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Intersection theory on moduli spaces
of holomorphic bundles of arbitrary rank
on a Riemann surface

By Lisa C. JEFFREY and FRANCES C. KIRWAN*

1. Introduction

Let n and d be coprime positive integers, and define M(n,d) to be the
moduli space of (semi)stable holomorphic vector bundles of rank n, degree d
and fixed determinant on a compact Riemann surface 3.. This moduli space is a
compact Kéahler manifold which has been studied from many different points of
view for more than three decades (see for instance Narasimhan and Seshadri
[41]). The subject of this article is the characterization of the intersection
pairings in the cohomology ring! H*(M(n,d)). A set of generators of this ring
was described by Atiyah and Bott in their seminal 1982 paper [2] on the Yang-
Mills equations on Riemann surfaces (where in addition inductive formulas for
the Betti numbers of M(n, d) obtained earlier using number-theoretic methods
[13], [25] were rederived). By Poincaré duality, knowledge of the intersection
pairings between products of these generators (or equivalently knowledge of the
evaluation on the fundamental class of products of the generators) completely
determines the structure of the cohomology ring.

In 1991 Donaldson [15] and Thaddeus [47] gave formulas for the intersec-
tion pairings between products of these generators in H*(M(2,1)) (in terms
of Bernoulli numbers). Then using physical methods, Witten [50] found for-
mulas for generating functions from which could be extracted the intersection
pairings between products of these generators in H*(M(n, d)) for general rank
n. These generalized his (rigorously proved) formulas [49] for the symplectic
volume of M(n,d): For instance, the symplectic volume of M(2,1) is given
by

1 > ((2g—2) 297122

(11) ‘IIOI(M(Z 1) = (1 T 9293 ) 992, 29-2 (29 — 2)! | B2g—2|

*This material is based on work supported by the National Science Foundation under Grant
No. DMS-9306029, and by grants from NSERC and FCAR.

IThroughout this paper all cohomology groups will have complex coefficients, unless specified
otherwise.
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where g is the genus of the Riemann surface, ¢ is the Riemann zeta function
and Bgg—9 is a Bernoulli number (see [49], [47], [15]). The purpose of this
paper is to obtain a mathematically rigorous proof of Witten’s formulas for
general rank n. Our announcement [32] sketched the arguments we shall use,
concentrating mainly on the case of rank n = 2.

The proof involves an application of the nonabelian localization principle
[31], [50]. Let K be a compact connected Lie group with Lie algebra k, let
(M, w) be a compact symplectic manifold equipped with a Hamiltonian action
of K and suppose that 0 is a regular value of the moment map u: M — k*
for this action. One can use equivariant cohomology on M to study the coho-
mology ring of the reduced space, or symplectic quotient, Myeg = p 1 (0)/K,
which is an orbifold with an induced symplectic form wp. In particular, it is
shown in [36] that there is a natural surjective homomorphism from the equiv-
ariant cohomology Hj (M) of M to the cohomology H*(M;eq) of the reduced
space. For any cohomology class ng € H*(Myeq) coming from n € Hy (M) via
this map, we derived in [31] a formula (the residue formula, Theorem 8.1 of
[31]) for the evaluation 7p[Myeq] of 1o on the fundamental class of Myeq. This
formula involves the data that enter the Duistermaat-Heckman formula [17],
and its generalization the abelian localization formula [3], [8], [9] for the action
of a maximal torus 7" of K on M: that is, the set F of connected components
F of the fixed point set M7 of the action of T on M, and the equivariant Euler
classes ep of their normal bundles in M. Let t be the Lie algebra of T'; then
the composition pur: M — t* of u: M — k* with the natural map from k* to
t* is a moment map for the action of 7' on M. In the case when K = SU(2)
and the order of the stabilizer in K of a generic point of u~1(0) is ng, the
residue formula can be expressed in the form

(1.2) 10€“° [Myea] = "2 Resx—o ((2X > hh(X )
2
Fery
where the subset F of F consists of those components F' of the fixed point
set M7 on which the value taken by the 7-moment map ur: M — t* 2 R is
positive, and for F' € F, the inclusion of F' in M is denoted by ip and the
meromorphic function A7, of X € C is defined by

RL(X) = / ipn(X)e" O oHT <F><X)/ Gn(X)e
F er(X) er( X

when X € C has been identified with diag(27i, —27i)X € t ® C. Here  is the
extension w + p of the symplectic form w on M to an equivariantly closed 2-
form, while as before wy denotes the induced symplectic form on M;eq. Finally
Resx—g denotes the ordinary residue at X = 0.

The moduli space M(n,d) was described by Atiyah and Bott [2] as the
symplectic reduction of an infinite-dimensional symplectic affine space A with
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respect to the action of an infinite-dimensional group G (the gauge group).?
However M(n,d) can also be exhibited as the symplectic quotient of a finite-
dimensional symplectic space M(c) by the Hamiltonian action of the finite-
dimensional group K = SU(n). One characterization of the space M(c) is
that it is the symplectic reduction of the infinite-dimensional affine space A by
the action of the based gauge group Gy (which is the kernel of the evaluation
map G — K at a prescribed basepoint: see [28]). Now if a compact group
GG containing a closed normal subgroup H acts in a Hamiltonian fashion on a
symplectic manifold Y, then one may “reduce in stages”: the space ,u[_il (0)/H
has a residual Hamiltonian action of the quotient group G/H with moment
map pq/H: pgt(0)/H — (g/h)*, and ug'(0)/G is naturally identified as a
symplectic manifold with ,ua} #(0)/(G/H). Similarly M(c) has a Hamiltonian
action of G/Gy = K, and the symplectic reduction with respect to this action
is identified with the symplectic reduction of A with respect to the full gauge
group G.

Our strategy for obtaining Witten’s formulas is to apply nonabelian local-
ization to this extended moduli space M(c), which has a much more concrete
(and entirely finite-dimensional) characterization described in Section 4 below.
Unfortunately technical difficulties arise, because M(c) is both singular and
noncompact. The noncompactness of M(c) causes the more serious problems,
the most immediate of which is that there are infinitely many components F
of the fixed point set M(c)?. These, however, are easy to identify (roughly
speaking they correspond to bundles which are direct sums of line bundles),
and there are obvious candidates for the equivariant Euler classes of their nor-
mal bundles, if the singularities of M(c) are ignored. In the case when n = 2,
for example, a naive application of the residue formula (1.2), with some sleight
of hand, would yield

0 L(2HDX
(1.3) wvol(M(2,1)) = e*[M(2,1)] = (~1)Resx=o

29—2 X 2g—2
j=0

eX

2g—2X2_q—2(1 - 62X)

1
= - g—l = ‘
(—1)""Resx—o 29-1X29-2ginh(X)

= (~1)’Resx=o

This does give the correct answer (it agrees with (1.1) above). However it is
far from obvious how this calculation might be justified, since the infinite sum
does not converge in a neighbourhood of 0, where the residue is taken, and

2To obtain his generating functionals, Witten formally applied his version of nonabelian local-
ization to the action of the gauge group on the infinite dimensional space \A.
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indeed the sum of the residues at 0 of the individual terms in the sum does
not converge.

These difficulties can be overcome by making use of a different approach
to nonabelian localization given recently by Guillemin-Kalkman [23] and inde-
pendently by Martin [39]. This is made up of two steps: the first is to reduce
to the case of a torus action, and the second, when K = T is a torus, is to
study the change in the evaluation on the fundamental class of the reduced
space up'(€)/T of the cohomology class induced by 7, as ¢ varies in t*. It is
in fact an immediate consequence of the residue formula that if 7" is a max-
imal torus of K and £ € t* is any regular value sufficiently close to 0 of the
T-moment map pp: M — t*, then the evaluation 7g[M;eq] of no € H*(Mred)
on the fundamental class of M,eq = p~1(0)/K is equal to the evaluation of a
related element of H*(u7'(€)/T) on the fundamental class of the T-reduced
space u7'(€)/T. This was first observed by Guillemin and Kalkman [23] and
by Martin [39], who gave an independent proof which showed that ng[Mieq] is
also equal to an evaluation on

#H0)/T = (My N uz*(0))/T

where My = p~1(t). In our situation the space My turns out to be “periodic”
in a way which enables us to avoid working with infinite sums except in a very
trivial sense. This is done by comparing the results of relating evaluations on
(Mg 0 ppt(€))/T for different values of ¢ in two ways: using the periodicity
and using Guillemin and Kalkman’s arguments, which can be made to work
in spite of the noncompactness of M(c). The singularities can be dealt with
because M (c) is embedded naturally and equivariantly in a nonsingular space,
and integrals over M(c) can be rewritten as integrals over this nonsingular
space.

In the case when n = 2 our approach gives expressions for the pairings
in H*(M(2,1)) as residues similar to those in (1.3) above. When n > 2 we
consider the action of a suitable one-dimensional subgroup 7} of T, with Lie
algebra t; say, on the quotient of z~1(t;) by a subgroup of T' whose Lie algebra.
is a complementary subspace to t; in t. This leads to an inductive formula
for the pairings on H*(M(n,d)), and thus to expressions for these pairings as
iterated residues (see Theorems 8.1 and 9.12 below, which are the central re-
sults of this paper). Witten’s formulas, on the other hand, express the pairings
as infinite sums over those elements of the weight lattice of SU(n) which lie
in the interior of a fundamental Weyl chamber (see Section 2). These infinite
sums are difficult to calculate in general, and there is apparently (see [50, Sec-
tion 5]) no direct proof even that they are always zero when the pairings they
represent vanish on dimensional grounds. However, thanks to an argument of
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Szenes (see Proposition 2.2 below), Witten’s formulas can be identified with
the iterated residues which appear in our approach.

Over the moduli space M(n,d) there is a natural line bundle £ (the
Quillen line bundle [43]) whose fibre at any point representing a semistable
holomorphic bundle E is the determinant line

detd = detH (%, E) ® detH'(%, E)*

of the associated d-operator. Our expressions for pairings in H*(M(n,d)) as
iterated residues, together with the Riemann-Roch formula, lead easily (cf.
Section 4 of [45]) to a proof of the Verlinde formula for

dim HO(M(n, d), L£F)

for positive integers k (proved by Beauville and Laszlo in [6], by Faltings in
[20], by Kumar, Narasimhan and Ramanathan in [38] and by Tsuchiya, Ueno
and Yamada in [48]). ‘

This paper is organized as follows. In Section 2 we describe the generators
for the cohomology ring H*(M(n,d)) and Witten’s formulas for the intersec-
tion pairings among products of these generators. In Section 3 we outline tools
from the Cartan model of equivariant cohomology, which will be used in later
sections, and the different versions of localization which will be relevant. In
Section 4 we recall properties of the extended moduli space M(c), and in Sec-
tion 5 we construct the equivariant differential forms representing equivariant
Poincaré duals which enable us to rewrite integrals over singular spaces as inte-
grals over ambient nonsingular spaces. Then Section 6 begins the application
of nonabelian localization to the extended moduli space, and Section 7 analyses
the fixed point sets which arise in this application. Section 8 uses induction to
complete the proof of Witten’s formulas when the pairings are between coho-
mology classes of a particular form, Section 9 extends the inductive argument
to give formulas for all pairings, and in Section 10 it is shown that these agree
with Witten’s formulas. Finally as an application, Section 11 gives a proof of
the Verlinde formula for M(n,d).

We would like to thank the Isaac Newton Institute in Cambridge, the
Institute for Advanced Study in Princeton, the Institut Henri Poincaré and
Université Paris VII, the Green-Hurst Institute for Theoretical Physics in Ade-
laide and the Massachusetts Institute of Technology for their hospitality during

crucial phases in the evolution of this paper. We also thank A. Szenes for point-
" ing out an error in an earlier version of the paper; since the original version of
this paper was written, Szenes has obtained new results [46] which are closely
related to the results given in Section 11 of our paper.
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2. The cohomology of the moduli space M(n,d) and
Witten’s formulas for intersection pairings

In order to avoid exceptional cases, we shall assume throughout that the
Riemann surface X has genus g > 2.

