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INTERSECTIONS ON TROPICAL MODULI SPACES

JOHANNES RAU

ABSTRACT. This article explores to which extent the algebro-geometric theory of rational descendant
Gromov-Witten invariants can be carried over to the tropical world. Despite the fact that the tropical
moduli-spaces we work with are non-compact, the answer is surprisingly positive. We discuss the string,
divisor and dilaton equations, we prove a splitting lemma describing the intersection with a “boundary”
divisor and we prove general tropical versions of the WDVV resp. topological recursion equations (under
some assumptions). As a direct application, we prove that the toric varietiesP1, P2, P1

×P1 and with Psi-
conditions only in combination with point conditions, the tropical and classical descendant Gromov-Witten
invariants coincide (which extends the result forP2 in [MR08]). Our approach uses tropical intersection
theory and can unify and simplify some parts of the existing tropical enumerative geometry (for rational
curves).

INTRODUCTION

Over the last few years, the list of results in tropical enumerative geometry became quite long. How-
ever, lacking an appropriate tropical intersection theory, most existing results are obtained by

• relating the tropical numbers directly to the classical ones (cf. [Mi03]) and then using the
algebro-geometric theory, or

• involved ad hoc computations (eg. [GM05], [KM06], [FM], [MR08], [CJM08]), which more-
over have to be repeated for each new class of enumerative problem.

On the other hand, based on [Mi06], the basic constructions of tropical intersection theory are now
developed in [AR07] (see also [Ka09, AR08]). Furthermore, in [GKM07] the authors show that the
moduli spaces of rational tropical curves are tropical varieties (i.e. satisfy the balancing condition).
Hence we can apply intersection theory to them. In [Mi07] G. Mikhalkin proposes the definition of
tropical Psi-divisors in tropical moduli spaces of abstract curves, and they were first studied in [KM07].
In summary, all the tools needed to develop a tropical analogue of classical Gromov-Witten theory for
rational curves are at our disposal, and the present articletries to carry out this program (as mentioned
before, first steps are contained e.g. in [GKM07], [KM07] and[MR08]).

The “ready for use” main theorems 5.18 and 5.20 state that forP1, P2 andP1 × P1, and with Psi-
conditions only in combination with point conditions, the tropical and conventional descendant Gromov-
Witten invariants coincide. For the case ofP2, this equality was already proven in the previous paper
[MR08] joint with Hannah Markwig. One should emphasize thatboth results are obtained by check-
ing that the involved numbers satisfy the same recursive formulas, andnot by proving some sort of
correspondence theorem.

This article is a continuation of [MR08], and some statements can be found in older versions there.
The focus here is to consequently replace older ad hoc computations by more appropriate tools from
tropical intersection theory. As a consequence, we typically obtain more general statements (e.g. work-
ing in any dimension).

We work with non-compact tropical moduli spaces, i.e. fans in RN , due to the fact that compacti-
fications and their intersection theory have not yet been constructed satisfactorily. However, the non-
compact approach has its limitations. This will become visible e.g. from the assumptions we need in
our general WDVV and topological recursion statements.

Let us also mention that in subsection 1.4 we show that the fandisplacement rule for Minkowski
weights describing toric intersection theory (cf. [FS94])coincides with the intersection product of trop-
ical cycles introduced in [AR07, section 9] (see also [Ka09]).
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2 JOHANNES RAU

The article contains the following parts. Section 1 repeatsthe basics of tropical intersection theory
from [AR07] and adds some results which will be important later. In section 2, we study the intersection
ring of Mn, the space of abstract rational tropical curves. In section3 we extend this toMlab

n (Rr,∆),
the space of parametrized curves inRr. In particular, we prove general versions of the string, dilaton
and divisor equations. Section 4 deals with the intersection of a one-dimensional family of curves with
a boundary divisor. By analogy with the classical case, we prove a "‘splitting lemma"’ which allows to
compute this intersection as

I would like to thank Andreas Gathmann, Eric Katz, Michael Kerber, Hannah Markwig and Grigory
Mikhalkin for many helpful discussions and/or for proofreading various versions of this work.

1. INTERSECTION THEORY

In this section we will establish the parts of tropical intersection theory that we will need to attack
the problems of tropical Gromov-Witten theory in a satisfactory way. Subsection 1.1 gives a quick
overview on the definitions and results from [AR07] and [AR08] that we will need (however, note that
our notations will sometimes slightly differ from the original ones). Sections 1.2 – 1.7 contain some
new material. In particular, subsection 1.4 contains a proof of the fact that toric intersection theory (as
described by the fan displacement rule in [FS94]) and tropical intersection theory for fans are identical.
(An alternative proof can be found in [Ka09, Theorem 4.4]).

