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1. Introduction

Non-perturbative quantum chromodynamics (QCD) shows kgoanfinement and sponta-
neous chiral symmetry breaking (SCSB). Presently, a riglotceatment of them is only possible
in a lattice regularization. Many of the important featuoégson-abelian gauge theories are already
present inJ (2), which simplifies theoretical and numerical calculatiofi$ie present numerical
investigation concentrates on the topological chargeritariions of vortex intersections and their
localization by Dirac zeromodes. All measurements werdéopmied on hyper-cubic lattices of
even sizes from 12up to 2Z-lattices. Using the overlap and asqtad staggered Diraatipewe
compute fundamental and adjoint zeromodes in the backdro@ifour vortex intersections. By
visualizing the probability density, we compare the disttion of the eigenmode density with the
position of the vortices and the topological charge dersidated by intersection points.

2. Plane Vortices

We construct planar vortices with gauge linldg = exp(igos), varying in theos subgroup
of J(2). Forxy-vorticesu =t links are nontrivial in oné-slice only, forz-vortices we have
nontrivial y-links in oney-slice. Since th&J (1) subgroup remains unchanged, the direction of the
flux and the orientation of the vortex are determined by thadignt of the anglep, which we
choose as a linear function of the coordinate perpenditaltire vortex. Upon traversing a vortex
sheet, the anglg increases or decreasesowithin a finite thickness @ of the vortex, see Fig. 1a).
Center projection leads to a (thin) P-vortex at half thekhéss @) [1]. We consider these thick,
planar vortices intersecting orthogonally. As shown in Eich intersection carries a topological
charge with modulufQ| = 1/2, whose sign depends on the relative orientation of thexdhtixes.
We combinexy andz-vortices in centray- andt-slices with vortex centers ai » resp.z; » located
symmetrically around the lattice center and varying vottegknesdd. In Fig. 1b) and Fig. 1c) we
present a 3-dimensional view of the intersecting vorticestae topological charge distribution in
the (x2) intersection plane.

Figure 1: a) The link anglep of a parallel vortex pair. The arrows rotate counterclodenwith increasing

@. The vertical dashed lines indicate the positions of theoRiaes. In the shaded areas the links have
positive, otherwise negative trace. b) A 3-dimensionalisedhyperplane) irxyz-direction of a 12-lattice

at timet = 6 (center). The horizontal planes are #tyevortices, which exist only at this time. The vertical
lines are thezt-vortices, which continue over the whole time axis. Thegigkotruding from the vertical
lines extend in time direction. c) The vortices intersedbiar points of they =t = 6 - plane, showing four
lumps of topological charg® = 1/2, giving total topological charg® = 2.
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3. Fermionic zeromodes of the overlap and asqtad staggeredmac operator for
intersecting center vortex fields

We analyze the scalar densitfx) = @ (x) of fermionic zeromodeg in the background
of intersecting plane vortices. As described in [3] the ioyad staggered operator also produces
eigenmodes which can clearly be identified as zeromodeslamdalts in this paper show perfect
agreement between the two fermion realizations. The ferimiperomodes are used to measure
the topological charg® via the Atiyah-Singer index theorem [4, 5, 6], iBldJA] =n_ —n, = Q,
wheren_ andn, are the number of left- and right-handed zeromodes of thaddiperatoD.
This equation accounts for Wilson and overlap fermions aftimdamental representation. The
adjoint version of the index theorem reads DPA] = n_ —n, = 2NQ = 4Q, whereN = 2 is
the number of colors and the additional factor 2 is due to #ut that the fermion is in the real
representation, hence the spectrum of the adjoint DiracatpeiD is doubly degenerate. The
eigenvalues of the staggered fermion operator have a tdiofiefjeneracy due to a global charge
conjugation symmetry i8J (2). We therefore have inD[A] = n_ —n; = 2Q for fundamental and
ind D[A] = n_ — n, = 8Q for adjoint (asqtad) staggered fermions.

3.1 Fundamental zeromodes

For the above vortex configuration the four intersectiomizorll carry topological charge
contributions of+1/2 and therefore sum up to a total topological cha@ye- 2. In agreement
with the lattice index theorem we get two overlap and fouta$gtaggered zeromodes of negative
chirality (left-handed) in the fundamental representatigig. 2 shows the scalar density plots of the
fundamental overlap and asqtad staggered zeromodes witldigeboundary conditions together
with the sum of Wilson lines in y- and t-direction (Polyakimeps) in the intersection plane as well
as the scalar density plot of the two overlap zeromodes witlalantiperiodic boundary conditions
in time direction (asqtad staggered modes again distribumdarly). The individual modes all
distribute equally, showing four distinct maxima, as tilly all their linear combinations do. A
close look shows that the zeromodes do not exactly peak atotftex intersections, they rather
avoid regions with negative Polyakov lines and approachritegsections (or the vortex surfaces)
from regions with positive Polyakov lines. This behaviorsvedready observed in [7] for spherical
vortices: the zeromodes avoid regions with negative Paolydikes.