A set of generators for the cohomology?® H*(M(n,d)) of the moduli space
M(n,d) of stable holomorphic vector bundles of coprime rank n and degree
d and fixed determinant on a compact Riemann surface ¥ of genus g > 2 is
given in [2] by Atiyah and Bott. It may be described as follows. There is a
universal rank n vector bundle '

U— X x M(n,d)

which is unique up to tensor product with the pullback of any holomorphic line
bundle on M(n,d); for definiteness Atiyah and Bott impose an extra normal-
izing condition which determines the universal bundle up to isomorphism, but
this is not crucial to their argument (see [2, p. 582]). Then by [2, Prop. 2.20] the
following elements of H*(M(n,d)) for 2 < r < n make up a set of generators:

fo= (Shem)
b, = (e (U)),
ar = (1,CT(U)).

Here, [X] € H2(X) and o; € Hi(2) (j = 1,...,2g) form standard bases
of Hy(X,Z) and H1(%,Z), and the bracket represents the slant product
HN(Y x M(n,d)) ® Hj(X) — H¥"7(M(n,d)). More generally, if K = SU(n)
and @ is an invariant polynomial of degree s on its Lie algebra k = su(n) then
there is an associated element of H*(BSU(n)) and hence an associated element
of H*(X x M(n,d)) which is a characteristic class Q(U) of the universal bundle
U. Hence the slant product gives rise to classes

([Z,Q) € H*7*(M(n,d)),
(0, Q) € H»* ' (M(n,d))

and

(L, QU)) € H**(M(n,d)).

In particular, letting 7 € ST (k*)X denote the invariant polynomial associated
to the 7" Chern class, we recover

(2'1) Ir= ([E]aTr(U))a
bl = (o, 7(U))

3Tn this paper, all cohomology groups are assumed to be with complex coefficients.
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and
ar = (1, 7-(U)).

A special role is played by the invariant polynomial 75 = —(-,-)}/2 on k given
by the Killing form or invariant inner product. We normalize the inner product
as follows for K = SU(n):

(2.2) (X, X) = —Trace(X?2)/(4n?).

The class f; associated to —(-,-)/2 is the cohomology class of the symplectic
form on M(n,d).

As was noted in the introduction, Atiyah and Bott identify M(n, d) with
the symplectic reduction of an infinite dimensional affine space A of connec-
tions by the action of an infinite dimensional Lie group G (the gauge group).
They show that associated to this identification there is a natural surjec-
tive homomorphism of rings from the equivariant cohomology ring Hé (A) to
H*(M(n,d)), where G is the quotient of G by its central subgroup S'. There
is a canonical G-equivariant universal bundle over ¥ x A, and the slant prod-
ucts of its Chern classes with 1 € Hy(X), o; € Hi(E) for 1 < j < 2g and
[X] € H2(X) give generators of H(A) which by abuse of notation we shall also
call a,, b and fr. (In fact H;(A) is freely generated by ay,...,an, f2,..., fn
and bl for 1 < r <mnand 1< j < 2g, subject only to the usual commutation
relations.) The surjection from G to G induces an inclusion from H3(A) to
HE(A) such that

H(A) = H5(A) @ H*(BS')
if we identify H*(BS!) with the polynomial subalgebra of HE(A) generated by
a1, and then the generators a,, f. and b for 1 < r < n determine generators of
H(A) and thus of H*(M(n,d)). These are the generators we shall use in this
paper. The normalization condition imposed by Atiyah and Bott corresponds
to use of the isomorphism

Hi(A) = HE—(.A) ® H*(BS')
obtained by identifying H*(BS!) with the polynomial subalgebra of HE(A)
generated by 2(g — 1)a; + fo; they choose this condition because it has a nice
geometrical interpretation in terms of a universal bundle over ¥ x M(n,d).

In Sections 4 and 5 of [50], Witten obtained formulas for generating func-
tionals from which one may extract all intersection pairings

n 29 .
[T ars7m T1 @ )Pee (M, ).
r=2 kr=1

Let us begin with pairings of the form

(2.3) ﬁ a’" exp fo[M(n,d)].

r=2
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When m, is sufficiently small to ensure convergence of the sum, Witten obtains?

(2.4)
n -\ n_{ - 2mwiN)Tr
H a’" exp fo[M(n,d)] = CPF(_l)n+(g_1) ( Z - ggg_—z;;;w:;) ! ) ’

7".:2 )\EA}‘égﬂt+
where '
n?9 vol(K') \%72 n —
23) T (o) (@MDY =

is a universal constant for K = SU(n) and K’ = K/Z(K), and the Weyl odd
polynomial D on t* is defined by
DX) = [T ~(x)
>0

where v runs over the positive roots. Here, p is half the sum of the positive
roots, and ny = n(n—1)/2 is the number of positive roots. The sum over A in
(2.4) runs over those elements of the weight lattice A that are in the interior
of the fundamental Weyl chamber.5 The element

(2.6) c = ¥ diag(1,...,1)

is a generator of the centre Z(K) of K; so since A\ € t* is in Hom(7,U (1)),
we may evaluate A on c as in (2.4); ¢* is defined as exp A\(¢) where ¢ is any
element of the Lie algebra of T" such that expé = ¢. Note that in fact when d
is coprime to n (so that when n is even d is odd) we have ¢? = (—1)""L.

Witten’s formula [50, (5.21)] covers pairings involving the f, for r > 2 and
the b/ as well as fo and the a,. He obtains it by reducing to the special case
of pairings of the form (2.3) above (see [50, §5], in particular the calculations
(56.11)—~(5.20)) and then applying [50, (4.74)] to this special case. In the special
case of 'pairings of the form (2.3), Witten’s formula [50, (5.21)] follows from
our Theorem 8.1 using Proposition 2.2 below. Moreover our formula (Theo-
rem 9.12) for pairings involving all the generators a, b} and £, reduces to the
special case just as Witten’s does (see Propositions 10.2 and 10.3). Thus Wit-
ten’s formulas are equivalent to ours, although they look very different (being
- expressed in terms of infinite sums indexed by dominant weights instead of in

terms of iterated residues).

For the sake of concreteness it is worth examining the special case when
rank n = 2 so that the degree d is odd. In fact, since tensoring by a fixed
line bundle of degree e induces a homeomorphism between M(n,d) and

4n fact M(n,d) is an n29-fold cover of the space for which Witten computes pairings; this
accounts for the factor n?9 in our formula (2.5). Taking this into account, (2.4) follows from a special
case of Witten’s formula [50, (5.21)].

5The weight lattice A C t* is the dual lattice of the integer lattice Al = Ker(exp) in t.
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M(n,d + ne), we may assume that d = 1. In this case the dominant weights A
are just the positive integers. The relevant generators of H*(M(2,1)) are

(2.7) f2 € H3(M(2,1))

(which is the cohomology class of the symplectic form on M(2,1)) and

(2.8) ag € H*(M(2,1));

these arise from the invariant polynomial 75 = —(-,-)/2 by a2 = 72(1), fo =

72([Z]) (see (2.1)). We find then that formula (2.4) reduces for m < g — 2 to®
([50, (4.44)])

: j 2% = n+1 %
(29) agexp(f2)[M(2,1)] = (82T 231(_1) ) R
n—

Thus one obtains the formulas found by Thaddeus in Section 5 of [47] for the
intersection pairings a3 f#[M(2,1)]; these intersection pairings are given by
Bernoulli numbers, or equivalently are given in terms of the Riemann zeta
function ¢(s) = }.,,~;1/n®. As Thaddeus shows in Section 4 of [47], this is
enough to determine all the intersection pairings in the case when rank n is
two, because all the pairings

2g

ot f3 TL (65)P<[(M(2, 1)]

k=1

are zero except those of the form
ap Fy0 I Ly by M2, 1))

where m +2n+3¢ = 3g—3 and 1 < 43 < --- < iy < g. This expression
equals the evaluation of a7’ f3 on the corresponding moduli space of rank 2
and degree 1 bundles over a Riemann surface of genus g —q if ¢ < g — 2, and
equals 4 if g =g — 1.

Szenes [45] has proved that the expression on the right-hand side of (2.4)
may be rewritten in a particular form. To state the result we must introduce
some notation. The Lie algebra t = t,, of the maximal torus 7" of SU(n) is

t={(X1,...,X) €ER™ X1 +---+ X, =0}.

Define coordinates ¥; = e;(X) = X; — X4 ont for j =1,...,n — 1. The
positive roots of SU(n) are then v;1(X) = X; — Xp = Y; + ... + Yy for
1 < j < k < n. The integer lattice AT of SU(n) is generated by the simple roots
ej,j =1,...,n— 1. The dual lattice to AT with respect to the inner product
(-,+) introduced at (2.2) is the weight lattice A* C t; in terms of the inner

SHere, we have identified —az with Witten’s class © and f2 with Witten’s class w.
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product (-,-), it is given by AW ={X et: Y e Zforj=1,...,n—1}. We
define also A, (tn) ={X € A¥: Y;#0 forj=1,...,n—1and 74(X) #0
for any j # k}.

Definition 2.1. Let f: t®C — C be a meromorphic function of the form
(2.10) F(X) = g(X)e™")
where ¥(X) =y Y1 + - +Yn_1Yn_1 for (y1,...,7m—1) € R*~L. We define
(V] = (Vs -+ - )] a)

to be the element of R"~! for which 0 < [V]]; <lforallj=1,...,n—1and

[7]] = v mod Z™~!. (In other words, [[y]] = ;:11 [[7]];€; is the unique element
of t = R*! which is in the fundamental domain defined by the simple roots
for the translation action on t,, of the integer lattice, and which is equivalent

to v under translation by the integer lattice.)
We also define the meromorphic function [[f]]: t ® C — C by

[[/11(X) = g(X)e 010,

PROPOSITION 2.2 (Szenes). Let f: t ® C — C be defined by

n_ T (X)™r —&(X)

Provided that the m, are sufficiently small to ensure convergence of the sum,

1 w w X
Z f(2miA) = —Resy;—o ... Resy,_,—o (( _z;niW_n—ll)[[ ((f)_]]}g _)1)> 7
AeAL By n! e ... (e
where Wy_1 = Sp_1 is the Weyl group of SU(n — 1) embedded in SU(n) in the
standard way using the first n — 1 coordinates Xi,...,Xn—1.

Remark 2.3. Here, we have introduced coordinates Y; = e;(X) on t using

the simple roots
{ej: j=1,...n—1}

of t, and Af, denotes the regular part of the weight lattice A" (see be-
low). Also, we have introduced the unique element ¢ of t which satisfies
e?™ — ¢ and which belongs to the fundamental domain defined by the sim-
ple roots for the translation action on T, of the integer lattice A’. This
simply means that (¢, X) = Y1 + ... + ¥m—1Yn—1 where 0 < y; < 1 for
1 <j<n-=1. (In the notation introduced in Definition 2.1 this says that
é¢=1[[(d/n,d/n,...,—(n—1)d/n)]].) Also, t; denotes the fundamental Weyl
chamber, which is a fundamental domain for the action of the Weyl group on t.
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If g(Yg, ..., Yn—1) is a meromorphic function of Yy, ...,Y,_1, we interpret
Resy, =0 9(Yx, ..., Yn—1) as the ordinary one-variable residue of g regarded as
a function of Y with Yg,1,...,Y,—1 held constant.

