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Introduction

In writing this paper my first objective has been to prove certain formulas
on fixed points and coincidences of continuous transformations of manifolds.
To this proof for orientable manifolds without boundary is devoted most of
the second part, the remainder of which is taken up by a study of product
complexes in the sense of E. Steinitz, as they are the foundation on which
the proof rests. With suitable restrictions the formulas derived are susceptible
of extension to a wider range of manifolds, but this will be reserved for a
later occasion. It may be stated that our formulas include and completely
generalize the early results due to Brouwer and whatever has been obtained
since along the same line.f No such generality would have been possible
without that powerful instrument, the product complex.

The principle of the method is best explained by means of a very simple
example. Let/(x) and <p(x) be continuous and uni-valued functions over the
interval 0, 1, and let their values on the interval also he between 0 and 1.
It is required to find the number of solutions of f(x) = <p(x), O^x^l.

Graphically the problem is solved by plotting the curvilinear arcs
y -/(*),   y -*>(*),   o** si,

and taking their intersections. A slight modification of the functions may
change the number of solutions, even make them become infinite in number.
However, the difference between the numbers of positive and negative
crossings of sufficiently close polygonal approximations to the arcs is a fixed
number, their Kronecker index. Its determination is then a partial answer
to the question, and indeed seemingly the only possible general answer.

* Presented to the Society under somewhat different title at the Chicago Meeting of April 13,
1923, and the Southwestern Section Meeting of December 1, 1923; received by the editors in
November, 1924.

t A good bibliography is found in Kérékjárto's recently published volume Topologie, Berlin,
J. Springer. For a list of the most recent titles see a paper by J. W. Alexander, these Transactions,
vol. 25 (1923), p. 173, to which must be added my notes in the Proceedings of the National
Academy of Sciences, vol. 9 (1923), p. 90, vol. 11 (1925), pp. 287, 290, summarizing the results
of the present paper.
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2 S. LEFSCHETZ [January

The two complexes whose product is taken in this case are the unit
segments on the x and y axes, their product being the square whose sides
they are. Replace the unit segments by two identical manifolds of n dimen-
sions, Mn and Mn', the square by the M2n image of their pairs of points
(product of the two), the arcs by manifolds on Mzn and the exact situation
of Part II is obtained.*

In all questions of the above type, the Kronecker index plays then an
essential part. In order to put everything on a solid basis, it seemed vital
to discuss thoroughly this index. There is in existence an excellent treat-
ment of it by Hadamard,t leaving little to be desired for euclidean spaces,
but distinctly insufficient for general manifolds. Then the Kronecker
index is only a special topic in the more interesting and far reaching theory
of the intersection of complexes on a manifold,î needed in any case, to some
slight extent, for a good treatment of the index itself. To this theory is
devoted most of Part I, of which the chief result is as follows : given several
complexes on an orientable manifold Mn, which do not intersect on each
other's boundaries nor on that of Mn, there exists a well defined cycle of Mn,
their intersection. It is well defined in this sense : no matter how the com-
plexes are approximated by means of straight complexes, the cycle inter-
section of the latter remains homologous to itself. If the approximating
complexes intersect in isolated points there is a definite Kronecker index
independent of the mode of approximation.

The independence from covering complexes and related modes of de-
fining straightness has presented some of our most serious difficulties. It is
a little surprising that the necessity of freeing the Kronecker index from this
vitiating circumstance has never been considered in the literature. That the
wider problem has not been attacked is natural enough since intersections
of general complexes have been studied but very little if at all. §

* This concept appeared first, applied to the special case of algebraic correspondences, in Seven's
paper in the Torino Memorie, vol.54 (1904). Needless to say, Seven did not suspect the analy-
sis situs aspect of the problem, hence did not and could not derive the Hurwitz coincidence formulas.
See in this connection Enriques and Chisini, Lezioni sulla Teoría Geométrica délie Equazioni, vol.
3, p. 427, also Chisini, Istituto Lombardo Rendiconti, ser. 2, vol. 7 (1924), p. 481. Their
work is anticipated by my first Note, which seems to have escaped their notice.

t Note to Tannery's Introduction à la Théorie des Fonctions. See also the first chapter of my
recent Borel Series Monograph, VAnalysis Situs et la Géométrie Algébrique, and my paper in the 1921
Transactions which both contain important applications of the index to algebraic geometry, and
finally a very interesting paper by Veblen that has just appeared in these Transactions, vol. 25
(1923); results are recalled in Part I, §7 of this paper and derived anew in Part II.

% Considered and actually applied, I believe, for the first time in my Monograph.
§ Some very important results along that line have been obtained of late by J. W. Alexander.

See Proceedings of the National Academy of Sciences, vol. 10 (1924), pp. 99, 101, 493.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1926] COMPLEXES  AND  MANIFOLDS 3

Part I. Questions of intersection

§1.  Preliminaries

1. In notation and terminology, we shall follow essentially Veblen's
Colloquium Lectures on Analysis Situs. We shall assume the reader fairly
familiar with this fundamental work and briefly refer to it as "Coll. Lect."
The following designations will recur with special frequency in our paper :
Sn = euclidean «-space ; En = «-cell ; Cn = «-dimensional complex ; Mn =
manifold of « dimensions ; rn (also y„, ôn in Part II) = »-cycle.* The various
numerical invariants, the signs ~, =, for congruence or homology,
and also the definition of orientation are as in Chapter I of my Borel
Series Monograph, VAnalysis Situs et la Géométrie Algébrique. In Part II
we shall introduce the sign ~ for homologies with division allowed, that is
with zero-divisors neglected.

2. Our ordinary complexes shall be restricted to Veblen's regular type.
Such a C„ is the homeomorph of an «-dimensional polyhedron Iln whose faces
are all simplicial cells (interiors of simplexes) no two intersecting. The
cells of LT„ define those of C„. We shall apply the term rectilinear segment,
polygonal or polyhedral configuration, etc., to C„, as if it were LTn itself,
meaning thereby the images of the nn configurations. Distances on C„
shall also be measured by reference to LTn, which for the purpose is assumed
immersed in some S„', n'= n. By a subcomplex of C„ we shall mean one
made up with cells of C„.

C„ may be subdivided into new complexes, and this can be carried out
so that the cells of the new complex be of diameter <e, assigned. Of im-
portance in this connection is the method of regular subdivision (Coll.
Lect., p. 89).

3. We shall define manifolds in accordance with a suggestion due to
Veblen (Coll. Lect., p. 92). It amounts essentially to demanding of a C„
defining an Mn that its cells be grouped about any particular one much
as if they were all immersed in an Sn- It will be found worth while to ex-
amine the matter at closer range.

Let Ek, k<n, be any simplicial cell on C„, Ek+i another incident with
it (i. e. with Ek on its boundary). We define a set {e} of elements such that
(a) to every Ek+x corresponds one and only one e ; (b) to e corresponds to-
gether with a given Ek+x all others having such a cell in common with it ;
(c) two elements of the set are said to tend towards one another if and

*  n set of oriented »-circuits in Veblen's terminology.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4 S. LEFSCHETZ [January

only if there are corresponding cells whose vertices opposite to Ek tend
towards one another. This last condition gives a definition of continuity
for {e}.

Now C„ is said to define an M„ without boundary if for every Ek,
0^k¿n — í, the set {e\ is homeomorphic to the boundary of an (n — k)-
cell. The Mn with boundary is then defined as in Coll. Lect., p. 88.

To verify the manifold condition we proceed much as in Coll. Lect.,
pp. 88, 90. We shall show in §3 (No. 14, Lemma II) that there exists a sub-
division C„' of C„ of which Ek = AoAi ■ ■ ■ Ak is a cell, the A's being its
vertices. (Incidentally this method, now quite customary, of naming a cell
by its vertices will prove very convenient.) Let Eh = AoAi • • ■ Ah be any
cell of C/ incident withE*. Then Ak+X ■ ■ ■ Ah is also a cell of C„', and the
totality of such cells gives rise to a C„_*_j homeomorphic to {e}. Hence
the manifold condition is equivalent to demanding that all these complexes
be homeomorphic to cell boundaries. As the complexes for a given Ek are
all homeomorphic the verification is really independent of the particular
Cn' chosen.

It is as yet unknown whether for a given Mn the manifold condition
is verified simultaneously for all defining complexes. We shall therefore
agree to consider only defining complexes such that the cells of Mn for which
the condition is verified have for logical sum one and the same point set.

4. The orientation of a simplicial cell is best defined by the order of
naming the vertices (Monograph, p. 13). The oriented C„ is a complex
as previously understood plus an assigned orientation for each «-cell. With
the orientation of E„ there is attached one for its boundary (n — l)-cells.
M„ is called orientable if its defining C„ can be so oriented that every non-
bounding £„_i receives opposite orientations from its two adjacent £„'s.
This property is independent of the particular defining C„. For match
the complex with a copy of itself so that corresponding boundary points
coincide. There will result a set of «-circuits, orientable or not at the same
time as C„ itself. From the known independence for the circuit (Coll.
Lect., pp. 100-102) follows that for M„.

5. It is frequently convenient to orient Mn by means of a special »-cell
used as indicatrix, thus : on an En = A oA x ■ ■ ■ A „ of the defining complex
we choose another En'=BJ}X • ■ • Bn reducible to the first by an affine
transformation of the common S„ Avith coincidence of vertices in the order
named, and instead of assigning the order of the A's, we do it for the .B's.

Let xx, Xt, • • •, xn be cartesian coordinates on S„, the origin being B0.
Then £„' is completely defined if we give ourselves the matrix H' of the
coordinates of the B's, it being understood that the ith row corresponds
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1926] COMPLEXES AND  MANIFOLDS 5

to Bi.   Let En" be another indicatrix with the same first vertex Bo, and
let H" be the corresponding matrix.   Then En" is the indicatrix of +Mn
or — Mn according as the signs of the determinants of H', H" (certainly
?¿0) are or are not the same.

Remark. Whenever we derive from C„ a new complex C„', subdivision
of the first, we shall agree to orient each «-cell of CV so that it constitutes
an indicatrix of the «-cell of C„ that carries it.

6. With Veblen we shall call singular ¿-cell on C„ a point set Ek, of C„,
uniform and continuous image of an ordinary cell Eh which we may as well
assume simplicial. Any statement concerning Ek, in particular regarding
its orientation or boundary cells, is to be interpreted by reference to Ek.

Let E\, • •■ , E\ be sensed cells on C„, and let E\_x, ' ' ' > -E*-i be
their bounding (k — l)-cells, all cells being possibly (but not necessarily)
singular.   We shall extend the term "¿-complex on C„" to cover a symbol

where the x's are arbitrary integers. The points of C* are those of the E*'s
whose x coefficient is not zero plus their limit points. To the cells correspond
Poincaré congruences

£Í=Ey.,£Í-i ,
and for C* by definition

Ck^^XiyaEi-i .

The Ck-i at the right is the boundary of Ck. If it reduces to zero, C*
is a k-cycle. The fact that C*_i is a boundary is also expressed by the
homology

Ci_i~0 (mod C„) .

Remark. The boundary (sensed) of an «-cell is a cycle ; the verification
is immediate.   Hence, by summation the boundary of a C„ is also a cycle.

§2.  Intersection of cells

7. Let Eh, Ek, E„ be simplicial cells, the first two on the third. Eh and
Ek may intersect in various ways. Assume that in the Sn of E„ the spaces
Sh and Sk which carry the other cells are linearly independent, so that their
intersection is anS¡, l = h+k — n. Grant furthermore that l = 0, so that Si
is an actual space (possibly a point) and also that the cells themselves
intersect. This intersection will consist of an element of Si, bounded by a
convex polyhedron, and therefore constitutes an /-cell E¡. If we assume the
linear spaces of the boundaries of Eh and Ek also as independent as possible
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6 S. LEFSCHETZ [January

from those of the cells themselves, no bounding (/ —l)-cell of Ei (necessarily
polyhedral like Et itself) will be an (I — l)-cell of the boundary of Eh or Ek,
but will be merely on one of their bounding (A —1)-cells or (k — l)-cells
respectively, and this we shall assume for the present. Ei Avith its bounding
polyhedron constitutes an Mi decomposable into simplexes, for example
by the regular subdivision process. To this Mi we now propose to assign an
orientation corresponding to given orientations of the other cells as follows.
Let En'=AoAx ■ ■ ■ An be a small simplicial cell such that E{ = AoAx • • • A¡
lies on Ei, Eh' = AoAx ■ ■ ■ Ak on Eh, and Ek =A^Ai ■ ■ -Ai Ah+X ■ ■ An on Ek.
Let aaEs', as= +1, be the indicatrix of E, (s = h, k, I, n). Then eti is to be
determined by the relation

o-h ■ o-h • £tj • an= +1 •

The cell so sensed shall be designated by Ek ■ Ek*
The relation between the a's shows that if one of the cells Eh, Ek, En

is inverted so is E¡. Furthermore if Eh and Ek are permuted the only indi-
catrix changed is £„', whose vertices undergo (n — h) (h — l) = (n — h) (n — k)
transpositions.   Hence

£»•£»=(-!)(--»)•(»-»£»•£*=-(-£») -Ek = -Eh.(-Ek).