3.2 Adjoint zeromodes

Adjoint eigenmodes of the Dirac operator are also sensitivepological charge contributions
of |Q| = 1/2, but we do not find zeromodes localized to a single vortexrgaiction. Therefore we
use the inverse participation ratio (IPR) [8, 9, 10, 11] taufify the localization of eigenmodes.
The IPR of a normalizedy{, pi(x) = 1) field pi(x) is defined ad = NyY ,p2(x), where N is
the number of lattice sitex. With this definition,| characterizes the inverse fraction of sites
contributing significantly to the support @f(x), i.e.,, a high IPR indicates that the eigenmode is
localized to a a few lattice points only. We perform systemahd random IPR maximization
procedures for linear combinations of zeromodes in ordgetasingle eigenmode peaks localized
to regions with nonvanishing topological charge contiout Our vortex configuration gives 8
overlap and 16 asqtad staggered adjoint Dirac zeromodésnegative chirality for antiperiodic
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Figure 2: a) Sum of Wilson lines in y- and t-direction (Polyakov-loppsthe intersection plane. P-vortices

are indicated with black lines. Scalar density plots of 8 two overlap zeromodes, c) the four asqtad
staggered zeromodes, both with periodic boundary comditiand d) the two overlap zeromodes with an-
tiperiodic boundary conditions in time direction. The plitkes indicate the plane positions, the chirality

(chi=£1) and numbers (n=1-2/n=1-4) of (overlap/asqgtad staggemmodes and the maximum density
peak in the plot. P-vortices are indicated with red lines.

boundary conditions in time direction. Fig. 3 shows theialac densities, they locate thg-
vortex pairs but even individual modes do not show singl&kgdacating one intersection with
Q =1/2. Linear combinations of the eight overlap zeromodes wégative chirality show six
distinct IPR maxima. This was obtained by a systematic stuitly the eight coefficients of the
linear combination varying from10 to 10 in integer steps. Further we started from 20.000mand
points in the parameter space and determined the neareshomaby the gradient method. Each
of the six maxima was found betweer®@0— 6.000 times and no other maxima were obtained. In
Fig. 3e we plot a 2D cut through the first three IPR maxima in8Beparameter space of linear
combinations. The scalar density of the linear combinatibtihe eight zeromodes with maximal
IPR is presented in Fig. 3d, it still peaks at two vortex isggtions. Therefore, we analyze a
configuration of "thin-thick" vortex intersections appatfg having topological chargi| = 1/2.
The profile of a "thin-thick" vortex is plotted in Fig. 4a. Thigin vortex sheet is defined by the
jump of they- or t-link from +1 to —1 at the boundary. The thick vortex is located symmetrically
around the center of the lattice with thickneksThe thin-thickxy- andz-vortices still intersect at
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Figure 3: Scalar density plots of the a) 16 asqtad staggered and bj) @ighlap left-handed adjoint ze-
romodes for antiperiodic boundary conditions, the modeatk thexy-vortex pair. c) Plane through the
highest three IPR maxima in the parameter space of lineabit@tions of the eight zeromodes. The peaks
are very broad and easy to identify. d) The scalar densith@fihear combination of the eight zeromodes
with maximal IPR still peaks at two vortex intersections.

four points, but the plaquette or hypercube definitions pbtogical charge do not recognize the
thin vortex sheets and only measure one topological chasg#ilbutionQ = 1/2 of the "thick”
vortex intersection, see Fig. 4b. We use antiperiodic boundnditions in time direction and get
no fundamental zeromodes for thig)} = 1/2 configuration”. The adjoint Dirac operator gives
two adjoint overlap and four adjoint staggered zeromoddis mégative chirality, which due to the
index theorem again result @ = 1/2. For the adjoint fermions this configuration truncategé¢hr
of the four vortex intersections and in this way simulateguation related to the one achieved by
twisted boundary conditions, namely, a single detectatitersection. Therefore it is possible to
have a configuration that looks like having fractional tagital charge. The eigenmode density
distributions of overlap and asqtad staggered zeromodesdantical. Fig. 5 shows the former
for the intersection plane and for planes orthogonal to ithat (thick) intersection point. The
modes are clearly sensitive to the traces of the adjoinslink (see also Fig. 4a), defined by
(TrU)(TrU)T = (TrU)? = 1+ TrU,, which in our configuration define the adjoint Polyakov lines
Pa (Wilson lines). The zeromodes prefer regions of positivéy&amv lines and avoid negative
Polyakov lines. Due to the antiperiodic boundary condgiam time direction the signs of the
Polyakov lines are exchanged. Hence, the zeromode denpiiak at thexy-vortex center and
avoid thezt-vortex center, or rather peak at the boundary paralleléattivortex.
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Figure 4: a) Link profile of a "thin-thick" plane vortex, the link angie(blue) decreases fromto 0 within
a certain vortex thicknegk The thin vortex is given by the jump at the boundary. The @shéd line shows
the trace of adjoint link3r Up (see text below) b) Topological charge density in the irgetisn plane.

4. Conclusions

The zeromodes of the asqtad staggered and overlap Diraatoggein the background of inter-
secting vortex configurations are shown to be sensitivegdwé#tue of the Polyakov loops (Wilson
lines), avoiding regions with negative Polyakov loops. M\tdjoint fermions we tried to find
zeromodes which identify exactly one topological chargetigoution Q = 1/2 of a single vor-
tex intersection. Therefore, we analyzed linear combamatiof zeromodes which maximize the
inverse participation ratio (IPR).e., localize as much as possible. We found that the scalar-eigen
mode density of adjoint fermions always peaks at least atittessections. Further, we analyzed
a lattice configuration with only one "thick" vortex intecsi®n. Since both, gluonic and (adjoint)
fermionic definitions of topological charge fail to deteatarsections with at least one thin vortex,
both definitions ofQ merely signal the valu® = 1/2. It is remarkable, that for this case of only
one detectable vortex intesection, the adjoint zeromope=ad over the whole lattice, avoiding
regions of negative traces of adjoint Polyakov (Wilsong$in They are not localized to the region
with nonvanishing topological charge contribution. Thws, conclude that the Dirac zeromodes
are more sensitive to the Polyakov (Wilson) lines than tottipelogical charge contributions for
the configurations considered in this work.
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