to T 2 g  in ~ ~ 9 ,implying that ep, is in fact independent of 6 and is given 

by 

The symplectic volume of the component F6 is independent of 6 (indeed these 

components are all identified symplectically with T2g); we denote the volume 

of Fs by JFeW. The constant value taken by the moment map p~ on the 

component F = Fs is given by C" - 6. 

We shall need also the following property (proved in [30]): 

PROPOSITION4.4. The generating classes a,, & and f, (r = 2 , .  .. ,n, 

j = 1,.. . ,2g) extend to classes G,(X), @ (x)and f ,(x)E H&(M(c)). 

Indeed, because of our conventions on the equivariant differential, the 

construction of [30] (which will be described at the beginning of Section 9) tells 

us that the equivariant differential form G,(X) E Rk(M(c)) whose restriction 

represents the cohomology class a, E H*(M(n,  d)) is r,(-X), where as above 

r, E Sr(k*)K 2 H&(pt) is the invariant polynomial which is associated to 

the rth Chern class (see [30]). Moreover is the extension = w + p of the 

symplectic form w to an equivariantly closed differential form (see [30] again). 

Finally we shall need to work with the symplectic subspace Mt(c) = 

M(c) n pP'(t) of M(c), which is no longer acted on by K but is acted on 

by T. The space Mt (c) has an important periodicity property: 

LEMMA4.5. Suppose A. lies in the integer lattice A' = Ker(exp) in t .  

Then there is a homeomorphism SA,: K2g x k t ~~g x k defined by 

which restricts to a homeomorphism SA,: Mt (c) +Mt (c). 
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Proof. This is an immediate consequence of the definition of Mt(c) and 

the fact that exp(A +Ao) = exp(A)exp(Ao)when A and A. commute. 

Let us examine the behaviour of the images in H$(Mt(c)) of these exten-

sions Zi, (X), &(x), f, (x)E H;i ( M(c)) of the generating classes a,, b3,, f, (see 

Proposition 4.4) under pullback under these homeomorphisms s*,: Mt@) + 

Mt (c). By abuse of language, we shall refer to these images also as Zi, (X),t$ (X) 

and f,(x). We noted above that the classes Zi,(X) are the images in H g ( M(c)) 

of the polynomials T,(-X) E H;i = S(k*)K (cf. (2.1)). Moreover (by [30, 

(8.18)]) the classes &(x)E H;i(M(c)) are of the form &(x)= p r ; ( & ( ~ ) ) l  

where (&(x))IE H;i(K29) and prl: M(c) + K29 is the projection in (4.4). 

It follows that 

s~ ,b , (X)= @(x) 

and 

s;,z~,(x)= q x ) .  

Furthermore we see from (8.30) of [30]that &(x)is of the form 

where fi E H & ( K ~ ~ )and p: M(c) + k is the moment map (which is the 

restriction to M(c) of minus the projection K29x k + k; see Proposition 4.1). 

It follows from this that for any A. in the integer lattice A' o f t  (the kernel of 

the exponential map), 

5. Equivariant Poincarh duals 

We are aiming to apply nonabelian localization to the extended moduli 

space M(c) defined in the previous section. In order to overcome the problem 

that M(c) is singular, instead of working with integrals over M(c) of equivari-

ant differential forms, we shall integrate over ~~9 x k after first multiplying 

by a suitable equivariantly closed differential form on K29 x k with support 

near M(c) which can be thought of as representing the equivariant Poincark 

dual to M(c) in ~~9 x k. So we need to construct such an equivariantly closed 

differential form. 

Remark 5.1. In our earlier article [32]covering the case when the bundles 

have rank n = 2, we overcame the problem of the singularities of M(c) in a 

slightly different way, by perturbing the central constant c E SU(n) to a nearby 

element of the maximal torus T. This method can be generalized to cover the 

cases when n > 2, but it seems a little more straightforward to use equivariant 

Poincark duals, so we adopt the latter approach here. 
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Remark 5.2. Related constructions of equivariantly closed differential 

forms representing the Poincark dual to a submanifold appear in the literature.14 

In Kalkman7s paper [34] and Mathai-Quillen's paper [40], an equivariantly 

closed differential form which is rapidly decreasing away from a submanifold 

and represents the Poincark dual to the submanifold is given; such a form is 

often referred to as the Thom form, as the cohomology class it represents is 

the Thom class of the normal bundle to the submanifold. The forms con- 

structed in [34] and [40] are not compactly supported; a construction of a 

compactly supported equivariantly closed form representing the Poincar6 dual 

of a submanifold is given in Section 2.3 of [19]. For completeness, in this sec- 

tion we provide a construction of an equivariantly closed form representing the 

Poincark dual. 

First we consider the simpler problem of constructing an equivariant Poin- 

car6 dual to the origin in a one-dimensional representation x of a circle. If we 

did not need to find a form with support near the origin we could represent the 

equivariant Poincark dual by x itself, regarded as an equivariant differential 

form. However compact support will be important later, so we need to be a 

little more careful. 

LEMMA5.3. Let T = U(1) act on C via a weight X: T 4 U(1). Then 

we can find an equivariantly closed dzflerential form ax E R$(C) on  C with 

compact support arbitrarily close to 0, such that 

for all equivariantly closed forms 17 E a$(@). Moreover ax E x + D(R$(C)), 

so that ax represents the same equivariant cohomology class on C as X. 

Proof. Let X #  denote the vector field on C given by the infinitesimal action 

of X E t. There is a T-invariant closed differential 1-form on C - {0), given in 

polar coordinates (r ,0) by g,such that L ~ ~ ( % )is identically equal to x(X)  

for every X E t. We can choose a smooth T-invariant function b: C + [O, CQ) 

with support in an arbitrarily small neighbourhood of 0 which is identically 

equal to 1on some smaller neighbourhood of 0, and let 

where D is the equivariant differential defined at (3.2) and d is the ordinary 

differential. Then ax is equivariantly closed and is zero outside the support 

of b. 

14We thank P. Paradan for pointing out that the references cited below contain such constructions. 
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Suppose that q E R>((I:)is equivariantly closed. We wish to show that 

First we shall show that the integral 

is independent of the choice of the function b. 

If p > 0 is sufficiently small and R > 0 is sufficiently large, then b is 

identically equal to 1on the disc Dp centre 0 and radius p, and b is identically 

equal to 0 outside the disc DR centre 0 and radius R. Then 

Now q is a polynomial function from t to the ordinary de Rham complex R* (C) ,  

so we can write 
= q(0) + q(l )+ q(2)  

where $1 is a polynomial function from t to Qj((I:) for j = 0,1,2. Similarly 

dBwhere a?) = bx, a$) = 0 and a:) = d((1- b ) % )  Since Dq = dq - L~gq 

is zero, we have dq(O) = As any 2-form on C is a Cm function on ~ ~ g q ( ~ ) .  

(I: multiplied by the nowhere vanishing 2-form given in polar coordinates by 

e, = ~ ( X ) r d r ,and since ~~g(e)it follows that 

on C - (0) where d o  is defined. Hence 

by Stokes' theorem, since b is identically one on dDp and identically zero on 
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aDR. It follows that 

is independent of the choice of b. 

Now p can be taken arbitrarily small, and x JDp 7 4 0 as p P0. Moreover 

by continuity, for fixed X E t and any E > 0 we can choose p so that T,I(O) differs 

from r l ( 0 ) l o  = 710 by at most E on Dp. Then 

Thus J,qax - qlo tends to zero as p tends to 0. Since J, Tax and 710 are 

independent of p we deduce that 

as required. 

LEMMA5.4. Let  T be a torus  acting trivially o n  R. T h e n  w e  can find a n  

equivariantly closed differential form a 0  E R$(R) o n  R with  compact support 

arbitrarily close t o  0, such  that  

for all equivariantly closed forms 7 E R$(R). 

Proof. We have R$(R) = S(t*)  18R*(R) and 7 E S(t*) 18RO(R)is equiv-

ariantly closed if and only if it is constant on R, so we can take a 0  to be 

the standard volume form on R multiplied by any bump function compactly 

supported near 0 with unit integral. 

COROLLARY5.5. Let T be a torus  acting linearly o n  Cn with  weights 

XI, .. . ,xn and trivially o n  Rm. T h e n  we  can find a n  equivariantly closed dif-

ferential f o r m  a E Rp(Cn x Rm) o n  Cn x Rm wi th  compact support arbitrarily 

close t o  0. such  that  

for all equivariantly closed forms 7 E R$(Cn x Rm). Moreover i f  m = 0 t h e n  

a E X I . .  .x, +D(R$(Cn)). 

Proof. The action of T on the copy of C in Cn on which it acts via the 

weight xj factors through an action of T /  ker xj 2 U(1) (unless xj = 0 in 

which case we can replace ker xj by any subtorus of T of codimension one). 

We can construct % E Rt(I)(C) as in Lemma 5.3 and m copies of a 0  as in 
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Lemma 5.4, and then define a to be the wedge product of the pullbacks of the 

a~~and a0 to R$(Cn x Rm) via the projections of Cn x R" to  C and R and 
the homomorphisms T t U(1)induced by the weights xj. 

Now we shall relax our assumption that c is a central element of K ,  and 

assume only that c E T.  This will be important later when we apply induction 

on n (see Remark 6.4 below). 

COROLLARY5.6. Let T be the maximal torus of K = SU(n) acting on  K 

by conju,gation. If c E T then  we can find a T-equivariantly closed diflerential 

form a E R$(K) o n  K with support arbitrarily close t o  c such that 

for all T-equivariantly closed difterential fomns q E R$(K).  

Proof. There is a T-equivariant diffeomorphism 4 from a T-invariant neigh-

bourhood U of 0 in the Lie algebra k of K to a T-invariant neighbourhood V 

of c in K given by 

4 ( X )= cexp( X ). 

By Corollary 5.5 we can find ti E R$(k)with arbitrarily small compact support 

contained in U,  such that 

for all equivariantly closed forms 7 E R$(k). Then we can define a to be 

(+-'>*(ti). 

Note that 

can be expressed as M(c) = PP1(c)where P: x k -+ K is defined by 

9 

P (hl ,. . .,hzu,A)= nh2j-1h2jhzlh.&1eexp(-A). 
j=1 

PROPOSITION5.7. If T is  the maximal torus of K = SU(n) and c E T 

then there is  a T-equivariantly closed differential form a E R * ( K ~ ~x k )  of 

degree n2 - 1 on  x k with support contained in a neighbourhood of M(c) 

of the form P - ~ ( v )where V is  an  arbitrarily small neighbourhood of c i n  K ,  

such that 

. k z V x k' a  = /M(.) ~ I M ( c ) H; 

for any T-equivariantly closed form 7 E R>(K'~x k )  for which the intersection 

of P-'(v) with the support of is compact. 
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Proof. By Corollary 5.6 we can find a T-equivariantly closed differential 

form ti E R$(K) on K with support in I f  such that 

for all T-equivariantly closed forms 7 E R$(K). Let a = P*(&); by the 

functoriality of the equivariant pushforward map (cf. Section 3 of [3]) this has 

the properties we want. 

Remark 5.8. In fact if V' is any neighbourhood of c in K containing v 
then we have 

L-l(vl)= /M(C] ~ l M ( c )  H$ 

for any T-equivariantly closed form 7 E R$(P-'(v')) on P-'(v') for which 

the intersection of P-'(v) with the support of 7 is compact. 

Remark 5.9. As we are going to use Proposition 5.7 to convert integrals 

over M(c) into integrals over ~~g x k (or at  least over neighbourhoods of 

M(c) in ~~g x k of the form P-'(v) for arbitrarily small neighbourhoods 

V of c in K ) ,  we shall need to be able to extend T-equivariant cohomology 

classes 7 on M(c) to T-equivariant cohomology classes on neighbourhoods 

of M(c) in ~~g x k of this form P-'(v). This will always be possible by 

the continuity properties of cohomology (see e.g. [14, VIII 6.181) because 7 

will always have compact support in M(c); more precisely we will in fact be 

converting integrals over M(c) n ( ~ ~ 9x B) for compact subsets B of k into 

integrals over P-' (V) n ( ~ ~ 9x B). 