8. We have tacitly assumed throughout that l>0. With suitable con-
ventions we may let it take any value whatever. The case /<0 may be
dismissed at once ; we simply write, then,

Ek-Ek = 0.
Let now / = 0. Then there is a unique point of intersection constituting

a zero-cell E0. It is this point with the value of a0 attached which we desig-
nate by Eh • E„-h. The value of a0 is called the Kronecker index or simply
index of Eh and £„_>, and denoted by (Ek ■ En-h). The above symbolic
relation still holds, and we derive from it and our discussion

(Eh ■ En-h) = (-I)oh-«» (En-h • £„) = -(-£„ ■ En-h) = -(Eh • -£„-*) ,

which may also be obtained directly by means of the indicatrices.
To make our conventions complete, when the cells do not intersect,

we shall write

Eh-Ek = 0,       (Eh-En-h) = 0.

The case A = 0, k = n, is not exceptional. We then have a point Eo — A
and an attached unit a0 in place of ah.   The point is on the "intersecting"

* In previous papers the same notation was used, sometimes with, sometimes without the "dot."
In this paper it has been essential to use the dot throughout, for in Part II another "product" symbol
comes in, whose meaning is wholly different and which will be written as a "cross" product.
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1926] COMPLEXES  AND   MANIFOLDS 7

cell En (in place of Ek) and a* is replaced by ¿„ whose value is +1 if En
is sensed like En, — 1 otherwise.   The index is now

(Eq • E„) = ao = aK • 5B • ¿a .

Its sign is that of d0 if En and Én are sensed alike, its opposite otherwise.
9. Our next task is to determine the boundary congruences. We first

assume that Eh ■ Ek has no boundary (l-l)-cell on the boundary of En. This
is indeed the general case, but the exception here referred to is of importance
later.   Let the boundary congruences for Eh and Ek be

■E*— ¿^Eh-i ,      Ek=¿_,Ek-i .

The boundary of Ek ■ Eh is then the sum of the cells Eh • E[_x, E\_x • Ek,
affected with signs that are to be determined.

Let for example Eh actually intersect Ejt_x and choose E'n with the
vertices of

Ék-i=A„Ai -   -  - Ai-x Ah+i ■   ■   ■ An on Ek-i .

As Ai must be transposed / times to come to first place, ( —1)! • a* • £t'_i
is an indicatrix of -E¿_i. Hence, ak-i corresponding to E{_x as ak to Ek,
we have

a*_i=( — 1) a* .
Therefore

oj_i = (—1)  • a¡

corresponds to Eh • Ek-x as a¡ to Eh ■ Ek itself, so that Eh ■ Ek-\ has for
indicatrix ( — 1)' • a¡ ■ AqAx ■ ■ -A¡-i, which is the precise indicatrix that it
should have as a boundary cell of Eh ■ Ek, since Ai must be transposed
/ times to be brought to first place, and since atAoAi ■ ■ ■ Atis the indicatrix
of Eh ■ Eh.

We conclude then that in the boundary congruence for Eh • Ek we must
affect Eh ■ Ek-i with the sign +. Similarly Ek ■ £*-i must be affected with
the sign -f in the congruence for Ek • Eh, hence ( —1)(»_*+1)<»-*)^1J_1 • Ek
with the sign + in the congruence for ( —l)(n_*,("_*)£il • Ek, from which
at once

Eh ■ Ek=(-lïn~k) £eLi • Ek +T,Eh ■ eLx -

In the exceptional case at first excluded, Ei will have some bounding
£i_i's on some bounding En-i of £„. This will be due to the fact that for
example £jj_i and ££_, will both lie in £„_i.   It is found by considering now
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8 S. LEFSCHETZ [January

intersections in En-i that E'_x ' £*-i is positively related to Eh ■ Ek- The
method is the same as above : we merely assume in our indicatrix A ¡ exterior
to En-i and the rest goes through about as before. We shall then have
the general congruence

(9.1)     Eh - Ek=(-l)"-kZELi ■ Ek+ZEh - 4-i+IX-i • eLi .
We have here a case where it would be distinctly worth while to have a more
complicated notation to indicate in which complex intersections are taken.
Such instances are comparatively rare and the doubt will always readily
be cleared up by reference to the context.

10. Fundamental theorem on Kronecker indices. Just as before, the
case where 1 = 1, and the cells at the right are points (zero-cells) offers no
exception. Eh • Ek is then a rectilinear one-cell Ex and the three sums at
the right reduce to two terms corresponding to the initial and terminal
points of Ex, the sensed intersection. To each of these terms corresponds
a Kronecker index, computed either as to En or as to one of its bounding
(« — l)-cells. I say, and this is our theorem, that in all cases the sum of these
two-indices is zero so that they are units of opposite signs.

11. Let then

Ei = Eh • .En-Ä+l— (— 1)      Eh-l • En^h+l +  •    •    ■    i

where we have not written the term that we do not wish to discuss. Assume
first that the term written represents the initial point A 0 of Ex and take
it for vertex of same name of the indicatrix previously considered. Here
then a ¡ = a i = +1.   The situation is as follows :

AqA2 ■ ■ ■ Ah is indicatrix for        —a* • £\_i ,
A qA iAh+i ■ • • An an-h+i ■ En-h+i >

A,At ■ ■ - AUiAk+i • • • An   u       " «     ;(-l)*-l-a„£».
The Kronecker index for the point ( —1)*_1 • E'h_x • En-h+i is then the
number ß defined by the condition

( — 1)   • ah • a„_*+i • (—1)       • a„ • (3=1 .
We have also

a» • a»-»+i • on • ai = a* • an-k+i • a„=l .

Hence finally ß = — 1. If A 0 were the terminal point of Ex, we would have
merely ai= — 1, the rest being the same, hence ß= +1. Thus we see that
the Kronecker indices for the end points have the same signs that the points
receive in the boundary congruence for £1. The other two cases (where Aa
is Eh ■ En-h or Eh-i • £n-* and on an £„_i) lead to exactly the same con-
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1926] COMPLEXES AND  MANIFOLDS 9

elusion ; the proofs, essentially similar, are omitted here. The sum of the
indices is therefore always zero as was to be proved.

12. The extension to the intersection of i cells £,-, Ek, ■ ■ ■ , Ek on En,
goes through Avith ease. It is denoted by E{ • Ek ■ ■ ■ Ek , a symbol
which obeys the associative but in general not the commutative law. A
similar remark holds for the index (£,• • Eh ■ • • Ek), which exists only
when i+h+ • ■ -+k = n(s — l). The boundary congruences can be written
down at once.

§3. Intersections of polyhedral complexes and their
Kronecker indices

13. The complexes which are to occupy us in the rest of Part I shall
all be immersed in a connected, orientable and oriented manifold Mn with
an assigned defining complex C». We shall assume throughout that inter-
secting complexes have non-intersecting boundaries and no common points
on the boundary Cn-\ of Mn. Of several intersecting complexes so restricted
let one, say Ck, have points on C„_i. We may subdivide Ck into C/ Avith
cells so small that those Ä-cells which have points of C»_i, or whose boundary
has some, carry no points of the intersecting complexes on themselves or
on their boundary. Let Ch be the complex sum of these cells plus their
boundaries. As far as the intersection with the other complexes is concerned,
C'h may be replaced by Ch' — Ch which carries no points of C„_i. A similar
remark applies in case there are points common to some, but not all, the
boundaries of the intersecting complexes. Henceforth it shall then be under-
stood once for all that

I. intersecting complexes have no points on the boundary of Mn ',
II. their boundaries do not meet.
Our general plan is as follows. We shall first define the intersection

of a still narrower class of polyhedral complexes, and then approximate
general complexes by means of these. But before defining our special poly-
hedral complexes, we must prove two lemmas.

14. Lemma I.  ^4«y polyhedral C* is a sum of simplicial cells.
Each A-cell of Ch is a sum of a finite number of polyhedral regions of a

certain Sh- Each region is decomposable into a sum of convex polyhedral
A-cells.* Remove these from C* and let Ch-i be the remaining complex.
The lemma is true for h — 1. Grant it for the dimensionality h — 1; Ck-\
can then be decomposed into a sum of simplicial cells. Select a point on
each convex Ä-cell and join it by rectilinear segments to the simplicial

* This has been proved by Veblen and others.   For detailed references see Coll. Lect., p. 83.
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10 S. LEFSCHETZ [January

cells of Ch-x on the boundary of its A-cell. There will follow the requisite
decomposition of C».

Remark. A region of the initial decomposition of G, may he on several
cells of C„. If so the boundaries of the latter decompose it into regions each
of which lies on a unique cell. Then Ch will appear as a sum of simplicial
cells, each also on a unique cell of C„. Whenever we shall consider in the
sequel a polyhedral Ch, arising in some manner in the course of the dis-
cussion, we shall assume that it has been decomposed into a sum of simplicial
cells each on a unique cell of C„. Strictly speaking, the initial complex is thus
replaced by a subdivision and should be designated by a new notation, but
it will simplify matters a good deal to avoid this.

Lemma II.   There exists a subdivision C„' of C„ with Ch as a sub-complex.
Decompose Ch as just stated into a sum of simplicial cells, any one,

say Ek, on an En of C„ or on its boundary. The Sk of Ek is the intersection
of certain Sn-i's of the Sn of £„. Extend these Sn-i's as far as possible on
the simplex of their £„. There will result a decomposition of C„ into a new
complex Cn with C« as a subcomplex. Apply now Lemma I to Cn and C„'
follows.

15. We now seek to define the intersection of two polyhedral complexes
Ch, Ck and its boundary congruences. Let

Ch= ¿_,Eh ; Ck^z^Ek ;

£*— ¿^Eh-i ; £*=2^£*-i •

We impose the following restrictive conditions :
(a) Intersecting h- and k-cells are on one and the same n-cell of Cn and

in general position as understood in §2. Their intersection is then an l-cell,
where, as before, l = h+k — n.

(b) Let Ehv_x intersect Ek-i on an £z_i. Then both are on an En-i of C„
and Ei-\is not on the boundaries of Ch and Ck.

When these two conditions are satisfied, the intersection, to be denoted
by Ch • Ck, is a C¡ defined by the relation

Ch • Ck= ¿_,Eh • Ek ,

it being understood that, whenever Eh and Ek do not intersect, £„ . £¡[ = 0.
The symbols Ch • Ck obeys the distributive law, as follows at once from

the definition.  Thus :

(Ch'+Ch") ■ Ck = Ch • Ck + Ch" • Ck ,
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1926] COMPLEXES AND MANIFOLDS 11

it being granted of course that both CV and Ck" satisfy conditions (a) and
(i>) as to Ck. Similarly for C* while the effect of permuting the C"s or in-
verting them is as in No. 7 for the cells.

The boundary congruences will present no great difficulty. From (9.1)
follows

(15.1)     e, ■ cw-ir'ix., • d+Zd • eZi+TiELi ■ eIi ,
the meaning of each sum being readily apprehended by reference to (9.1).
I say that the terms in the third sum cancel each other. Indeed let Eh
and Ei be on the cell En and give rise to the term ÉhT_x • Ek_x, intersection
of Eh'_x, Ek_x, situated in a bounding cell En-X of En. We assume the cells
£a_i, E{'_x, En-X positively related to El Ei, En, and £*_„ Ei'_x is the
intersection of the two sensed cells, oriented as indicated in §2.

According to (b) there exist E'n, E\', E'k of C„, Ch, Ck, with £„_i, Ek-X,
Ek_x on their boundaries and negatively related to them. There is a cell
labelled E\v_x = — Ehr_x and one labelled E'kíx = —Ek'_x. Indeed according to
(b) the cells of Ch adjacent to E"_x can be grouped in pairs oppositely related,
and we may assume that we have such a pair in El, Eh. Similarly for
EÍ and E{'.

There are now several possibilities. It may be that En^x separates E\
and E\ (that is, one of them is on En, the other on En) but not E'k and Ek .
Then the third sum in (15.1) contains these terms pertaining to the couples
considered above and no others :

Eh-i • Ek-X-\-Eh-X • Ek-i .

They represent intersections on £n_i and as E{'_x = —Ek'_x their sum is zero.
A second possibility is that En-X separates the two pairs of h- and k-

cells.  Then in the sum in question there correspond the terms

Eh-i • Ek-i-\-Eh—i • £*_i .

The first intersection is taken on En-X, the second on — £„_i (that is in the
scheme of §2, En-X must now be replaced by — En-X, the reason being that
boundaries of cells on En' are now involved and En' is negatively related
to En-î). When intersections are referred to £„_i, the second term must be
written

—Eh-i ■ Ek-i = — (—Eh-X) • (—-Ejfc-i) = — Eh-i ' Eic-X

and the sum is again zero.
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12 S. LEFSCHETZ [January

Finally we must consider the case where £„_i separates none of the two
pairs of cells.  Then the terms to be considered are now

¿r _ji ir j» ir /• ir j «
Ek-i • Eiç-x+Eh-i ■ £*_i +Eh-i • Ek-x+Eh-x • £*_i ,

the intersections being all referred to £„_i. It is immediately verified that
the fourth term is the same as the first, and the other two terms its negative.
The sum is then again zero.  This completes the proof of our assertion.

16. The boundary of Ch is a cycle r*_i, and that of Ck is a cycle Tk-i.
We have

Ch— Th-i,   c*= r¡fc_i.

The first two sums in (15.1) are respectively Th-i ■ Ck and Ch • IV-,. Hence
in the last analysis we have this fundamental congruence :

(16.1) Ch ■ Ck=(-l)n~" Th-i -Ck + Ch- IV, .

