
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
2
6
9

Vortex Intersections, Dirac Eigenmodes and
Fractional Topological Charge in SU(2) Lattice
Gauge Theory

Roman Höllwieser ∗

Atomic Institute, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
E-mail: hroman@kph.tuwien.ac.at

Manfried Faber
Atomic Institute, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
E-mail: faber@kph.tuwien.ac.at

Urs M. Heller
American Physical Society, One Research Road, Ridge, NY 11961, USA
E-mail: heller@aps.org

We investigate intersections of thick, plane center vortices, characterized by the topological

charge|Q|= 1/2, and compare them with the distribution of zeromodes of theDirac operator in
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1. Introduction

Non-perturbative quantum chromodynamics (QCD) shows quark confinement and sponta-
neous chiral symmetry breaking (SCSB). Presently, a rigorous treatment of them is only possible
in a lattice regularization. Many of the important featuresof non-abelian gauge theories are already
present inSU(2), which simplifies theoretical and numerical calculations.The present numerical
investigation concentrates on the topological charge contributions of vortex intersections and their
localization by Dirac zeromodes. All measurements were performed on hyper-cubic lattices of
even sizes from 124 up to 224-lattices. Using the overlap and asqtad staggered Dirac operator, we
compute fundamental and adjoint zeromodes in the background of four vortex intersections. By
visualizing the probability density, we compare the distribution of the eigenmode density with the
position of the vortices and the topological charge densitycreated by intersection points.

2. Plane Vortices

We construct planar vortices with gauge linksUµ = exp(iφσ3), varying in theσ3 subgroup
of SU(2). For xy-vortices µ = t links are nontrivial in onet-slice only, forzt-vortices we have
nontrivial y-links in oney-slice. Since theU(1) subgroup remains unchanged, the direction of the
flux and the orientation of the vortex are determined by the gradient of the angleφ , which we
choose as a linear function of the coordinate perpendicularto the vortex. Upon traversing a vortex
sheet, the angleφ increases or decreases byπ within a finite thickness 2d of the vortex, see Fig. 1a).
Center projection leads to a (thin) P-vortex at half the thickness (d) [1]. We consider these thick,
planar vortices intersecting orthogonally. As shown in [2], each intersection carries a topological
charge with modulus|Q|= 1/2, whose sign depends on the relative orientation of the vortex fluxes.
We combinexy andzt-vortices in centraly- andt-slices with vortex centers atx1,2 resp.z1,2 located
symmetrically around the lattice center and varying vortexthicknessd. In Fig. 1b) and Fig. 1c) we
present a 3-dimensional view of the intersecting vortices and the topological charge distribution in
the (xz) intersection plane.
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Figure 1: a) The link angleφ of a parallel vortex pair. The arrows rotate counterclockwise with increasing
φ . The vertical dashed lines indicate the positions of the P-vortices. In the shaded areas the links have
positive, otherwise negative trace. b) A 3-dimensional section (hyperplane) inxyz-direction of a 124-lattice
at timet = 6 (center). The horizontal planes are thexy-vortices, which exist only at this time. The vertical
lines are thezt-vortices, which continue over the whole time axis. The ticks protruding from the vertical
lines extend in time direction. c) The vortices intersect infour points of they = t = 6 - plane, showing four
lumps of topological chargeQ = 1/2, giving total topological chargeQ = 2.
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3. Fermionic zeromodes of the overlap and asqtad staggered Dirac operator for
intersecting center vortex fields

We analyze the scalar densityρ(x) = ψ†ψ(x) of fermionic zeromodesψ in the background
of intersecting plane vortices. As described in [3] the improved staggered operator also produces
eigenmodes which can clearly be identified as zeromodes and all results in this paper show perfect
agreement between the two fermion realizations. The fermionic zeromodes are used to measure
the topological chargeQ via the Atiyah-Singer index theorem [4, 5, 6], indD[A] = n−− n+ = Q,
wheren− and n+ are the number of left- and right-handed zeromodes of the Dirac operatorD.
This equation accounts for Wilson and overlap fermions in the fundamental representation. The
adjoint version of the index theorem reads indD[A] = n− − n+ = 2NQ = 4Q, whereN = 2 is
the number of colors and the additional factor 2 is due to the fact that the fermion is in the real
representation, hence the spectrum of the adjoint Dirac operator iD is doubly degenerate. The
eigenvalues of the staggered fermion operator have a twofold degeneracy due to a global charge
conjugation symmetry inSU(2). We therefore have indD[A] = n−−n+ = 2Q for fundamental and
ind D[A] = n−−n+ = 8Q for adjoint (asqtad) staggered fermions.