1.1. The Basics. A cycleX is a balanced (weighted, pure-dimensional, rational and polyhedral) com-
plex in a finite-dimensional vector spaceV = Λ ⊗ R with underlying latticeΛ (the most common case
is V = Rr, whose underlying lattice, if not specified otherwise, isZr). The top-dimensional polyhedra
in X are calledfacets, the codimension one polyhedra are calledridges. Balancedmeans that for each
ridge τ ∈ X the followingbalancing condition atτ is satisfied: The weighted sum of the primitive
vectors of the facetsσ aroundτ ∑

σ∈X(dim(X))

τ<σ

ω(σ)vσ/τ

vanishes “moduloτ ”, or, precisely, lies in the linear vector space spanned byτ , denoted byVτ . Here,
ω(σ) denotes the weight of a facetσ and aprimitive vectorvσ/τ of σ moduloτ is a vector inΛ that
points fromτ towardsσ and fulfils the primitive condition: The latticeZvσ/τ +(Vτ ∩Λ) must be equal
to the latticeVσ ∩ Λ. Slightly differently, in [AR07] the class ofvσ/τ moduloVτ is called primitive
vector andvσ/τ is just a representative of it. We will abbreviate the latticeVσ ∩ Λ byΛσ.
The support ofX , denoted byX , is the union of all facets inX with non-zero weight. We callX
irreducible if for any cycleY of the same dimension with|Y | ⊆ |X | there exists an integerµ ∈ Z such
thatY = µ ·X . Thepositive part ofX , denoted byX+, is the set of all faces contained in a facet with
positive weight. Ageneral elementx ofX is an elementx ∈ |X | that lies in the interior of a facet. If
the underlying polyhedral complex is a fan (i.e. if all polyhedra are actually cones with vertex in0), we
callX a fan cycle(or sometimes justfan).
In fact, given a cycleX we do not really want to fix its structure as a polyhedral complex but only its
support and its weights. Therefore, by abuse of notation, acycleX also denotes the class of balanced
polyhedral complexes with the same support and agreeing weights (on the common refinement).

A (non-zero) rational function onX is a functionϕ : |X | → R that is integer affine on each
polyhedron. Here,integer linearmeans that it maps lattice elements to integers andinteger affinemeans
that it is a sum of an integer linear function (called thelinear part) and a real constant. IfX is a fan,
we also assumeϕ(0) = 0. Thedivisor ofϕ, denoted bydiv(ϕ) = ϕ ·X , is the balanced subcomplex
ofX constructed in [AR07, 3.3], namely the codimension one skeletonX \X(dimX) together with the
weightsωϕ·X(τ) for each ridgeτ ∈ X . These weights are given by the formula

ωϕ·X(τ) =
∑

σ∈X(dim X)

τ<σ

ω(σ)ϕσ(vσ/τ )− ϕτ

( ∑

σ∈X(dim X)

τ<σ

ω(σ)vσ/τ

)
,

whereϕσ : Vσ → R denotes the linear part of the affine functionϕ|σ. Note that the balancing condition
of X aroundτ ensures that the argument ofϕτ is indeed an element ofVτ . Essentially, this weight
measures the change of slope ofϕ when traversing the ridgeτ , as illustrated in the following picture.
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R2R div(max{x, 0})

Γmax{x,0} Γmax{x,y,0}

div(max{x, y, 0})

To be more precise, letΓϕ be the graph ofϕ in X ×R. It is a polyhedral complex whose polyhedra are
in one-to-one correspondence with those ofX , but in generalΓϕ is not balanced. However, it can be
completed to a cycle by adding facets in(0,−1)-direction at each ridge ofΓϕ, equipped with the above
weights. Now, if we (imaginary) intersect this tropically completed graph ofϕ with X × {−∞} (i.e.
compute the tropical zero locus ofϕ), we obtain the cyclediv(ϕ) = ϕ ·X of our definition.
If ϕ is globally affine (resp. linear), all weights are zero, which we denote byϕ · X = 0. Let the
support ofϕ, denoted by|ϕ|, be the subcomplex ofX containing the pointsx ∈ |X | whereϕ is not
locally affine. Then we have|ϕ ·X | ⊆ |ϕ|. Furthermore, the intersection product is bilinear (see [AR07,
3.6]). As the restriction of a rational function to a subcycle is again a rational function, we can also
form multiple intersection productsϕ1 · . . . · ϕl ·X . In this case we will sometimes omit “·X” to keep
formulas shorter. Note that multiple intersection products are commutative (see [AR07, 3.7]).