17. A series of important corollaries follows at once from the preceding
discussion.

I. A complex C« is called a generalized manifold if every non-bounding
Eh-i of it is incident with just two A-cells. Orientability is defined for it
as for an ordinary manifold. From our discussion we obtain the following :
if Ch and Ck are orientable generalized manifolds so is Ch • Ck.

II. If one of the complexes is a cycle the boundary of Ch • Ck is the inter-
section of this cycle with the other complex or its opposite. If both are cycles
so is their intersection.   In symbols,

(17.1)       Ch ■ Tk=(-l)n~kTh-i ■ Tk;    Th- Ck=Th - rw;      Th - Tk=0 .

III. When the boundary of each complex does not meet the other, Ch - Ck
is a cycle.

IV. Let Th bound Ch+i satisfying our restrictive conditions as to its inter-
section with Ck.  Then Th • Ck is a bounding cycle also.

This can be read off from (17.1).
18. Kronecker index. This time the dimensions are h and « — A.

We make the same assumptions as previously, and, in addition, agree that
for two non-intersecting cells the index is zero.   Then

(C0-C„_n)=£(^£n-»)   .

From No. 8 follows the distributive law for indices. The result of permuting
the two complexes or of changing the sign of one is as for cells and need not
be written down.
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1926] COMPLEXES AND MANIFOLDS 13

From No. 10 and (16.1) it follows that if

c\= r»_i,   Cn-»+i= r„_A,
then here

(18.1) (Ck • r_») - (-1)* • ( rv, • cn-h+x),

a formula of great importance later (§6), as it transforms an index cor-
responding to dimensionalities h, n — h, to one with h replaced by h — 1*

19. From the theorem of No. 10, together with (16.1), now follows
Let Th bound a Ck+i not intersecting the boundary of Cn-h, a condition that

disappears if we deal with a Tn-h. Let furthermore the usual restrictions as to
intersecting complexes, Ch+i and C„_» or Tn-h, hold.   Then

(rvcv*)=o,  (IV rn_*)=o.
Observe that owing to the distributive law, it is not necessary that r»~0,
but merely «0, for then tTh bounds and the multiples of the indices are
zero; hence also the indices themselves. This result will have important
applications in Part II.

20. The extension to several intersecting complexes offers no particular
difficulties. The symbols follow the associative and distributive laws, but
not in general the commutative law.

§ 4. Approximation or complexes
21. A first, but somewhat inelastic, approximation to a general complex

Ck by a polyhedral Ck' will be obtained by direct application of processes
due to Alexander (these Transactions, vol. 16 (1915), p. 148) and Veblen
(Coll. Lect., pp. 95, 118). Ck appears then as a subcomplex of a subdivisior
of C„ with cells of suitably small diameter. There are two associated com-
plexes Ck+i and C\\ such that

(21.1) Ck+i^C-Ct'+cl ,

and therefore

(21.2) C.'~Ch+C\.

C°t appears only when Ck is not a cycle. Our Ck+i is the same as Veblen's
Bi+i. When Ck is not a cycle, the boundary cells of Ck+i which join boundary
cells of Ck and C*' are also part of the boundary of Ck+X, and their sum is
precisely C\.

* An analogous formula for cells was given by Veblen in the Transactions paper already
quoted, p. 542.
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In the light of this and upon examining the construction, we find by the
simplest continuity considerations that it may be carried out so that the
following statements hold.

(a) Ck and Ck+i are both as near as we please to C*.
(b) The complex Cj and the boundary of Ck are as near as we please to

the boundary of Ck-
(c) Ck includes any particular polyhedral boundary subcomplex of Ck.

This is proved by a very transparent application of Lemma II, No. 14.
22. From the preceding method of approximation we may derive this

interesting result : Let the approximation be made by means of cells of C„.
7/ the points of a cell of Ck are sufficiently near those of Eh of C„, then its approxi-
mation is Eh itself or a cell on its boundary. The cell of Ck need only be within
a certain distance Ô of Eh in order that this be true.

From this we have the following
Theorem. To every polyhedral complex Ck corresponds a positive number o

such that every cycle Th whose points are all within 5 of Ck is homologous to a
cycle Th on Ck.

For Ck is a subcomplex of a subdivision C„' of C„ (Lemma II, No. 14)
and in this case C° corresponds to C°k of No. 21, for Th is absent. We can
also affirm that Th — Th' will bound, by (a), a Ch+i whose points are as near
as we please to Ck at the same time as those of Th.

Incidentally, since Ck can have no cycle of more than k dimensions, we
have this very interesting result : A non bounding cycle cannot be homologous
to a cycle as near as we please to a complex of smaller dimensionality.

23. The approximations which we have obtained so far are not flexible
enough for our purpose, which demands the approximation of two or more
complexes at the same time by others with a well-defined intersection. This
will be based upon the all-important

Theorem. Let Ck be a subcomplex of C„. By subtraction of bounding
k-cycles, it may be reduced to another complex with the same boundary, whose
(k—i)-cells not on the boundary of Mn nor on its own are on cells of at least
n — i dimensions of Cn.

Let Cn be a regular subdivision of C„ and Ck the corresponding subdi-
vision of Ck. Any vertex of C„' shall be affected with an upper index, such
as A\ to indicate the dimensionality p of the cell of C„ which carries it.

Let us attach to any cell Er = A oA, • • • AToi C„'a symbol (p0, pi, - • • , pT)
to describe its type. Observe that the p's are all distinct, for po = pi = p would
mean that two points on distinct /»-cells of C„ are joined by a rectilinear
segment wholly on a /»-cell.
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Another and more significant property is that the highest p indicates the
dimensionality of the cell of C„ which carries ET. For then ET has points on
such a cell (in the vicinity of the corresponding A p) ; hence, due to the mechan-
ism of regular subdivision, it lies entirely on it.

Our theorem will then be proved if we can show that Ck is reducible to a
complex of which every Ek-i not on its boundary nor on that of Mn has in its
symbol an integer ¿zn—i.

24. (a) For « = 1, the reduction is immediate. Then k = 0 alone needs
to be considered. Co is a sum of points each with an assigned sign. Any such
point A, say affected Avith +, may be reduced to any point B of Cx by adding
the end points of a polygonal line AB. These end points constitute the
bounding r0 of the theorem.

(b) Let now i = 0 and Ek be as yet not reduced. Its symbol is then of
type Aq' • • • Alk Avith all the p's less than «. The cell lies therefore on the
boundary of an «-cell of C„ on which there is a vertex Al+X. Let Tk be the
boundary of the simplex Al+X A\' • • • A™ which is positively related to
Ek ; Ck — Tk is a complex which has the same structure as Ck except that Ek
has been replaced by k +1 cells of same dimensionality in every one of whose
symbols appears Al+X, so that they are on « cells of C„. This carries out the
reduction for ¿ = 0.

(c) Assume that the process goes through for any Mn-, n' <n, and also
for all cells of more than k—i = m dimensions of Ck. I say that it goes
through for all dimensionalities.

Consider an unreduced Em = A\' ■ ■ ■ A^ of Ck', the p's being then all
<n-i = n-k+m. To any Eh = Apt' - ■ ■ A* Av^{ ■ ■ ■ Af incident with
Em corresponds Ek-m+i = -4¡ü+í ■ • • Akk which we sense so that if the first
set of A's is, as we shall assume, an indicatrix of Eh, the last is one for Eh-m-i.
The totality of these cells is a subcomplex of C* which is an Mn-m-X homeo-
morphic to the boundary of a cell (No. 3). The incidence relations (boundary
congruences) between corresponding cells are formally identical.

Let <7o, ?i, • • • , ?n-m-i be the set of integers in increasing order which
together with pa, ■ • • , pm constitute the set 0, 1, • • • , n. The manifold
Mn-m~x carries two defining complexes. The first CB-m-i has the points AH
for vertices, the second C'n-m-X the remaining points A9. In fact Cñ-m-i
is a regular subdivision of C„_m_i, its vertices e/< being on ¿-cells of it. To
show this it will suffice to examine the relation between those which cor-
respond to <7o and <7i. Let, for example, the sequence of the p's and q's in
increasing order read p0, px, qo, p2, pz, qu ■ • • , so that po = 0, pi = l, <7o = 2,
• • • , ?i = 5, • • • . Consider now E2 = A° AlA* of C„'. It is on a certain

three-cell of C„ on which it is incident Avith exactly two cells A°AlA\A% and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 S. LEFSCHETZ [January

AWA\A* of Cn'. Hence Em+1 = A°A*A* ■ ■ ■ A*A**A*> -A*» whose
symbol is (/»0, • • • , pz, ?i, p*, ■ ■ • , Pm) is incident with the two (ra+2)-cells
obtained by placing first A\, then A\ between A1 and A3. It follows that
A3 is on the one-cell A\A3+A3A2 of C„_m_i. With the q's the statement
;s that A"' is on the one-cell Al'A^+A^A!?. The same reasoning applies
to the other q vertices.

Observe that since the p's are all < n — k+m the q's must include all
integers from n — k + m to m. Hence qn-m-\=n, ç„_m_2 = «—1, • • -, </„_*_,=
« — k+m.

25. Let now (/»0, • • • , pm ; <?o', ■ ■ ■ qi-m-i) be the symbol for any ¿-cell
of Ck incident with Em. The reduction being achieved by assumption for
all cells of more than m dimensions, (pa, ■ ■ ■ , pm ; q/), the symbol of an
(i»+l)-cell, must possess an integer —n — k+m+1 which can only be q/.
Similarly (p0, ■ • ■ , pm) q<, q¡) must include at least one integer = n — k
+m+2, and this can only be q/ or q/, etc. Finally, then, among the k—m
integers q/ there must be one at least equal to each integer of the sequence
«—k+m + 1, n — k + m+2, •••,». As they are all distinct and = n they
constitute that very sequence and our cell has then the symbol (p0, • • • ,
pm\n —k+m+1, ••-,«). The symbol of the corresponding cell of C„_m_i
is (w — k+m + 1,  •••,»).

26. Let Ck be the subcomplex of Ck' which is the sum of its cells incident
with Em. Since the latter is not on the boundary of Ck, on any Ek-i of Ck,
there are as many positively related incident ¿-cells as negatively related.
Hence the complex of C»_m-i which corresponds to Ck is a cycle r*_m_i.
Since C'n-m-i is homeomorphic to the boundary of a cell, Tk~m-i bounds on
the complex, and in fact bounds a subcomplex Ck-m of Cn_m_, (Coll. Lect.,
pp. 95, 118). Furthermore since the reduction to be proved applies by as-
sumption to an Mn-m-i, Ck-m may be so reduced without changing its
boundary that in the symbol of its i-cells not on the boundary r there
appears qn-k+,-i or a higher q. But since the cells of r already satisfy this
condition, it holds for all cells of Cu-m without exception. From this we con-
clude immediately that its (k — m)-cells have all the same symbol:

(qn-h-i, qn-k, • • • , q„-m-i) = (n-k+m, n-k+m + 1, - •■,»).
That it has this last simple form follows from the remark at the end of No. 24.

27. To Ck-m corresponds a subcomplex Ck+i of C„' whose boundary is
a rt. The cells of this cycle incident with Em constitute Ck so that En is
not a cell of Ck" = Ck' — Tk. However, among the new cells of Ck" are found
those on ¿-cells of r* not incident with Em and we must examine these.

The symbol for any (¿ + l)-cell of Cjfc+i is (/>o, • • • , pm;n — k+m, •••,«).
The new ¿-cells introduced have then a symbol such as (po, ■ ■ ■ , P,-i,
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p,+x, • ■ • , pm ; n — k+m, •••,»). In the symbol of any cell of m+j dimen-
sions of its boundary will then appear n — k+m+j or a higher integer. The
new cells of m or more dimensions have then the desired behavior. Thus
Em and its incident cells have been replaced bv a set of cells which fulfil
all requirements.   The proof of our theorem is therefore complete.

Remark. We have incidentally obtained the following interesting
proposition : Every cycle of a complex defining a manifold 'without boundary
is homologous to a cycle on its dual. More precisely every r* of Cn is homolog-
ous to a cycle whose k-cells have all the same symbol (n — k,n — k + l, ■ ■ ■ , «).

28. We return to our approximation problem. The reduction of Ck has
been obtained by adding the boundaries of (£ + l)-cells incident with its
¿-cells and belonging to C„. Let us replace C„ by a subdivision C„ with cells
< e and Cn' by a regular subdivision of C„. If we make the same reduction,
we shall merely add to Ck the boundaries of (k + 1) -cells within a distance of
e from the complex.

Applying this reduction to the approximating complex Ck we find that we
do not thereby disturb (21.1) or (21.2). The complex Ck+iis simply increased
by cells as near as we please to Ck, hence to the approximated complex.

29. The essential property of Ck is that the Sk-i of any £*_, of the complex
has the maximum degree of generality relatively to the space of the cell C„
that carries it. We mean thereby that, by modifying the complex without
changing its cellular structure, Sk-i may be brought into coincidence with
an arbitrary neighboring 5t_4. The weakest case is when £*_, lies on an
En-i of C„ with its vertices on (« — &)-cells of the boundary of £„_<. Let A
be a vertex of Ek-i on the cell E„-k ; S't-t will intersect the latter at a point
B very near A. Impress upon A the rectilinear displacement AB, and
similarly for the other k — i vertices of £*_,•, leaving the remaining vertices
of Ck unchanged. There results an obvious deformation of Ck, into say Ck",
whereby Sk-i is brought into coincidence Avith Si-t thus proving our assertion.