Note that the centre 2, of K = SU(n) is a finite group of order n which 

acts trivially on ~~g x k. 

LEMMA5.10. Suppose that c = diag(cl, . ..,&) E T is such that the prod-

uct of no proper subsequence of el , .  . .,& is 1. Then the quotient T/Z, of T by 

the centre 2, of K = SU(n) acts freely on PP1(V) nP-'(0) for any suficiently 

small T-invariant neighbourhood V of c in K .  

Proof. Suppose that T/Z, does not act freely on P-'(v) n ~ - ' ( 0 ) .  Then 

there exist t l ,  . . . ,t, E @, not all equal, such that tl . ..t, = 1, and some 

element (h,0) = (hl , .  . . ,h2g,0) of P-'(v) n P-'(o) fixed by diag(tl,. . . ,t,). 
Then each hj is block diagonal with respect to the decomposition of (1,. . .,n)  

as the union of {i: ti = t l )  and {i: ti # tl}, which implies that 

where A and B are products of commutators and hence satisfy det A = 1 = 

det B. The result follows. 
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Remark 5.11. It follows from this lemma that we can extend the defini- 

tion of the composition 

By 1.18 of [23] (see Remark 3.10 above), when T = U(1) is a circle then @ is 

given on the level of forms by 

where the vector field v is the infinitesimal generator of the U(1) action and ( 

is a U(1)-invariant differential 1-form on P-'(v) npP1(0) such that L,(() = 1. 

(Strictly speaking the residue is an invariant form on P-'(v) npP1(0) which 

descends to a form on (P-I (v)n p-' (o))/T.) Thus when T = U(1) , 

and it follows that if cx is defined as in Proposition 5.7 for n = 2 and V' is any 

neighbourhood of c in SU(2) containing V, 

for any T-equivariantly closed differential form q E R>(P-'(v')) such that the 

intersection of P-'(v) with the support of q is compact. Here we have used 

the same notation for q and its restriction to M(c). 

When n > 2, so that the maximal torus T of K = SU(n) has dimension 

higher than one, then @(q) and lM(c)np-l(o)lT@(q) are given by similar for- 

mulas involving n - 1 iterated residues (see [23]). In particular the support of 

@(q) is contained in the image of the support of q, and 

for any T-equivariantly closed differential form q E R$(P-'(v')) such that the 

intersection of P-'(v) with the support of q is compact. 
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6. Nonabelian localization  

applied to extended moduli spaces  

Na'ive application of the residue formula (Theorem 3.1) to the extended 

moduli space M(c), using (2.1) and Remark 4.3 and ignoring the fact that 

M ( c )  is noncompact and has singularities, yields 

n 

(6.1) a:"'. exp(f2)[M(n ,d)]
r=2 

where the constant CK is as defined at (3.7). The main problem with (6.1) 

(related to the noncompactness of M ( c ) ,  which permits the fixed point set 

M ( c ) ~to be the union of infinitely many components Fa)is that the sum 

over 6 does not converge for X E t .  In this section we shall instead apply 

the version of nonabelian localization due to Guillemin-Kalkman and Martin 

(Propositions 3.6 and 3.9) to M(c), using Remarks 3.8 and 3.10; this will lead 

to a proof that (6.1) is true if interpreted appropriately (see Remark 8.6). First 

we use Proposition 3.6. 

LEMMA6.1. Let IW( = n! be the order $ the Weyl  group W of K = 

SU(n), and let c = diag(e2x'dln,.. .,eZxidln)where d is  coprime to n. If V is  

a suficiently small neighbourhood of c in K so that the quotient T/Zn of T by 

the centre Zn of K = SU(n) acts freely on  P-' (v)nppl (0) (see Lemma 5.lo),  

then for any v E H;";(X), 

for p: ~~g x k --t k given by minus the projection onto k and 

Also a is a T-equivariantly closed form o n  ~ ~ g x krepresenting the T-equivariant 

Poincare' dual t o  M(c), which is  chosen as in Proposition 5.7 so that the sup- 

port of a is  contained in Ppl(v)and has compact intersection with ppl(0). 

Proof. Since M ( n ,  d) = M(c) n p-l(O)/K, we can first identify 

JM(n,d)@(vew)with 
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via Proposition 3.6, whose proof works in this situation even though M(c) is 

noncompact and singular, because p is proper and M(c) is nonsingular in a 

neighbourhood of p-l(0) (see Remark 3.8). Then we use Remark 5.11. 

Next we need to summarize some conventions on the roots and weights of 

SU(n). The simple roots {ej: j = 1, . .. ,n - 1) of SU(n) are elements of t*; in 

terms of the standard identification of t with {(XI,.  .. ,X,) E Rn: C,Xi = 0) 

under which (XI, . . . ,X,) E Rn satisfying xiXi = 0 corresponds to X = 

diag(2i.riX1,...,27riXn) E t ,  they are given by 

The dual basis to the basis of simple roots (with respect to the inner product 

< .,. > defined at (2.2) above, which is the usual Euclidean inner product on 

Rn) is the set of fundamental weights wj E t*given by 

If we use this same inner product to identify t*with t ,  the simple roots become 

identified with a set of generators 

for the integer lattice A' of t ,  and the fundamental weights correspond to 

elements wj E t given by 

In particular we have 

Since we shall later apply induction on n ,  it will be convenient to label 

certain spaces, groups and Lie algebras by the associated value of n. In partic-

ular the space M(c) will sometimes be denoted by Mn(c), the maximal torus 

T of SU(n) by T,, its Lie algebra t by t,, and the map Q, by a n .  

We define a one-dimensional torus TI E S1 in SU(n) generated by 4: it 
is identified with s1via 

The (one-dimensional) Lie algebra t1 is spanned by &. Its orthocomplement 

in t is 



146 LISA C. JEFFREY AND FRANCES C. KIRWAN 

Define TnP1 to be the torus given by exp(tn-I): 

then TnP1is isomorphic to the maximal torus of SU(n- 1) (i.e. Tn-l " (S1)n-2) 

so this does not conflict with the notation already adopted. 

A ,.
Remark 6.2. The multiplication map Tl x TnP1 + TITnp1 = Tn is a 

covering map with fibre TI nTnP1 = Z2 = { ( t ,t-l, 1 , .  . ., I ) :  t = t p l ) .  

There is the following decomposition of the ring homomorphism a n .  

PROPOSITION6.3. For any symplectic manifold M equipped with a Hamil-

tonian action of Tn such that TnP1 acts locally freely o n  pZl(0), the sgm-

plectic quotient ~;(O)/T, mag be identified with the symplectic quotient of 
1 

p ~ n-1(O)/TnP1 by the induced Hamiltonian action of fi. Moreover if in addi-
tion Tn acts locally freely o n  p?:(0) then the ring homomorphism a n :  H$n(M) 

4 H*(pFnl(O)/T,) factors as 

where 

@ G n M  " H; lxTn- l (~~~- l (o ) )  

" Hg1(pFiPl(o) /~n- l )  

and 

Proof. The isomorphisms 

fGn(PF:-~ (0)1 "H;l xTn-l (PF:-~ (0)) "H;~( P F ~ ~(0)/ ~ n - 1 )  

follow from Remark 6.2 and the fact that the cohomology with complex coef-

ficients of the classifying space of a finite group is trivial. 

Since p~~ is a T,-invariant map, its projection ,upl onto i1descends to 

p~:_~(0)/Tn-i and defines a moment map for the induced f1-action with re-

spect to the induced symplectic structure on ,UF:-~ (O)/TnPI. The rest then 

follows from Remark 6.2 and naturality (cf. [23],after (2.9)). 

Remark 6.4. From now on, thanks to Lemma 6.1, we shall be working 

with quotients by T and subgroups of T ,  rather than quotients by K. Because 

of this our arguments will apply to M(c) when c belongs to T but is no longer 
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necessarily a central element of K. This will be important later, when we 

apply induction on n using Proposition 6.3. The only condition we will need 

to impose on c E T is that c = diag(c1,. . . ,c,) where the product of no proper 

subsequence of (el, . . . ,G)is 1; this is certainly true for our original choice of 

c when cj = e2xid/n for a11 j with d coprime to n. 

So for any c E T ,  let us define 

where P :  ~~9 x k --t K is defined by 

Let us also define 

and 

where V is a small T-invariant neighbourhood of c in K. 

PROPOSITION diag(cl, . . .,en) E T is such that the prod- 6.5. Suppose c = 

uct of no proper subset of (cl, . . . ,en) is 1. Then the group T,-l/Zn, where Z, 

consists of the identity matrix multiplied by nth roots of unity, acts freely on 

P-'(v) n n-1 (0) for any suficiently small T-invariant neighbourhood V of 

c in K .  Hence the quotient Pp1(v)n (0)/Tn-l is smooth. 

Proof. The conjugation action of (tl, . . . ,t,) E U(l), on the space of n x n 

matrices sends 

(A,) +-+ tit;'^,). 

Clearly Z, acts trivially. Let us assume that (h, A) E ~ ( c ) l l ~ ~ : - ~(0) is fixed by 

the action of some element of Tn-1 which is not in Z,. After rearranging the co- 

ordinates X3,. . . ,X, if necessary, we may assume that there is some k between 

3 and n such that this element of Tn-1 is of the form (tl, t l ,  tg, . . . ,tn-1, tn) 

where ti = t l  if and only if i < k. Then each hj  is block diagonal of the form 
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where h i  is a k x k matrix and h; is (n- k )  x (n- k ) .  As the determinant 

of any commutator is one, it follows that ngl[h2j- l ,h2 j ]is block diagonal of 

the form 

where det A = det B = 1. But A is also block diagonal of the same form 

and since ( h ,A )  E p?iP1 ( 0 )the diagonal entries of A are ( In iX ,S n i X ,  0 ,  . . . ,0 )  

for some X E R.Thus as k > 3 both A1 and A2 have trace 0 ,  so det exp Al = 

1= det exp A2. Since ( h ,A )  E M ( c )  it follows that the matrix A must equal 

and hence 

cl ...ck = det A = 1. 

This contradiction to the hypotheses on c shows that TnP1/Zn acts freely on 

M ( c )  np?:Pl ( O ) ,  and the same argument shows that Tn-1/Zn acts freely on 

P-'(v) n ,u?ln-1 ( p )for any sufficiently small T-invariant neighbourhood V of 

c in K and any sufficiently small neighbourhood p of 0 in tnPl.The result 

follows. 

Definition 6.6. There are coordinates 

on t ,corresponding to the simple roots ek E t* 

We are now in a position to exploit Proposition 3.9 and Remark 3.10, by 

using the translation map s n ,  defined by Lemma 4.5, where A. = lies in the 

integer lattice A' and so satisfies exp(Ao)= 1. 

LEMMA6.7. Suppose c = diag(cl, . . . ,en) E T is such that the product 

of no proper subset of ( e l ,. . . ,en) is 1. Suppose also that 7 is a polynomial 

i n  the & ( X )  and &.(x),so that .s:A17 = 7 .  If V is a suficiently small T -

invariant neighbourhood of c i n  K so that P-'(v) np-l(il)/~n-lis smooth 

(see Proposition 6.5), and i f  N n ( V )  = P-I  (v)np p l ( 0 ) / ~ ,as before, then 
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where 3 is the set of components of the filced point set of the action of fi on 

P-'(v) n ,u-I ( t l ) /~ , - l ,  and eF denotes the TI-equivariant Euler class of the 

normal to F in P-'(V) np- l ( t l ) /~ , - l  for any F E 3,while no is the order of 

the subgroup of ~ l / ~ l l n ~ , - lthat acts trivially on ~ - ' ( ~ ) n , u ~ ' ( t ~ ) / ~ ~ - ~ .Also 

a is the T-equivariantly closed differential form on ~~g x k given by Proposition 

5.7 which represents the equivariant Poincare' dual of M(c) ,  chosen so that the 

support of a is contained in P-'(v). 