A morphism of cyclesX ⊆ V = Λ ⊗ R andY ⊆ V ′ = Λ′ ⊗ R is a mapf : |X | → |Y | that is
induced by a linear map bΛ toΛ′ and that maps each polyhedron ofX into a polyhedron ofY . We call
f an isomorphismand writeX ∼= Y , if there exists an inverse morphism and if for all facetsσ ∈ X we
haveωX(σ) = ωY (f(σ)).
Such a morphismpulls back rational functionsϕ onY to rational functionsf∗(ϕ) = ϕ ◦ f onX . Note
that the second condition of a morphism makes sure that we do not have to refineX further. f∗(ϕ) is
already affine on each cone. The inclusion|f∗(ϕ)| ⊆ f−1(|ϕ|) holds, as the composition of an affine
and a linear function is again affine.
Furthermore, we canpush forward subcyclesZ of X to subcyclesf∗(Z) of Y of same dimension. This
is due [GKM07, 2.24 and 2.25] in the case of fans and can be generalized to complexes (see [AR07,
7.3]). We can omit further refinements here if we assume thatf(σ) ∈ Y for all σ ∈ X . Thenf∗(Z) is
defined by assigning the following weights to thedim(Z)-dimensional polyhedraσ′ ∈ Y :

ωf∗(Z)(σ
′) =

∑

σ∈X
f(σ)=σ′

|Λσ′/f(Λσ)| · ωZ(σ)

By definition we have|f∗(Z)| ⊆ f(|Z|). Theprojection formula(see [AR07, 4.8]) connects all the
above constructions via

f∗(f
∗(ϕ) ·X) = ϕ · f∗(X).

By [AR07, definition 9.3] it is also possible to form the intersection product of two cyclesX,Y in
V = Λ⊗R: We choose coordinatesx1, . . . , xr onΛ (and denote the same coordinates on the second fac-
tor ofV×V byy1, . . . , yr). Then the diagonal∆ in V×V is given by∆ = max{x1, y1} · · ·max{xr, yr}·
(V × V ). Furthermore we consider the functionπ : ∆ → V, (x, x) 7→ x. Then the intersection product
of X andY in V is given by

X · Y := π∗
(
max{x1, y1} · · ·max{xr, yr} · (X × Y )

)
.

This intersection product is independent of the chosen coordinates, commutative, associative, bilinear,
admits the identity elementV and satisfies(ϕ ·X) · Y = ϕ · (X · Y ), whereϕ is a rational function on
X .

Let us now turn to the concept of rational equivalence (we summarize [AR08]). LetX be a zero-
dimensional cycle. Thendegreedeg(X) ofX denotes the sum of the weights of all points inX . Now let
X be an arbitrary cycle and letϕ, ϕ̃ be two rational functions onX . We call them(rationally) equivalent
if ϕ − ϕ̃ is the sum of a bounded and a globally linear function. Obviously, this property is preserved
when pulled back. Furthermore, ifY is an one-dimensional subcycle ofX , thendeg(ϕ·Y ) = deg(ϕ̃·Y )
holds (see [AR07, lemma 8.3]).
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LetX be a cycle and letY be a subcycle. We callY rationally equivalent to zero, denoted byY ∼ 0, if
there exists a morphismf : X ′ → X and a bounded rational functionφ onX ′ such that

f∗(φ ·X ′) = Y.

This property commutes with taking Cartesian products, intersection products (of functions as well as of
cycles) and with pushing forward. Moreover, ifY is zero-dimensional, thenY ∼ 0 impliesdeg(Y ) = 0.
Let Ỹ be another subcycle ofX . Then we callY andỸ rationally equivalentif Y − Ỹ is rationally
equivalent to zero. The easiest example of rationally equivalent cycles are translations. LetX be a cycle
in V = Λ ⊗ R and let us denote byX + v denote the translation ofX by an arbitrary vectorv ∈ V .
Then

X ∼ X + v

holds (see also [MR08, Lemma 2.1]).
If X,Y live in V = Λ⊗R, we call themnumerically equivalentif for any cycleZ in V of complemen-
tary dimension the equation

deg(X · Z) = deg(Y · Z)

holds.
Let X be a cycle inV = Λ ⊗ R. We define thedegreeor recession fanof X , denoted byδ(X), as
follows: δ(X) is supported on the purelydim(X)-dimensional part of the polyhedral set

⋃

σ∈X

rc(σ).

Here, therecession conerc(σ) of a polyhedronσ is defined to be the cone containing all vectorsv ∈ V
such that, starting at an arbitrary pointx ∈ σ, the rayx+ Rv is contained inσ. Now, for a fine enough
fan structure on this polyhedral set, the weights are given by

ωδ(X)(σ
′) :=

∑

σ∈X
σ′⊆rc(σ)

ωX(σ).

In particular, ifX is a curve, thenδ(X) is just the union of all unbounded rays inX and the weights
are the sums of the weights of the rays inX of given direction. Geometrically, we simply shrink all
bounded parts ofX to a point and move the final single vertex to the origin.
The main result of [AR08] is that for cyclesX in V = Λ ⊗ R, rational equivalence, numerical equiva-
lence and “having the same degree” coincides. To prove this,an important substep is to show thatX is
always rationally equivalent to its degree,

X ∼ δ(X).