The displacement of Ck may be so carried out, and in a continuous
way, that every point will describe a rectilinear path. Their locus is a
C*+i=C*" — Ck. By adding this to (21.1) we see that Ck" may take the
place of Ck Avith Ct+i+C*+i in place of Ck+i- If Si_< is sufficiently near
Sk-i conditions (a), (b), (c) of No. 21 may still be fulfilled. The reasoning
in case Ek-i lies on a cell of more than n—i dimensions is the same

§5. Intersections of general complexes

30. To arrive at something significant, we must narrow down the problem
once more. We replace then the second condition of No. 13 by the some-
what more sweeping
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III.  Intersecting complexes must not meet the boundaries of one another.
To complexes so restricted we shall ascribe definite cycles or Kronecker

indices. Indices and cycles are fixed, in the sense that the former remain
the same when we vary the approximating complexes or even the C„ by
means of which we construct them, while the cycles remain homologous
to themselves. We shall at first maintain C„ fixed and merely vary the poly-
hedral approximations, then examine the effect produced by a change
OfCn.

31. Starting first with two complexes CB, Ck always restricted as in
No. 13, we approximate them as closely as we please by Ch', Ck constructed
as in No. 32 with the system of relations

(31.1) Ck+l =-Ch-Ch+cl ;        CK~Ck+cl ;
/ 0 / 0

(31.2) C*+i=C*—Ck+Ck ;       Ck~Ck+Ck ;

the various complexes have the same meaning as those of similar designa-
tion in §4. If the approximation is sufficiently fine, Ch and Ck will also
fulfil the restrictive conditions I, III of Nos. 13 and 30. This we assume
henceforth for all our approximating complexes.

It follows at once from No. 29 that we may so choose CY and Ck that
they satisfy the two conditions of No. 14 for a well defined intersection
Ch • CY. Since the boundary of each complex does not meet the other,
the intersection will be an /-cycle. It remains to be shown that this cycle
is independent of the approximating complexes.

32. As a preliminary step let ¿Y be another approximation whose
intersection with Ck' is well defined.   I say that

(32.1) Ch'■ Ck'~Ch'■ Ck'.

We have now congruences such as (21.1)

(32.2) Ch+i^Ch+Cl-Ch' ,
(32.3) Ch+i^Ch+d-Ch'

with C°h, C» very near the boundary of C« and Ch+i, Ch+i very near the
complex itself. Their approximation is in fact assumed such throughout
that none of these complexes meets the boundary of CY. We have then
from (32.2) and (32.3)

Ch+i—Ch+i—Ch — Ch — (Ch—Ch).

To the complex at the left we may apply everything said previously for
Ct with the following result.   There exists a polyhedral complex C'h+l very
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near it, having a well defined intersection Avith Ck and whose boundary
is Ch —Ch plus a certain ¿-complex very near Cn—C°h and therefore not
meeting Ck-   Hence by (16.1)

C'h+i ■ Ck^(Ch-Ch) • CÍ~0 (mod   Mn) ,
from which (32.1) follows.

33. Let now ¿V', Ck be two approximations with a well defined inter-
section. In order to show that the intersections are independent of the
particular polyhedral approximations provided they have a well defined
intersection, we must prove that

(33.1) eV-CY-Ca'-C*'.
By a slight displacement such as is used in No. 29, we may replace Ck
by a complex Ch" with a well defined intersection with both C*' and Ck.
All that is necessary is to replace throughout Ck by Ck —Ck. We have
then according to the preceding number

CY • Ck' ~ Ch" • Ck' ;     Ck' ■ Ck' ~ Ch" ■ Ck' ;

Ch" ■ Ck'~Ch" ■ Ck' ,
whence (33.1) follows.

Regarding the Kronecker indices, Corollary IV at the end of §3 yields
at once for h+k = n

((Ch'-Ch'-(CI-Ch))   C»')-0,
and as C*' does not intersect Ch0—C°h,

(Ch' ■ Ck') = (Ch' ■ Ck')

and the rest is as before.
34. The extension to more than two intersecting complexes is easy.

With obvious notations we must show that

Ck' ck'■■• cy~Ck'■ e,'■ ■ ■ a.
Introduce Ck" in general position as to Ck, Ck, • • • , C{, Ci. As above it
may be shown that in the homology Ch and Ch may both be replaced by
Ca", the process continuing in an obvious way. The treatment for indices
is the same.

35. As is natural we denote the cycles and indices defined by means
of our approximations as Ca • C* • • • C¡, or (Ca • C* • • • Ct). These
symbols have the same properties as those for polyhedral complexes them-
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selves. Those pertaining to permutation of complexes hold obviously,
others less so. We shall examine them in turn, with particular reference to
our future needs.

I. Associative law. The scheme of the proof is sufficiently illustrated with
three complexes and if we show that

Ch • (Ck • Ci) ~ Ch • Ck • Ci.

By definition Ck • C¡ and Ch • Ck • Ci are the polyhedral cycles Ck • C¡'
and Ch • Ck • C{. In the approximation that leads to the determination
of Ch • (Ck • CY), the cycle in parentheses can be taken as its own approxi-
mation. Hence the cycle at the left in the homology is by definition
Ch ■ (Ck ■ Ci) and we are back to the case of polyhedral complexes in general
position, for which the law holds.

II. Distributive law.   We wish to show that, say,

Ch ■ (Ck+Ck) ~Ch-Ck + Ch-Ck.

On examining the two successive approximations of §4 it will be seen that
Ck+Ck is an approximation for Ck+Ck- If each of the two primed complexes
has a well defined intersection with Ch so has their sum. Hence the left
side is by definition Ch • (Ck'+Ck). As the terms at the right are also defined
by means of the primed symbols, we are again back to the case of poly-
hedral complexes where the law holds.

The two preceding proofs hold without modification for the Kronecker
index.

III. // Ch, Ck, • • • , Ci do not actually have a common point, then

Ch-Ck- ■ • C,~0 , or (Ch - Ck • • ■ C) =0 .

For then the primed complexes may be taken without any common point
and everything is once more reduced to the known case of polyhedral com-
plexes.

IV. Let Ch bound Ch+i such that it is the only one of the set Ch+i, Ck, ■■ ■ , Ci
whose boundary may have points in common with the other complexes.   Then

Ch - Ck • ■ • C,~0 or (Ck • C„ ■ • • Ct) =0 .

From (31.1) follows Ch+i — Ch+i=Ch , for C\ is now absent since C«
is a cycle. Moreover C* being a subcomplex of C\+, the sequence Ch, Ck, • • -,Ci
behaves like that of the statement. Let us approximate C»+i — Ch+i by, say,
C'h+1, in our usual manner, which may be done without changing C« since
it is on the boundary (property (c), No. 21).   Since C*+1 is very near Ch
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it will be seen that the primed sequences corresponding to the two considered
above behave as they do. The generalization of (16.1) gives here

C' r- I c I_t-i I     /-> / r- IA+l • L*   • • • Oj =La   • W   • - • • • W

from which IV follows.
V. Let Ta«0 (i. e., some multiple of IYM)).   Then

Th-Tk- •• r,«o t>r(r»r*. • • r,)=o.
This is an immediate corollary of IV. In both IV and V it is of course not
at all necessary that the complex or cycle singled out be the first.

VI. In Ch we may suppress any subcomplex not intersecting Ck, ■ ■ ■ , Ci,
without affecting intersection cycle or index.

This is an immediate but important corollary of II and III.
36. Before we proceed A/rith a thorough examination of the effect of

passing from C„ to a new defining C„, let us observe that instead of approxi-
mating to Ch by means of Cn it is sufficient to do this for Ch- Indeed, let ¿V
be the approximation to Ca' by means of C„. We shall have a congruence
such as (21.1):

Ca+i=Ca —Ca +Ca ,

with Ca+i very near Ca' and C° very near its boundary. Add this congruence
to the first of (31.1) (which is the same as (21.1) with k replaced by h) :

(Ca+i+Ca+i) = Ca-Ca'+(cI+CÂ) .
This is analogous to (21.1) with CY as the approximation to Ca. As the
congruences such as (21.1) plus the structure of the approximating com-
plexes themselves were alone used in defining the intersection cycles and
indices and deriving their properties, our assertion is proved.

§6.  Proof that intersection cycles and indices are invariant
when the defining complex is changed*

37. For indices the invariance is conditioned upon a certain simple
sense convention. Let C„, C„ be any two defining complexes. By prac-
tically the same reasoning as Veblen's in Colloquium Lectures, pp. 101, 102,
we may show that one of the two complexes Cn±Cn is a bounding cycle,
but not both (loc. cit., p. 120). We shall assume in the future that the
complexes are so oriented that C„ — C„ is the bounding cycle. Once any particular
complex has been assigned an orientation, a definite one follows for the rest.

* A first type of proof is outlined in my second Proceedings note. Just as it appeared in
print I discovered the much simpler treatment embodied in this section.
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We must examine if the present convention agrees with our previous
mode of sensing a subdivision C„' of C„, where it will be remembered a
cell and its subdivisions were always so sensed as to have a common indi-
catrix. It is clearly sufficient to consider the case where C„ is a simplex
with a simplicial subdivision :

l^n  = 2n "T   "   '   '    l    2n  •

Let the first q simplexes, but no others, have an (n — l)-simplex on a given
simplex 2„_, of 2„, namely 2M_, for 2B, with A and A* as the vertices of
2„ and 2B not on 2n_, or 2„_l We take the orientations such that A
followed by the vertices of 2„_i corresponds to the same as A < followed by
those of 2B_,.

In order that 2„ — C„' be a cycle, it is necessary and sufficient that the
boundaries on 2„_i cancel, or that

2„_! - ( 2„_i + • • • + 2L1)

be a cycle. This reduces the verification from » to « — 1, hence ultimately
to « = 1 for which it is immediate.

38. Let us return to two arbitrary defining complexes C„, C„. Our
customary approximations, when applied to C„ by means of C„, cannot
go farther than what is yielded by the Alexander-Veblen process. In this
case it comes down to this : We subdivide C„ and Cn into Cn' and ¿Y, then
establish a correspondence T whereby to each cell of C„' is assigned a unique
one of Cn'. The «-cells of C„' are each covered positively by ¿2 cells cor-
responding to positive cells of Cn' and negatively by ¿1 such cells. Further-
more it is a property of the correspondence that C„' — T (CY) bounds, hence
¿2 —¿1 is fixed for all «-cells of C„, else this complex would have boundary
cells exterior to the boundary of M„ and would not be a cycle.   Moreover

r(CY)~CY~Cn~Cn~C„';
therefore

Cn'-T(Cn') = (l+kx-k2)Cn'~0 .

When a subcomplex of a C„ bounds it bounds also such a subcomplex
(Coll. Lect. p. 118). But C„' has no (m+1)-cells, hence this homology
can only be true if l+¿i — ¿2 = 0, ¿2 — ¿, = l. Thus T(Cn') covers Cn' exactly
once.   The importance of this will appear later.

39. Invariance of the index. It will be established by means of (18.1)
that

(39.1) (Ch ■ Tn-h)  =  (-!)*•( Th-i  ■ Cn-h+l) ,
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where the conditions of No. 15 must be satisfied. Here the intersecting com-
plexes are the two extremes, the cycles being their boundaries. We have,
then, given Ca, C„_a, their approximations Ca', C'n-h by means of a first
defining complex C„, and ¿Y, C„'_a by a second C„, the latter being, if we
wish, approximations to Ca' and CB'_„ rather than to the given complexes
(No. 37). We denote the indices as to C„ by the usual round parentheses,
those as to C„ by square parentheses, and our object is to show that

(39.2) (Ch' -C'n-h) =[Ch' -CLh]-

Assuming first that neither h nor n — h are zero, we shall replace (39.2)
by a similar formula with h — 1 in place of h. This will allow us to reduce
everything to the case h = 0 for which the proof is simple.

40. Suppose that there exists a polyhedral Cb_a+i (until further notice
straightness and the like are defined by reference to C„) whose boundary

"n-A = Cn-h+Cn-k

where C'a and C'n'-h do not meet. Then first

(Ca • C„_a) = (Ca • Tn-h) -

Also assuming all due conditions satisfied, and denoting by T'h-X the boundary
of Ca', we find from (39.1)

(40.1) (Ca' • C'n-h) = (-1)*- (Ta_i • CLk+i) .
The necessary conditions are fulfilled with ease. According to our very
construction of approximating complexes, C'h and C'„_h intersect in a finite
number of points, any one of which, say Ait is on cells of maximum di-
mensionality of the two complexes and of C„. Let in particular En_h be
that of C'„-h. We can construct a simplicial £b_a+i with E„_h on its boundary
and positively related to it. Let this last cell count w, times for CB'_ft.
We choose

C„_a+i= ¿^miEn-h+i ;

C'n-h is now what is left of the boundaries of the cells at the right when the
cells mi £„_a are removed from them. We may therefore manifestly so choose
the cells Én-k+\ that C„_a will contain no A point.