The rest of this section will be devoted to a proof of Proposition 2.2.
We shall prove the following theorem:

THEOREM 2.4. Let f: t,®C — C be a meromorphic function of the form
F(X) = g(X)e™" %) where y(X) = nY1+ -+ +Yne1Yn1 with 0 < v,1 < 1,
and g(X) is a rational function of X with poles only on the zeros of the roots
ik and decaying sufficiently fast at infinity. Then

Ywew,_; [[w(H)IIX)
(e¥n-1 —1)...(e 1 —1)

Z f(2mi\) = Resy,=o .. - Resy,_,—o
AEAY,, (tn)

@here Wh—1 is the Weyl group of SU(n — 1) embedded in SU(n) using the first
n — 1 coordinates.

Remark 2.5. Notice that if f is as in the hypothesis of the theorem (but
here one may omit the hypothesis that 0 < y,_1 < 1) then

Y. femin = Y [[fli@riN),

AEAE, (tn) A€M, (bn)
where [[f]] is as in Definition 2.1.
Proof of Proposition 2.2 given Theorem 2.4. The function

nT mre—é(X)
(2.11) F(X) = JE 5 ((;())29_2

satisfies the hypotheses of the theorem, provided that the m, are small enough
to ensure convergence of the sum. Notice that if A € AL, (t,) then e~ 2mic() =
¢~ satisfies ¢ = ¢ ¥ for all elements w of the Weyl group W. Thus for

this particular f we have that

Yo f@rid=nl > f(2mi)).

A€AY(tn) AEAL, (br)Nty

Thus,

' ! L weWni [[W(HNX)
AGA:%ZL(;n)mtJF f2mi)) = HReSylzo ...Resy,_,=0 ((e—Yn—l S I 1))

which is the statement of Proposition 2.2. » O
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It remains to prove Theorem 2.4. By induction on n it suffices to prove:

LEMMA 2.6. Let f = frn): tn — C be as in the statement of Theorem 2.4.
Define fn_1): tn-1 — C by
f(Y1,....Y0-1)

e ¥n-1 -1

fin—y(Y1, ..., Yn2) = Resy, =0

Then .
ne
Z fny(2mid) = > Z (951 ) (n—1y (2miA),
AEAY, (tn) AEAE, (br—1) 5=1
where q; is the element of the Weyl group Wy,_1 = S,,_1 represented by swap-
ping the coordinates X; and Xp_1.

Remark 2.7. Note that by Remark 2.5, the sum Z;‘:_ll(qj Fn—1)(2miA)

is equal to
n—1

> (g5 Hm—n)]l(2miN).

j=1

Remark 2.8. Note that the function [[(g; f)(n—1)]] satisfies the hypotheses
of Theorem 2.4.

Proof of Lemma 2.6. Let l; ( =1,...,n — 2) be integers such that
(2.12) i+l +- -+l #0forany 1 <j<k<n-2.
Define L, 1, ;) to be the line {(27ily,...,2mil,—2,Yn—1): Yo—1 € C}. The

condition (2.12) states that all the roots 7, for 1 < j < k < n— 1 are nonzero

on L, . 1. s)-

Let f: t ® C — C be a meromorphic function as in the statement of
Theorem 2.4, having poles only at the zeros of the roots ;. We shall think of f
as a function f(Y1, ..., Yn—1) of the coordinates Y7, ..., Y,—_1. Define Azlelg,...,ln_z)

to be
Ay, y={X € Ly, n )t V(X)) =X; — X4 € 2miZ,

(U1yeeesln—2
Yis(X) # 0 for any j # k}.

The sum of all residues of the function g, ,......1,_,) on C given by

seagaen

f2mily, 2mily, ..., Y1)
I yryotnz) (Yn—1) = Y1 _1 .

is zero and these residues occur when Y,,_1 € 27iZ. Therefore we find that the

> fp

reg

PEAGT o)
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is given by

(2.13) — > Resy, _ =2nit, 1

, . ) reg
(27T’Ll1,...,27rzln_2,27'rzln_1)EA(ll ,,,,, l2)

f(27ril1, 27Til2, .o ,27riln_2, Yn—l) :
e fn-1 —~1

n2 f@mily, ..., 210l _2, Yp_1)
=) ReSy, i+ +Hn_2) s —
j=1

f@2mily,. .., 270l 9, Y1)
e Yn-1 — 1 '

-+ ReSyn_ 1=0

PROPOSITION 2.9. Let p; be the point X € L, 4. .y for which Y, 1 =
—2mi(l; + - - + lp—3), or equivalently X,, = X;. Then

f(27r'il1, .o ,2m’ln_2,Yn_1)
Resy,, _ =—2rmi(l;+...+n—2) A
o(f) (2mit?, ... 2mitd)5, ¥ 1))
= ReSYnAI:O e_Yn—l 1 .

Here, we define an involution ¢;: t =t (forj=1,...,n—1) by
qj(Xl, e ,Xj, ‘e ,Xn—l,Xn) = (Xl, e v,Xj—laXn—I,Xj—Q—l, e ,Xn_z,Xj,Xn).
1)

The integers lgj ), ..yl q are defined by the equation

(2:14) 5(X) [ Xm(arity. 23, Yo 1) = @il 2wl 2wl + Yo ).

Proof. For j < n — 2, the involution ¢; is given in the coordinates
(Y1,.:., Y1) by g0 (Y1,..., Y1) = (Y{,...,Y]_) where Y| = Y} for
k#£j—1,5,n~-2,n—1and

(2.15) 1’}-/_1 = Y14+ Yoo,

(2.16) Y, = - Z Yi,
j<k<n—2

(2.17) Y, o = - Z Y,
j<k<n—3

(2.18) Y'r:—l = Y? +...+Yn_1.

For j =n —1, ¢; is the identity map. Notice that Y,,_; is the only one of the
transformed coordinates that involves Y, 1. Notice also that q; takes p; to a
point where Y, , = '

We now examine the image of Lg, ., ,) under g;. The integers

lgj),...,l,(le were defined by the equation (2.14): in fact l,gj) = Iy for k #
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j—1,7,n—2,n—1 and

(2.19) D = Lo H s,
(2.20) l§“ = - Y L,
J<k<n—-2
(2.21) 9, = = 3
j<k<n-3
(2.22) ‘ D = L+t s

‘We have that

(f(?ﬂ"ill, ey 27Tiln_2, Yn_1)>

Resy, = 2mi(t;+....+ln—2) Yo 1

. f(27l"il1,...,27T'iln_2,Yn_1)
= ReSYn_l:——27ri(lj+...+ln—2) e Yo_1—2mi(lj+otin—2) _ |

(because e?™ =1 for all k = j,...,n — 2)
g (f )(27rzl(g) . 27rzl(3) 27rzl(J) 2ml§21, . ,2ml,(f)2,Y(J)
=Resy» _ Y(J)
n—1 e— n—1 — 1
by the formulas (2.15-2.18) where we have defined erz)l = Yp1 +
2mi(l; + ... lp—2) so that dY,fj_)l = dY,,_1. This completes the proof. O
COROLLARY 2.10.
n—2 () (9
g (H@mily”, ... 2wl 5, Y1)
(2.23) Agz f(p) ZlReSYnl 0<] —Yn1_1n -
re;| J

[ lyp_2)

f(27ril1, e ,27Tiln_2,Yn_1)
+ ReSYn_IZO e—Yn1 _1 y

where the integers l§j), o ,lr(fEQ are as defined in (2.19-2.21).

Proof. This follows by addition of the results of Proposition 2.9 over all
j=1,...,n—1; on one side this yields the sum on the right-hand side of (2.13)

(Wthh accordlng to (2.13) is equal to 3~ ¢ AE L f(p)), and on the other
""" n—2

side yields the sum on the right-hand side of (2 23). (]

We shall complete the proof of Lemma 2.6 by summing the equality given
in Corollary 2.10 over all possible (l1,...,Iln—2) satisfying (2.12); the proof
reduces to the following lemma.

LEMMA 2.11. In the notation of Proposition 2.9, (lgj), . ,lﬁf}Q) €
Ay (tn-1). Moreover for any (1, 5ln_2) € ARg(tn_1) there is ezactly one
sequence of integers (l1,...,ln—2) satisfying (2.12) such that

(l?’ DY =W, ),




MODULI SPACES OF HOLOMORPHIC BUNDLES 123

Proof. This follows immediately from the proof of Proposition 2.9 and the
fact that the restriction of g; to t,_; is given by the action of an element of
the Weyl group Wy, and hence maps Af,(tn—1) to itself bijectively. O

This completes the proof of Lemma 2.6 and hence of Theorem 2.4 and
Proposition 2.2.

3. Residue formulas and nonabelian localization

Let (M,w) be a compact symplectic manifold with a Hamiltonian action
of a compact connected Lie group K with Lie algebra k. Let y: M — k* be a
moment map for this action.

The K-equivariant cohomology with complex coeflicients H} (M) of M
may be identified with the cohomology of the chain complex

(3.1) O (M) = (S(k") ® Q*(M)*
of equivariant differential forms on M, equipped with the differential”

(3.2) (Dm)(X) = d(n(X)) — tx#(n(X))

where X# is the vector field on M generated by the action of X (see Chapter 7.
of [7]). Here (Q*(M),d) is the de Rham complex of differential forms on
M (with complex coefficients), and S(k*) denotes the algebra of polynomial
functions on the Lie algebra k of K. An element n € Q% (M) may be thought
of as a K-equivariant polynomial function from k to Q*(M), or alternatively
as a family of differential forms on M parametrized by X € k. The standard
definition of degree is used on Q*(M) and degree two is assigned to elements
of k*.

In fact as a vector space, though not in general as a ring, when M is a
compact symplectic manifold with a Hamiltonian action of K then H}% (M) is
isomorphic to H*(M) ® Hj where Hj, = Q% (pt) = S(k*)¥ is the equivariant
cohomology of a point (see [36, Prop. 5.8]).

The map Q% (M) — Q% (pt) = S(k*)¥ given by integration over M passes
to Hy(M). Thus for any D-closed element n € Q% (M) representing a coho-
mology class [n], there is a corresponding element [,, 7 € Q% (pt) which de-
pends only on [n]. The same is true for any D-closed element 1 = 3, n; which
is a formal series of elements 7; in Q%((M ) without polynomial dependence on
X: we shall in particular consider terms of the form

n(X)e@X))

7This definition of the equivariant cohomology differential differs by a factor of 4 from that used
in [50] but is consistent with that used in {31].
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where 1 € Q3 (M) and
O(X) = w+ u(X) € Q% (M).
Here u: M — k* is identified in the natural way with a linear function on

k with values in Q°(M). It follows directly from the definition of a moment
map® that Do = 0.

If X lies in t, the Lie algebra of a chosen maximal torus I' of K, then
there is a formula for [;,n(X) (the abelian localization formula [2], [7], [8], [9])
which depends only on the fixed point set of T in M. It tells us that

ipn(X)
(3:3) / F%U/ er(X)
where F indexes the components F' of the fixed point set of T in M, the
inclusion of F' in M is denoted by ir and ey € Hj(M) is the equivariant Euler
class of the normal bundle to F in M. In particular, applying (3.3) with n
replaced by the formal equivariant cohomology class ne* we have

(3.4) w(x) / n(X)e0) = 3 (X
FeF
where
_ ipn(X)e”
(35) h"? (X) eM(F)(X)/ F;F—X)

Note that the moment map u takes a constant value pu(F') € t* on each F' € F,
and that the integral in (3.5) is a rational function of X.

We shall assume throughout that 0 is a regular value of the moment map
pw: M — Kk*; equivalently the action of K on x~!(0) has only finite isotropy
groups. The reduced space

Mreq = p7'(0)/K
is then a compact symplectic orbifold. The cohomology (with complex coef-
ficients; as always in this paper) H*(Meq) of this reduced space is naturally

isomorphic to the equivariant cohomology Hj(1~*(0)) of x~(0), and by Theo-
rem 5.4 of [36] the inclusion of £ ~1(0) in M induces a surjection on equivariant

cohomology
Hy (M) — Hic (1~ 1(0)).