1.2. Local computation of intersection products. LetX be a cycle and letτ ∈ X be a polyhedron in
X . We define thestar ofX at τ to be the fan

StarX(τ) := {σ̄|τ < σ ∈ X},

whereσ̄ denotes the cone inV/Vτ spanned by the image ofσ−τ under the quotient mapq : V → V/Vτ .
We make it into a cycle by definingωStarX(τ)(σ̄) = ωX(σ) for all facetsσ̄ of StarX(τ) (note thatq
preserves the codimension of the polyhedra). This fan contains all the local information ofX aroundτ
and can be considered as the tropical version of a small neighbourhood of an interior point ofτ (divided
by the linearity spaceVτ ). Its dimension equals the codimension ofτ in X .
Let furthermoreϕ be a rational function onX . Choose an arbitrary affine functionψ with ϕ|τ = ψ|τ .
Thenϕ−ψ induces a rational function onStarX(τ) which we denote byϕτ (and call it agerm ofϕ at τ ).
This function is only unique up to adding a linear function, which is enough for us as it does not change
its divisor. The following proposition shows that our intersection products are local constructions (i.e.
can be expressed in terms of stars and germs).

Proposition 1.1. LetX be a cycle with polyhedraτ < σ ∈ X . Letϕ, ϕ1, . . . ϕl be rational functions
onX . Then the following statements are true.

(a) StarStarX (τ)(σ̄) = StarX(σ)
(b) (ϕτ )σ = ϕσ onStarX(σ) (up to adding a linear function)
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(c) Starϕ·X(τ) = ϕτ · StarX(τ)
(d) Starϕ1·...·ϕl·X(τ) = ϕτ1 · . . . · ϕτl · StarX(τ)
(e) If l = dim(X) − dim(τ), thenωϕ1·...·ϕl·X(τ) = ωϕτ

1 ·...·ϕ
τ
l
·StarX(τ)({0}), i.e. we can compute

the weight ofτ in ϕ1 · . . . · ϕl ·X “locally” in StarX(τ).

Proof. (a) and (b) are immediate consequences of the definitions. (d) follows from (c) by induction and
(e) is just a special case of (d), namely whenϕτ1 · . . . ·ϕ

τ
l · StarX(τ) is zero-dimensional. Hence we are

left with (c).
Let r := dim(X) − dim(τ) be the codimension ofτ in X . The statement is trivial whenr = 0: Both
sides are0. Assumer = 1. In this case, we only have to check

ωϕ·X(τ) = ωϕτ ·StarX(τ)({0}).

By adding an affine function we can assume thatϕ|τ = 0 without changing the intersection product and
in particular the weight ofτ in ϕ ·X . But then we can replace both weights according to their definition
and observe that

ωϕ·X(τ) =
∑

σ∈X(dim(X))

τ<σ

ω(σ)ϕσ(vσ/τ ) =
∑

σ̄∈StarX(τ)(1)

ω(σ̄)ϕτ (vσ̄/{0}) = ωϕτ ·StarX(τ)({0})

holds true, as[vσ/τ ] = vσ̄/{0} ∈ V/Vτ .
Now let us assumer > 1 and letτ ′ be a ridge inX . Then we can use the previous case as well as (a)
and (b) and obtain

ωϕ·X(τ
′)
r=1
= ωϕτ′ ·StarX(τ ′)({0})

(a), (b)
= ω(ϕτ)τ′ ·StarStarX (τ)(τ ′)({0})

r=1
= ωϕτ ·StarX(τ)(τ̄

′),

which proves the claim. �

We can extend this to the case of the intersection product of two cycles.

Proposition 1.2. LetX,Y be two cycles inV = R⊗ Λ. Then the equation

StarX·Y (τ) = StarX(τ) · StarY (τ).

holds for all polyhedraτ ∈ X · Y .

Proof. First, we fix some notation. Letx1, . . . , xr be a lattice basis ofΛ∨ such that the firstd :=
codimV (τ) elements generateV ⊥

τ . When we consider the productΛ × Λ, the same coordinates on the
second factor will be denoted byy1, . . . , yr. Furthermore, let∆ : V → V × V, x 7→ (x, x) denote the
diagonal map. By definition of the intersection product of cycles and using 1.1 (d) we have to compute