Proof. Since p-'(el) = ~~g x tl is contained in p~i-l(0), it follows from 

Proposition 6.5 that if V is a sufficiently small T-invariant neighbourhood of 

c in K ,  then Tn-l/Zn acts freely on P-'(V) n ,u-'(tl) and so the quotient 

P-' (v) n ,u-' (tl)/T,-l is smooth. 

Since the restriction of pfi to pp'(tl) is proper, and the support of a 

is contained in P-'(V), by Remark 3.10, Guillemin and Kalkman's proof of 

Proposition 3.9 can be applied to the 5?1-invariant function induced by p+l 

on the smooth manifold P-'(V) n p-l( t l ) /~,- l  and the TI-equivariant form 

induced by qeaa. In fact since TI n Tn-1 " Z2 acts trivially we can work 

with the action of 5?1/5?1n T,-l instead of the action of 5?1 (the Lie algebra 

and moment map are of course the same). This fits better with the choice of 

coordinates Ykdefined by the simple roots eI,because the simple root takes 

(t,t-', 1 , .. ., I )  E TI to t2 and thus induces an isomorphism from 5?1/5?~iiTnP1 

to S1. By combining this with Proposition 6.3 we get 

Now note that the restriction of P: K2g x k --t K to ,u-'(t) = K2g x t is 

invariant under the translation sn, for A. E A'. Therefore by construction 

the restriction of a to ,u-'(t) is also invariant under this translation. Thus by 

(4.9) and Definition 6.6 

The result follows. 

Remark 6.8. It will follow from the proof of Proposition 7.1 below that 

no = 1here (see Remark 7.2). 
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7. Fixed point sets of the circle action 

In this section we shall consider the components F E F of the fixed 

point set of the action of TI on the quotient P-'(V) n p-l(il)/~,-l(which 

appeared in Lemma 6.7). Since P-'(c) = M(c) and V is an arbitrarily small T- 

invariant neighbourhood of c in K, we may assume that every F E .Fcontains 

a component of the fixed point set of the action of TI on M(c) ~ l ~ - ~ ( i l ) / T , - l ,  

and each of these components is contained in a unique F E F.So we shall 

start by analysing the components of the fixed point set of the action of 

on M(c) np-l(il)/~,-l. We shall find that they can be described inductively 

in terms of products of spaces of the form N(c) (see Remark 6.4) for smaller 

values of n. This will enable us to use induction in the next two sections to 

express the intersection pairings JM(n,dl @(qea) on the moduli spaces M(n,  d )  

as iterated residues (see Theorem 8.1 and Theorem 9.12). 

PROPOSITION diag(cl, .. . ,&) E SU(n) is such that 7.1. Suppose that c = 

the product of no proper subsequence of (el, . . . ,&) is 1. Then the components 

of the fized point set of the action of TI on the quotient (M(c) np-l( i l )) /~,- l  

may be described as follows. For any subset I of (3 , . . . ,n) let Il = IU(1) and 

let I2= (1,. . .,n) - I l .  Let Hz be the subgroup of SU(n) given by 

Suppose that X E E% is a solution of 

where r is the number of elements of Il = {ill . . . ,i,), so that 

Then there is a component of the fized point set given by FZ,~= *Z,~/T,-~ 

where 

and every component is of this form for some subset I of (3 , .  .. ,n) and solution 

X to the equation above. 

Proof. Suppose the TI orbit of a point (hl, . . .,hsg,A) E SU(n)2gx i1 is 

contained in its orbit under T,-l. A general element of the T~orbit of an n x n 
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matrix A = (aij) under conjugation looks like 

while a general element of the TnP1 orbit of A looks like 

For each t there exist t l ,  t3, . . . ,tn such that these two matrices are equal when 

A is any of hl , .  . . ,h2g and A. Choose t # t-I and let I denote the set of 

j in {3 , . .. ,n) for which tltyl = t. Similarly, define J to be the set of j in 

{3, . . . ,n) for which tit;' = t-', and let K = (3, .. . ,n) -I -J. Reordering the 

coordinates one finds that all the hj and A are block diagonal where the blocks 

correspond to I U  {I),JU (2) and K. Conversely, if all the hj are block diagonal 

of this form and A E i1, then the TI orbit of (hl, .. . ,h2,, A) is contained in 

its Tn-1 orbit since given any t E U(1) we can find (tl ,  t l ,  t3, .. .,t,) in TnP1 

satisfyingtlt;'=t if j E I andtltyl =t-' if j E J. 

We next prove that K is empty. Suppose otherwise; then as the deter- 

minant of any commutator is one, det rj;-l[h2j-l, IK1 hzj =[IK] 1 (where the super- 

script [K]denotes the block of the matrix corresponding to K). Thus the K 
block in c also has determinant 1. This is impossible by the hypothesis on c. 

Suppose now that (hl, .  .. ,h2g, A) E M(c)nP-l(fl) lies in 11129 x i l .  Then 

for some X E R,so the blocks h[I1]and h[12]of A corresponding to Il = IU {I) 

and I2= J U {2) satisfy det exp ~ [ ' l ]= e2"ix and det exp A['~] = e-2TiX. But 

because the determinant of any commutator is one. It therefore follows from 

the definition of M(c) that 

e-2"ix -
- n cj. 

j E I l  

This is enough to complete the proof. 



152 LISA C. JEFFREY AND FRANCES C. KIRWAN 

Remark 7.2. The proof of this proposition shows that the elements of 

TI which act trivially on the quotient ( M ( c )n , L - ~ ( ~ ~ ) ) / T , - ~are precisely 

those represented by t satisfying t = t-l; i.e., t = f1, or equivalently those in 

TI n Tn-l. Thus the size no of the subgroup of T I / T ~  nTn-1 acting trivially 

on the quotient M ( c )n , L - ~ ( ~ ~ ) ) / T ~ - ~is 1 (cf. Lemma 6.7). 

PROPOSITION diag(cl, . . . ,cn) E SU(n)  is such that 7.3.  Suppose that c = 

the product of no proper subsequence of ( c l , .  . . ,%) is 1. Suppose that I is a 

subset of ( 3 , . . .,n)  with r - 1 elements where 1 5 r < n - 1, and let Il = 

I U ( 1 )  = { i l , .  . . ,i,) and I2 = ( 1 , .  . . ,n} - I1 = {ir+l, . . . , in) .  Suppose also 

that X E R is a solution of 

so that e2"" = ncJt12cj. Let 

and  

c(12,- A) = I,X . - I,X diag(~,,+~,. , ~ i ,) 

where c:'" cc~ i f  j > 3, while cfl" cle2*" and ci2" c2ew2'"\ Let FIIh be 

defined as i n  Proposition 7.1. Then there is a finite to one ( i n  fact ( r ( n  -r ) )2g  

to one) surjective smooth map 

Proof. We define a homomorphism 

given by 

with respect to the decomposition of ( 1 , .  . . ,n) as IlU12. Note that PI restricts 

to an r ( n- r)-to-one surjective homomorphism 

If E ~ :S ~ ( r ) ~ gi SU(r)  is defined by &,(hl,. . . ,h Z g )= n!=l[h2j-l, h 2 ~ ]  

then 
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Let us define a map 

as the quotient of 

defined by 

Here, FIjxis as defined in Proposition 7.1. 

We must check that the image of @I,x is contained in We have 

and 

En-r(hlf21,... ,hri l)  = 
I X . . .,ci,

I , X  ) =d i a g ( ~ ~ ; + ~ ,  4 1 2 ,  -A). 

In order to show that @I,h ( ( ~ 1 , .. . ,s ~ ~ ) ,  . . h[Il1,0),( h y l , .. . ,hfll ,  0)) (hY1,.  29 

lies in we need to check that if A = 2~idiag(A,-A, 0, .  . . ,0) then cexp(A) 

is block diagonal of the form 

with respect to the decomposition of (1,. .. ,n) as IlU 12. This follows by the 

choice of c:", . . . ,~ 2 ~ .  

We must also check that the map is well defined on the quotient by the 

action of T, x Tn-,; in other words we must check that for any t = (tl, .. . ,t,) 
E U(l)n satisfying til, .. . ,ti, = ti,+,, . . . ,ti, = 1SO that tIl = (ti, . . .ti,) E T, 

and t~~ = (tir+1. . .tin) E TnPr, we have 

for some i= satisfying E=l t l j  1and & = i2. For any s E U(l),(il , .  ..,a) = 

we may conjugate all the h p l  by sn-' and all the h y l  by s-' without changing 

the image under @I,x; choosing s so that sn-'& = sPr& we find that the 
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equation (7.2) is satisfied for t"? ttsnpr (when j E 11) and i3= tjsPr (when 

.iE 12). 
To show that Q I , ~is finite-to-one and surjective, suppose that 

(hl, . . .,hzg,A) E 3 1 , ~ ;we must check that a finite (and nonzero) number 

of T, x Tn-, orbits in 

map into the TnP1orbit of (hl, ... ,hzg,A). Now by the definition of F;,x we 

have A = 2ridiag(A, -A, 0, . .. ,0) and each hj  is block diagonal of the form 

with respect to the decomposition of (1,.. .,n} as 11U12. So 

@I,,( ( ~ 1 , .. .,~ 2 ~ ) .( H P 1 ,.. . ,Hgl,0), (HP1,. ..,HE1,0)) 

belongs to the Tn-1 orbit of (hl, . ..,hz,, A) if and only if there is some t" = 

(&, . .., in )  satisfying ngl = 1and 1;= i2such that 

and 
srrH['21 - - [12]-

3 3 t I 2 h ,  

where irl = (t i l , . .  .,ti,)tTr and i12= (iir+,, . . .,tin)t Tn-,. Since det HFI 
= 1 = det HPIand det h p l  det h y l  = 1, by the argument of the previous 

paragraph this happens if and only if (s~)'("~) = det h[fll and SJ"-'HFIis
3 

conjugate to h'III and 3s-r~1'213 is conjugate to h y l .  Thus QIjAis surjective 

and (r(n - r))$-to-one. 

Remark 7.4. Note that by the definition of cil"see Proposition 7.3) no 
I X I X I X 

proper subsequence of (c,; , . ..,c,: ) or (c,:+~,.. . ,c:,\) has product equal to  

1, because the same is true of (el,. ..,h). 

Remark 7.5. It follows from Proposition 7.3 that if QIIx is orientation-

preserving (and we shall see below in Remark 7.13 that PI,xtakes a natural 

symplectic orientation on (S1)2g x N, (~(11,A)) x NnPr(c(I2, -A)) to the sym-

plectic orientation induced by w on FIIx) then 

(7.3) 

-

where both sides are elements of H* To be more precise we should replace qeW
Tl * 

on each side of this equation by its restriction to FI,x,and as in Proposition 6.3 
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and Lemma 6.7 we use the double cover x T,-I -+ T, to define 

@,-I: H$~(FI,A)-+ H;~(FI,A)YH& @ H*(FI,A). 

Recall from the proof of the last proposition that the homomorphism 

p ~ :S1x SU(r) x SU(n - r )  + HI c SU(n) 

given by 

with respect to the decomposition of (1,.. . , n) as 11U12 restricts to  an r(n-r)- 

to-one surjective homomorphism 

PI: S1 x T, x T,-, + T,. 

It is easy to check that the inclusions of TI, T, and Tn-, in T, induce an 

isomorphism 

@,: Tl x T, x T,-, -+ T, 

sudh that p~ and b, have the same restriction to T, x T,-,. The composition of 

this restriction with the natural surjection from T, to  T,/TI " T,-~/(TI~T,-~) 

gives an isomorphism 

T, x Tn-, -+ T,/T~ T,-~/(T~n T,-i). 

Moreover the composition of p~ with the inverse of @, defines a finite (in fact 

r (n - r)-to-one) cover 

VI: s1x T, x Tn-, -+ x T, x Tn-, 

which restricts to the identity on T, x Tn-, and induces a finite cover VI: S1+ 

and isomorphisms on Lie algebras and equivariant cohomology. 