Composing we obtain a natural surjection
&: Hi (M) — H*(Myeq)

which we shall denote by
= 7.

8We follow the convention that du(X) = ¢ xyw; some authors have du(X) = —xyw.
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When there is no danger of confusion we shall use the same symbol for n €
H3} (M) and any equivariantly closed differential form in Q% (M) which repre-
sents it. Note that (w)g € H*(Mreq) is represented by the symplectic form wy
induced on Meq by w.

Remark. Later we shall be working with not only the reduced space
M,eq = p~1(0)/K with respect to the action of the nonabelian group K, but
also p~1(0)/T and MLy (¢) = p3'(€)/T for regular values £ of the T-moment
map pr which is the composition of y with restriction from k* to t*. We shall
use the same notation 7y for the image of 7 under the surjective homomor-
phism @ for whichever of the spaces x~1(0)/K, u~*(0)/T or uy'(0)/T we are
considering, and the notation 7, if we are working with ,u}l(§) /T. Tt should
be clear from the context which version of the map @ is being used.

The main result (the residue formula, Theorem 8.1) of [31] gives a formula
for the evaluation on the fundamental class [Mied] € Hy(Mreq), or equivalently
(if we represent cohomology classes by differential forms) the integral over
Mieq, of the image e in H*(M;eq) of any formal equivariant cohomology
class on M of the type ne® where n € Hy(M).

THEOREM 3.1 (Residue formula, [31, Th. 8.1]). Letn € Hj (M) induce
no € H*(Myea). Then -

(3.6) N0€“° [Myeq] = noCx Res (D2(X > hE(X) [dX])
FeF
where the constant® Ck is defined by
(1)
. Cg = —————
(3.7) ' K = W vol(T)’

and ng is the order of the stabilizer in K of a generic point'® of u=1(0).

9This constant differs by a factor of (—1)*(2x)*~* from that of [31, Th. 8.1]. The reason for
the factor of (27)°~! is that in this paper we shall adopt the convention that weights 8 € t* send
the integer lattice Al = Ker(exp: t — T) to Z rather than to 277, and that the roots of K are the
nonzero weights of its complexified adjoint action. In [31] the roots send Al to 2rZ. The reason
for the factor of (—1)* is an error in Section 5 of [31]. In the last paragraph of p.307 of [31] the
appropriate form to consider is HS'—_-1 (¢ dz;.), and since 1-forms anticommute this is {(—1)%/i® times
the term in exp(idz’(#)) which contributes to the integral (5.4) of [31]. The constant also differs
by a factor of i® from that of [33, Th. 3.1}, because in that paper the convention adopted on the
equivariant cohomology differential is that of [50], not that of [31].

10Note that in [31] and [32] ng is stated incorrectly to be the order of the subgroup of K Wthh
acts trivially on u=1(0) (i.e. the kernel of the action of K on p—1(0)); see the correction in Section 3
of [33]. When K = T is abelian, however, the stabilizer in K of a generic point of z~1(0) is equal to
the kernel of the action of K on x~!(0). Moreover since the coadjoint action of T on t* is trivial,
when K = T this subgroup acts trivially on the normal bundle to x~1(0) in M and hence is the
kernel of the action of K on M.
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In this formula |W| is the order of the Weyl group W of K, and we have
introduced s = dim K and [ = dim 7', while ny = (s —[)/2 is the number of
positive roots. The measure [dX] on t and volume vol(T) of T are obtained
from the restriction of a fixed invariant inner product on k, which is used to
identify k* with k throughout. Also, F denotes the set of components of the
fixed point set of 7', and if F' is one of these components then the meromorphic
function A}, on t ® C is defined by (3.5). The polynomial D: t — R is defined
by

D(X) = [ +(X),
>0
where 7 runs over the positive roots of K. Note that it would perhaps be more
natural to combine (—1)™+ from the constant Cx with D?(X) and replace

them by the product :
110
~

of all the positive and negative roots of K.

The formula (3.6) was called a residue formula in [31] because the quantity
Res (whose general definition was given in Section 8 of [31]) can be expressed as
a multivariable residue!!, whose domain is a class of meromorphic differential
forms on t ® C. It is a linear map, but in order to apply it to individual
terms in the residue formula some choices have to be made which do not affect
the residue of the whole sum. Once the choices have been made one finds
that many of the terms in the sum contribute zero, and the formula can be
rewritten as a sum over a certain subset F of the set F of components of the
fixed point set M7T. When the rank of K is one and t is identified with R, we

can take
Fr={F e F: pr(F) > 0}.
In this paper we shall be particularly interested in the case where K has rank

one, for which the results are as follows.

CoRrOLLARY 3.2 [35], [51], [31]. In the situation of Theorem 3.1, let
K =U(1). Then

7706“'0 [Mred]': —npResx—o ( Z h%(X))

FeFy

where ng is the order of the stabilizer in K of a generic point in u~*(0). Here,
the meromorphic function . on C is as defined by (3.5), and Resx—o denotes
the coefficient of 1/X, where X € R has been identified with 2miX € k.

11 An alternative definition in terms of iterated 1-variable residues is given in Section 3 of [33].
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Remark. The notation Resx—g is intended to indicate the variable X with
respect to which the residue is calculated, as well as the point 0 at which the
residue is taken, so that, for example, Res_x—of(X) = —Resx—of(X).
would perhaps be more natural to use the notation Resx—_of(X)dX, but we
shall have numerous formulas involving iterated residues of this type which
would then become too long and unwieldy.

CoroLLARY 3.3 (cf. [31, Cor. 8.2]). In the situation of Theorem 3.1, let
K =8SU(2). Then

ngewo[Mred] = %RGSX;O ((2X)2 Z h%(X)) .

FeFy

Here, ng, Resx—g, h’lzﬂ and Fy are as in Corollary 3.2, and X € R has been
identified with diag(2mi, — 271) X € t.

Remark 3.4. Note that if the degree of i is equal to the dimension of
M, eq then

?70€w° [Mred] =10 [Mred] .

Alternatively for K = U(1) or K = SU(2), if we multiply w and u by a real
scalar € > 0 and let ¢ tend to 0 we obtain
Z / ’LFW(X )
F

FEF, er(X

770[Mred] —noResx = 0(

_n iFn(X)
n0[Mred] = ’zgReSXzo ((QX)2 F;;:J’_/f;‘ —eE;(—X—)_) .

The results we have stated so far require the symplectic manifold M to be
compact, and this condition is not satisfied in the situation in which we would
like to apply these results (in order to obtain formulas for the intersection
pairings in the cohomology of moduli spaces of bundles over compact Riemann
surfaces). Luckily there are other related results due to Guillemin and Kalkman
[23], and independently, Martin [39], which as we shall see can be generalized
to noncompact symplectic manifolds.
Guillemin and Kalkman and Martin have approached the problem of find-
ing a formula for
7o [Mred] = / 7o

red
in terms of data on M localised near M7 in a slightly different way from that
described above. As Guillemin and Kalkman observe, it follows immediately
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from the residue formula that if £ € t* is a regular value of the T-moment map
pr: M — t* which is sufficiently close to 0 then

_ (D)™ no(DPn)e

(39 mlMa] = i (€)/17)

where ng (respectively n) is the order of the stabilizer in K (respectively
T) of a generic point of ~'(0) (respectively uz'(0)) and pp'(€)/T is the
reduced space for the action of T on M with respect to the shifted moment
map ur — & Also (D?n)¢ € H*(u7'(€)/T) is the image of D2 under the
surjection ®: H}(M) — H*(Myeq). Here n € Hi (M) and D € S(t*) = H}
are regarded as elements of H}.(M) via the natural identification of Hy (M)
with the Weyl invariant part (H3(M))W of H%(M) and the natural inclusion
H} — H5(M). Martin gives a direct proof of (3.8) without appealing to the
residue formula, which shows also that for any £ sufficiently close to 0

no(Pn)e, 1
3.9 Mgl = —F/— T
( ) 770[ red] ’I’L6|W[ [,LL (5)/ ]
where n) is the order of the stabilizer in T of a generic point in 4 ~1(0), provided
that u~1(¢)/T is oriented appropriately.

Remark 3.5. The symplectic form w induces an orientation on M, and
the induced symplectic forms on Myed = p~*(0)/K and on 7' (€)/T induce ori-
entations on these quotients. We have made a choice of positive Weyl chamber
for K in t; this determines a Borel subgroup B (containing 7") of the complexi-
fication G of K, such that the weights of the adjoint action of 7" on the quotient
g/b of the Lie algebra g of G by the Lie algebra b of B are the positive roots
of K. We then get an orientation of the flag manifold K /T by identifying it
with the complex space G/B. Modulo the action of finite isotropy groups we

have a fibration
p10)/T — p(0)/K

with fibre K /T'; thus the symplectic orientation of x~1(0)/K and the orienta-
tion of K/T determined by the choice of Weyl chamber induce an orientation
of 4~1(0)/T. Since 0 is a regular value of u, if £ is sufficiently close to O there
is a homeomorphism from p=1(0)/T to u~1(¢)/T induced by a T-equivariant
isotopy of M; so we get an induced orientation of ©=1(£)/T to be used below.

Note that given a positive Weyl chamber we have another choice of ori-
entation on p~1(¢)/T which is compatible with the symplectic orientation on
7 (€)/T and the orientation of the normal bundle to x~1(¢)/T in uz*(€)/T
induced by identifying it in the natural way with the kernel of the restriction
map k* — t*, thence via the fixed invariant inner product on k with k/t and
thus finally with the complex vector space g/b as above. Because we have
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used the inner product to identify k/t with its dual here, this orientation dif-
fers from the one chosen above by a factor of (—1)"+ where ny is the number
of positive roots.

PROPOSITION 3.6 (Reduction to the abelian case, [S. Martin|, [39]). If
T is a mazimal torus of K and K acts effectively on M, then for any reqular
value € of ur sufficiently close to 0, we have that

@ no o o (
ne)y = Dne¥)o = / Dne®
//rl(m/K( ) oW wl(ﬂ)/T( ) oW1 u*(s)/T( "k
(—1)"+no/ 2, @
I W R4 (D*ne”)
S \Wl Juzer ¢

where ng is the order of the stabilizer in K of a generic point of p=1(0) and nf
(respectively ny) is the order of the stabilizer in T' of a generic point of ,u}l(O)
(respectively u=1(0)).

Remark 3.7. Note that (—1)"+D? is the product of all the roots of K,
both positive and negative.