Starmax{x1,y1}···max{xr,yr}·(X×Y )(∆(τ)) = max{x1, y1} · · ·max{xr, yr} · StarX×Y (∆(τ))

and
max{x1, y1} · · ·max{xd, yd} · (StarX(τ) × StarY (τ))

respectively. Thus the statement follows from the fact that

max{xd+1, yd+1} · · ·max{xr, yr} · (V × V/∆(Vτ )) → V/Vτ × V/Vτ ,

(x, y) 7→ (x, y)

is an isomorphism and can be restricted to an isomorphism ofmax{xd+1, yd+1} · · ·max{xr, yr} ·
StarX×Y (∆(τ)) andStarX(τ)× StarY (τ). �

1.3. Transversal Intersections. Let us now consider “generic” intersections.

Definition 1.3. Let X,Y be two cycles inV = Λ ⊗ R of codimensionc resp. d. We sayX andY
intersect transversallyif X ∩ Y is of pure codimensionc + d and if for each facetτ in X ∩ Y the
corresponding neighbourhoodsStarX(τ) andStarY (τ) are (transversal) affine subspaces ofV .

In this case, by locality of the intersection product, the computation ofX · Y can be reduced to the
intersection of vector spaces. This motivates the following study of intersections of linear functions and
spaces.
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Lemma 1.4. Let h1, . . . , hl be integer linear functions onV (l ≤ dim(V ) =: r) and define the ra-
tional functionsϕi := max{hi, 0} on V . Let H : V → Rl be the linear function withH(x) =
(h1(x), . . . , hl(x)) and let us assume thatH has full rank. Thenϕ1 · . . . ·ϕl ·V is equal to the subspace
ker(H) with weightind(H) := |Zl/H(Λ)|. Here we giveV the fan structure consisting of all cones
where each of thehi is either positive or zero or negative, with all weights being 1.

Proof. Let us assumel = 1 first (i.e.H = h1) In this case we have to compute the weight of the only
ridge inV which ish⊥1 = ker(H). This ridge is contained in the two facets corresponding tohi ≥ 0 and
hi ≤ 0. Let v≥ = −v≤ be corresponding primitive vectors. This implies that for examplev≥ generates
the one-dimensional latticeΛ/h⊥1 ∼= h1(Λ) and therefore|Z/h1(Λ)| = h1(v≥). On the other hand we
can compute the weight ofh⊥1 in h1 · V to be

ωh1·V (h
⊥
1 ) = ϕ1(v≥) + ϕ1(v≤) = h1(v≥) + 0 = |Z/h1(Λ)|.

Now we make induction forl > 1. The induction hypothesis says thatϕ2 · . . . ϕl · V is equal to the
subspaceker(H ′) with weightind(H ′), whereH ′ = h2 × . . .× hl. By applying the casel = 1 to the
vector spaceker(H ′) = (ker(H ′) ∩ Zr) ⊗ R, we obtain thatϕ1 · . . . ϕl · V is equal to the subspace
h⊥1 ∩ ker(H ′) = ker(H) with weight ind(h1|ker(H′)) · ind(H

′). We have to show that this weight
coincides withind(H). This follows from the exact sequence

0 → h1(ker(H
′) ∩ Λ) → H(Λ) → H ′(Λ) → 0

h1(x) 7→ H(x) = (h1(x), 0)
H(x) 7→ H ′(x)

and its induced quotient sequence

0 → Zl−1/H ′(Λ) → Zl/H(Λ) → Z/h1(ker(H
′) ∩ Λ) → 0 .

�

Remark1.5. In the special casel = r the weight of{0} in the intersection productϕ1 · . . . · ϕr · V is
|Zr/H(Λ)|, which equals| det(M)| whereM is a matrix representation ofH with respect to a lattice
basis ofΛ and the standard basis ofZr. This special case of the statement is proven in [MR08, Lemma
5.1]. Note that in this case, ifdet(M) is zero, the intersection product is zero as well. Hence thisversion
can be extended to the case whereH has not full rank.

Now we use this lemma to compute the intersection of two linear subspaces.

Lemma 1.6. LetU,W be two subspaces ofV = R⊗Λ (with rational slope) such thatU +W = V . If
we considerU,W as cycles with weight1, their intersection product can be computed to be

U ·W = |Λ/(ΛU + ΛW )| · (U ∩W ).

Proof. By definition we have to compute

max{x1, y1} · · ·max{xr, yr} · (U ×W ),

(where we chose arbitrary coordinates onΛ). Instead ofmax{xi, yi}, we can as well subtract the linear
functionyi and use the functionsmax{xi − yi, 0}. Now we can apply 1.4. In our case, the functionH
is just

H : Λ× Λ → Λ,

(x, y) 7→ x− y.

Restricted toU ×W , this provides

U ·W = |Λ/H(ΛU × ΛW )| · π∗(ker(H)) = |Λ/(ΛU ∓ ΛW )| · (U ∩W ).

�

Now, as a combination of 1.2 and 1.6, we obtain the following result.