Without prejudice to what precedes, the cells of C'n'-h may be brought
as near as we please to C'n_h, hence we may so construct Cb_a+1 that C'n'-h
intersects Ca in a finite number of points (none an A), each on h-, (n — h + 1)-
and w-cells of C%, C'„-k+x and C„.   Let B be such a point.  Remove from Ca'
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a simplicial cell Eh containing B. If it is sufficiently small, it will contain
no A and its bounding (h — l)-cells will intersect CB_B+1 each at a single
point of the cell that carries B. Operate similarly for all B's and let the new
complex still be denoted by Cj_, and its boundary by rí_,.

If the cells of Cn_i+i and those removed from the initial Ch are adequately
small, the intersection of the new C'h with C'n_h+1 will be a sum of isolated
rectilinear segments each on an «-cell of Cn, and as between the two com-
plexes the various restrictions of §3 are verified. Since the new Ch does
not meet C'nLh, it gives rise to the same index (Ch • Cn_h) as the initial one,
so that we are assured that (40.1) holds with Ch' as the new approximation
to Ch and r¿_, as its boundary.

41. At this stage we introduce the second defining complex Cn- All
approximations by means of it are to be denoted by the same symbols
barred.

We first construct rA'_i, C'n_h, C'„'_h. On examining our approximating
processes, it is seen that the sum of the last two complexes is a suitable
r„_A. The cycle rA_, bounds Ck+Ch, where the second complex, intro-
duced by the approximation, is as near as we please to r¡_,. Since C'h and
C„_a were constructed in general relative position, the second does not
meet the boundary Th_¡ of the first. With approximations sufficiently fine,
it will not meet Ch either.   Hence (No. 35, VI)

KCa + Ca)   • Cn-h\   =   [Ch • Cn-h\   •

Therefore in place of approximating C«' we may approximate Ch'+C\. To
avoid more notations than necessary, we shall denote that approximation
by Ch'.

Similarly Tb_a bounds a complex C'n_h+l+CH_h+l, the latter very near
the cycle and therefore not intersecting T'h_x, hence, as above, its approxima-
tion may take the place of that of Cn_i+1 and will then be denoted by C„_B+i.

As previously, we may choose the approximations C'h and Cn_i+1 such as
to fulfil the conditions of §3 (Nos. 13, 15), for a well defined intersection.
Even for h = 1 is this the case. cY may then be so chosen that the points of
iY are approximated by any in their vicinity. We have therefore in all cases
where h >0

[C'h-Cn-h] = (-i)h[fh-i-CLh+i].

By the definition of the index, each expression defines that of the ap-
proximated complexes, which are here the primed complexes. Hence

[Ch  • Cn-h\  —   (—1)   •   [Th-l   •   Cn-h+l] •
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42. From (40.1) and (41.1) follows that in place of (39.2) we need only
prove

(Ta_i • Cn-A+l)   =   [Ta-I • Cn_A+lJ ,

of the same type but with h replaced by h — 1. Proceeding thus if necessary
we shall reduce h to zero. The last step will consist in replacing Ci' by its
set of terminal points iY, the signs affixed to them being + or^- according
as they are positively or negatively related to the complex. iY will then
consist of points in the same number as those of iY, very near to them
and with same signs attached.

For the other complex, we now have a Cn' and by subdividing Cn if
necessary, we may assume that C„' is a subcomplex of it. Furthermore,
(No. 41), the points of iY may all be chosen on «-cells of C„'.

Owing to the distributive law, we may assume in the last analysis that
we have a unique point A with a definite sign affixed, and a unique cell En
of Cn carrying the point A. We have seen that the sign of the point is to
be independent of the approximation; let us assume that it is +. In the
other possible case, the reasoning would be the same with perhaps some
signs changed.  We must then show that

(A -En) = +1 = [A -En].
Since A is not on C„—En, we may add the last complex to En without af-
fecting the indices.   We have to prove then, that

[A -C.1-+1.
We may choose A on £„ not a cell of less than « dimensions of Cn without
affecting our indices. Let A be its own approximation by means of C„.
The approximation of C„ by means of Cn will be the sum_of the cells of a
certain subdivision of Cn (No. 40), which is the same as CB itself. Finally
then

[A-Cn] = [A -CJ-+1,
which completes the proof of the invariance of the index of two complexes.

43. The extension to the index of several complexes can be made along
the same lines. The essential thing is to obtain a relation analogous to
(40.1). It will be sufficient to derive it for three complexes Ca, Ck, Ci,
h+k+l = 2n, Avith the usual conditions as to their boundaries. Their ap-
proximations will then satisfy conditions analogous to those of No. 15. With
obvious notations, let C'h+X have for boundary Th = Ck+Ch with Ch not
intersecting C»' nor C{. As a matter of fact, it would be sufficient to have
it not intersecting Ck • C!.  Then

(43.1) (CV-CV-aO-dY-CV-CiO .
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Also by (16.1) and with r¿_, the boundary of Ck ,

Ch+i ■ ci-(-i)»-* • ri ■ ck+Ch+i - r'*_i,

it being granted that conditions of No. 15 are duly fulfilled. If we now
further assume that the boundary of C{ does not meet the complex at the
left, then (No. 19)

(-i)"-*(iY• el ■ Ci) + (Ck, • rL, • C) = ö .
Hence by (43.1)

(cft  c'k -cl) = (-l)"-*-1^, • rL, -CÍ) .

Similarly, with notations whose meaning is transparent,

c'h ■ ci ■ c/=(-i)n_I_1 • (c'h ■ c'k+i - rU) •

Thus we can raise both h and ¿ at the expense of /, until h = k = n, 1 = 0.
From this point on the details of the discussion differ in no material way
from the case of two complexes and need not be given here.

We have then proved that the index of any number of complexes, when
any exists, is independent of the defining Cn of Mn and the related straightness.
It has of course the various properties given in No. 36.

44. Invariance of the intersection cycle. The reasoning is exactly the
same whatever the number of complexes, so we need only take two, Ch, C*.
This time, with our previous notations, we have to show that

Ch -Ck~Ch • Ck .

The cycle Ch' ■ Ck' is carried by a G, of the simplest type of No. 2, sum
of the distinct simplicial /-cells of a decomposition of the cycle into such cells.
Let these cells be E), ■ ■ • , Ef, oriented each in a definite way. We shall
have

Ci= ¿_,Ei ;     Ch • Ck= Z^tiEi,

where the t's are non-zero integers.
Since the barred complexes are as near as we please to the non-barred,

Ch ■ Ck is as near as we please to Cj. Hence (No. 22) the latter carries a
r¡, subcomplex of a sufficiently fine subdivision, such that Ch ■ Ck' — Ti
bounds a C¡+i whose points are as near as we please to C¡. But I\ is homo-
logous, mod Ci, to a subcomplex of G itself (Coll. Lect., p. 120). Hence we

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1926] COMPLEXES AND  MANIFOLDS 27

may assume that r¡ itself is such a subcomplex Avithout weakening the
assertion as to C¡+i.  We shall have

Ch' ■ cY~X>.-e'= r,.
Owing to our usual approximating procedure, each E\ is on an «-cell

of Cn. Hence, just as if C„ were an Sn, we can construct a simplicial £„_■
that intersects C¡ at a unique point on E\ in such manner that

(E\ ■ En-i) = +1 ; (EÍ ■ En-i) = 0 , ;Vi.
By taking £„_¡ sufficiently small, we may dispose of it so that its boundary
does not meet C¡, while the cell itself does not meet the boundaries of Ca'
or Ck- This is due to the fact that the latter do not intersect C¡ while En-i
is very near to this complex.

Let us now approximate by means of C». We have two congruences
such as in No. 31 :

Ck+i = Ca—Ca+Ca ,

Ck+i—Ck~Ck-\-Ck -

When the approximation is carried sufficiently far,
(a) the boundary of £„_¡ will not meet Ci+X ;
(b) it will not go through any intersection of Ca+i with Ck or ¿Y, nor

of Ct+i with Ca' or C'h;
(c) En-i will not meet C° nor C°t.
Since Ci+i is as near as we please to C¡, (a) follows from the fact that the

boundary does not intersect Cj. Now were the first of (b) untrue, since
Ca+i is as near as we please to Ch, it would only mean that the boundary
of En-i goes through a point of Ca' ■ Ck, and hence meets Ci which carries
this cycle, and this is not the case. Similarly for the rest of (b). As to (e:),
it follows at once from the fact that the cell does not meet the boundaries
of Ca' and C/ to which C°h and C» are very near.

Owing to (a) and to IV and I of No. 36, we have

((Ti-Ch' ■ Ck') -En-i) = 0;
therefore

Z)s,-(Eí • En-i) =s(= (Ch   • C'k ■ En-l) .
Also

(Ca' • Ck' • En-i) =T,ti(Ei ■ Bn-i) = U .
Again by IV and the first of (b),

((Ch-Ci+Cl)   ■Ck-En-l)=0.
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From (c) we have

(Cl-Ck'   £_i)=0.
Therefore

(Ch    ■ Ck'  • En-l) = (Ch    • Ck    -En-l)   .

Similarly from the last of (b) and (c),

(Ch' -(Ck'-Ck' + Cl) • £_,)=0.
Therefore

(Ch    • Ck    • En-l) — (Ch    •  Ck    •  En-l)   ■

By comparing we have at once

k= (Ch'  ■ Ck'   ■ En-l) = (G'  • Ck'  ■ En-l) = Si  .

From this follows finally

Ch  ■ Ck '~C«   C k  ,

and our invariance proof is complete.
45. Intersection cycles or Kronecker indices are then the same what-

ever the defining complex of Mn from which they are derived, provided
as regards indices that various complexes have their orientations suitably
related. Cycles and indices have all the properties established in No. 35
and the effect of a permutation of complexes in the symbols is the same as
for cells.

§7.   Fundamental sets on an orientable Mn without boundary

46. Let T'k(i = l, 2, ■ ■ ■ , ph), r,_» (i = 1, 2, • • • , /»„_«) be two funda-
mental sets (No. 7) for the cycles of the same dimensions, and consider the
matrix

(46.1) iKr»'. r¿*)||.
Any other fundamental set, say for the dimensionality h, can be derived
from a given one by applying to its cycles a transformation of determinant
unity. This is at once derivable from the result established by Veblen,
loc. cit., p. 117. By such a transformation we mean that every cycle of
the new set will be homologous to a sum of cycles of the old, the matrix of
the coefficients of the homologies being ± 1.

According to the distributive law for indices, if we change fundamental
sets the above matrix is merely multiplied to the right or to the left by a
matrix of determinant ±1. Therefore the invariant factors of (46.1) are in-
dependent of the two fundamental sets, and in fact they are all equal to unity,
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an important result just proved by Veblen,* which we shall also derive later
in a new way (No. 65). It follows from this and from Poincaré's theorem
on the equality of the numbers i?A, Rn~h, that we may select our sets so that

(a) for j >Rh, Tk and rn_k are zero-divisors ;
(b) if h^n/2 or if h = n/2 and w/2 is even,

i       i t+1   iih^n/2 \
{Th^^''-h)=\(-lf+1)hiîk>n/2ft-Rh•

all other indices being zero ;
(c) if h = n/2 and «/2 is odd, when (46.1) is an alternate matrix,

r»/« • Tn/2j — — ( r„/2 • rn/2 ) =+1 , i è 2 "*/*

with all other indices again zero. In this case, of course, since the matrix
is alternate and of rank Rnn this last integer is necessarily even, a generaliza-
tion of the well known result for two-dimensional manifolds.

The possibility of choosing the sets as above is based upon well known
theorems on the reduction of matrices with integer terms.f

Fundamental sets of the type just described will be called canonical.

Part II. Transformation of manifolds

§1. Product complexes*1

47. Let Efi Et be two cells, A a point of Ep or of its boundary, B a similar
point for Et. Consider the set of couples A, B which by definition vary con-
tinuously if either A or B so varies. I say that the set is an En, n = p-\-q,
plus its boundary. This follows at once from the fact that if xx, Xj, • • • , *«
are cartesian coordinates for an Sn, Ev, Eq with their boundaries, then the
sets in question are respectively homeomorphic to the following three sets :

Ogz.gl,   i up;   x1+j=0;
x( = 0,i^p;   Oá**-/ál;
Oáff<¿ 1,    i=l, 2,  •   ••   , » .

* These Transactions, vol. 25 (1923), p. 540. See in the same connection my Monograph
already quoted, p. 13. In two recent notes of the Proceedings of the National Academy of
Sciences, vol. 10 (1924), pp. 99-103, J. W. Alexander generalizing this notion has been led to a
new set of topological invariants.

t See the expository paper by Veblen and Franklin in the Annals of Mathematics, ser.
2, vol. 23.

Î The term and corresponding notation are due to E. Steinitz, Sitzungsberichte der Ber-
liner mathematischen Gesellschaf t, vol 7 (1908). See also in this connection H. Tietze,
Abhandlungen des mathematischen Seminars zu Hamburg, vol. 2 (1923), p. 37, H. Run-
neth, Mathematische Annalen, vol. 90 (1923), p. 65, and my paper in these Transactions,
vol. 22 (1921), p. 362.
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48. Let Up, Uq be polyhedra in spaces Sr, S¡, by means of which straight-
ness and distances are defined for Ep and Eq and let Xi, • • • , x, and
yi, • • - , y, be cartesian coordinates for Sr and Si. We may refer an 5r+(
to the set of cartesian coordinates Xi, y¡. Then if a point (x) describes LTP
and a point (y) describes IT, the corresponding point (x, y) of Sr+i describes
a n„ homeomorphic to £„ plus its boundary. The geometry of this is very
elementary and we leave it to the reader. This nn shall be chosen as basis
for straightness and distances on £„ and its boundary.