The argument in the proof of the last proposition to show that the map 

!DI,~ is well defined on the quotient by the action of T, x T,-, may be rephrased 

as the statement that the map 

$1,~:(S1)2gx (P;;(,)(O) n Mr(c(I1, A))) 

x (PF;(,-,) (0) n Mn-r(c(h, A ) ) )  -+ f i , A  
defined in the proof of Proposition 7.3 satisfies 

tLh ( h p l , .. . , h g l ,  o), ( h p l , .  . . , h g l ,  0))) (t((s1, . . . , ~ 2 ~ ) .   

= pI(t)@I,A ( ( ~ 1 , .  . . , s ~ ~ ) ,  ( h p l , .. . , h g l ,  0), ( h p l , .  . . , h g l ,  0)) 

for all t E s1x T, x T,-,, where S1 acts trivially. Thus and p~ induce 

@:, from H $ ~ ( ~ , A )  to  

4 1  8 H*( ( s ' ) ~ ~ )  @ H$?(P;;(,) (0) n Mr A))) 

@ $ - ( ) 0 )  - 2 -A))) 
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and 

where both sides are elements of H i 1 .  Hence by (7.3), if Yl is the coordinate 

on t1 given by the restriction of K = X1 -X2 on t and Y: is the coordinate 

on the Lie algebra of s1obtained from f i  via the isomorphism on Lie algebras 

induced by VI: S1+TI, then 

(18 a, 8 @ n - r ) @ ~ , ~ ( q e ~ ) .  
~S1)29xNr(c(Ilj~))xNn-r(c(hj-.\))  

Since s1acts trivially, the residue operation R ~ S ~ ; = ~ :  @ can be Hgl + 

extended to map 

so that it commutes with a, and an-, and with integration over N,(c(Il, A))  

and integration over Nn-, (412, -A)). In particular by expressing integrals 

over products as iterated integrals we obtain 

This will be important when we apply induction later 

mailto:@n-r)@~,~(qe~)
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Recall from Lemma 6.7 that F is the set of components of the fixed 

point set of the action of T I  on the quotient P-' np-I ( t l ) / ~ n - l ,(v) where 

V is a sufficiently small T-invariant neighbourhood of c in K. Every F E 

F contains a component F I , ~of the fixed point set of the action of T I  on 

M(c) n and each F I , ~is contained in a unique F E F (see 

Proposition 7.1 for the definition of F I , ~ ) .For each I and X we now need to 

understand the normal bundle in P p l(v)npP1( t l ) / ~ n - lto the component 

F E F of the fixed point set which contains F I , ~ .First, we observe that there 

is the following decomposition: 

Remark 7.6. Let I be a subset of (3 , . . . ,n )  with r - 1 elements where 

1 < r 5 n - 1, let I1 = I u { ~ }and let 12  = (1 , . . . ,n }  - I l .  Then 

Vn( X )=V;'ll( x ) D ~ ? ! ~( X ) T I(x)  
where 

V ( X )= I1 ( X i j- Xik) 
l<j<k<r 

is the product of the positive roots of SU(r) embedded in SU(n) via the inclu- 

sion of Il in (1 , . . . ,n} ,  

is the product of the positive roots of SU(n- r )  embedded in SU(n) via the 

inclusion of I2 in (1 , . . . ,n ) ,  and 

where the sign is + or - depending on whether the permutation 

is even or odd. Note also that 

Now we can find the ~1-equivariant Euler class of the normal bundle in 

P p l ( V )np- l ( t l ) /~n- lto the component F E F of the fixed point set which 

contains F I , ~ .  

LEMMA7.7. Let I be a subset of (3 , . . . ,n)  with r - 1 elements where 

1 < r < n - 1, and let X E E% be a solution of the equation 

e - 2 ~ i A  -
- cj. 
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Then  the ~ ~ - e ~ u i v a r i a n tEuler class of the normal bundle in ppl(V)f l  

p-'(il)/T,-1 t o  the component F E F of the fixed point set of the action of I f1 

o n  P-'(v) n p - l ( ~ l ) / ~ , - l  which contains F I , ~is  given by el;. = 

( - l)r(n-r)g@,-' ( T f g ) .  

Proof. T h e  proof o f  Proposition 7.1 shows that  t h e  component F E F o f  

t h e  fixed point set o f  t h e  action o f  T' o n  P-' (V )np-' ( t l ) /~,- lwhich contains 

FI,X is 

F = P-'(v) n ( H : ~x t l ) /~n . l ,  

whereas p p l ( t l )  = K2g x t l .  T h e  T-eyuivariant Chern roots o f  t h e  normal 

bundle t o  H? i n  ~~g are X i  -X j  for (i ,j )  t I I  x I2 UI2 x I l  w i th  multiplicity 

g. T h e  result follows b y  Remark 7.6. 

LEMMA7.8 .  Let I be a subset of (3 , .  . . , n )  with r - 1 elements where 

1 I r < n - 1,  let I l  = I U { I ) ,  let I 2  = { I , .  .. , n )  - I' and let X E R be a 

solution of the equation 
e - 2 ~ i X  -

- I-Icj .  

j E I l  

Let F be the component of the fixed point set of the action of T' o n  P-'(v) n 
p - l ( t l ) / ~ n - l  which contains F I I x ,where F I Ix  is as defined in Proposition 7.1. 

W e  then have 

where a is  the T,-equivariant diflerential form o n  K2g x k given by Proposi-

tion 5.7 which is  supported near M ( c )  and represents the equivariant Poincare' 

dual of M ( c )  in K2g x k .  

Proof. T h e  T,-equivariant differential form a o n  K2g x k which repre-

sents t h e  equivariant Poincar6 dual o f  M ( c )  = P P 1 ( c )i n  K2g x k was defined 

in  Proposition 5.7 a s  a pullback via t h e  m a p  P: K2g x k -+K.  B y  using t h e  

restriction P: H? x tl + H I  we can similarly define a TX-equivariant differ-

ential form a1 o n  H? x t1which represents t h e  equivariant Poincar6 dual o f  

M ( c )n( H : ~x t l )i n  H? x t l .  T h e  restriction o f  @ , - l ( ~ )  t h e n  represents t h e  

Poincar6 dual t o  F I , ~i n  F ,  provided suitable orientations are chosen. Note tha t  

( 1 , .  . . , 1 )  x k is transverse t o  b o t h  M ( c )  = P-'(c)  and p p l ( 0 )  = K2g x ( 0 )  

i n  K2g x k ,  and that  i f  A E k t h e n  
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while 

P(1, .  ..,1,A) = exp(-A). 

From the orientation conventions of Remark 3.5 it follows that the normal 

to pP1(HI) in K2g x k is Tn-equivariantly isomorphic to the kernel of the 

restriction map k* + h;. Thus the restriction of ( - l ) ' ( " - ' )~~a~to H? x i1 
has compact support near M(c) and locally represents the equivariant Poincark 

dual to M(c) in K2g x k, so we can substitute it for a on H? x i1and we can 

substitute (- l)r(n-r)@n-l(qal-) for (a)  on F .  

We have that el;. = (-1)~(~-~)g@~-1(7-p")by the last lemma. We therefore 

get 

and Remark 7.6 completes the proof. 

Remark 7.9. The condition for F E F to appear in the sum in the 

statement of Lemma 6.7 was that 

Let I be a subset of ( 3 , .  . .,n) with r - 1 elements where 1 < r 5 n - 1, and 

let X E R be a solution of the equation 

e-2rix -
- IIcj. 

j E I l  

If F EF is the component of the fixed point set of the action of on P-' (V)n 

p-l( i l ) /~n-l  which contains FI,x, then 

We thus find that for each I there is precisely one solution X E R to the 

equation 

such that the component F of the fixed point set of the action of TI on P-' (V)n 

p-l( i l ) /~n-l  which contains FI,x contributes to the sum in Lemma 6.7. This 

solution is X = 61 where SI is the noninteger part of 

and so we have 

(F)= -aIG1. 
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(Note that since JJjEI1 cj has modulus 1but is not equal to 1, the noninteger 

part of & log IIjtIl cj is well defined as an element of the open interval (0 , l )  

in R.)We therefore define 

FI = FI,~,, 
- -

and also !PI = !PIlsI and !PI = !PI,sI. 

We can now deduce the following result: 

PROPOSITION7.10. If q(X) i s  a polynomial in &(X) and &(x), so that 

s&q = q, then 

Proof. Recall that the coordinates Yk = ek(X) = (&, X )  were intro-

duced in Definition 6.6. The result then follows immediately from Lemma 6.7, 

Lemma 7.8 and Remark 7.4 above, together with Lemma 6.1 and 

Remark 7.2. 

Remark 7.11. This proposition is also true for formal equivariant coho-

mology classes q = Ego% with qj  € H&( M(c)),because all but.finitely many 

qj  contribute zero to both sides of the equations. 

COROLLARY7.12. Suppose q i s  a polynomial in ii,(X) and &(x), so 

that s:-lq = q. Then 

Proof. This follows by application of Remark 7.6 and Proposition 7.10 

with q replaced by the formal equivariant cohomology class qDn/(l - epY1). 

This is valid by Remark 7.11 because Yl divides Dn(X) and so Dn/(l  - epK) 

can be expressed as a power series in Yl whose coefficients are polynomials in 

the other coordinates Y2,. .. ,Yn-1. 

Remark 7.13. Recall from the proof of Proposition 7.3 that 
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is defined for 61 as in Remark 7.9 by 

eI ( ( S l , .. . , ~ 2 ~ ) ~ . . ,h g 1 , 0 ) )( h p , .. . , hy;],O ) ,  ( h p ] , .  

= ( ( p ~ ( s l ,  h p l ,  h p l ) ,  . ,pI(szg,  h y i l ,  h y i l ) ,  h p l ,  h p l ) ,  ,o~(sz ,  . . 

2ridiag(SI, -61, 0 , .  . . , 0 ) )  

when we use the map 

p ~ :s1x SU(r)  x SU(n- r )  -t S ( U ( r )x U ( n- r ) ) c SU(n)  

given by 

with respect to the decomposition of ( 1 , . . . ,n )  as I1 U 1 2 ,  which restricts to 

an r ( n- r)-to-one surjective homomorphism 

P I :  S
1 x T, x T,-, -t T,. 

Since 3 = w + p is constructed using the inner product <, > defined at (2.2) 

on the Lie algebra k of K = SU(n) , and since p~ embeds the Lie algebras of 

S 1 ,  SU(r)  and SU(n- r )  as mutually orthogonal subspaces of k ,  

for some R E H ~ ( ( s ' ) ~ ~ ) ,  are defined like w but with nwhere w, and w,-, 

replaced by r and n - r .  Thus we have 

Since @;(DLI1I)= D, and @ ; ( D K )= D,-,, we can combine this with 

Corollary 7.12 and Remark 7.5 to obtain the result on which is based the 

inductive proof of Witten's formulas in the next section. 

PROPOSITION If c E T satisfies the conditions of Remark 6.4, and7.14. 

i f  q ( X )  is a polynomial in  iL,(X) and @(x) q ,  then so that s&q = 

where 
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is equal to (r(n r))-2g times -

and also to (r(n - r))-2g times 

Here c(ll,SI)) and "(12, SI) are defined as in Proposition 7.3 with SI as in -

Remark 7.4 and &,3,-, and Q as in Remark 7.13. 