Corollary 1.7. Let X,Y be two cycles inV = R ⊗ Λ that intersect transversally. ThenX · Y =
(X ∩ Y, ωX∩Y ) with the following weight function. Any facetτ in X ∩ Y is the intersection of two
facetsσ, σ′ in X resp.Y . Then the weight ofτ = σ ∩ σ′ is

ωX∩Y (σ ∩ σ′) = ωX(σ)ωY (σ
′)|Λ/Λσ + Λσ′ |.
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1.4. Comparison to the “fan displacement rule”. In [FS94] the authors introduce Minkowski weights
to describe the Chow cohomology groups of a toric variety combinatorially. Moreover, they compute the
cup-product of these cohomology groups in terms of Minkowski weights. In this subsection we show
explicitly that, when we interpret Minkowski weights as tropical cycles, this cup-product coincides with
our product of tropical cycles. Another approach to this topic is given in [Ka06, section 9] and [Ka09].
LetΘ be a complete fan in a vector spaceV = R⊗Λ of dimensionr (in [FS94], the fan is called∆ and
the lattice is calledN ). Let Θ(k) denote the set ofk-dimensional cones inΘ (in [FS94], the exponent
indicates the codimension, i.e.∆(k) meansΘ(r−k)).

Definition 1.8 (cf. [FS94], section 2). A Minkowski weightc of codimensionk is an integer-valued
function onΘ(r−k) that satisfies for anyτ ∈ Θ(r−k−1)

∑

σ∈Θ(r−k)

τ⊆σ

c(σ)vσ/τ ∈ Λτ

(in [FS94], primitive vectors are denoted bynσ,τ ).

Letc be a Minkowski weight of codimensionk. Of course, if we setX(c) to be the fan
⋃

0≤i≤r−k Θ
(i)

with weight functionc, the Minkowski weight condition precisely coincides with our balancing condi-
tion, i.e.X(c) is a tropical cycle of codimensionk.
In [FS94] it is shown that Minkowski weights are in one-to-one correspondence with the Chow coho-
mology classes of the toric variety associated to the fanΘ and therefore admit a cup-product with the
following properties. Letc, c′ be Minkowski weights of codimensionk, k′. Then the cup-productc ∪ c′

is a Minkowski weight of codimensionk + k′ given by

(c ∪ c′)(τ) =
∑

σ∈Θr−k

σ′∈Θr−k′

τ⊆σ,σ′

mτ
σ,σ′ · c(σ) · c′(σ′).

Here, the coefficients are not unique but depend on the choiceof a generic vectorv ∈ V . If we fix such
a vectorv, then

mτ
σ,σ′ =

{
|Λ/Λσ + Λσ′ | if (σ + v) ∩ σ′ 6= ∅,

0 otherwise

(cf. [FS94, introduction]). With the tools developed in theprevious sections, we can show easily (and
purely tropically) that the cup-product of Minkowski weights coincides with our intersection product of
tropical cycles inV . An independent proof of this statement is given in [Ka09, Theorem 4.4].

Theorem 1.9. Let c, c′ be Minkowski weights of codimensionk, k′. Then the following equation holds.

X(c) ·X(c′) = X(c ∪ c′)

Proof. For each facetτ in X(c ∪ c′) we have to show

ωX(c)·X(c′)(τ) = (c ∪ c′)(τ).

First, note that we can compute both sides locally onStarΘ(τ), where we of course define the “local”
Minkowski weights bȳc(σ̄) := c(σ) andc̄′(σ̄′) := c′(σ′). For the left hand side this follows from 1.2
and for the right hand side it follows from|Λ/Λσ + Λσ′ | = |(Λ/Λτ )/((Λσ + Λσ′)/Λτ )|.
Therefore we can assumek + k′ = r andτ = {0}. In this case, by plugging in the definition on the
right hand side and choosing a generic vectorv ∈ V , it remains to show

deg(X(c) ·X(c′)) =
∑

σ∈Θr−k

σ′∈Θr−k′

(σ+v)∩σ′ 6=∅

|Λ/Λσ + Λσ′ | · c(σ) · c′(σ′).

Now, for a generic vectorv ∈ V we can assume thatX(c) + v andX(c′) intersect transversally (in
fact, this is what the authors of [FS94] mean by a generic vector). Note that, in fact, the sum on the
right hand side runs through all points in the intersection of X(c) + v andX(c′). Therefore, by 1.7
it equalsdeg((X(c) + v) · X(c′)). But asX(c) + v andX(c) are rationally equivalent, the equation
deg(X(c) ·X(c′)) = deg((X(c) + v) ·X(c′)) holds and the statement follows. �
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1.5. Convexity and Positivity. A non-zero cycleX is calledpositive, denotedX > 0, if all weights
are non-negative. By throwing away the facets with weight0 (and all polyhedra contained in only such
facets) we can assume all weights to be positive. A rational functionϕ onX is calledconvexif it is
locally the restriction of a convex function onV . The pull-backf∗(ϕ) of a convex function is again
convex, as the composition of a convex function and a linear map is again convex. Moreover, ifZ is a
subcycle ofX , thenϕ||Z| is also convex onZ. Combining positivity and convexity we get the following
result.