The point A, B of £„ or its boundary shall be designated henceforth
by A XB. Let ^4^41 • • • Ap, BBx ■ ■ ■ Bq be indicatrices of Ep and £,.
We shall agree to sense £„ by the indicatrix

AXB AxXB ■   ■     AvXBAXBx-   ■   ■ AXBq ,
and the cell so sensed shall be denoted by EpxEq and called product of the
two cells, its factors* The notation A XB merely corresponds to p = q = 0.
At once, we have

EpXEq=-(-Ep)XEq=-EpX(-Eq) = (-lTEqXEp .

Let ap_1; tj_i be the boundary cells of Ep and £,, so sensed that

£p= ¿-¡ap-x,     Eq=¿_,bq-x.

Then

(48.2) EpXE^^uap-iXE.+ ^rijEpXbUi ,
where e¿ and rj,- are ±1. To determine their actual value assume that
BBx ■ ■ ■ Bq-i is on ¿>J_,. Then ( — 1)« • BBx • ■ • Bq-x is an indicatrix of
b'q^x as boundary cell of Eq.   That of £pX¿>¿_i is

(-1)"AXB AxXB ■ ■   APXB AXBx ■ ■ ■ AXBq-x.
Comparing with the indicatrix of EpXEq we find r), = ( — l)q. If we inter-
change Ep and Eq we shall find by applying this very relation ( — l)4 e< =
( —1)', hence e¿ = l, so that finally (48.2) becomes

(48.3) £pX£ï=Z«Ux£î+(-DPZ£pXôé-i ,
which describes the boundary of the product.

49. Let now Cp, Cq be any complexes, ap a generic /»-cell of the first,
b[ one of the second.   We define their product by the relation

CpXCa=2>pX6'a .
* Concerning this symbolic product see the footnote to No. 7.
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By applying (48.3) to each term at the right we find

(49.1) CPXCq= 2>p_i X b[ +(- if 2>PXôU
where only the boundary (/» —1)- and (q — l)-cells appear at the right with
the very orientation that they possess in the boundary congruences of the
complexes.  Hence if G,_i and Ca_, are these boundaries,

(49.2) CpXCt = Cp_iXC4+(-l),'G,XGI-i .

From (49.2) we have the following:
I. The product is orientable (in the sense that a manifold is) if and only

if each factor is.
II. The product of two manifolds is a manifold.
III. The product of two complexes is without boundary if, and only if,

the complexes themselves have none. Observe that all this can be extended to
singular complexes, hence

IV. The product of two cycles of the factors is a cycle of the product.
From polyhedra of the factors we derive as in No. 48 one for the product,

hence corresponding definitions of straightness and distances.
50. Every r* of CpXCq is homologous to a polyhedral cycle iY (Coll.

Lect., p. 120). Let a be a point of the cell apXbq not on lY. Draw a recti-
linear segment from a to every point ß of lY on the cell, to its intersection
at 7 with the boundary. The set of all segments ßy constitutes a polyhedral
G+1- The effect of subtracting its boundary from lY is to reduce the latter
to a similar cycle without any points on aPXbJq. On proceeding thus with
all such cells, then with the C„_i made up with the cells of less than «
dimensions of CpXCq, and so on, we shall reduce lY to a homologous poly-
hedral cycle whose points are all on cells of at most k dimensions of the
complex. From the theorem of the Colloquium Lectures just recalled,
as applied to the C* made up of the cells of at most k dimensions of our
complex, follows that the reduced cycle, which we still call lY, is a sum of
¿-cells of CpXCq. This may also be shown by remarking that if it has
points on an Ek the whole cell must belong to it, else it would have a
boundary on it.

We conclude then that every cycle of a product is homologous to a sum of
products of cells of its two factors.

Suppose that such a r* bounds on CpXCq. We may apply to the com-
plex that it bounds the identical reasoning, the operations made not affecting
the boundary, and we conclude that if a cycle, sum of products of cells of the
factors, bounds on the product, it bounds a complex which is also such a sum.
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Henceforth we shall use the notation yk, dk for the ¿-cycles of Cp and Cq,
keeping Tk itself for those of the product Cp X Cq.

51. As shown by Veblen* every Ek of Cp is expressible as a sum of
multiples of certain cycles y* and certain cells a't. Of course no sum of these
particular a's is a 7, hence every yk of C„ is a sum of multiples of the cycles
7t alone. It is not ruled out that some of the latter bound, but their set may
be so chosen as to include a fundamental set for the ¿-cycles. There exists of
course a similar set 0¡J, bJt for Ct.

52. Theorem. The k-cycles which are products of cycles taken from
fundamental sets of the factors constitute a fundamental set for the product.

According to No. 50, for any r* we have

r* ~I>¿ x su+T,ytxbL, +1>; x sL.+E«¿x*L,.
We must express the fact that the right side has no boundary. The boundary
of alxb'k-,, is a sum of terms 7,,-iXiH_„, a^X8k-^-i where y„_x, St_„_i are
sums of cycles described in the preceding number. The boundaries
of an aXb or of a yXb are both of type 7XÔ. Hence the boundaries of the
terms in the fourth sum can only cancel each other, which compels the sum
to be similar to the third.  Hence for the cycle we have an homology

r* ~2>i x it*+2>i xôLm+2>í x sLm .
We may assume that the second sum cannot be split into two, one of

which is a cycle, for it would then be of the same type as the first and could
be merged with it. Similarly for the third sum. From this follows that if
the second sum is absent so is the third and conversely. Also since the
boundaries of the terms in the last two sums must cancel each other, any
term 7pX¿í_M in the second sum contains only such a 7 as may come from
the boundaries of terms in the third. 7^ bounds then a certain Cp+X of Cp.
Let

bk-11— .2_, í,.8*_,í_i .
At once,

Cn+iXbL* - -¿X&U+C- D"+1 E íí.Ch-iXo'*_^i~ 0      (mod CrXCt).
On subtracting this bounding cycle from the second expression for T*

the term 7(1XtH_M will have been replaced by a sum of terms that will go

* Coll. Lect., p. 116. The result in question, not stated explicitly by him, is really derived in the
course of the discussion which leads to the theorem there stated.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1926] COMPLEXES AND MANIFOLDS 33

into the first or the third sum. Therefore by a previous remark, the third
must then also disappear.  Hence

r«~^TcX 5fc_„ .

If 7„ bounds G+i of Cp, then y^Xài-» bounds G+iXot_„; hence in the
expression of r* only the terms for which neither y nor 5 bound need to be
preserved, which proves our theorem.

It is not difficult to show that if two factor cycles do not bound their
product does not bound, but as this is unnecessary for the sequel we omit
the proof. A corollary is that no cycle of the fundamental sets obtained bounds
on CpXCq.

Of more import is the following observation. If yß is a zero-divisor
for Cp, ypXfa-» is a zero-divisor or else bounds and similarly with 5 in
place of y. For if ty* bounds G+i, (tyv)Xàk-n bounds Cm+iXôY»». Hence
the theorem that we have proved holds even when fundamental sets with respect
to the operation « take the place of the others. For we may now eliminate
from the fundamental sets of the product all cycles of which a factor is a
zero-divisor.*

53. Product of orientable manifolds. We know already (No. 49) that
if Mp, Mq are orientable manifolds so is MpXMq. We are now especially
concerned with the question of Kronecker indices.

Let Eh, Ep-h be simplicial cells on Mp and suppose that they intersect
at A. Let E'u, £9'_t and B be similar elements for Mq. Then £»X£/ and
£p_nX£j_t intersect at A XB on MpXMq and the question is to determine
their index in terms of (Eh • Ep-h), and (Ek • £4'_t).

Let the A's and B's of No. 48 now serve to determine indicatrices for
the manifolds, as previously for the cells. As a matter of fact, the M's
might simply be £'s without changing anything.

We may now assume that the indicatrices are

AAX-      -Ah,     AAh+i ■  -  -A,   for £„ and £p_n ,

BBi ■  ■    Bk,    BBt+i ■  -  ■ Bq  for Ek and £8_» .

Hence for the above named two-cell products the indicatrices

AXB AiXB •  •     AhXBAXBi-  ■  • AXBk ,

AXBAk+iXB-   ■     ApXBAXBt+x-  ■   • AXBt .

* From this follow the results of my Transactions paper and those of Kiinneth, concern-
ing connectivity and torsion indices.
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By comparing Avith the indicatrix of MPXMq and applying the rule for the
determination of the index we obtain the folloAving formula :

(53.1) (£aX£*' • Ep-hXEq-k) = (-D'"^(A ■ E^XE. ■ £',_*) .

It holds even for k = 0, h - p, when it yields the following result, verifiable
directly with ease :

(53.2) (EpXB-AXEt) = +l.

The product EpxB simply denotes an EP on the product cell, and similarly
ioiAxEq.

Let now Ca, C„_a be complexes on Mp whose points of intersection are
neither on their boundaries nor on that of the manifold, and let C'k, C'Q_k
be analogous for Mq. Polyhedral approximations to Ca and C*' have for
product such an approximation to CkXCk, and similarly for the other two
complexes. If the approximations to Ca and Cp_a and those to Ck and Ca_t
intersect at isolated ordinary points of the complexes, the approximations
to the products will behave likewise. Hence from the definition of the
index of two polyhedral complexes with well defined intersections, the
extension to arbitrary complexes, and (53.1), (53.2), we have

(53.3) (CaXC'a • CP-hXC'q-k) = (-l)ki^h)(Ch ■ CVa)(C* • CU) ;

(53.4) (MPXB ■ AXMq) = +l .

The products in (53.4) represent complexes homeomorphic to Mp or Mq
on MpXMq. The approximations to A and B in that case consist in choos-
ing points of their vicinity situated on p- and ç-cells of the covering com-
plexes of the manifolds which serve to define straightness and distances on
them.

Two complexes Ca, Cp_a-< on Mp, Avithout points on its boundary,
may always be approximated by two that do not intersect. Hence if C'k,
C9'_i+{ are on Mq, without points on its boundary, there are non-intersecting
polyhedral approximations to CaXC*' and Cp_A_,XCá-*+<.   Therefore

(53.5) (CaXCÁ • C^A_,XCs_t+,) = 0 .

54. Theorem. Let Mp, Mq be without boundary and let y[, ht be the cycles
of their canonical fundamental sets. Then except for the signs their products
constitute such a set for MpXMt.
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This follows at once from the relations derived from (53.3), (53.4)
(53.5) :

(54.1) (yxX8k-x • 7P-xX59_jt+x) = (-l) • (7x • 7p-x)(5*-x • 5,-,+x) ;

(54.2) (7x X «Lx • 7U X !,[-„+>) = 0 , X * m •

They indicate also the manner in which the cycles are to be associated.
Of great importance for transformations is the special case /> = q = ¿ = «.

We have then

(54.3) (y[xCx ■ 7n-xXil)-(-l)"CX+1) • (7. • 7n-x) • (&Í ■ &L,) ,

and all other indices vanish.
55. Formulas (53.3), (53.4) are special cases of a more general one

corresponding to cycles that are intersections of complexes, which is derived
by similar considerations. As we shall not use it later we merely give it
here without proof. If G and G of Mp do not intersect each other's
boundary, and have no intersection on the boundary of the manifold, if also
C'm, Cß behave likewise relatively to Mq, the formula in question is as
follows :

CxC'm ■ CxXC;~(-l)<P"')(*""> • C¡ ■ CxXC'm ■ Ci (mod MpXMq) .

§2. Transformations of a manifold without boundary

56. Let Mn be the manifold, M„' another copy of it, T a transformation
of M„ into itself or part of itself, which we subject to this sole condition of
a very general nature : If A is any point of Mn, B the image of any trans-
form A' of it on Mn', the set of all points AxB is an n-cycle Tn on M„XM„'.
The inclusiveness of the class of transformations so defined becomes apparent
when we remark that all continuous one-valued transformations (for each A
only one A' varying continuously with A) belong to it. The non-singular
Cn without boundary of which r„ is then the image in the sense of No. 6
is Mn itself. More generally ¿-valued continuous transformations are also
of our type ; the corresponding C„ is then kM„.

Much of the rest of this paper will center around the determination of
certain Kronecker indices and it becomes essential to define all orientations
involved. Let G cover Mn and let G' be its image covering M„'. Suppose
that n„ is a polyhedron which associated with C„ serves to define straight-
ness and distances on M„. The polyhedron II B has the same cell structure
as C„' and we shall agree to use it, associated with C„', to define straightness
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and distances on I,'. Then any rectilinear segment of Mn has for image
a similar one on Mn' and both have the same length. To an indicatrix En
on Mn will correspond an En' on Mn'. We shall name the vertices of £„'
in the same order as the corresponding vertices of En, and use the simplex
so sensed as indicatrix for M„'. In accordance with our previous conventions
the orientation of MnXMn' is now perfectly determined. Owing to its
importance for the sequel, it is well perhaps to characterize it more geo-
metrically. Through any point A XB of the manifold there pass MnXB
and A xMn'. Let B be the image of A. To E„ Avith A as its first vertex
corresponds En' Avith B as its first vertex. Let En be the image of the first
on MnXB, En that of the second on AxMn'. The Ein indicatrix of the
product manifold has its vertices named in the following order : AxB, the
other vertices of E„, the other vertices of £„'.