Remark 7.15. For any y G T, a unique ;I. G t, can be chosen so that 

expy = y and y belongs to the fundamental domain defined by the simple 

roots for the translation action on tn of the integer lattice A' (i.e. y = ylZl + 
. ..+y,-l~,-l with 0 5 yj < 1 for 15 j 5 n - 1). Suppose that E(Il, SI) E t, 

and E(12, -61) E t,-, are chosen in this way in the fundamental domains 

defined by the simple roots for the translation actions on t, and tn-, of their 

integer lattices, satisfying 

and 

exp ?(I2, -61) = c(I2,-61) = d i a g ( ~ ~ ~ + ~ ,I , ~ I.. . ,"f 2nJq, 

where (as in Proposition 7.3 and Remark 7.9) we define SI to  be the noninteger 
I 6

part of & lognjtIl 9 and let 5' = cj if j > 3, and c:'~' = cle2""~ and 

C I , 6 ~- C2e-2~i6r  
2 -

In the proof of the main theorem (Theorem 8.1) of the next section we 

shall need to consider the elements w: and w j  of the subgroup SnP1of the 

Weyl group W E S,,of SU(n) given by the permutations 

and 
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in the cases when i, = 1and i ,+~  = 2 and in = n and when il = 1 and in = 2 

and i, = n respectively. We will use the fact that if i, = 1 and i,+l = 2 and 

in = n then 

where the block diagonal form is taken with respect to the decomposition of 

(1,. . . ,n) as (1,. . . ,r )  U {r+ 1 , .. . ,n).. To see why this is the case, note that 

w:(2)( X I = yl (Xi, -Xi,) + . . . ynpl (Xinpl -Xi,) 

where "ik: is the noninteger part of &lognjik cij, so that y,. = 1- SI  and if 

k < r then yk is the noninteger part of &log njSk~ 2 ~ 'whereas if k > r then 

yk is the noninteger part of 

Similarly if il = 1and in = 2 and i, = n then 

where the block diagonal form is taken with respect to  the decomposition of 

(1,. . . ,n) as (1,. . . ,n - r) U {n - r + 1 , .. . ,n). 

8. Proof of the iterated residue formula 

In this section we shall use induction to prove Witten's formulas as given 

in Section 2 (see Proposition 2.2) involving iterated residues, for pairings of 

the form 

for nonnegative integers m, and p,,k. The induction is based on Proposi- 

tion 7.14. In the next section we shall extend the proof to give formulas for 

all pairings, and in the following section we shall show that these formulas are 

equivalent to those of Witten. 

We are aiming to prove the following: 

THEOREM Let c = . . . ,e2nidln) where d E8.1. diag (e2nidln, 

(1,. . . ,n- 1) is coprime to n,  and suppose that q E H~u~n) (Mn(c ) )is a polyno- 
- .  

mial Q(Zi2,. . . ,Zin,b;, . . . ,%g) in the equivariant cohomology classes Zi, and b3, 
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for 2 Ir In and 1 I j I29. Then  the pairing &(a2,... ,a,&, . . . ,b;g) 

exp(f2) [M(n, d) ]  is  given by 

(- I),+ (g-1) 

Resy, =o . . .Resyn_.,=o 
n ! 

where n+ = i n ( n  -- 1) i s  the number of positive roots of K = SU(n) and 

X E T, has coordinates Yl = XI -X2, ... ,Y,-1 = X,-l -X, defined by the 

simple roots, while WnPl " S,-1 is  the Weyl  group of SU(n - 1) embedded 

in SU(n) in the standard way using the first n -- 1 coordinates. The element 

E was defined in Remark 2.3: it is the unique element o f t ,  which satisfies 
e a ~ i c-- c and belongs to the fundamental domain defined by the simple roots 

for the translation action on  t, of the integer lattice A'. Also, the notation 

[[y]](introduced in Definition 2.1) means the unique element which is  in the 

fundamental domain defined by the simple roots for the translation action on  

t, of the integer lattice and for which [[y]]is  equal to  y plus some element of 

the integer lattice. 

Remark 8.2. Here the integral 

is to be interpreted as the integral of the restriction of yeWover a connected 

component 

T , ~ ~x {A) 

(for some X G t, satisfying cexp X = 1) of the fixed point set of the action of 

T, on M,(c). It does not matter which component we choose here, because y 

and w are invariant under the translation maps s ~ ,defined in Lemma 4.5 for 

A. in the integer lattice oft,. 

Remark 8.3(a). We can substitute -X for X in Theorem 8.1 to get 

(b) When y is a polynomial in a2, . . . ,a,  then 

(see Lemma 10.7 below). Since 6, is represented by the polynomial rr(-X) 

for 2 5 r In (see Proposition 4.4 or Section 9 below), this means that, by (a) 
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above, Theorem 8.1 combined with Proposition 2.2 gives us Witten's formula 

(2.4). 

(c) We can also replace the symplectic form w by any nonzero scalar 

multiple EW. Then the moment map p is multiplied by the same scalar E, and 

the proof of Theorem 8.1 yields 

If the degree of q is equal to the dimension of M (n, d )  then the left-hand side 

of this equation is equal to 

/M(n,d) '(') 

and hence is independent of E .  Thus in this case we can take any nonzero value 

of E on the right-hand side, or let E tend to zero, to give alternative formulas 

for JM(n,d)@(v)' 

Recall from Lemma 6.1 that 

Proposition 7.14 tells us that JN,(c) Qn(Dnqew) can be expressed in terms of 

iterated integrals of the same form for smaller values of n ,  but with c no 

longer central in K = SU(n). We shall therefore obtain Theorem 8.1 from the 

following result involving values of c which are not central (cf. Remark 6.4), 

which will be proved by induction on n. 

PROPOSITION8.4. Let c = diag(cl,. .. ,%) E T, be such that the product 

of no  proper subset of c l ,  .. . ,c,is  1. If q(X) is  a polynomial in the ii,(X) and 

&(x), so that s:lq = q, then 

where Wn-1 " Sn-1 is  the Weyl group of SU(n - I), embedded in SU(n) in 

the standard way using the first n - 1 coordinates, and 2: = (El,. .. ,En) E t, 

satisfies e2"i" c and belongs to the fundamental domain defined by the simple 

roots for the translation action o n  t, of the integer lattice A'. 

Proof of Theorem 8.1 from Proposition 8.4. Note that when c = 

diag(e2"id/n,. . . ,e2"id/n) we had introduced an element 2: E t, (see Remark 2.3) 
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which satisfies e2Ti" c and belongs to the fundamental domain defined by the 

simple roots for the translation action on T, of the integer lattice A'. Thus 

Theorem 8.1 follows immediately from (8.2) and Proposition 8.4. 

Proof of Proposition 8.4. The proof is by induction on n. When n = 1then 

both SU(n)  and the torus T, are trivial, D, = 1 and both M,(c) and N,(c) 

are single points. Thus in this case Proposition 8.4 reduces to the tautology 

71 = 71 for any 71 E HH,T,)( M l(c ) ) .  
Now let us assume that n > 1 and that the result is true for all smaller 

values of n. By Proposition 7.14, 

where 

is equal to ( r ( n- r ) ) ~ ~ gtimes the iterated integral 

and also to ( r ( n- r))-2g times the iterated integral 

for c ( I l ,61) and c(12,-S1) defined as in Proposition 7.3 with 61 as in Remark 7.4 

and TI as in Remark 7.6. Here R E H~ ( ( s I ) ~ ~ )satisfies 

as in Remark 7.13. 

We need to consider separately those I containing n and those for which 

n is not an element of I ;  first let us suppose that n is not an element of I .  

Note that 
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and 

The finite cover p ~ :S1x T, x Tn-, tT, is r (n  - r)-to-one, so that it induces 

an (r(n -r))2g-to-one surjection from (S1)2g x ~ : g  x TZ,to T~~~and we have 

Moreover this finite cover p I :  S1 x T, x Tn-, t Tn takes the coordinate 

Yl = X1 - Xz on t to the coordinate Y[ on the Lie algebra of S1. Since 

GI~;was defined using p~ (see Remark 7.5), we deduce using Remark 7.13 and 

Remark 7.6 and induction on n that (-l)T(n-T)(g-l) times the iterated integral 

equals (- l)n+(g-l) (r  (n - ~ ) ) ~ gtimes the iterated residue 

where YIland Y12are the projections of X onto the Lie algebras of the max- 

imal tori T, and Tn-, of SU(r) and SU(n - r )  embedded in SU(n) via the 

decomposition of (1,. . . , n )  as I1U 1 2 ,  and WTp1 and Wn-r-l are the Weyl 

groups of SU(r -1)and SU(n -r -1)embedded in SU(r) and SU(n -r )  using 

all but the last coordinates. 

There is no need to assume that il < i2 < . - .  < i, and i,+l < i,+2 

< . . . < in here. We simply need that Il = I U (1) = {il,. . .,i,} and I2= 

(1,.. .,n) - Il = {i,+l,. .. , in).  So let us assume that 

and 

i,+l = 2. 

We are also supposing that n is not an element of I (i.e. that n E 12) so we may 

assume in addition that in = n. Then we can apply the Weyl transformation 

w j  E WnP1 given by the permutation 
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together with Remark 7.15 to identify the iterated residue above with 

When n E I the argument is similar but we apply induction to (-1)r(n-T)(9-1) 

times 

and observe that 

e - 6 ~( X i- X z )  $1 ( X 2-Xi  ) 

Resx1- x ~ = o  1 - e - (X i -X2)  = 1 - ,Xz-Xl- R ~ s ~ ~ - ~ ~ = ~  

(see the Remark after Corollary 3.2). As Il = I U { l )  = (21,. . . ,i,) and  

I2 = { I , . .. , n )  - Il = ( i r f l , . . . , i n )  and n E I we can assume that il = 1,   

i, = n and in = 2. Then we use the Weyl transformation w; E WnP1given by  

the permutation  

1 . n - 1 . . .  n - 1  

. . .n il 2,-1 I  
together with Remark 7.15 to equate the iterated integral above with 

Thus it suffices to prove: 

LEMMA8.5. For each subset I of ( 3 , .  . . , n )  with r - 1 elements, fix 

i l ,. .. ,in such that I U { I )  = { i l , . . . ,i,) and {2,. .. , n )  - I = {z ,+~,. . . , in) 

and also i, = 1, iT+l= 2 and in = n ( i f  n @ I )  or il = 1,  i, = n and in = 2 

( i f  n E I ) .  Define permutations wj ( for I such that n @ I )  and W; ( for I such 

that n E I )  as above. Then as 

(i) r runs over { I ,  . . . ,n - I ) ,  

(ii) wl runs over permutations of ( 1 , .  .. , r )  fixing r ,  

(iii) w2 runs over permutations of ( r  + 1 , .  . . , n )  fixing n and 

(iv) I runs over subsets of ( 3 , .  . . , n )  with r - 1 elements not containin,g 

n, 
the product w:wlw2 runs over the set of permutations w of ( 1 , .  . . , n )  fixing n 

such that 

w- l (1 )  < w-l(2). 
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Moreover if instead of (iv) I runs over subsets of (3,. .. ,n) with r -1 elements 

containing n, then the product w;wlwz runs over the set of permutations w of 

{I, .  .. ,n) fixing n such that 

Proof. If w E Wnpl satisfies w-'(1) < wp1(2) let r = wpl(l) and I = 

{j:wpl(j) < r). On the other hand if w E Wn-1 satisfies wP'(l) > wp1(2) let 

r = n -wp1(2) and I = {j> 1: wpl(j) > n - r) U{n). In each case it is easy 

to check that there exist unique choices of wl and wz such that wiwlwz = w 

or w;w1w2 = w. 

This completes the proof of the lemma and hence of Proposition 8.4. 

Remark 8.6. It is shown in Proposition 3.4 of [33]that the multivariable 

residue (multiplied by the constant C K )of Theorem 3.1 and formula (6.1) can 

be replaced by the iterated one-variable residue 

multiplied by the Jacobian (in this case l l n )  of the change of coordinates from 

an orthonormal system to (Yl,. . .,YnP1). Here, if R e ~ ~ , ~ g ( y )denotes the 

coefficient of y-' in the Laurent expansion about 0 of a meromorphic function 

g(y) of one complex variable y, then ~ e s +is defined for meromorphic functions 

of the special form eXi~qi(y),where XI,. .. , A s  are real numbers and 

ql, . ..,q, are rational functions of one variable with complex coefficients, by 

Since 

can be formally expanded as 

when 0 < y < 1, the formula (6.1) can be formally rewritten as 

na:' exp(f2)[M(a,d)]
r=2 

Moreover the multivariable residue Res is invariant under the action of the 

Weyl group, as are all the other ingredients of the right-hand side of (6.1) 
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except for 2. Thus by averaging (6.1) over the Weyl group we obtain a special 

case of Theorem 8.1. 