3.1 Fundamental zeromodes

For the above vortex configuration the four intersection points all carry topological charge
contributions of+1/2 and therefore sum up to a total topological chargeQ = 2. In agreement
with the lattice index theorem we get two overlap and four asqtad staggered zeromodes of negative
chirality (left-handed) in the fundamental representation. Fig. 2 shows the scalar density plots of the
fundamental overlap and asqtad staggered zeromodes with periodic boundary conditions together
with the sum of Wilson lines in y- and t-direction (Polyakov-loops) in the intersection plane as well
as the scalar density plot of the two overlap zeromodes with usual antiperiodic boundary conditions
in time direction (asqtad staggered modes again distributesimilarly). The individual modes all
distribute equally, showing four distinct maxima, as trivially all their linear combinations do. A
close look shows that the zeromodes do not exactly peak at thevortex intersections, they rather
avoid regions with negative Polyakov lines and approach theintersections (or the vortex surfaces)
from regions with positive Polyakov lines. This behavior was already observed in [7] for spherical
vortices: the zeromodes avoid regions with negative Polyakov lines.

3.2 Adjoint zeromodes

Adjoint eigenmodes of the Dirac operator are also sensitiveto topological charge contributions
of |Q|= 1/2, but we do not find zeromodes localized to a single vortex intersection. Therefore we
use the inverse participation ratio (IPR) [8, 9, 10, 11] to quantify the localization of eigenmodes.
The IPR of a normalized (∑x ρi(x) = 1) field ρi(x) is defined asI = N ∑N

x=0 ρ2
i (x), where N is

the number of lattice sitesx. With this definition, I characterizes the inverse fraction of sites
contributing significantly to the support ofρ(x), i.e., a high IPR indicates that the eigenmode is
localized to a a few lattice points only. We perform systematic and random IPR maximization
procedures for linear combinations of zeromodes in order toget single eigenmode peaks localized
to regions with nonvanishing topological charge contribution. Our vortex configuration gives 8
overlap and 16 asqtad staggered adjoint Dirac zeromodes with negative chirality for antiperiodic
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Figure 2: a) Sum of Wilson lines in y- and t-direction (Polyakov-loops) in the intersection plane. P-vortices
are indicated with black lines. Scalar density plots of b) the two overlap zeromodes, c) the four asqtad
staggered zeromodes, both with periodic boundary conditions, and d) the two overlap zeromodes with an-
tiperiodic boundary conditions in time direction. The plottitles indicate the plane positions, the chirality
(chi=±1) and numbers (n=1-2/n=1-4) of (overlap/asqtad staggered) zeromodes and the maximum density
peak in the plot. P-vortices are indicated with red lines.

boundary conditions in time direction. Fig. 3 shows their scalar densities, they locate thexy-
vortex pairs but even individual modes do not show single peaks locating one intersection with
Q = 1/2. Linear combinations of the eight overlap zeromodes with negative chirality show six
distinct IPR maxima. This was obtained by a systematic studywith the eight coefficients of the
linear combination varying from−10 to 10 in integer steps. Further we started from 20.000 random
points in the parameter space and determined the nearest maximum by the gradient method. Each
of the six maxima was found between 2.000−6.000 times and no other maxima were obtained. In
Fig. 3e we plot a 2D cut through the first three IPR maxima in the8D parameter space of linear
combinations. The scalar density of the linear combinationof the eight zeromodes with maximal
IPR is presented in Fig. 3d, it still peaks at two vortex intersections. Therefore, we analyze a
configuration of "thin-thick" vortex intersections apparently having topological charge|Q| = 1/2.
The profile of a "thin-thick" vortex is plotted in Fig. 4a. Thethin vortex sheet is defined by the
jump of they- or t-link from +1 to−1 at the boundary. The thick vortex is located symmetrically
around the center of the lattice with thicknessd. The thin-thickxy- andzt-vortices still intersect at
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Figure 3: Scalar density plots of the a) 16 asqtad staggered and b) eight overlap left-handed adjoint ze-
romodes for antiperiodic boundary conditions, the modes locate thexy-vortex pair. c) Plane through the
highest three IPR maxima in the parameter space of linear combinations of the eight zeromodes. The peaks
are very broad and easy to identify. d) The scalar density of the linear combination of the eight zeromodes
with maximal IPR still peaks at two vortex intersections.