There remains the orienting of r„. If one cycle is suitable for T so is
its opposite. Of the two we shall select the one such that

(Tn-A xMn') = a0^0 ,

a perfectly definite condition since the integer is a Kronecker index of cycles.
57. Let us apply to Mn and Mn' the very notations of No. 54, so that

&l is now the cycle of Mn' that corresponds to 7* on M,. We shall then have

(57.1) rB ~£ e? • y\X aU (mod Mn xMn') .

The 7's and 5's are, it will be recalled, cycles of fundamental sets. In
particular 70, ô0 are merely points of Mn, M„ while yn, <5„ are the manifolds
themselves. The number of cycles of the fundamental sets is one for these
two extreme cases.

The e's are important characteristic integers of T. It will be remembered
that two transformations are said to be of the same class if they belong to
one and the same continuous family of transformations. Whenever T varies
within its class, Tn is continuously deformed (a condition that might serve
to define the class) and r„ remains homologous to a fixed cycle, so that the
e's are unchanged. Hence to a given class of transformations corresponds
a fixed set of ('s. Whether the converse holds or not is as yet unknown.

58. We must now introduce the notion of the transform of a cycle of Mn
by T. The necessity of defining such a notion with precision arises from
the fact that while T is a point transformation a cycle is not a mere point
set, but consists of a set of cells each taken Avith a certain multiplicity. The
cycle is then really a symbol attached to a set of cells, and what is meant
by its transform is by no means evident a priori.
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Let yß, 0^/ü = M, be any cycle of Mn. If it is not polyhedral we ap-
proximate it by one that is and that furthermore has been reduced in ac-
cordance with the theorem of No. 23. Then yßXMn' behaves likewise and
we may also approximate Tn in the same manner so that the two have a
well defined intersection rn . yßXMn' = TP,. (We economize in notations
by designating the approximations like the cycles themselves.) To every
point AxB of r„ corresponds a unique B on Mn' varying continuously
when AxB so varies on r„. Hence B gives rise to a cycle S„ on M„'. It is
a singular complex of Mñ, continuous image of r„ in the sense of No. 6.
The image y„ of S4 on Mn is by definition the transform of 7„ by T. It will
be observed that 5M is polyhedral, hence so is yß. For 8M is represented on
the copy A XMn' of Mn' by the cycle AxS» which is the locus of all inter-
sections of AxMn with all manifolds MnXB that meet r„ . y^xMn'-
In this fashion, however, .4x5,, appears as an intersection of polyhedral
complexes, and it is therefore also polyhedral. If AXB AxXBx ■ • • A^XB^
is an indicatrix of IV then BBx • ■ Bß is an indicatrix of 5M.

The preceding definition is justified by the fact that for ii = 0, when 70
consists of a finite number of points, the correct transforms of these points
are obtained. Furthermore (No. 62) when T is the identity all cycles are
left invariant, which is as it should be with any properly selected definition.

Let the cycle transformations be represented by homologies

(58.1) 7M~£ae7M (modlfn).

For any given T one is far more likely to possess information concerning
the a's than concerning the e's. Hence the interesting and important
problem arises to determine the e's in terms of the a's. This problem shall be
solved partly in a more narrow form. Let us drop zero divisors throughout.
In accordance with No. 52, with the R's denoting the connectivity indices
of Mn, and assuming that among the cycles y* the first 2?„ are independent,
we shall now have in place of (57.1) and (58.1), the following relations
whose appearance is the same :

(58.2) r„ « £ e? • 7m X ôL„ (mod M„ X M'„) ;

(58.3) Tm^I^mTV (mod M„) ,

where as before 11 runs from 0 to », but, for each n, i and j run from 1 to
RIA = Rn-ß. The problem that we shall completely solve is the determination
of the t's within this range in terms of the a's similarly limited. This will suf-
fice to provide all that is needed in our applications to fixed points and co-
incidences.
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59. An important formula. The solution of our problem is based upon
the following formula, whose proof Avili now occupy us :

(59.1) (r„ • yßXSn-J = (-1)" • Oy, • Y»-m).
with indices computed at the left as to MnXM„' and at the right as to Mn-
In place of (59.1) it will be found more convenient to prove the equivalent

(59.2) (r„ • 7„xsn_M) = (-i)" • («„ • a„_„) ,

where the last index is computed as to Mn', and to this we now turn our
attention.

60. By means of our usual approximations as applied to r„, yß and 5„_„,
we may so arrange matters that all cycles are polyhedral and have well
defined intersections. Let AxB be an intersection of rn with 7„X5„_il.
Then B is an intersection of ô„ with ôn_M. Therefore we need only to show
that the contributions of the two points to their respective indices have
the ratio ( — 1)". Owing to the distributive law we may assume that all
complexes are cells and that the points count for +1 in the indices, or what
is the same, that the manifolds are linear spaces and T a projectivity. The
method of matrices (No. 4) will be found most convenient for our purpose.

61. We begin with the contribution of A XB to the left side of (59.2).
Let A, B, and AXB be origins of cartesian axes for the spaces M„, Mn',
and their product, the coordinates being xx, ■ ■ • , xn for Mn, yx, • • -, yn
for Mn, Xi, ■ ■ ■ , xn, yi, • • • , yB for M„XMn'. To the points (*), (y) of
Mn, Mn  corresponds the point (x, y) of the product.

We can assume for Mn a matrix-indicatrix in the sense of No. 4, of type

where the X's denote square matrices of order equal to the index with
determinants equal to +1, and the zeros matrices whose terms all vanish.
The meaning of (61.1) is clear. If Ai is the point of Mn whose coordinates
are the terms in the ith row, then AAX ■ ■ ■ An is an indicatrix of M„. We
may so select it that AAX ■ ■ ■ A^ and AA^+j. • ■ • An are indicatrices of 7„
and 7n-M- This implies a definite orientation for them, but if we invert 7„
or 7„_M we also invert 8ß or ô„_M and therefore (59.2) is unaffected, so that
there is really no restriction. In the same sense as for M„, we may say
that the matrices

||*„,0|| , \\0,Xn-J\
define indicatrices of 7„ and 7„-„.
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To the images of the transforms of Mn, yM, yn-ß, by T, on M„', correspond
matrix-indi catric es

11   F„ , F  11 ,     11 F' , F„_„ 11

where F, F' are rectangular arrays and the two other F's square arrays
of order equal to their index. The first corresponds to ± M„' = eM„', where
the sign is plus if T maintains the indicatrix on Mn, minus if it inverts it.
The second and third matrices correspond to 5„ and 5„_M. Since (61.1)
defines an indicatrix of Mn' when each row is considered as the coordinates
of a y point, and since its determinant, product of \XJ and \Xn-„\, is
+ 1, « has the sign of the determinant

F„       ,     F
V Y* , •« n-p

From the definition of r„ we conclude that

Xß ,0 ,       Y ¡i       ,      Y

Xi    ,      A n—ii    , * ,        * n—it

in a matrix-indicatrix of 0r„, 6= +1. To determine the sign of 0 observe
that since A X Mn' has for matrix-indicatrix

0        ,       0 Xß      ,     0
0,0,0,     Xn-»    '

the contribution of A XB to (ôr„ ■ A XMn')has the sign of the determinant

A%     ,     0 ,0
0       ,     ÀV„ ,      0
0,0 X,
0,0 ,0

Hence 6 represents the contribution of the point to the integer a0 =
(rn • A XMn') of No. 56. For example, in the case of the identical trans-
formation, every point of intersection of the two cycles must contribute
+ 1, therefore 6= +1. This is also true for a continuous 1 to « transforma-
tion, where the contributions to the index have a constant sign. That 6
is not — 1 in these two cases comes from the condition a0 > 0 by which we
have definitely oriented r„.

Y,, Y

Y' . F„

0
0
0
X„

= + 1
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But this is a digression from our main topic to which we now return.
It is readily seen that

Xß      ,       0       ,       0       ,    0
0,0,0,      Xn-,

is a matrix-indicatrix for 7(1X5B_M.   As MnXMn' has for matrix-indicatrix

X,     ,     0 ,0,0
0
0
0

0
0

0

Xn
0

0
0
Xn

whose determinant is +1, we conclude from the definition of the Kronecker
index that the contribution of AXB to (0r„ • 7MX5B_„) has the sign of
the determinant

Xn

0
Xn
0

0
Xn—ii

0
0

r
o
0

v* n—it

0
A n_u

= (-D"|Fj

The  contribution of ^4x5  to (r„ • 7„XSB_(<) has  then the sign of
(-1)'*|F,|.

62.  Let us now examine the contribution of B to (ô„ • ÔB_„).  Suppose that
we have found for r„ • 7MXM„' a matrix-indicatrix

II Z,Z' ||,
where Z, Z' are matrices Avith u rows and « columns. Then Z' will define
an indicatrix for 5„, referred of course to the y coordinates. For any row
*ii • • • i ^n, Vi, • • • , y„ represents a point A'XB' such that B' is the point
of Mn Avith the y coordinates. From this and the remark, No. 58, as to
relations between indicatrices on r„ and bu, follows the property of Z'.

Now 7MX(«MB') has for matrix-indicatrix

0
0       ,

which we may replace by

0
0

0
0
0

0
0
0

0

Y'

Y„
Y,
Y'

0
Y
Yn

Y
Y
Yn
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derived from it by addition of rows, as this change of indicatrix merely
corresponds to an affine transformation of determinant +1 applied to
the Sn+n involved, and is therefore permissible. The first row defines now
an indicatrix of f0r„ • 7MX(eMB'), where f = ±1. From our mode of de-
fining sensed intersections (No. 12) it follows that f has the same sign as
the determinant

Xp      ,0 ,      Y p
0 , X„_„     , Y'
0 ,0 ,      F„
0        ,0 ,      Y'

that is, the sign of e. As both are unity in absolute value, f = e, so that
actually the matrix

II  X,      ,       0        ,       F„      ,       F    H
defines an indicatrix of e0r„ • yltX(eMn') = 9Tn ■ yßXM». According to
what has been said at the beginning of this number, then

II   T,      ,       Y   ||
defines an indicatrix for 0ÓV.

Since Mn' has a matrix-indicatrix of determinant +1, the contribution
of B to (05,, • 5„_,0 has the sign of the determinant

F„      ,     F
0 ,        -An—)i

since the last Une is a matrix-indicatrix for §„_».. As the determinant has
for value | FM |, the contribution of B to (ÔV • 5„_.u) has the same sign as
B\Y*\. Its ratio to that of (rB • 7„X5„_(.) is then (-1)", which suffices
to prove (59.1).

Remark. One incidental result follows readily from our discussion. The
indicatrix of S,, coincides with the image of the transform of that of yß or
with its opposite according as 0 is positive or negative. Upon translating
this back to Mn itself, we find the following result. If AXB contributes
+ 1 to (r„ • A XMn') then the indicatrix of the transform of any cycle through
A is the transform of the indicatrix ; it is the opposite of it if the contribution
is —1. For example in the case of a continuous sense preserving 1 to »
transformation, the indicatrix of the transform is always the transform of
the indicatrix. In particular for the identical transformation the two
coincide, and 7„ not only coincides with yß element for element, but also

F
Yn.

Y
Yn.

Y'
Y

Yn
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Avith preservation of orientation. This justifies in a sense our convention
as to sensing rB and our definition of the transform of a cycle (No. 58).

63. It is important to emphasize the fact that the extreme values n=0,
« are not exceptional at all.  For u = 0, we have already imposed

(63.1) (Tn- AxMn')=a0.

The interpretation given for this integer in No. 60 fits in perfectly with our
discussion. Let a„ be the similar integer for T~l. Its interpretation is then
this :* An arbitrary En of Mn is covered Avith a certain number of cells of
T ■ Mn. Among these there will be, say, k' positive cells, k" negative cells
of Mn and an = k' — k". Here of course an may well be negative. Thus if T
is a homeomorphism inverting the indicatrix, oB = — 1. An example of this is
the symmetry of a sphere Avith respect to a diametral plane. It is important
to remember that the T considered is not the initial transformation but
one that corresponds to a polyhedral approximation of its r„.

If we compute the index as to Mn'XM„ we obtain then

(rn   BxMn) = (Tn-MnXB) = an .

If a manifold is inverted all corresponding indices must be changed in sign,
an immediate corollary of their definition. As MB XM„' = ( — 1 )"M„' X Mn,
when the index is computed Avith reference to MnXMn',

(63.2) (Tn-MnXB) = (-l)"an.

This is what (59.1) becomes for ¡x = n. Both (63.1) and (63.2) can also be
derived with ease by means of matrix-indicatrices. Indeed this would merely
involve repeating the discussion of Nos. 60, 61.

Observe that the notation a0, a„ is in accord with the meaning given to
a¿ in No. 57. They correspond to the homologies describing the behavior
of the zero-cycle (a point) and the «-cycle (Mn itself). Explicitly for
¡j, = 0, », i and j can only be unity, and a0 = a0, a„' = a„.