9. Residue formulas for general intersection pairings 

In order to obtain explicit formulas for all the pairings, Witten observes 

that they can be obtained from those for the a, and f, via his formula [50, 

(5.20)]. In this section we shall generalize our version of his formula ([50, 

(4.74)], which is our Theorem 8.1 via the results of Section 2) to give formulas 

for JM(n,d)(P(rlew) where 9 is an equivariant cohomology class that does not 

simply involve't,he 6, (X) but also involves the b3,(i) (see'Thep-and the &(x) 
rems 9.11 and 9.12 below). The key step in the proof is Lemma 9.9, combined 

with the argument used in Sections 5-8 to prove Theorem 8.1. 

In the next section we shall see that Theorem 9.11 yields Witten's formula 

[50, (5.20)]. This will follow from certain equations satisfied by the formula 

given in Theorem 9.10 (Propositions 10.2 and 10.3). 

The next lemma (from [30]) will give an explicit formula for an equivariant 

cohomology class f ,(x)on M(c)such that @(A(x))= fr (cf. Proposition 4.4). 

In order to state it, we introduce the following notation. 

Definition 9.1 (the moment). If 0 is the Maurer-Cartan form on K ,  the 

moment J(B) E ( f l l ( ~ )  k*)Kis defined for X E k by@I 

where X# is the vector field on K given by the left action of X on K .  

Remark 9.2. See [7, Ch. 71 for an explanation of the role of the moment in 

the construction of equivariant characteristic classes, via an equivariant version 

of Chern-Weil theory. Given a principal bundle over a K-manifold equipped 

with a compatible action of K on the total space of the bundle, the moment J 

plays the same role as the symplectic moment map plays for a principal U(1) 

bundle L over a Hamiltonian K-manifold with cl (L) = [w] (and with a lift of 

the action of K to the total space of L). In particular, the appropriate notion 

of "equivariant curvature" is the sum of the usual curvature and the moment 

J .  

In the next few paragraphs we provide a brief outline of the use of the 

Bott-Shulman construction (see for instance [lo] and other references given 

in [30]) to obtain equivariant differential forms representing the equivariant 

characteristic classes &(x). This material is summarized from [30], which gives 

a construction of de Rham representatives for equivariant characteristic classes 

giving rise to the characteristic classes of the universal bundle over M ( n ,d) x C .  
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This was accomplished by regarding this bundle (and the classifying space for 

it) as simplicia1 manifolds. For more details see [30]. 

Let A2 = {(to, t l ,  t2) E [O, 113: to + t l  + t2 = 1) be the standard 2-simplex. 

There is a principal K-bundle 

for which the bundle projection n2: K3 + K2 is given by 

We define a connection d2)on the total space of this bundle by 

where di)E S ~ ' ( K ~ )8k is the Maurer-Cartan form on the ithcopy of K .  The 

curvature 

F,p) E f12(A2x K3) 8k 

of the bundle is 

We use this connection and curvature and the Chern-Weil theory of equivariant 

characteristic classes (see for instance Chapter 7 of [7]) to define an equivariant 

form on the total space A2 x K3 of the bundle, which represents the equivari- 

ant characteristic class associated to 7, in equivariant cohomology. We then 

integrate this equivariant form over the simplex A2. Finally, we may pull this 

form back to the base space K2  via a section az: K2  -+ K3 given by 

Explicitly, we make the following definition: 

Definition 9.3. Let @?(T,) ~,*&T(T,)= E f lgp2(Kx K )  (see [30], above 

(4.3)) where the section a 2  was as defined above, and 

Let A' = {(to, t l )  E [O, 112: to +tl  = 1) N [0,11be the standard 1-simplex. 

We shall perform a similar construction using a principal K-bundle 

A1 x K2 2A1 x K. 

The bundle projection nl: K 2  -+ K is defined by 
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A section al: K + K~ of the bundle is given by al(k) = (k, 1). 

On the total space A' x K2 we define a connection 

where di)E R ' ( K ~ )@ k is the Maurer-Cartan form on the ith copy of K .  The 

definition of the curvature 

is similar to (9.2). As before, we evaluate the invariant polynomial r, on the 

equivariant curvature and integrate over the simplex A' to get an equivariant 

form over K x K ,  and finally we pull this form back to K using the section a l :  

explicitly, we make the following: 

Definition 9.4. We define 

*F(T,) = oTGF(7,) E o ~ ~ - - ~ ( K ) ,  

where 

Ja, r r ( ~ ~ ( t ,(9.4) mf(7r) + J(o(~)))E R;I(K x K). 

Definition 9.5 (equivariant chain homotopy). We define a chain homotopy 

IK: f i g 1  (k) --t Rk(k)  

as follows: when v E k,  

where Ft: k --t k is multiplication by t and 3 is the vector field on k which 

takes the constant value v. 

LEMMA9.6 ([30, Th. 8.11). The equivariant cohomology class of the 

equivariant diflerential form 

.j;T(x)= ~ r T f r ( x ) l +  pr;fr(x)2 

is a lift of fr E H ~ ' - ~ ( M ( ~ ,  Here, the maps prl and pr2 d)) to H ~ - ~ ( M ( C ) ) .  

are the projection maps from M(c) to ~~g and k defined at (4.4). Also, from 

([30, (7-13)1), 
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and 

where 77 (for a = 0,l and j = 1,.. .,2g) are certain elements of p29 (the free 

group on 2g generators XI,.  . . ,xzg, as in Section 4), whose definition is as given 

in (7.12) of [30], and for any x E p2g, ev,: K2g + K denotes the evaluation 

map on z .  Here, ec: k -+K is defined by e,(A) = cexpA where the central 

element c = e2"idlndiag(l,.. . ,1) is as defined in (2.6). 

since 

dg(4 + -1 
~ ( 4 1  0[ ~ ( i ) ,  = 

2 

and the restrictions of [di),19(~)]to T vanish. Further 

where 8 is the Maurer-Cartan form on T.  If T,(Z1, . . . ,Zn-1). = xl(.rT) 1 ~ 1  

where I = (Al,. . .,inel) is a multi-index and 2' = 22' . . (in terms .z::: 

of a coordinate system {Za = (Ga, X ) ,  a = 1,. . . ,n - 1) on t, specified by 

an oriented orthonormal basis Ga for t for which 8,, a = 1,. . .,n - 1 are the 

corresponding components of the Maurer-Cartan form 8 E R1 (T) @ t ) ,  then we 

have 

LEMMA9.7. For A E t (in terms of the Maurer-Cartan form 8 E 

R1(T) @ t), 

I ~ ( e c * 8 ) ~= h. 
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Proof. We have 

since e,*@(A):t -+ R is the function with constant value A. 

Let q t ~ ( k * ) ~be an invariant polynomial which is given in terms of the 

elementary symmetric polynomials rj by 

n 

(9.10) q ( X )= 72(X)f C 6rrr(X)-
r=3 

The associated element f(,) of H k ( M ( c ) )is defined by 

Here, the ST are formal nilpotent parameters; we expand exp j(,) as a formal 

power series in the 6,. We can alternatively regard the 6, as real parameters 

and exp f(,) as a formal equivariant cohomology class; the integral 

and the integral appearing in (10.4) are well defined and are polynomial func-

tions of the S j ,  since JM(n,d)@(q)= 0 unless 2deg(q)= dim M(n,d). 

Note that by Lemma 9.6 we can write f(,) ( X )= pr;&d ( X ) I+pr$f(,)( x ) ~  
where f(,) (x)I t (K2g)and j(,)(x),t (k). 

Then we have 

LEMMA9.8. For X t t, the restriction of f(,) ( - X ) ,  to ppl(t)is given 

at ( h l ,. . .,hzg,A)E ppl(t)c K2g x k by 
-

f(,)( -X),Ip-l(t)(hl,. . - ,h2g,N = -(dq)x(A).  

Proof. 

a= 1 

= -(dq)x ( A )  by Lemma 9.7. 

LEMMA9.9. Assume that X t t .  Let A = ma& E A' for ma t Z 

(where the simple roots eZ, are as in (6.2))15and let sn denote the homeomor-

phism of Mt(c) given b y  Lemma 4.5. Then on Mt(c) 

'"ate that the e2, are a basis o f t ,  but not an orthonormal basis. 
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or equivalently 

skf(,) (XI = Kq)(XI + (dq(,)) X  (A), 

where the notation 

4(0)(XI = q( -XI.  

is introduced. 

Remark. This result generalizes (4.9). 

Proof of Lemma 9.9. Since f(,)(X)  = pr;f(q) (X)  +pr$f(,) (X)2, we need 

to  prove the formula for skpr$f(,) ( x ) ~where f(,)( x ) ~  = - I ~ ~ , * o ~ ( ~ )for 

(PF (~ )E R;((K). Lemma 9.9 then follows from Lemma 9.8. 

THEOREM9.10. Suppose 7 is  a polynomial in the &,(X) and &(x). Let 

q E ~ ( k * ) ~ .Then for any X E t ,  

Here, we sum over the components F of the fixed point set of TI in 

P-' (v)n , L - ~ ( ~ ~ ) / T , - ~ ;the notation is as in the statement of Lemma 6.7. 

The notation q(,) was introduced in the statement of Lemma 9.9. We have 

defined the map OnP1 in Proposition 6.3, and after (7.3). 

Proof. This follows from the same proof as for Lemma 6.7, when (4.9) is 

replaced by its generalization Lemma 9.9. 

We aim to prove the following result by induction: 

THEOREM9.11 (a). For the particular q defined in (9.10), 

where 7 is  a polynomial in the 6,  and b3, and B ( X )  = -(dq)x ($). 

Here we have used the fixed invariant inner product on k to  identify 

dqx: t + R with an element of t and thus define the map B: t -+t. The 

notation [[r]]was introduced in Definition 2.1. 

Substitution of -X for X on the right-hand side of the equation in The-

orem 9.11 (a) gives the equivalent formulation: 
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THEOREM In the notation of Theorem 9.11 (a), 9.11 (b). 

ST2"x{-[[WE]])( e f ( q ) ( - ~ ) ~ ( - x ) )  

D(X)2g-2 nyz: (1- exp -B(X),) ' 

Finally we may use Lemma 10.9 and Lemma 10.12 (a) where the re- 

strictions to ~~g of the equivariant cohomology classes f , ( ~ )  and &(x)are 

expressed in terms of the basis (2 for H ' ( T ~ ~ )  (for a = 1 , .. . ,n - 1 and 

j = 1 , .. . ,2g).  We also use Lemma 10.10, where the symplectic volume of 

~~g is calculated. These lemmas enable us to compute ST2, ei(q)(-x)q(-~) 

and rephrase Theorem 9.11 (b) as follows. (Here we have also reformulated 

the left-hand side of Theorem 9.11 (b) in terms of the pairings on M ( n ,  d), 

using Lemma 6.1 .) 

THEOREM I n  the notation of Theorem 9.11,9.12. 

(4 

edq~([[wcII)(nL2~ , ( X ) m r )  

D(X)2g-2 nyz: (1- exp -B(X),) 

(b) I n  particular, 

edqx([[wE]l)nL2T, (X)mr (det Ht (X))g 

(1 - exp -B(X),) ~7:; D(X)2g-2 
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Remark 9.13. In the preceding theorem, we have used the following no- 

tation. The a,, f, and b3, (for r = 2,. . . , n  and j = 1 , .. . ,2g) are generators 

of the cohomology ring, introduced in Section 2. The 7,. are the elementary 

symmetric polynomials, and the 6, are formal nilpotent parameters which were 

introduced in (9.10). The polynomial q = 72 + CPz36,r, was introduced in 

(9.10). Its derivative dqx: t --t R is identified with an element of t via the inner 

product (., -) on t, and hence dq: t --t t* is identified with a map B: t --t t (see 

the statement of Theorem 9.11(a)). If y E t ,  the notation [[y]]is as introduced 

in Definition 2.1; it is the unique element in the fundamental domain defined 

by the simple roots for the translation action on t of the integer lattice which 

is equivalent to y under translation by the integer lattice. The (l are derived 

from the components of the Maurer-Cartan form 0 E fll(T) @ t in terms of 

an orthonormal basis {ii,, a = 1, .  . . , n  - 1) of t :  they have been identified 

with a basis of H I  ( ~ ~ 9 ) .(See Definition 10.6 below.) Finally det Ht (X) is the 

determinant of the Hessian of q: t +R,in terms of the coordinates on t given 

by the orthonormal basis (6,); it is independent of the choice of orthonormal 

basis. 