four points, but the plaquette or hypercube definitions of topological charge do not recognize the
thin vortex sheets and only measure one topological charge contribution Q = 1/2 of the "thick"
vortex intersection, see Fig. 4b. We use antiperiodic boundry conditions in time direction and get
no fundamental zeromodes for this "|Q| = 1/2 configuration". The adjoint Dirac operator gives
two adjoint overlap and four adjoint staggered zeromodes with negative chirality, which due to the
index theorem again result inQ = 1/2. For the adjoint fermions this configuration truncates three
of the four vortex intersections and in this way simulates a situation related to the one achieved by
twisted boundary conditions, namely, a single detectable intersection. Therefore it is possible to
have a configuration that looks like having fractional topological charge. The eigenmode density
distributions of overlap and asqtad staggered zeromodes are identical. Fig. 5 shows the former
for the intersection plane and for planes orthogonal to it atthe (thick) intersection point. The
modes are clearly sensitive to the traces of the adjoint links UA (see also Fig. 4a), defined by
(TrU)(TrU)† = (TrU)2 = 1+TrUA, which in our configuration define the adjoint Polyakov lines
PA (Wilson lines). The zeromodes prefer regions of positive Polyakov lines and avoid negative
Polyakov lines. Due to the antiperiodic boundary conditions in time direction the signs of the
Polyakov lines are exchanged. Hence, the zeromode densities peak at thexy-vortex center and
avoid thezt-vortex center, or rather peak at the boundary parallel to the zt-vortex.
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Figure 4: a) Link profile of a "thin-thick" plane vortex, the link angleφ (blue) decreases fromπ to 0 within
a certain vortex thicknessd. The thin vortex is given by the jump at the boundary. The red dashed line shows
the trace of adjoint linksTrUA (see text below) b) Topological charge density in the intersection plane.

4. Conclusions

The zeromodes of the asqtad staggered and overlap Dirac operators in the background of inter-
secting vortex configurations are shown to be sensitive to the value of the Polyakov loops (Wilson
lines), avoiding regions with negative Polyakov loops. With adjoint fermions we tried to find
zeromodes which identify exactly one topological charge contribution Q = 1/2 of a single vor-
tex intersection. Therefore, we analyzed linear combinations of zeromodes which maximize the
inverse participation ratio (IPR),i.e., localize as much as possible. We found that the scalar eigen-
mode density of adjoint fermions always peaks at least at twointersections. Further, we analyzed
a lattice configuration with only one "thick" vortex intersection. Since both, gluonic and (adjoint)
fermionic definitions of topological charge fail to detect intersections with at least one thin vortex,
both definitions ofQ merely signal the valueQ = 1/2. It is remarkable, that for this case of only
one detectable vortex intesection, the adjoint zeromodes spread over the whole lattice, avoiding
regions of negative traces of adjoint Polyakov (Wilson) lines. They are not localized to the region
with nonvanishing topological charge contribution. Thus,we conclude that the Dirac zeromodes
are more sensitive to the Polyakov (Wilson) lines than to thetopological charge contributions for
the configurations considered in this work.

References

[1] Del Debbio, L. and Faber, M. and Greensite, J. and Olejník, Š. Center dominance and Z(2) vortices in
SU(2) lattice gauge theory.Phys. Rev., D55:2298–2306, 1997.

[2] M. Engelhardt and H. Reinhardt. Center projection vortices in continuum Yang-Mills theory.Nucl.
Phys., B567:249, 2000.

[3] Höllwieser, Roman and Faber, Manfried and Heller, Urs M.Lattice Index Theorem and Fractional
Topological Charge. [arXiv:hep-lat/1005.1015], 2010.

[4] M. F. Atiyah and I. M. Singer. The Index of elliptic operators. 5.Annals Math., 93:139–149, 1971.

[5] A. S. Schwarz. On Regular Solutions of Euclidean Yang-Mills Equations.Phys. Lett., B67:172–174,
1977.

[6] Lowell S. Brown, Robert D. Carlitz, and Choon-kyu Lee. Massless Excitations in Instanton Fields.
Phys. Rev., D16:417–422, 1977.

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
2
6
9

Vortex Intersections and Dirac Eigenmodes Roman Höllwieser

a)

y=11, t=11, chi=-1, n=1-2, max=0.000070289

0
5

10
15

20 0

5

10

15

20

0
0.00002
0.00004
0.00006

0
5

10
15

20

3

1

PA

−1

−3

xx

z

b)

x=11, z=11, chi=-1, n=1-2, max=0.0000192506

0
5

10
15

20 0

5

10

15

20

0
5´10-6
0.00001

0.000015

0
5

10
15

20
yy

t

c)

z=11, t=11, chi=-1, n=1-2, max=0.000070289

0
5

10
15

20 0

5

10

15

20

0
0.00002
0.00004
0.00006

0
5

10
15

20

3

−1

AP

xx

y

d)

x=11, y=11, chi=-1,
n=1-2, max=9.736

0
5

10
15

20 0

5

10

15

20

0
2.5´10-7

5´10-7
7.5´10-7

0
5

10
15

20

−3

1

PA

zz

t

10−7

Figure 5: Scalar eigenmode density of the two left-handed adjoint overlap (identical to four adjoint asqtad
staggered) zeromodes in various planes through the thick-thick vortex intersection: a)xz-plane (intersection
plane): The zeromodes avoid regions of negative adjoint Polyakov (Wilson) lines (PA, red dots) with respect
to boundary conditions and therefore do not peak at the topological charge contributionQ= 1/2; b)yt-plane:
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the zeromodes prefer thexy-vortex (red) and avoid thezt-vortex (green); c)xy-plane: The zeromodes reflect
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