64. We now pass to the actual determination of the e's. If we remember
that in calculating Kronecker indices zero-divisors may be dropped, we
see that in applying (59.1) we may substitute from formulas (58.2) and
(58.3) in place of (57.1) and (58.1). Let us then substitute in (59.1) for
r„ its expression as given by (58.2), for 7„, 5„_M the cycles 7J, ôj^, a nd
for 7* its expression (58.3). We obtain

E  *u-*(yn-ßX0n -7mX Sn-„)  = (—1)"E O-u'(y'n ■ 7n-M)  ,
_».1-1 7=1

* This is the same as Brouwer's degree of T. See Mathematische Annalen, vol. 71 (1911),
p. 105. He limits himself to the case where every point has a unique transform, which is a special
case of transformations with oo=l.
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all other terms having dropped out in accordance with (54.1). Trans-
forming the left side by means of (53.3) and (53.4) this becomes

M(n+1)     Rix      .. k t Rn . t
( — 1) 2~1 '»-»(Tm • 7h-m) (j'ß " 7n-J =2-, a* (To • 7n-M) •

i.i-1 J'-l

For each ii we have here a set of i?M linear equations in the B„ unknowns
e^.   The determinant of their coefficients is a power of the determinant

| (yl ■ 7«-m) I ,
whose value is actually ±1, as may be deduced from Veblen's theorem
mentioned in Part I, §6. These equations may therefore be solved even
explicitly if need be, a task which presents little interest. However, if, as
we shall assume from now on, the fundamental sets on M„ are canonical the
solution can be carried through in an instant.

For if we substitute this time the indices as given in Part I, §6, and as
they must be applied here, we have at once

(a) ii5¿\n or =\n = an even integer.

Then ** _ »*
En—ft      Q>p     t M>l» ;
hk .d(n+l)   hk .

«„_„=(— 1) aM     , /1§2» •

(b) yi = \n = an odd integer.
Then

2A-1,* 2ft,* 2ft, k 2ft-l,*
«n/2 =   _ttn/2     , «n/2 = On/2

We obtain for r„ the following relations :
(a)  « ^ 4, mod 2.

lnÄi       ? . / .    On—p  '  y^XdnJn—p
0Íu<n/2   »,,— 1

+ xL,(-l) 2-, an-,, ■ y„ X 5n-^.
»en/2 i,j-l

(b) «s4, mod 2.

r„«        ¿-I        2-1   Un-X • ?»" X0„_M+(—1)   0„  • 7n-M x 5„)
oS|i<n/2    »,,= 1

tRnll   Rnll      ih_1 2i lhk        2Jk_j        k
+   2-1     2-1   Va»/2     - 7n/2Xd„/2 — a„/2  • 7„/2   Xo„/2   )   .

ft-1     *-l
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65. A new proof of Veblen's theorem on fundamental sets. We refer to
the theorem of Part I, §6, according to which the invariant factors of the
matrix

|| (y„ • 7.U) I I
for any two fundamental sets are all unity. Let them be in any case ex,
et, • • ■ , £/?„. That their number is Rß follows from other considerations
that need not detain us.* The reduction to canonical sets will be accom-
plished as before, only now

(7m ' In—¡i) = i e% ,

the same indices being zero as previously.   Therefore we have now

AA AA
«n-». • Ca«* = +aß   • ek .

Hence eh is a factor of a„ , and in particular of aM for every T. But for the
identical transformation aM =1, hence ek = l which is precisely Veblen's
theorem.

§3.  Coincidences and fixed points of transformations
of a manifold

66. A coincidence of two transformations T, T' is a pair of points A, A',
of Mn, such that A' is a transform of A, by both T and T'. A fixed point
of T is a coincidence for T and the identical transformation. Let r„, IY
be the cycles corresponding to T and T', and let B be the image of A' on
Mn ; A XB is an intersection of r„ with IY and conversely to such an inter-
section corresponds a coincidence of T and T'. The determination of the
number of coincidences and fixed points is then reduced to a question of inter-
sections of cycles. The actual numbers are not definite, may even vary for
transformations of the same class, become infinite, and so on. Not so,
however, with the attached Kronecker index (rB • IY), whose determina-
tion alone is usually possible. Its interpretation is simple enough. If we
consider suitable approximations to T and T' there will be only a finite
number of intersections. Some of these, say k', shall be counted positively,
others, say k", counted negatively according to a definite rule, and the
difference k' — k" is independent of the mode of approximation, in a sense
sufficiently clear in the light of Part I, §5. From what has been established
there, it follows that the number of coincidences to be obtained in the sequence
is an actual topological invariant of the transformations involved, the same being

* See my Monograph, p. 13; also Veblen's paper on this question quoted in Part I, §6.
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true for the number of fixed points counted in an analogous manner to the
coincidences.

67. We shall now endeavor to characterize topologically the coin-
cidences according to the signs of their contributions to (r„ • r„'). We
select two polyhedral approximations that intersect in a finite number of
points only, in such a way that if A X B is one of them it has neighborhoods
on the cycles and on MnXM„' that are interiors of simplexes. We continue
to call the approximations r„, r„'. Each intersection AxB counts for ±1
in computing the index, and as far as its neighborhood alone and those
of A and B on Mn and M„' are concerned, everything is as if all complexes
involved were linear spaces. The matrix-indicatrix method will then be
again the most convenient.

To rB and lY we may make correspond matrices

||    Xn   ,    FB     ||    ,    ||   AY   ,    F„'    ||   .

Regarding Xn and AY we may replace them by any others whose deter-
minants have the same signs. This is an immediate corollary of the definition
of the indicatrix. Let us assume our coordinate system such that the unit
matrix of order «, /„, corresponds to an indicatrix for M„ as referred to the
x coordinates. Then 7„ will play the same part for Af„' and the y coordinates,
72„ for MnXMn and the coordinates x, y. Under the circumstances, as we
have shown in No. 60, if 0, 0' denote the contributions of A X B to the
indices (r„ ■ .AX-MY), (r„ • AxMn'), then the determinants in question
have the sign of 0 and $'. We conclude that there will be suitable in-
dicatrices for 0rB and 0T„' of type

| |     In    ,     F„     | |       ,        | |     /„    ,    F„'    | |  .

Now the contribution of A XB to (0r„ • 0'lY), in absolute value equal
to unity, has the sign of

a n    ,     * n

I       Y '    'An    ,    a n

since Iin is a matrix-indicatrix for MnXMn'- This determinant is equal
to |F„' —F„|, and therefore the contribution of A XB to (rn • lY) has
the sign of 00'|F„' —F„|. The determinant factor is certainly ^ 0, else
AxB would not be an isolated intersection of the T's. Furthermore owing
to the degree of arbitrariness in the choice of these cycles we may always
assume that the equation of the «th degree

f(t) = | FB' - <FB  I = 0
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(characteristic equation of Yn'— tYn) has only distinct roots. We know
already that/(l)?iO.

Let e = ± 1 be the same integer as in No. 60 ( + 1 if T maintains an indica-
trix of Mn at A, — 1 if it inverts it).  Then as shown there

e | F„ I > 0 .

Since the determinant Yn is the leading coefficient of/(/),/( 1) has the sign
of ( — l)"e, where v is the number of real roots of/(2) that are less than unity.
Therefore the contribution of A XB to (r„ • IY) is equal to (- l)"e00'.

68. It is decidedly desirable and worth while to find a geometric inter-
pretation for v. The transformation T acts as an affine transformation
whereby the vector V whose x components are £i, £j, • • • , £ « is changed
into a vector whose components are defined by the matrix product.

I Ui , {i , • ■ ■ , Í-  11 • Yn ,
and similarly for T' and FY. Let /¿ be a real root of /(/). Then there is
a Vi whose transforms by T and T' are collinear and in the ratio 1 : /,-.
Let Vx, Vi, • • • , V, be the similar vectors for all real roots <1. The vectors

uxV2+ • ■ -+u,V, ; Ogw^l , E«< = 1

fill up a simplex 2° of Mn with a vertex at A. Its transforms by T and T'
are simplexes 2,, 2„ with the common vertex A', the second being entirely
on the first, with all cells through A' situated in the same linear spaces,
and v is the largest integer for which such simplexes exist. This is the
desired interpretation for v.

69. We now proceed with the determination of (r„ ■ IY).
Referring to No. 54, and recalling the special relations for canonical

sets, we find that the only indices (7¡¡X5n_x • 7*Xc5n_M)^0 are those for
which X+m = » and whose values are given below.

(a) \i.^\n or else = \n an even integer.

(7dX5n_M • 7n-MXS„) = (-1) (y* • yn-¿) (y> • y*-*)
= (-l)n(*+1);     l£i,j*R,,

for with canonical systems, the two indices dropped are equal, their common
value being ±1.

(b) y. = \n an odd integer. For entirely similar reasons the indices below
alone are left, with values as given :

/    2A-1 Si-1        2* 2tN        /   2A 2* 2A-1 2*-K
(7      X5 7   XS   ) = (7   XS    -y       X«      )--l,
,    2»-l 2* 2Ä      „2*-U        ,    2* 2A-1 2A-1 ik.
(y      XS    -y   Xô     ) = (y   X&       -y      XS   ) = + l.
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To facilitate the reading of these formulas we have omitted the lower
indices whose common value is \n.

70. The application to (r„ • r„') is immediate. Let, throughout, the
j/'s and ß's play the same part for Tn' or V as the e's and o's for T„ or T.
The distributive law for indices gives

(iV • lY)=    2~1  «"-* V*      (yl~à'n-„  ■ 7n-MX5M)   .
i.i.P

Therefore for w + 2, mod 4, and with ju replaced by «—ft,

(70.1) (lWn')=     ¿(-1)"*    E*nÍ,   Vif   ,
»1=0 i.i-1

while for « = 2, mod 4, after some simplifications,

(70.2) (r„ • r„') = (same sum as in (70.1) except that u does not take the
value 5«)

iRnh
\^   /   2*-1.2*   2*.S*-1

I     2-1   V.*n/2 Vn/Ï
h.k-1

2ft,2*-l    Vt-l.ik        2ft-l,2fc-l   2ft,2* 2ft,2*   2ft-l,2»-l n
+ «n/2 Vnn — «n/2 Vn/2      — tn/2    Vn/i )   ■

In terms of the a's and ß's, by means of No. 64 we find, if «^2, mod 4,

n Rß        ..   ..

(70.3) (IV • IV')= E (-1)" Z Ä_„ ,
ii-O i.i—1

and if «=2, mod 4,

(70.4) (r„ • r„') = (same sum as in (70.3) except that ju does not take the
value I«)

*£-,    ,   2ft-l,2*      2»,2*-l
+   2-t   (a»/2 Pn/2

h,k-l

2ft,2*-l   2ft-l,2* 2*-l,2*-l   2A.2* 2».2*   2ft-l,2*-lv
+ On/2        Pn/2        — 0„/2 Pn/2    — On/2   ßn/i )   •

71. To obtain the number of invariant points of T, always counted
with a certain sign, it is convenient to replace throughout T by the identical
transformation, whose cycle we denote by r°, and T' by T. The homologies
for the identical transformation are (No. 62)

_n     h
7m~7m ,
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hence <x"=l, aj = 0 if i^j. On replacing the o's by these values and the
|8's by the a's both (70.3) and (70.4) reduce to the very simple formula

(71.1) (r.-r.)= E (-i)" EC
M-=0 «-1

Remarkably enough this formula is still correct if the fundamental sets cease
to be canonical.   For if y'u* is a new fundamental set, we have

7,,"« E^<»7¿ (mod Mn) ,
i

where the A's are integers whose determinant

Hence the transformation matrix of the 7"s that takes the place of

11*11
is obtained by transforming the latter by means of the matrix of the ^4's,
an operation which leaves unchanged the sum of the terms in the principal
diagonal, which is the term corresponding to p in (71.1).

A particularly noteworthy case is when the effect of T on any cycle is
merely to increase it by a zero-divisor, which includes as a special case
deformations.   Then all the a's in (71.1) are equal to +1 and

(iwB) = E(-i)X.
(i-O

This expression is the well known Euler-Poincaré characteristic number of
Mn (difference between the number of cells of even dimensionality of any
covering Cn and the number of the rest). Since Rll=Rn-ß its value is zero
for « odd, hence this very neat proposition : for a T of the preceding type, in
particular of the same class as the identity, the number of invariant points
counted with their signs is equal to the Euler-Poincaré characteristic. It is zero
when « is odd.

Thus for « = 2 the number is 2 — 2p as found by Birkhoff, who however
confined himself to analytic transformations.

Fixed points for transformations of hyperspheres have proved of im-
portance in many questions. There are then no cycles of dimensions other
than 0 or « so that (71.1) becomes

(rB- Tn) = a0+(-l)"an ,

a result obtained by Brouwer for cto = l.
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Finally formula (71.1) for « = 2 includes practically all related results
obtained in recent years by various authors (Brouwer, Nielsen, Kérékjárto,
Alexander).

72. Another class of applications is to coincidences of algebraic corre-
spondences on algebraic curves. Owing to a proposition which I proved in
my Monograph, p. 19, the Kronecker indices give then the exact number of in-
tersections. We should therefore expect to be able to identify (70.4) with
the well known coincidence formula due to A. Hurwitz.* Observe that
his h'ti, etc., are the same as the hk>, etc., not for C but for C'~l and should
be replaced as indicated in his footnote; for example, h'a by G'a and so on.
With these changes and a comparison of notations the identification be-
comes complete.

Thus the coincidence formulas may be obtained without making use of
any function theory. The classical Hurwitz relations between the periods
are simply the analytical translation of the transformations on the linear
cycles of Mn.

* Mathematische Annalen, vol. 28 (1887), p. 578, formula 35. See in this connection
Chisini, Istituto Lombardo Rendiconti, ser. 2, vol. 7 (1924), p. 481.
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