Proposition 1.10. LetX be a positive cycle and letϕ be a convex function onX . Then

(a) ϕ ·X is positive and
(b) |ϕ| = |ϕ ·X |.

Proof. First of all note that we can assume thatX is a one-dimensional fan, as all intersection weights
can be computed locally modulo the ridge (cf. 1.1 (c)) and convexity is preserved when adding lin-
ear functions or when considering the function induced on the quotient. Thus we assume thatX =
{{0}, ρ1, . . . , ρr} is a one-dimensional fan with positive weightsω(ρi) > 0. The statements of the
lemma translate to

(a) ϕ convex⇒ ϕ ·X > 0,
(b) ϕ convex,ϕ ·X = 0⇒ ϕ linear.

We use the following criteria for linearity and convexity. Letϕ be a rational function onX and let us
abbreviate the primitive vector of the rayρi by vi. Then

i) ϕ is linear if and only if for allλ1, . . . , λr ∈ R with
∑

i λivi = 0 it holds
∑

i

λiϕ(vi) = 0,

ii) ϕ is convex if and only if for all positiveλ1, . . . , λr ≥ 0 with
∑

i λivi = 0 it holds
∑

i

λiϕ(vi) ≥ 0.

Now letϕ be convex. We can apply criterion ii) to the coefficientsω(ρi), which are positive and satisfy∑
i ω(ρi)vi = 0. This provides

ωϕ·X({0}) =
∑

i

ω(ρi)ϕ(vi) ≥ 0,

which proves (a).
For (b), let us assume that

∑
i ω(ρi)ϕ(vi) = 0 (i.e.ϕ ·X = 0) butϕ is not linear. Then by i) there exist

λ1, . . . , λr with
∑
i λivi = 0 but

∑
i λiϕ(vi) 6= 0. W.l.o.g. we can assume

∑
i λiϕ(vi) < 0 (otherwise

we replaceλi by −λi). For large enoughC ∈ R the coefficientsλ′i := λi + Cω(ρi) are all positive
and still satisfy

∑
i λ

′
ivi = 0 and

∑
i λ

′
iϕ(vi) < 0, which contradicts ii). Thereforeϕ is linear, which

proves(b). �

The following application of this proposition we be useful for us later.

Proposition 1.11. Let f : X → Y be a morphism of cycles and let us assume thatY is positive. Let
furthermoreϕ1, . . . , ϕl denote convex functions onY . Then the following equation of sets holds.

|f∗(ϕ1) · · · f
∗(ϕl) ·X | ⊆ f−1(|ϕ1 · · ·ϕl · Y |)

Proof. This can be proven by an easy induction. Ifl = 1 we have

|f∗(ϕ1) ·X | = |f∗(ϕ1)| ⊆ f−1(|ϕ1|) = f−1(|ϕ1 · Y |),

where the equalities follow from 1.10 (a). Now for arbitraryl we can apply the case of a single function
toϕl, obtaining

|f∗(ϕl) ·X | ⊆ f−1(|ϕl · Y |).

This shows that we can restrict the morphismf to f : f∗(ϕl) ·X → ϕl · Y . Asϕl · Y is still positive
by 1.10 (b), we can apply the induction hypothesis to this restriction, which yields the result. �
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1.6. Complete intersections.We define the set ofm-dimensionalcomplete intersectionsZc.i.
m (X) ⊂

Zm(X) to be the set ofm-dimensional cycles inX obtained as an intersection productϕ1 · · ·ϕl · X
(wherel = dim(X)−m).
Let C,C′ ∈ Zc.i.

∗ (X) be complete intersections given byC = ϕ1 · · ·ϕl · X andC′ = ϕ′
1 · · ·ϕ

′
l′ · X .

Then we define
C · C′ := ϕ1 · · ·ϕl · ϕ

′
1 · · ·ϕ

′
l′ ·X.

Using commutativity of the intersection product of functions, this multiplication is independent of the
chosen functions, commutative and satisfies|C · C′| = |C| ∩ |C′|. Note that, ifX = V = Λ ⊗ R, it
follows from [AR07, corollary 9.8] that this definition coincides with the usual intersection product of
cycles.
LetC ∈ Zc.i.

m (X) be given byC = ϕ1 · · ·ϕl ·X and letf : Y → X be a tropical morphism. Then we
would like to define the pull-back ofC alongf to be the complete intersection

f∗(C) := f∗(ϕ1) · · · f
∗(ϕl) · Y.