Martin proves this result by considering the diagram

pHO)/T = pHE/T = pp'(€)/T
!
Mrea = u(0)/K

where the homeomorphism from p=1(0)/T to p=1(£)/T is induced by a T-
equivariant isotopy of M (for £ sufficiently close to 0). For simplicity we
shall consider the case when ng = nfj = n{ = 1. As before we use a fixed
invariant inner product on k to identify k* with k, which splits T-equivariantly
as the direct sum of t and its orthogonal complement t+. The projection of
p: M — k* = k onto t then defines a T-equivariant section of the bundle
M x t* on M, which has equivariant Euler class (—1)™+D if we orient t =
k/t by identifying it with the dual of the complex vector space g/b as in
Remark 3.5. Hence if £ is a regular value of pr then p=1(£)/T is a zero-section
of the induced orbifold bundle p7'(€) X7 t+ on ur!(€)/T, whose Euler class is
(—=1)™D¢. Thus under the conventions for orientations described in Remark
3.5, evaluating the restriction to p~1(£)/T of an element of H*(ur'(¢))/T
on the fundamental class [ ~1(£)/T) gives the same result as multiplying by
(~1)"+ D¢ and evaluating on the fundamental class [u7'(£)/T].
Now Martin observes that since the natural map

I p~10)/T — 1 (0)/K = Myeq

is a fibration with fibre K/7T', modulo the actioﬁ of finite isotropy groups which
act trivially on cohomology with complex coefficients, and since the Euler
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characteristic of K/T' is nonzero (in fact it is the order |W| of the Weyl group
of K), the evaluation of a cohomology class g € H*(Med) on [Myed] is given by
the evaluation of an associated cohomology class on [ ~1(0)/7]. More precisely
we have

e(V)
(W]
where e(V') is the Euler class of the vertical subbundle of the tangent bundle to
p~1(0)/T with respect to the fibration II. As this Euler class is induced by D
under the orientation conventions of Remark 3.5, this completes the proof. LI

IT* (1) [~ (0)/ T}

(3.10) o [Mred] =

Remark 3.8. In this proof we saw that D, is the cohomology class
in H*(up'(€)/T) which is Poincaré dual to the homology class represented
by p~1(€)/T. Thus D¢ may be represented by a closed differential form on
,ufl(f) /T with support in an arbitrarily small neighbourhood of p=1(¢)/T. 1f
we interpret D, in this way, Martin’s proof of Proposition 3.6 is valid even
when M is noncompact and has singularities, provided that for £ near O the
subset p~1(¢) is compact and does not meet the singularities of M.

Note also that K and hence T act with at most finite isotropy groups on
a neighbourhood of £~(0) in u7*(0), and so u7'(0)/T has at worst orbifold
singularities in a neighbourhood of x~1(0)/7. This means that in Proposi-
tion 3.6 we do not need to perturb the value of the T-moment map pr from 0
to a nearby regular value £ if, as above, we represent Dy by a differential form
on pu7(0)/T with support in a sufficiently small neighbourhood of x~(0)/7.

This result reduces the problem of finding a formula for 7y[M,eq] in terms
of data on M localized near M7 to the case when K = T is itself a torus.
Guillemin and Kalkman, and independently Martin, then follow essentially
the same line. This is to consider the change in

e[z (€)/T),

for fixed n € H} (M), as £ varies through the regular values of pr. This is
sufficient, if M is a compact symplectic manifold, because the image ur(M)
is bounded; so if ¢ is far enough from O then uy'(£)/T is empty and thus
nelpr (€)/T) = 0.

More precisely, the convexity theorem of Atiyah [1] and Guillemin and
Sternberg [24] tells us that the image pur(M) is a convex polytope; it is the
convex hull in t* of the set

{ur(F): F ¢ F}
of the images p7(F') (each a single point of t*) of the connected components F'

of the fixed point set M7. This convex polytope is divided by codimension-
one “walls” into subpolytopes, themselves convex hulls of subsets of
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{pr(F): F € F}, whose interiors consist entirely of regular values of up.
When £ varies in the interior of one of these subpolytopes there is no change
in ne[ur' (€)/T], so it suffices to understand what happens as £ crosses a
codimension-one wall.

Any such wall is the image ur(M;) of a connected component M; of the
fixed point set of a circle subgroup 77 of T'. The quotient group T'/T acts on
M7, which is a symplectic submanifold of M, and the restriction of the moment
map ur to My has an orthogonal decomposition

//LTlMl = NT/Tl S MTl

where pr/r: My — (t/t1)* is a moment map for the action of T/T1 on M
and pr: M; — t] is constant (because Ty acts trivially on Mj). If & is a
regular value of up 7, then there is a reduced space

(M1)rea = M}}Tl (£1)/(T/T).

- Guillemin and Kalkman show that if T" acts effectively on M (or equivalently
if ng = 1; see Footnote 9) then, for an appropriate choice of &1, the change in
nelur (€)/T) as & crosses the wall up(Mi) can be expressed as

(resnr, (1)) es [(M1) red]

for a certain residue operation (see Footnote 11 below)
resy,: Hp (M) — H;ﬁ‘illl (M)

“where d; = codimM; — 2. (Of course care is needed here about the direction
in which the wall is crossed; this can be resolved by a careful analysis of
oriéntations.) By induction on the dimension of 7' this gives a method for
calculating ng[uz" (€)/T] in terms of data on M localized near M.

It is easiest to see how this version of localization is related to the residue
formula of [31] in the special case when K =T = U(1). In this case

QL(M) = C[X] @ Q*(M)T

is the tensor product of a polynomial ring in one variable X (representing a
coordinate function on the Lie algebra t) with the algebra of T-invariant de
Rham forms on M. The Guillemin-Kalkman residue operation

resp,: Hp (M) — H;?z‘fll (M)
is then given in terms of the ordinary residue on C by

X
resyr, (7) = Resx—o %
1

where 7|, (X) and the equivariant Euler class eps, (X) of the normal bundle
to My in M are regarded as polynomials in X with coeflicients in H*(M7).
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More precisely we formally decompose this normal bundle (using the splitting
principle if necessary) as a sum of complex line bundles v; on which T acts
with nonzero weights 3; € t* = R, and because ¢;(v;) € H*(M) is nilpotent
We can express

Nl (X) | (X) _ 1 (X) ca(v)
ery (X)  ILiler(wy) + 8;X) — T1;(8;X) I;I (1 * BiX >

as a finite Laurent series in X with coefficients in H*(M;). Then resyy; (n) is
simply the coefficient of 1/X in this expression.!? Since T} = T acts trivially
on My, we have M eq = M; and M is a connected component of the fixed
point set M7 i.e. My € F. Therefore

77|M1 (X)

(resnr, (ﬂ))sl[(Ml)?ed] = Resx=o My oeny (X))

Of course as K =T = U(1) the convex polytope pr(M) in t* 2 R is a closed
interval, divided into subintervals by the points {ur(F): F € F}. Thus the
argument of Guillemin and Kalkman just described, amplified by some careful
consideration of orientations, tells us that if £ > 0 is a regular value of ur and
nd =1 then the difference

nelur' (€)/T) — moluz" (0)/T]

can be expressed as

. i
(3.11) Z respr, (7)[Mi] = Resx=o / CS
MieF: O<pr(My)<é€ FeF: O</LT(F)<§ F eF

If we take £ > sup(ur(M)) then this gives the same result as Corollary 3.2 (cf. -
Remark 3.4).

PROPOSITION 3.9 (dependence of symplectic quotients on parameters
(Guillemin and Kalkman [23], S. Martin [39])). If K =T =U(1) and nf is

" 12When the dimension ! of T is greater than one the Guillemin-Kalkman residue operation
resy: Hp (M) — H}/;I(MD

is defined in almost exactly the same way, by choosing a coordinate system X = (X1,... ,Xp)ont
X

where X is a coordinate on t;, and taking the coefficient of 1/X; in "ellrl((x)) expanded formally as

1

a Laurent series in X1 with coefficients in C[Xa, ..., X;] ® Q*(M)7T.
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the order of the stabilizer in T of a generic point of ,ufl(O) then!3

(ne)e, — / (ne”
/u;l@l)/:r & a1 0

= ng Z Res x_gelT(F)X 77—6—————()8;) ,
FeF: o<pr(F)<é Fer

where X € C has been identified with 2miX € tQC and &y < & are two reqular
values of the moment map.

Remark 3.10. As we have already noted these results can be deduced
easily from the residue formula of [31] when M is a compact symplectic man-
ifold. However the proof of Proposition 3.9, just like that of Proposition 3.6
(see Remark 3.8), can be adapted to apply in circumstances when M is not
compact and the residue formula of [31] is not valid. Indeed, as Guillemin and
Kalkman observe, in the case when K = T = U(1) the basis of their argument
applies to any compact oriented U(1)-manifold Y with boundary such that
the action of T' = U(1) on the boundary 9Y is locally free. Let us suppose
for simplicity that T' acts effectively on M (i-e. that nOT = 1; see Footnote 9)
and let ¢ be a U(1)-invariant de Rham one-form on Y — Y7 with the prop-
erty that ¢,(¢) = 1, where the vector field v is the infinitesimal generator of
the U(1)-action. Guillemin and Kalkman showed that, at the level of forms,
the map ®: H7(Y) — H*(0Y/T) which is the composition of the restriction
map from H}(Y) to H;(0Y) with the inverse of the canonical isomorphism
H%(8Y) — H*(8Y/T) is given by

®(n) = Resx—otw (Xindg)

(see (1.18) of [23], noting that Guillemin and Kalkman have a different conven-
tion for the equivariant cohomology differential, which accounts for the minus
sign). If tubular neighbourhoods Uj,...,Un of the components Fi,...,Fy
of the fixed point set Y7 are removed from Y, then Stokes’ theorem can be
applied to the manifold with boundary ¥ — U§V=1 U; using the formal identity

p(xz) =

on Y—U;-Vzl Uj to give, after using the fact that [5y & = [5y/1 to(a) and taking

13The convention of Guillemin and Kalkman for the sign of the moment map differs from ours
(see Footnote 8). This accounts for a difference in sign between their formula and ours.
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residues at X = 0, the formula

nle (X)
~Resxood [
/ay/T oX= OZ er; X)

where ep; is the equivariant Euler class of the normal bundle to F; in Y.

The formula of Proposition 3.9 comes directly from this when the manifold
with boundary Y is u;l[&),&l] for a moment map up: M — t* = R with
regular values & < &1, but there is no need for pur to be a moment map
or for M to have a symplectic structure for the formula to be valid. It is
enough for yp: M — R to be a smooth T-invariant map with regular values
€0 < & such that T acts freely on the intersections of uz'(£) and prt(€:1)
with the support of the equivariant differential form 7. There is also no need
to assume that M is compact; it suffices to suppose that ur: M — R is a
proper map. Indeed, the assumption that p7 is proper can itself be weakened;
the same proof applies provided only that the intersection of p51[§0,§1] with
the support of the equivariant differential form 7 is compact.

4. Extended moduli spaces

In [28] certain “extended moduli spaces” of flat connections on a compact
Riemann surface with one boundary component are studied. They have natural
symplectic structures, and can be used to exhibit the moduli spaces M(n,d) of
interest to us as finite-dimensional symplectic quotients or reduced spaces. Our
aim is to obtain Witten’s formulas for intersection pairings on H*(M (n,d)) by
applying nonabelian localization to these extended moduli spaces. They have
a gauge-theoretic description (cf. the introduction to this paper), but we shall
use a more concrete (and entirely finite-dimensional) characterization given in
[28].

The space with which we want to work is defined by

(4.1) M(c) = (ex x e)"H(A) C Hom(F, K) x k,

where F is the free group on 2g generators {zy,...,xa5}; we identify F with
the fundamental group of the surface 3 with one point removed, in such a way
that z1,...,%2e correspond to the generators av,..., o0 of Hi(X,Z) chosen
in Section 2. Then ex: Hom(F, K) — K is the evaluation map on the relator
r = [I]_1[zj, Tj+o] and

g

(4.2) ex(hiy ..., hag) = [] (R, Bjrgl-
j=1

The map e.: k — K is defined by
(4.3) ec.(Y) = cexp(Y),
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where the generator ¢ of the centre of K is as defined in (2.6) above. The
diagonal in K x K is denoted A. The space M (c) then has canonical prOJect10n
maps pry, pro which make the following diagram commute:

- M(c) P2k
(44) prli lec
Hom(F,K) % K.

In other words, M(c) is the fibre product of Hom(F, K) and k under the maps
ex and e.. The action of K on M(c) is given by the adjoint actions on K and
k. The space M(c) has the following properties (see [28] and [29]):

PROPOSITION 4.1. (a) The space M(c) is smooth near all (h,A) €
Hom(F, K) x k for which the linear space z(h) Nker(dexp), # {0}. Here,
z(h) is the Lie algebra of the stabilizer Z(h) of h.