We note that in Theorem 9.12 the orthonormal basis introduced above 

could be replaced by a general basis, provided one defines the 52 using that 

basis, and multiplies the Hessian by a factor due to the change of basis; see 

Remark 10.1 below. 

Remark 9.14. We can replace fi by any nonzero constant scalar multiple 

E f2 provided we replace the polynomial q by qE where 

qE(X)= €72 (X) + 6373 (X) + . . . + 6n7n (X) 

(cf. Remark 8.3 (b)). 

In order to prove Theorem 9.11 and hence Theorem 9.12 we follow the 

proof of Theorem 8.1 using the following: 

LEMMA9.15. Suppose 7 is  a polynomial in the &,(X) and &(x). T h e n  

for any  X E t and q E S(k*)Kchosen as in (9.10), 

where the notation i s  as in the statement of Lemma  6.7. 

Proof. This follows from Theorem 9.10 by replacement of 17 by 
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where we have defined = is divisible by Yl: V/Yl. Notice that ( d q ( , ~ ) ~ ( & )  

to see this, we observe that if we define the generating functional 

(where the rr are the elementary symmetric polynomials) then 

where P is a collection of terms involving dX3,. . .,dXn. Evaluating dP on 

6= (1,-1,0,. . . ,0) we thus obtain 

It follows that the (d rT)x (4 )  (and hence (dq(,))x(ei)) are divisible by Yl. 

Thus - (dq( ,1)~(4)  = -Yl(l + v) where v E H; has degree at  least 1; so we 

have 

(e(d~(o))x(~l)- = y l ( l- i/) 

where .G = C
3-

.Gj is a formal sum of classes Gj with degree at  least 1 in (a 

completion of) HG. Then the expression 

(which appears on the left-hand side of the equation in Theorem 9.10) is well 

defined. On the right hand side, we may replace 

We now use Lemma 9.15 to prove Theorem 9.11 (a) by induction on n. 

The proof follows the outline of the proof of Theorem 8.1 when q = qa, with 

the following modifications: 

I .  e" is replaced by ef(q) (and eW replaced by e.f(q)-f2eW). 

2. (dq(,))x(G) replaces -Yl, so e(dq(o))x(ei) - 1replaces ePYl - 1. 
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3. In particular, - (dq( ,~)~(&) = -B(-X)1 replaces Yl in the identity 

which is used in the proof of Proposition 8.4. 

We also use the elementary fact that (dq(,))x = -(dq)-x = B(-X). 

10. Witten's formulas for general intersection pairings 

In this section we state and prove Witten7s formulas (Propositions 10.2 

and 10.3 below; cf. [50, $51, in particular the calculations (5.11)-(5.20)), which 

enabled him to calculate general intersection pairings in terms of those of the 

form 

k ( n , d )I[I 
We shall prove these formulas starting from our explicit formulas for the general 

intersection pairings (see Theorem 9.11). 

Some of the notation in the statements of Propositions 10.2 and 10.3 was 

introduced at the beginning of Section 9. The invariant polynomial q was 

defined by (9.10). Using the invariant metric on k, the map -dq : k -+ k* 

may be regarded as a map B = B ( ~ )+ xr23& B ( ~ ) :  k + k, where B ( ~ )= 

-dp: k t k; we find B ( ~ )= = id: k t k. (Note that we have put 

7-2 (X) = - (x,X )  in terms of the inner product (-,.) defined at (2.2) .) The 

other maps B ( ~ )are not linear. 

The Hessian of -q is H; it is a function from k to symmetric bilinear 

forms on k. If k,  1 run over an orthonormal basis {Gk) of k then the Hessian 

at X is the matrix 

Remark 10.1. In most places in Sections 9 and 10, the orthonormal 

basis {iia) for t may be replaced by any basis for t (including the basis 

{&,a = 1, .. . ,n - I), which is of course not orthonormal), and similarly for 

the orthonormal basis {C1) for k. However it is more convenient to define the 

determinant of the Hessian (given in (10.1)) in terms of an orthonormal basis, 

since one must otherwise include a normalization factor proportional to the 

square of the determinant of a matrix whose columns are the basis elements. 

The second place where it is useful to introduce an orthonormal basis is in the 

definition of the symplectic form in terms of the generators (i for the coho- 

mology of ~ ~the symplectic form is defined using the inner product 9 ; (., .) on 

t, and the formula (Lemma 10.8) for the restriction of the symplectic form to 

~~g is cleaner in terms of an orthonormal basis. 
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For these reasons we have chosen to use an orthonormal basis for t through-

out Sections 9 and 10, although in many specific instances this basis may be 

replaced by a general basis. In particular in the statement of our main theorem 

Theorem 9.12, it is easy to check that the orthonormal basis may be replaced 

<: by a general basis, provided that the are also defined using this basis, and 

that the Hessian is multiplied by the appropriate factor. 

We assume the 6, are formal nilpotent parameters; then the invertibility 

of B is guaranteed. We write B-l: k -t k as the inverse of B. (If the 6, are 

nilpotent, the inverse of B may be written as a formal power series in the ST.) 

PROPOSITION For any invariant polynomial the inte- 10.2. T E ~ ( k * ) ~ ,  

gral 

is equal to  the integral 

/ @ (r(BP1(-x)) (det H(B-'(-x)))~-') exp f 2  
M(n,d) 

which is  of the form that may  be calculated by Theorem 8.1. 

PROPOSITION10.3. Let r E ~ ( k * ) ~be an  invariant polynomial, so that 

is a polynomial i n  the ti2,.. . ,tin. Let s$ be real parameters ( for  r = 2,. . . ,n 

and j = 1, . . . ,2g). Then, 

Here, the invariant polynomial -i on  k is defined ( for  X E t) by 

where (6,: a = 1, .. . ,n - 1) denotes an  oriented orthonormal basis of t;  see 

(10.19) for the definition. 

Remark 10.4. Notice that in our conventions on the equivariant coho- 

mology differential and the moment, the construction of [30] described at the 
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beginning of Section 9 yields 

6, (X) = 7,.(-X) . 

Proposition 10.2 is proved by comparing Theorem 9.12 (b) (applied to 

(10.2)) with Theorem 8.1 (applied to (10.3)). Proposition 10.3 is obtained by 

applying Theorem 9.11 (b) to both sides of (10.4) and examining the restric- 

tions to ~~g (which are computed in Lemmas 10.9 and 10.13). 

Propositions 10.2 and 10.3 enable us to extract formulas for all pairings, by 

differentiating the formulas (10.3) and (10.4) with respect to the parameters 

6, and s; and then setting these parameters equal to zero. In fact, for any 

nonnegative integers nr (for r 2 3) we have 

and likewise for any nonnegative integers n, (with n2 = 0) and any choices of 

p,,j, = 0 , l  we have 

n 29 
- (r(x))exp f 2  n n (e)f~ p','T 

- L ( n , d )  j,=lr=2 

(where the parameters 6, and s: on the left-hand side run over r = 2, .  . .,n 

and j = I , . .  . ,2g). 

We can use Proposition 10.3 to give an explicit formula for pairings of the 

form 

where pr,kr = 0 or 1. We note that by Proposition 10.3 this equals 
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where 

Here the iia are an oriented orthonormal basis of t. We introduce TTs: k -+ R 

given by16 

Thus we may rewrite (10.7) as 

n 

(10.8)  i ( X )  = C T,, (X)  
r,s=2  

We observe that in order for the pairing (10.5) to  be nonzero, one requires 

f i , j  = 0 or 1 for all r and j (since the b3, are of odd degree). Further, in 

order for the expression (10.6) to yield a nonzero answer, we require for each 

j = 1,. . . , g  that 

for some l j .  We may then rewrite (10.6) as 

Because i is quadratic in the s: and we are setting all the s: to zero in the 

end, for each j we may represent the symbols -d and -a as 1-valent vertices 
as: asi+g 

(labelled by r) in a bipartite graph: there must be exactly one edge coming 

out of each of these vertices, and these edges must connect the symbol 
as$ 

with a symbol -a for some s. Such bipartite graphs of course correspond to 
dS3;+9 

permutations aj bf (1,. . . , l j ) .  

It  follows from (10.8) that 

a a 
-- i ( X )  = T,, (X) for any ja$ a s j + g

S 

16Notice that T,, is an invariant polynomial on k. 
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so that 

9 

(10.10) j=l (5as;' as;,; asj+9 . . . L)/M(n,dl a (r(x) e.f2, . . . A)(0asj+g exp +(x)) 
S 1  Sl; 

where we sum over all permutations aj  of ( 1 , . . . ,Zj). Hence we obtain by 

Remark 8.2 (a) and Lemma 6.1: 

which equals ( - l ) n + ( g - l ) e  t imes the iterated residue n! 

Let ii, ( a  = 1 , . . . ,n - 1)  denote an oriented orthonormal basis on t. For 

X E t define coordinates 2, by 2, = ( X , i i a ) so that X = 1,Zaiia. Write 

the Maurer-Cartan form 0 on T as 8 = C,0,iia; then the 8, form a set of 

generators of H' (T ). 

Definition 10.6. A set of generators (5;) ( j  = 1, . .. ,29; a = 1, . . . ,n-1)  

for H ' ( T ~ ~ )is defined by specifying that 5; = $0, where rj: T 2 g  +T is the 

projection onto the jth copy of T .  

LEMMA10.7. ST Ol A.  . . A =vol (T ). Here, vol (T )is  the Riemannian 

volume of T = t/A' in the metric (s;); in other words i t  is given by (det E ) ;  

= f i  where E is  the (n- 1)  x (n- 1)  matrix (Icno711n as the Cartan matrix) 

given by Eab= (&,&) in terms of the basis for the integer lattice A' c t over 

Z given by the simple roots {&), a = 1 , . . . ,n - 1. 
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LEMMA10.8. The  restriction of f(,)(x) ,to  ~~4 i s  gizlen i n  t e n s  of the 

generators [iof H 1( T 2 g )  by 

where the {aa} are a n  oriented orthonorm,al basis o f t .  

Proof. We need to understand the restriction of f(q) to T 2 g .  As in (9.6), 

we have 

where (after restricting to T x T x T )  

(10.12) 

For purposes of evaluation on T 2 g  the generators $ in (9.6) reduce to 

0 1 1 0y .  = y. - 1, y .  = x .  
3 3+9- 3 3+g1 Y j + g = x j ,  

where X I , .  . . , are the chosen generators of IF2g. SO we get from (9.6) 

We find that 

Similarly for A t t c k ,  

f(q) ( - X ) 2 ( 4  = -( d q ) x ( A )  

(see Lemma 9.8). 

As a result we see immediately that: 
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LEMMA10.9. Suppose c expA = 1. Then 

J expj(,)(-X) = J e x ~ f q ~ ( - ~ ) ( d e t ~ t ( ~ ) ) ~  
T2gx {A) T29x {A) 

-- e~(~q)x( ' )  ( det Ht (X))gexp wLZr 
where w is the standard syrnplecticform on T2g and the quadratic form Ht (X) 

is the Hessian of the restriction of -q to t (evaluated on an oriented orthonor-

ma1 basis of t ) .  In other words, 

Ht(X),b = -(d2q)x(cu,fib) 

where {G,: a = 1,. . . ,n  - 1) is an oriented orthonormal basis for t .  

Proof. This follows by integrating 

over T2g. (Notice that d2q(G,,Gb) is symmetric in a and b.) 

expw = ng. 