(b) There is a K-invariant 2-form w on Hom(F, K) x k whose restric-
tion to M(c) is closed and which defines a nondegenerate bilinear form on the
Zariski tangent space to M (c) at every (h,A) in an open dense subset of M(c)
containing M(c) N (K29 x {0}). Thus the form w gives rise to a symplectic
structure on this open subset of M(c).

(c) With respect to the symplectic structure given by the 2-form w, a mo-
ment map p: M(c) — k* for the action of K on M (c) is given by the restriction
to M(c) of —pry, where pro: M(c) — k is the projection map to k (composed
with the canonical isomorphism k — K* given by the invariant inner product
on k).

(d) The space M(c) is smooth in a neighbourhood of u=1(0).

(e) The symplectic quotient Mg = M(c) N u~1(0)/K can be naturally
identified with €' (c)/K = M(n,d).

Remark 4.2. We shall also use u to denote the map
p K¥ xk -k

defined by
plh, A) = —A,

even though it is only its restriction to M(c) which is a moment map in any
obvious sense. That is why we write M (c) \u~!(0)/K instead of u~1(0)/K in
(e) above.

Remark 4.3. Using our description (4.4) of M(c) as a fibre product, it
is easy to identify the components F of the fixed point set of the action of 7.
We examine the fixed point sets of the action of T' on Hom(F, K) and k and
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find
M(c)T P2, t
(4.5) pry | Lec
Hom(F,T) =% 1eT.

(Notice that ex sends Hom(F,T') to 1 because T is abelian.) Thus
(4.6) M()T =Hom(F,T) x ' (1) =TY x {§ —& e Al Ct}

where & is a fixed element of t for which exp & = c. (Here, A’ denotes the integer
lattice Ker(exp) C t.) If we ignore the singularities of M(c), this description
also enables us to find a plausible candidate for the equivariant FEuler class
er, of the normal bundle of each component 729 x (§ — &) in M(c)” (indexed
by 6§ € Af). This should be simply the equivariant Euler class of the normal
bundle to T2 in K29, implying that e F; is in fact independent of 6 and is given
by

(4.7) ery(X) = (H 7) = ((-1)™D(X)?)".

The symplectic volume of the component Fj is independent of § (indeed these
components are all identified symplectically with 729); we denote the volume
of Fs by [pe®. The constant value taken by the moment map pr on the
component F' = Fy is given by é — 6.

We shall need also the following property (proved in [30]):

PROPOSITION 4.4. The generating classes ar, bl and f. (r = 2,...,n,

j=1,...,29) extend to classes a-(X), bi(X) and f-(X) € H:(M(c)).

Indeed, because of our conventions on the equivariant differential, the
construction of [30] (which will be described at the beginning of Section 9) tells
us that the equivariant differential form @,(X) € Q% (M(c)) whose restriction
represents the cohomology class a, € H*(M(n,d)) is 7-(—X), where as above
7. € ST(k*)® = H¥(pt) is the invariant polynomial which is associated to
the r** Chern class (see [30]). Moreover fs is the extension @ = w + p of the
symplectic form w to an equivariantly closed differential form (see [30] again).

Finally we shall need to work with the symplectic subspace My(c) =
M(c) N p~(t) of M(c), which is no longer acted on by K but is acted on
by T'. The space M¢(c) has an important periodicity property:

LEMMA 4.5. Suppose Ag lies in the integer lattice AT = Ker(exp) in t.
Then there is a homeomorphism sp,: K29 x k — K29 x k defined by

Say: (R,A) ¥ (h,A + Ap)

which restricts to a homeomorphism sp,: Mi(c) — Mg(c).
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Proof. This is an immediate consequence of the definition of My(c) and
the fact that exp(A + Ag) = exp(A) exp(Ag) when A and Ag commute. O

Let us examine the behaviour of the images in H7.(Mg(c)) of these exten-
sions @ (X), bl(X), fr(X) € Hi(M(c)) of the generating classes a,, bl, f, (see
Proposition 4.4) under pullback under these homeomorphisms sp,: Myg(c) —
Mi(c). By abuse of language, we shall refer to these images also as &, (X), b(X)
and f,(X). We noted above that the classes @, (X) are the images in Hi (M (c))
of the polynomials 7.(—X) € H} = S(k*)¥ (cf. (2.1)). Moreover (by [30,
(8.18)]) the classes bi(X) € Hj(M(c)) are of the form b(X) = pri(bi(X))
where (bJ(X)); € H%(K?) and pry: M(c) — K2 is the projection in (4.4).
It follows that

siob(X) = B(X)
and
Sho0r(X) = ar(X).

Furthermore we see from (8.30) of [30] that fo(X) is of the form

(4.8) fa(X) = prifs + (p, X)

where fi € H}(K?) and u: M(c) — k is the moment map (which is the
restriction to M (c) of minus the projection K29 x k — k; see Proposition 4.1).
It follows from this that for any Ag in the integer lattice A’ of t (the kernel of
the exponential map),

(4.9) shof2(X) = f2(X) — (Ao, X).

5. Equivariant Poincaré duals

We are aiming to apply nonabelian localization to the extended moduli
space M(c) defined in the previous section. In order to overcome the problem
that M(c) is singular, instead of working with integrals over M(c) of equivari-
ant differential forms, we shall integrate over K29 x k after first multiplying
by a suitable equivariantly closed differential form on K29 x k with support
near M(c) which can be thought of as representing the equivariant Poincaré
dual to M(c) in K29 x k. So we need to construct such an equivariantly closed
differential form.

Remark 5.1.  In our earlier article [32] covering the case when the bundles
have rank n = 2, we overcame the problem of the singularities of M(c) in a
slightly different way, by perturbing the central constant ¢ € SU(n) to a nearby
element of the maximal torus T'. This method can be generalized to cover the
cases when n > 2, but it seems a little more straightforward to use equivariant
Poincaré duals, so we adopt the latter approach here.
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Remark 5.2. Related constructions of equivariantly closed differential
forms representing the Poincaré dual to a submanifold appear in the literature.'
In Kalkman’s paper [34] and Mathai-Quillen’s paper [40], an equivariantly
closed differential form which is rapidly decreasing away from a submanifold
and represents the Poincaré dual to the submanifold is given; such a form is
often referred to as the Thom form, as the cohomology class it represents is

.the Thom class of the normal bundle to the submanifold. The forms con-
structed 'in [34] and [40] are not compactly supported; a construction of a
compactly supported equivariantly closed form representing the Poincaré dual
of a submanifold is given in Section 2.3 of [19]. For completeness, in this sec-
tion we provide a construction of an equivariantly closed form representing the

Poincaré dual.

First we consider the simpler problem of constructing an equivariant Poin-
caré dual to the origin in a one-dimensional representation x of a circle. If we
did not need to find a form with support near the origin we could represent the
equivariant Poincaré dual by x itself, regarded as an equivariant differential
form. However compact support will be important later, so we need to be a
little more careful.

LEMMA 5.3. Let T = U(1) act on C via a weight x: T — U(1). Then
we can find an equivariantly closed differential form o, € Q4(C) on C with
compact support arbitrarily close to 0, such that

/Cnaxzmoeﬂ;

for all equivariantly closed forms n € Qp(C). Moreover a, € x + D(5(C)),
so that o, represents the same equivariant cohomology class on C as x.

Proof. Let X" denote the vector field on C given by the infinitesimal action
of X € t. There is a T-invariant closed differential 1-form on C — {0}, given in
polar coordinates (r,6) by 2, such that LXg(%) is identically equal to x(X)
for every X € t. We can choose a smooth T-invariant function b: C — [0, 00)
with support in an arbitrarily small neighbourhood of 0 which is identically
equal to 1 on some smaller neighbourhood of 0, and let

ax(X) = x(x) + D (1= 157 ) =x(¥) +a (1 - 952 ) + 6 - 1x(X)

s

where D is the equivariant differential defined at (3.2) and d is the ordinary
differential. Then «, is equivariantly closed and is zero outside the support

of b.

14We thank P. Paradan for pointing out that the references cited below contain such constructions.
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Suppose that n € Q7(C) is equivariantly closed. We wish to show that

/ noy, = nlo.
C

First we shall show that the integral

[
C

is independent of the choice of the function b.

If p > 0 is sufficiently small and R > 0 is sufficiently large, then b is
identically equal to 1 on the disc D, centre 0 and radius p, and b is identically
equal to 0 outside the disc Dp centre 0 and radius R. Then

Qyy = -+ [a 7298
[Cnx X/Dp'r/ DR—Dan

Now 7 is a polynomial function from t to the ordinary de Rham complex Q*(C),
SO we can write

n=n0 40 4 n@
where n\¥) is a polynomial function from t to Q7(C) for j = 0,1,2. Similarly
o = o) +off
where a&o) = by, a&l) = 0 and a§<2) =d((1 - b)éiz—). Since Dn = dn — tx11
is zero, we have dn(©® = LXW(Z). As any 2-form on C is a C* function on
C multiplied by the nowhere vanishing 2-form given in polar coordinates by

T—dﬁ#, and since ¢y ﬂ%%di) = x(X)rdr, it follows that
@) 49 1,0
XX (X) = S an®(x)
on C — {0} where df is defined. Hence
— )40 4 50,2
Q, = o, + o
/DR—D,,77 X /DR—D,,n x o T
do dé
= : b—dn©® + pOg((1 — p)—
/DR_D,, S +nOd((1-5)3)
dé
= - d(bn(® 2=
L, 40150

do dé
= b <0)__/ @
/6D,, T on dDg T on

de
_ 0) =¥
oD, T on

by Stokes’ theorem, since b is identically one on 0D, and identically zero on
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0Dg. It follows that
dé

/Cnx X/Dpn oo, 2m

is independent of the choice of b.
Now p can be taken arbitrarily small, and  f; p, M~ 0 as p — 0. Moreover

by continuity, for fixed X € t and any ¢ > 0 we can choose p so that (% differs
from 7(®|g = 1)y by at most € on D,. Then

de . do
[ a9 a0 :’ [ @O =05
aD, 8D, 0

2
Thus J.nay — njo tends to zero as p tends to 0. Since [.nay and njy are
independent of p we deduce that

/nax =nlo
C

<e.

as required. O

LEMMA 5.4. Let T be a torus acting trivially on R. Then we can find an
equivariantly closed differential form ag € Q5.(R) on R with compact support
arbitrarily close to 0, such that

_ /]R nay =)o € Hr
for all equivariantly closed forms n € Q5 (R).

Proof. We have Q5 (R) = S(t*) ® Q*(R) and n € S(t*) ® Q°(R) is equiv-
ariantly closed if and only if it is constant on R, so we can take g to be
the standard volume form on R multiplied by any bump function compactly
supported near 0 with unit integral. ]

COROLLARY 5.5. Let T be a torus acting linearly on C™ with weights
X1, - - -, Xn and trivially on R™. Then we can find an equivariantly closed dif-
ferential form a € Q2 (C™ x R™) on C™ x R™ with compact support arbitrarily
close to 0, such that

/ na =ny € Hy
CrxR™

for all equivariantly closed forms n € Q5(C™ x R™). Moreover if m = 0 then
& € X1---Xn + D(QH(CY)).

Proof. The action of T on the copy of C in C™ on which it acts via the
weight x; factors through an action of T/ kery; = U(1) (unless x; = 0 in
which case we can replace ker x; by any subtorus of T' of codimension one).
We can construct oy, € Q;}(l) (C) as in Lemma 5.3 and m copies of ag as in
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Lemma 5.4, and then define o to be the wedge product of the pullbacks of the
ay; and ag to Q5(C™ x R™) via the projections of C* x R™ to C and R and
the homomorphisms 7' — U(1) induced by the weights x;. O

Now we shall relax our assumption that ¢ is a central element of K, and
assume only that ¢ € T'. This will be important later when we apply induction
on n (see Remark 6.4 below).