Proof. This follows from Lemmas 10.7 and 10.8. 

In order to prove Proposition 10.2, note that by Theorem 9.11(b), 

(-l)n+(g-l) 

equals n! times the iterated residue 

This applies in particular when q(X) = T(-X) is a linear combination of 

monomials n,ic? in the 8, which does not involve the 6,;since ic,(X) = 

T, (-X), it is natural to write q(-X) = T(X).For q of this form, the expression 

above equals 

STZ~ eS.2 (det Ht (X))gT(X)x {-[[WE]]) 
~ ( ~ ) 2 9 - 2 ( 1- e-B(X)n-l). .. (1- e-B(X)l) 

by Lemma 10.9. 
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We now replace X by B-'(x) (where the transformation B-l : k t k was 

defined above Proposition 10.2). This change of variables produces a Jacobian 

(det H~(BPI ( x ) ) ) ~ ' .  Thus we obtain 

Now we have the statement: 

LEMMA10.11. 

where (d2q)tl denotes the restriction of the symmetric bilinear form (d2q)x 

o n  k t o  a symmetric bilinear form o n  t', which is  then identified with a linear 

map from t' t o  itself using the fixed invariant inner product. 

This lemma will be used in establishing Proposition 10.2 since the Hessian 

H appearing in that proposition is the Hessian of the (K-invariant) function 

-q: k t R,which is block diagonal with one block being the Hessian Ht of 

the restriction of this function to t and the other block being - ( d 2 q ) t ~ .  

Proof. We introduce the (orthonormal) basis X,,Y, for tLcorresponding 

to the positive roots y, and a corresponding system of coordinates x,, y, on 

tL;we have 

1x7,XI = ../(X)Y,, [Y,,XI = -Y(X)X,. 

We observe that the map B and its inverse B-l on k are K-equivariant, and 

map t to t and tL to tL .  Hence 

and 

B '  (Ad exp(X,) (X))= ~d exp(xy) (B-' (x)) , 

and similarly for Y,. We find 
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where ( B - ~ ) , ~ ,( B - ~ ) ~ ~: tLtiR are the coordinate functions in the directions 

xy and yy. Thus, 

(10.17) 2 3( B(x)) = 232(x) (det ~(B- ' )L)  

= v2(x ) (de t-d2y);: 

where d ( B - l ) ~is the square matrix of partial derivatives of the t' components 

of B-l in the directions along tL .  This completes the proof of Lemma 10.11. 

Proposition 10.2 now follows immediately by using (10.14) and Lem-

ma 10.11 to express (10.2) as an iterated residue, and observing that The-

orem 8.1 (in the version given by Remark 8.3 (a)) yields the same iterated 

residue for (10.3). 

Let us now consider the proof of Proposition 10.3. For the rest of this 

section let a = 1,. .. ,n -1 index an oriented orthonormal basis {G,)- of t .  We 

have- &(x) = pr~&llwhere &jl = evXj*@f(q.)and @f(q.) = of@;T((~~)where 

@f(7,) is as defined by (9.8). Also, x j  (for j = 1,.. . ,2g) are our chosen set of 

generators of H1(C). 

Theorem 8.1 applies when ~ ( x )=T(X)exp ~ 2 ,CTE2s$&!(x) for S$ E C 

and T E ~ ( k * ) ~ .Define SJ' E ~ ( k * ) ~by S ~ ( X )= C r r 2 ~ : ~ r ( ~ ) ;we then 

define gj by $iJ(X) = Crt2s$&(x). 

LEMMA10.12 (a). The restriction to T2g of &!(-X) is cE~~(~T , )x (G , )<~  

where (i (for a = 1, .  . . ,n - 1 and j = 1, .  . . ,29) are the elements of the basis 

of H ' ( T ~ ~ )corresponding to an oriented orthonormal basis {Ga) for t. 
(b) The restriction to T 2 g  of (-X) is (d~j )x(P , ) ( i .  

Proof. We have by (8.21) of [30] that 

so that 

- .  n-1 

(-X)i I T Z ~ = evXj*o;6f(rr) 1772,  (-X) = x (drr)x(Pa)(: 
a=l 

since the generators ( 2  of H1(T2g) become identified with the components 8, 

of the Maurer-Cartan form on the jth copy of,T in T2g. 

LEMMA10.13. In the notation introduced just before Lemma 10.12, 

(10.18) 1 exp R q )  ( -X )  exp x s$@( -X )  = exp f (q )  ( -X )  exp i ( X )  
T 2 g  

.J',r 
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where 

Here, {Ga: a = 1 , . .. ,n - 1 )  denotes an oriented orthonormal basis o f t .   

Proof. We need to  consider the left-hand side of (10.18),which is  

By Lemma 10.8 the restriction of ?(,)(-X) to T 2 g  is 

exp - ELl (aZq)x - while exp4Ca,b (Ca,GI)((i[ltg ~ i + g ~ l )  s:& ( - X )  re-

stricts on T 2 g  (by  Lemma 10.12) to 

Thus for any given j = 1 , . . . ,g we must compute the integral 

where a runs over pairs ( a ,i )  for a = 1 , . . .,n - 1 and i = 0 , l  (where i = 0 

corresponds to j and i = 1 to j + g)  and ga,i = ( i+g i .  Here, the matrix A is 

given by 

(10.22) ~ " O , b l= - ( a 2 q ) X ( f i a ,  Gb)= - ~ a l , b O .7 AaO,bO -- ~ a l , b l= 0;  

thus the Pfaffian of A (whose square is det A) is given by 

p f ( A )= det ( - a 2 q t )  . 

For j = 1 , .  . . ,g the vector Bj is 

The result is that 
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where Bj denotes the transpose of the vector B j .  Thus we find that (10.20) 

becomes 

n-1 g 

(10.25) det ( -a2q/ t )gexp x x(d~')x(~,)(ds'+~)x(~b)(a~q)(l,: 
a,b=l j=l 

which equals the right-hand side of (10.18). This completes the proof of 

Lemma 10.13. 

Proposition 10.3 follows from Theorem 9.11 once we have shown that 

exp f(,) ( - X )  exp x s:Q ( - X )  = exp f(,, ( - X )  exp i ( X )  
7-22 

where .iis given by (10.7). This is now clear from Lemma 10.13. 

11. The Verlinde formula 

The Verlinde formula is a formula for the dimension Dn,d(g,5 )  of the space 

of holomorphic sections of powers of C , where C is a particular line bundle 

over M(n,d) ;  it has been proved by Beauville and Laszlo [6] ,Faltings [20], 

Kumar, Narasimhan and Ramanathan [38]and Tsuchiya, Ueno and Yamada 

[48].In this section we show how the Verlinde formula follows from our formula 

(Theorem 8.1) for intersection pairings in M(n,d).  

A line bundle L over M (n,d )  may be defined for which cl ( L )= nf2,since 

nf2 E H 2 ( M ( n ,d ) ,Z)(see [16]).As described in Section 1, this bundle is the 

determinant line bundle. Whenever k is a positive integer divisible by n, we 

then define 

(11.1) Dn,d(g ,k )  = dim H O  ( M(n,d ),CWn). 

Let us introduce 

r = k + n ;  

let us also introduce the highest root y,,, which is given by ym,(X) = 

X n  -X I  or yma = el +e2 +.. .+en-1. We then make the following definition: 

Definition 11.l. The Verlinde function Vn,d(g,k )  is given by 

where p is half the sum of the positive roots and 

1 
SO"^ = f i r (n - l ) /2  2 sin ~ ( y ,A) / r .  

Y>O 
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(See [21, (A.44)] and [49, (3.16)].) Verlinde's conjecture says that the 

Verlinde function specifies the dimension of the space of holomorphic sections 

of C"ln: 

THEOREM11.2 (Verlinde's conjecture). 

We shall show how to  extract Verlinde's conjecture from our previous 

results: an outline of the method we use was given by Szenes ([45, (§4.2)]). 

In fact H ~ ( M ( ~ ,d),Cm) = 0 for all i > 0 and m > 0 by an argument 

using the Kodaira vanishing theorem and the facts that L is a positive line 

bundle and the canonical bundle of M ( n ,  d) is equal to CP2 (see [5, 351 and 

Thkorkme F of [16]);now Dn,d(g,k) is given for k > 0 by the Riemann-Roch 

formula: 

We use the following results to  convert (11.2) into a form to which we may 

apply our previous results. 

LEMMA11.3. For any complex manifold M the Todd class of M is given 

'JY 

td(M) = e c 1 ( " ) I 2 ~ ( ~ )  

where cl(M) is the first Chern class of the holomorphic tangent bundle of M ,  

and A(M) is the A-roof genus of M .  

Proof. See for example [22, pages 97-99]. 

29-2 

sinh y(X)/2 

Proof. This is proved by ~ e w s t e a d l ~in [42]. 

LEMMA11.5. We have 

ci (M(n, d)) = 2nf2. 

17iVewsteadwrites the details of the proof only for n = 2 but the same proof yields the result for 

general n. 



MODULI SPACES O F  HOLOMOR.PHIC BUNDLES 191 

Proof. This is proved in [16, Th. F]. 

Of course the Chern character of ,Ckln is given by ch,Ckln= ekf2. Thus we 

obtain: 

COROLLARY11.6. The quantity D,,d(g, k) is given by 

Proof. This follows immediately from (11.2), Lemmas 11.3 and 11.5 and 

Proposition 11.4. 

THEOREM11.7. We have 

Proof. This comes straight from Corollary 11.6 and Theorem 8.1. Note 

that because the factor ef2 in the statement of Theorem 8.1 has been replaced 

by erf2, it is necessary to  replace e([[wEIIIX)by er([[wE]l,X),and e q  -1by erq  -1 

(cf. Remark 8.3 (c)). 

We introduce Zj= exp 5.Since for any w E Wn-1, 

(as in the statement of Proposition 2.2) with n[[wE]ljE Z for all j ,  and 0 5 
[[wE]lj< 1 for all j ,  we obtain 

(Recall that k and r are divisible by n so er(Cx) is a well-defined single-valued 

function of Z1, . . ., Thus we can equate D,,d(g, k) with 
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Here, we have introduced y defined (for the root y = e, +e ,+~+ . . .+es-l)  by 

We also have: 

and hence 

Proof. This follows from Lemma 10.10. 

The following may be proved by the same method as in Section 2 (see 

[45]): 

PROPOSITION11.9. Suppose f is the meromorphic function o n  the com-

plezification Tc of T defined by 

Then,  

Here, WnP1is  the permutation group on  ( 1 , .  . . ,n - 1 )  which is  (isomorphic 

t o )  the Weyl group of SU(n - I ) ,  and [[wf]]is  the function 

(11.7) 

Remark. Notice that 
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(Here, the wj are the fundamental weights, which are dual to  the simple roots.) 

The set {X E t :  X = CjXjCZi,O5 X j  < 1, j = 1, . . . ,n - 1) is a funda-

mental domain for the action of the integer lattice A' on t ,  while the set 

{X E t+ c t :  yma,(X) < 1) is a fundamental domain for the afine Weyl 

group Waff (the semidirect product of the Weyl group and the integer lattice), 

and A' has index (n- l)!  (rather than n!) in Waff(in other words a fundamental 

domain for A' contains (n-1)! fundamental domains for Waff).This difference 

accounts for the factor l / ( n  - l)! in Proposition 11.9 which replaces the factor 

l l n !  in its analogue Proposition 2.2. 

Applying Proposition 11.9we find (recalling from Section 2 that (-l)n-l = 

cP when n and d are coprime) that 

This gives 

(11.9) Dnjd(g,k )  -- (-l)n+(g-l)r(n-l)(g-l)ng-l C 
XEA&nt+: (X,Tmax)<r 

e-2~i(E,X-p) 

X 
nT,o(2i sin ~ ( y ,  

X 29-2 ' 

nT>o(2 sin q) 

Comparing this with Definition 11.1, we see that Dn,d(g,k) = Vn,d(g,k). This 

completes the proof of Theorem 11.2. 
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