COROLLARY 5.6. Let T be the mazimal torus of K = SU(n) acting on K
by conjugation. If c € T then we can find a T-equivariantly closed differential
form o € QU5(K) on K with support arbitrarily close to ¢ such that

/ na =1l € H
K
for all T-equivariantly closed differential forms n € O5(K).

Proof. There is a T-equivariant diffeomorphism ¢ from a T-invariant neigh-
bourhood U of 0 in the Lie algebra k of K to a T-invariant neighbourhood V'
of ¢ in K given by

$(X) = cexp(X).
By Corollary 5.5 we can find & € {2%-(k) with arbitrarily small compact support
contained in U, such that

& =mnlo € Hy

/k n nlo T

for all equivariantly closed forms 7 € (k). Then we can define o to be

(671" (&). O
Note that

g
M(C) = {(hl, ceey hgg,A) S K2g x k: H hgj_1h2jh2—jl_1h5jl = cexp(A)}
j=1

can be expressed as M(c) = P7(c) where P: K% x k — K is defined by

g
P(hy,... hag, A) = [ haj—1hajhs} 1 hy; exp(—A).
j=1
PROPOSITION 5.7. If T is the mazimal torus of K = SU(n) andc € T
then there is a T-equivariantly closed differential form a € Q*(K?9 x k) of
degree n? — 1 on K29 x k with support contained in a neighbourhood of M(c)
of the form P~Y(V') where V is an arbitrarily small neighbourhood of ¢ in K,

such that
a = € H%
/Kzg ! /M(c) M) € Hi

for any T-equivariantly closed form n € V(K29 xk) for which the intersection
of P~1(V) with the support of n is compact.
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Proof. By Corollary 5.6 we can find a T-equivariantly closed differential
form & € Q% (K) on K with support in V' such that

/néz:nlceﬂ%
K

for all T-equivariantly closed forms n € Q5(K). Let @« = P*(&); by the
functoriality of the equivariant pushforward map (cf. Section 3 of [3]) this has
O

the properties we want.

Remark 5.8. 1In fact if V'’ is any neighbourhood of ¢ in K containing V'

then we have
/ no = Ny € Hr
P-1(V") M(c)

for any T-equivariantly closed form n € Q&(P~1(V’)) on P7Y(V’) for which
the intersection of P~!(V) with the support of 7 is compact.

Remark 5.9. As we are going to use Proposition 5.7 to convert integrals
over M(c) into integrals over K29 x k (or at least over neighbourhoods of
M(c) in K% x k of the form P~Y(V) for arbitrarily small neighbourhoods
V of ¢ in K), we shall need to be able to extend T-equivariant cohomology
classes 7 on M(c) to T-equivariant cohomology classes on neighbourhoods
of M(c) in K?9 x k of this form P~'(V). This will always be possible by
the continuity properties of cohomology (see e.g. [14, VIII 6.18]) because 7
will always have compact support in M (c); more precisely we will in fact be
converting integrals over M(c) N (K% x B) for compact subsets B of k into
integrals over P~1(V) N (K% x B).

Note that the centre Z, of K = SU(n) is a finite group of order n which
acts trivially on K29 x k.

LEMMA 5.10. Suppose that ¢ = diag(cy, . ..,cn) € T is such that the prod-
uct of no proper subsequence of c1,. .. ,cn, is 1. Then the quotient T'/Z, of T by
the centre Zy, of K = SU(n) acts freely on P~1(V)Nu=(0) for any sufficiently
small T-invariant neighbourhood V' of ¢ in K. ,

Proof. Suppose that T'/Z, does not act freely on P~1(V) N u=1(0). Then
there exist t1,...,t, € C, not all equal, such that ¢;...{, = 1, and some
element (h,0) = (hy,...,hag,0) of P7(V) N u~1(0) fixed by diag(ty,...,tn).
Then each h; is block diagonal with respect to the decomposition of {1,...,n}
as the union of {i: ¢; =t} and {i: ¢; # t1}, which implies that

P(h,o):[‘a1 g]

where A and B are products of commutators and hence satisfy det A = 1 =
det B. The result follows. . O
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Remark 5.11. It follows from this lemma that we can extend the defini-
tion of the composition

@ Hp(M(c)) — Hp(M(c) N u~2(0)) & B*(M(c) N p~*(0)/T)
to.
&: Hp(P~H(V)) — Hp(P~L(V) N u~2(0) = H*(P~X(V) n =1 (0)/T).

By 1.18 of [23] (see Remark 3.10 above), when T' = U(1) is a circle then ® is
given on the level of forms by

®(n) = Resx=otv (Xg—ndg)

where the vector field v is the infinitesimal generator of the U(1) action and ¢
is a U(1)-invariant differential 1-form on P~1(V) N u~1(0) such that ¢,(¢) = 1.
(Strictly speaking the residue is an invariant form on P~1(V) N p=1(0) which
descends to a form on (P~Y(V) N p~1(0))/T.) Thus when T = U(1),

¢n

b0 = [ ResxeorSL
) M(e)np—1(0) SX=0% ~d¢

./M(c)ﬁp,—l(O)/T
and it follows that if « is defined as in Proposition 5.7 for n = 2 and V' is any
neighbourhood of ¢ in SU(2) containing V/,

¢no

®(no Resx—
/P—1<v')mu—1(0)/:r 0= o i XK ~ g

®(n)

Resx— =
ME-10) X —dC Jm@numioyr

for any T-equlvarlantly closed differential form n € Q%(P~1(V")) such that the
intersection of P~1(V) with the support of n is compact. Here we have used
the same notation for n and its restriction to M(c).

When n > 2, so that the maximal torus T of K = SU(n) has dlmensmn
higher than one, then ®(n) and [y (¢n,-1(0),7 ®(n) are given by similar for-

mulas involving n — 1 iterated residues (see [23]). In particular the support of
®(n) is contained in the image of the support of 7, and

¢ = (s
/P‘l(V’)ﬂu‘l(O)/T (1) M(e)npu=1(0)/T )

for any T-equivariantly closed differential form n € Q%(P~1(V")) such that the
intersection of P~(V) with the support of 1 is compact.
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6. Nonabelian localization
applied to extended moduli spaces

Naive application of the residue formula (Theorem 3.1) to the extended

moduli space M(c), using (2.1) and Remark 4.3 and ignoring the fact that
M (c) is noncompact and has singularities, yields

6.1) e exp(f)M(n, d)

r=2
o (— X)) g G=6)(X)
= nCxRes <D2<X> )z = ( n+z)>2<X)) )

SeAl

where the constant Cx is as defined at (3.7). The main problem with (6.1)
(related to the noncompactness of M(c), which permits the fixed point set
M(c)T to be the union of infinitely many components Fjs) is that the sum
over § does not converge for X € t. In this section we shall instead apply
the version of nonabelian localization due to Guillemin-Kalkman and Martin
(Propositions 3.6 and 3.9) to M{(c), using Remarks 3.8 and 3.10; this will lead
to a proof that (6.1) is true if interpreted appropriately (see Remark 8.6). First
we use Proposition 3.6.

LEMMA 6.1. Let |W| = n! be the order of the Weyl group W of K =
SU(n), and let ¢ = diag(e?™/™ ... e¥™4/") ywhere d is coprime to n. If V is
a sufficiently small neighbourhood of ¢ in K so that the quotient T'/Zy, of T by
the centre Z,, of K = SU(n) acts freely on P~1(V)Nu=1(0) (see Lemma 5.10),
then for any n € Hj,(X),

_ 1 _ 1 )
b(ne’) = — b (Dne¥) = — O (Dne“ o
/M(n,d> (7e”) W\ N (Dne) W1 JInw) (Dnete)

where
N(e) = M() 0 (0)/T

for u: K% x k — k given by minus the projection onto k and
N(V) = P7H(V) 0w (0)/T.

Also o is a T-equivariantly closed form on K29 xk representing the T-equivariant
Poincaré dual to M(c), which is chosen as in Proposition 5.7 so that the sup-
port of a is contained in P~1(V) and has compact intersection with p=1(0).

Proof. Since M(n,d) = M(c) N p~1(0)/K, we can first identify
Smt(n,a) @(ne”) with .
®(Dne®
]Wl/ 7
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via Proposition 3.6, whose proof works in this situation even though M (c) is
noncompact and singular, because p is proper and M(c) is nonsingular in a
neighbourhood of 1~1(0) (see Remark 3.8). Then we use Remark 5.11. |

Next we need to summarize some conventions on the roots and weights of
SU(n). The simple roots {e;: j =1,...,n— 1} of SU(n) are elements of t*; in
terms of the standard identification of t with {(X1,...,X,) € R™: Y, X; = 0}
under which (Xi,...,X,) € R" satisfying ., X; = 0 corresponds to X =
diag(2mi Xy, ..., 2miX,) € t, they are given by

(6.2) ej(X) = X; — Xjm1.

The dual basis to the basis of simple roots (with respect to the inner product
< -,- > defined at (2.2) above, which is the usual Euclidean inner product on
R™) is the set of fundamental weights w; € t* given by

(6.3) wi(X) = X1+ -+ X;.

If we use this same inner product to identify t* with t, the simple roots become
identified with a set of generators

é;=(0,...,0,1,—1,0,...,0)

for the integer lattice Al of t, and the fundamental weights correspond to
elements w; € t given by :

= (L0, 1,0,.0,0) = 2(1L,.., 1),

In particular we have

(6.4) o1 = %(1, 1 =(n—1)).

Since we shall later apply induction on 7, it will be convenient to label
certain spaces, groups and Lie algebras by the associated value of n. In partic-
ular the space M(c) will sometimes be denoted by M,y(c), the maximal torus
T of SU(n) by T,, its Lie algebra t by t,, and the map & by &,,.

We define a one-dimensional torus 7} = S in SU(n) generated by €): it
is identified with S* via

(6.5) | te St — (t,t711,...,1) eT).
The (one-dimensional) Lie algebra t; is spanned by €;. Its orthocomplement

in tis

(6'6) tn—lz {(X17-~~,Xn) E]Rn: X1:X2,ZXJ~:O}.
j=1
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Define T;,—1 to be the torus given by exp(t,_1):

Tn—l = {(tl,tl,t?;- . ~,tn—1,tn) < U(l)nl (t1)2 (ﬁ tj) = 1} ;

J=3

then T},_1 is isomorphic to the maximal torus of SU(n—1) (i.e. T,—1 = (S1)"?)
so this does not conflict with the notation already adopted.

Remark 6.2. The multiplication map Tl X Tho1 — TlTn_l =1, is a
covering map with fibre 7y N T,y = Zo = {(t,t71,1,...,1): t =¢t"1}.

There is the following decomposition of the ring homomorphism &,,.

PROPOSITION 6.3.  For any symplectic manifold M equipped with o Hamil-
tonian action of T, such that Tn_1 acts locally freely on ,LLE:_I(O), the sym-
plectic quotient ,LLEI(O) /Ty, may be identified with the symplectic quotient of
:“Tn (0)/Tn—1 by the induced Hamiltonian action of Ti. Moreover if in adds-
tion Tp, acts locally freely on pp L(0) then the ring homomorphism ®y: Hi (M)
— H*(,u,;nl(O)/Tn) factors as

B =P10P, 1
where
®n-1: Hf, (M) — Hy, (u3,,(0) = HE . (s, ,(0))
>~ Hj (uz.,(0)/Tay)
and

&1 HE (g, (0)/Tn-1) — H*((ug_,(0) N pz! (0)/Tnr x T1)
H* (7, (0)/T).-

e

Proof. The isomorphisms
Hy, (), () = H (), (0)) = Hj (7, (0)/Ts)

follow from Remark 6.2 and the fact that the cohomology with complex coef-
ficients of the classifying space of a finite group is trivial.

Since pr, is a Tn-invariant map, its projection pop, onto t1 descends to
uTn ,(0)/Ty—1 and defines a moment map for the induced T}-action with re-
spect to the induced symplectic structure on /‘T (0)/Ty—1. The rest then
follows from Remark 6.2 and naturality (cf. [23], After (2.9)). O

Remark 6.4. From now on, thanks to Lemma 6.1, we shall be working
with quotients by T and subgroups of T', rather than quotients by K. Because
of this our arguments will apply to M(c) when ¢ belongs to T but is no longer
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necessarily a central element of K. This will be important later, when we
apply induction on n using Proposition 6.3. The only condition we will need
to impose on ¢ € T is that ¢ = diag(ey, .. ., ¢,) where the product of no proper
subsequence of (ci,...,c,) is 1; this is certainly true for our original choice of
c when c; = €?™/™ for all j with d coprime to 7.

So for any ¢ € T, let us define

M(e) My(c) = P7H(c)

_ | g
= {(hl, oo hag, A) € K29 x ki [ hoj1hojhy) by = cexp(A)}
j=1

where P: K%9 xk — K is defined by

P(h1,... hag,A) = thj 1h23h2J \ha; exp(—A).

j=1

Let us also define

(6.7) Np(c) = M(c) N p™(0)/ Ty,
and

(6.8) Na(V) = P7HV) N (0)/ T,

where V is a small T-invariant neighbourhood of ¢ in K.

PROPOSITION 6.5. Suppose ¢ = diag(ey,...,cn) € T is such that the prod-
uct of no proper subset of (c1,...,cn) is 1. Then the group Ty—1/Zy, where Zy,
consists of the identity matriz multiplied by n'™ roots of unity, acts freely on
P~L(V)N P‘T (0) for any sufficiently small T -invariant neighbourhood V' of

¢ in K. Hence the quotient P~1(V) N ,uT (0)/Th—1 is smooth.

Proof. The conjugation action of (¢1,...,t,) € U(1)™ on the space of nxn
matrices sends

(Aig) — (8t ' Aij).

Clearly Z,, acts trivially. Let us assume that (h,A) € M (c)ﬂuT ,(0) is fixed by
the action of some element of T;,_; which is not in Z,,. After rearranglng the co-
ordinates X3, ..., X, if necessary, we may assume that there is some k between
3 and n such that this element of T;,_; is of the form (¢1,%1,%3,...,tn—1,%n)
where t; = t1 if and only if ¢ < k. Then each h; is block diagonal of the form

)
0 A
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where hjl- is a k x k matrix and h,J2- is (n — k) x (n — k). As the determinant
of any commutator is one, it follows that [T}_;[haj—1, he;] is block diagonal of

the form

A 0]
(6.9) { 0 B
where det A = det B = 1. But A is also block diagonal of the same form
Ay 0]
0 Ag | ’

and since (h, A) € ui}_l (0) the diagonal entries of A are (2mi\, —2mi),0,...,0)
for some A € R. Thus as k£ > 3 both A; and Ag have trace 0, so detexp A =
1 = detexp Ag. Since (h,A) € M(c) it follows that the matrix A must equal

diag(cq,...,cx) exp Aq,
and hence
c1...cp=det A=1.
This contradiction to the hypotheses on ¢ shows that Ty,_1/Z, acts freely on
M(c) N ui}_l(O), and the same argument shows that T,_1/Z, acts freely on
P~HV)N u}nl_l (V) for any sufficiently small T-invariant neighbourhood V' of

¢ in K and any sufficiently small neighbourhood V of 0 in tn—1. The result

follows. O

Definition 6.6. There are coordinates
Yy = ex(X) = (€, X)
on t, corresponding to the simple roots e; € t*.

We are now in a position to exploit Proposition 3.9 and Remark 3.10, by
using the translation map s, defined by Lemma 4.5, where Ag = € lies in the
integer lattice A’ and so satisfies exp(Ag) = 1.

LEMMA 6.7. Suppose ¢ = diag(ci,...,cn) € T is such that the product
of no proper subset of (ci,...,cn) is 1. Suppose also that 1 is a polynomial
in the a(X) and bi(X), so that sgn = n. If V is a sufficiently small T-
invariant neighbourhood of ¢ in K so that P~Y(V) N p~'(t1)/Tw-1 is smooth
(see Proposition 6.5), and if No(V) = P~YV) N u=1(0)/T, as before, then

/ Bp(ne”e Vo) = /
n (V) P=1(V)np—1(—é1)/Tn

= / P, (ne?a) — ng
Nn(V)

®,_1(ne®
o T Resy: _o / Pp-1(ne’e)
FeF: —||éi]P<(e1,u(F))<0 FoeF

@, (ne’a)
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'where F is the set of components of the fized pomt set of the action of Ty on

PL(V)n ,u_l(tl)/Tn 1, and ep denotes the T} -equivariant Euler class of the
normal to F in P~ (V)ﬂ,u Y(3$1) /Ty for any F € F, while ng is the order of
the subgroup 0fT1/T1 NTy—1 that acts trivially on P~Y(V)Nu~ 1(t1)/Tn 1. Also
« is the T-equivariantly closed differential form on K29 xk given by Proposition
5.7 which represents the equivariant Poincaré dual of M (c), chosen so that the
support of a is contained in P~1(V).

Proof. Since p~1(t;) = K?9 x t, is contained in u}nl_l(O), it follows from
Proposition 6.5 that if V' is a sufficiently small T-invariant neighbourhood of
¢ in K, then T,,_1/Z, acts freely on P™1(V) N p~1(t1) and so the quotient
P=Y(V)Np~Y(t1)/Tp—1 is smooth.

Since the restriction of g, to p~1(t,) is proper, and the support of o
is contained in P~1(V), by Remark 3.10, Guillemin and Kalkman’s proof of
Proposition 3.9 can be applied to the Ti-invariant function induced by Popy
on the smooth manifold P~ V)N up~ () /T _1 and the Ti-equivariant form
induced by ne“a. In fact since T1 NTp_1 = Zg acts tr1v1ally we can work
with the action of T1 /T1 N T,,—1 instead of the action of 7} (the Lie algebra
and moment map are of course the same). This fits better with the choice of
coordinates Y defined by the simple roots é; because the simple root é; takes
t,t1,1,...,1) ¢ T3 to t? and thus induces an isomorphism from Tl/Tl NTn_1
to S'. By combining this with Proposition 6.3 we get

. d, (ne’a —/ D, (ne“a
/P—l<v>nu—1<o>/Tn n(nee) P-1(V) =1 (—¢1)/Tn n(ne“a)

B, 1(ne®

FeF: el B<lér u(F)) <0 °F

Now note that the restriction of P: K29 x k — K to p~1(t) = K% x t is
invariant under the translation sy, for Ag € A!. Therefore by construction
the restriction of @ to u~1(t) is also invariant under this translation. Thus by
(4.9) and Definition 6.6

@n w :/ @n Z w =/ @n o —Yy ]
/P‘l(v)mu—l(—e‘l)/Tn (ne®ar) N (V) (_31(776 a)) N (V) (ne“e™ o)

The result follows. _ O

Remark 6.8. It will follow from the proof of Proposition 7.1 below that
ng = 1 here (see Remark 7.2).
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7. Fixed point sets of the circle action

In this section we shall consider the components F' € F of the fixed
point set of the action of 7 on the quotient P~ (V) N u~1(t1)/Tp_1 (which
appeared in Lemma 6.7). Since P~}(c) = M(c) and V is an arbitrarily small 7-
invariant neighbourhood of ¢ in K, we may assume that every F' € F contains
a component of the fixed point set of the action of T} on M(c) N p~t(t1)/Tn_1,
and each of these components is contained in a unique ¥ € F. So we shall
start by analysing the components of the fixed point set of the action of T
on M(c)Nu~Y(t1)/Tn-1. We shall find that they can be described inductively
in terms of products of spaces of the form N(c) (see Remark 6.4) for smaller
values of n. This will enable us to use induction in the next two sections to
express the intersection pairings [ M(n,d) ®(ne”) on the moduli spaces M(n, d)
as iterated residues (see Theorem 8.1 and Theorem 9.12).

PROPOSITION 7.1. Suppose that ¢ = diag(cy, - . . ,cn) € SU(n) is such that
the product of no proper subsequence of (ci,...,cn) is 1. Then the components
of the fized point set of the action of T1 on the quotient (M(c)Np~ (£1))/Th-1
may be described as follows. For any subset I of {3,...,n} let Iy = IU{1} and
let I ={1,...,n} — I . Let Hy be the subgroup of SU(n) given by

Hr = {(aij) S SU(TL) Qaij = 0 ’Lf ('L,j) € (Il X I2) U (_[2 X Il)}
Suppose that A € R is a solution of

—2miX
e M =¢y .0, = HCJ'
jeh

where r is the number of elements of I = {i1,...ir}, so that

S2miA D

jelz

Then there is a component of the fized point set given by Fi) = F[,A/Tn_l
where

Fyx=M(c) N (HP x {xé1}),

and every component is of this form for some subset I of {3,...,n} and solution
A to the equation above.

Proof. Suppose the Ty orbit of a point (h1,...,hag,A) € SU(n)% x tq is
contained in its orbit under 7,,_1. A general element of the 7; orbit of an n xn
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matrix A = (a;;) under conjugation looks like

- 9 -
a1 t“ais  taiz ... tain
- -1 -1
t2a01 agn tTlass ... tTlagy
~1
t7a3z1 tase ass e asn
¢t t
L anil an2 an3 ce Ann |

while a general element of the 7,1 orbit of A looks like

— _1 __1 -
aji ajio t1t3 aig ... tltn Ain
21 1
a1 a99 t1tg"ags ... t1t, aon
~1 ~1 —
tst; "ag1  tat] aso ass e t3tn1a3n
-1 ~1 —~1
| tht] an1 Ity ana Tnty ans ... Qnn |
For each t there exist t1, 3, ..., t, such that these two matrices are equal when

A is any of hy,...,hyg and A. Choose t # t~! and let I denote the set of
j in {3,...,n} for which tltJTl = t. Similarly, define J to be the set of j in
{3,...,n} for which ¢1¢;' =+7!, and let K = {3,...,n} —I—J. Reordering the
coordinates one finds that all the h; and A are block diagonal where the blocks
correspond to TU{1}, J U{2} and K _Conversely, if all the h; are block diagonal
of this form and A € ti, then the T} orbit of (hq, .. hgg,A) is contained in
its T,,—1 orbit since given any ¢ € U(1) we can find (tl,tl,tg, ceuytp) in Ty
satisfying tlt_l =tifjel and tlt"l =tlifjeJ

We next prove that K is empty Suppose otherw1se then as the deter-
minant of any commutator is one, det [TI_, [k [213{] 12 hoj ] =1 (where the super-
script [K] denotes the block of the matrix corresponding to K). Thus the K
block in ¢ also has determinant 1. This is impossible by the hypothesis on c.

Suppose now that (ha, ..., hag, A) € M(c)Np~t(t1) lies in H?g xt1. Then

A = )\é) = 2midiag(A, —),0,...,0)

for some A € R, so the blocks A and A®2] of A corresponding to I; = TU {1}
and Iy = JU {2} satisfy detexp All1] = ¢2™* and det exp Al2] = =272 Byt

g
det (H[h[f;ll, hil] ) =1 = det (H RS2, R )

because the determinant of any commutator is one. It therefore follows from
the definition of M(c) that

-——271'2)\
H G-
jeh

This is enough to complete the proof. O