However, in general this definition is not independent of thechosen functionsϕ1, . . . , ϕl. For us it is
enough to consider the case of projections where this indeterminacy does not occur.

Proposition 1.12. LetX,Y be two cycles and letπ : X×Y → X be the projection onto the first factor.
Moreover, letZ be a complete intersection ofX × Y and consider the mapf = π|Z : Z → X . Now, if
C = ϕ1 · · ·ϕl ·X is a complete intersection inX , then the pull-back

f∗(C) := f∗(ϕ1) · · · f
∗(ϕl) · Z

is well-defined and the equation

|f∗(C)| ⊆ f−1(|C|)

holds.

Proof. First, we apply [AR07, 9.6], which yields

π∗(ϕ1) · · ·π
∗(ϕl) · (X × Y ) = (ϕ1 · · ·ϕl ·X)× Y = C × Y.

Thereforef∗(ϕ1) · · · f∗(ϕl) · Z is just the product of the complete intersectionsC × Y andZ, which
does not depend on any choices. Moreover, its support is contained in|C × Y | and the equation of sets
follows. �

Remark1.13 (Pulling back preserves numerical equivalence). LetC,C′ be complete intersections inRr

and letf : Y → Rr be a tropical morphism. Then, ifC andC′ are numerically equivalent, alsof∗(C)
andf∗(C′) are numerically equivalent in the following sense. IfZ is an arbitrary complete intersection
in Y of complementary dimension, then

deg(f∗(C) · Z) = deg(f∗(C′) · Z)

holds. This follows from the projection formula.

deg(f∗(C) · Z) = deg(f∗(f
∗(C) · Z)) = deg(C · f∗(Z))

In particular, if we move aroundC in V , the numerical properties of the pull-backs of the originaland
the translated cycle coincide.

1.7. General position. We now investigate what we can say about the set-theoretic preimage of a
general translation of a cycle under a morphismf . This section is a simple generalization of [MR08,
Section 3] (wheref is (a combination of) evaluation morphisms).

Lemma 1.14. LetX be a pure-dimensional polyhedral complex and letf : X → Rr be a morphism of
polyhedral complexes (i.e.f is linear on every polyhedron ofX). Furthermore, letC be a polyhedral
complex inRr and consider the subcomplexf−1(C) ofX consisting of all polyhedraτ ∩ f−1(γ), τ ∈
X, γ ∈ C. Then for a general translationC′ = C + v (i.e. v ∈ Rr can be chosen from an open dense
subset ofRr) the codimension of each non-empty polyhedronτ ∩ f−1(γ) ofX is equal to

codimX(τ ∩ f−1(γ)) = codimX(τ) + codimRr(γ).
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Proof. For eachτ in X andγ in C we consider the map

fτ : AffSpan(τ) → Rr,

induced byf |τ . Now we are interested inτ ∩ f−1(γ′) = τ ∩ f−1
τ (γ′) for general translationsγ′ of γ.

We have to distinguish the cases Im(fτ ) + Vγ = Rr and Im(fτ ) + Vγ 6= Rr. In the latter case,f−1
τ (γ′)

is empty for generalγ′. In the former case,f−1
τ (γ′) is a polyhedron of dimensiondim(τ)+dim(γ)−r,

and for generalγ′ it is disjoint fromτ or intersects the interior ofτ , in which caseτ ∩ f−1
τ (γ′) has the

same dimensiondim(τ) − codimRr (γ), which is the expected dimension.
As there are only finitely many pairsτ, γ, this holds simultaneously for all pairs for general enough
translations ofC. �

This technical statement has the following more applicableconsequences.

Proposition 1.15(Preimages of general translations). Letfk : X → Rr, k = 1, . . . , n be morphisms of
pure-dimensional polyhedral complexes and letCk, k = 1, . . . , n be cycles inRr. Then for a general
translationC′

k = Ck + vk, vk ∈ Rr the following holds. EitherZ := f−1
1 (C′

1) ∩ . . . ∩ f−1
n (C′

n) is
empty or

(a) the codimension ofZ in X equals the sum

codimX(Z) =
n∑

k=1

codimRr(Ck),

(b) Z is pure-dimensional,
(c) if a polyhedronα of Z is contained in a polyhedronτ of X , the codimensions satisfy

codimX(τ) ≤ codimZ(α) (in particular, the interior of a facet ofZ is contained in the in-
terior of a facet ofX),

(d) if the imagesfk(α) of a polyhedronα of Z are contained in polyhedraγk ofCk, the codimen-
sions satisfy

∑n
k=1 codimCk

(γk) ≤ codimZ(α).

Proof. It is easy to prove the statement in the casen = 1: (a), (b) and (c) are immediate consequences
of 1.14 and (d) follows from applying 1.14 to the(r − codimZ(α) − 1)-dimensional skeleton ofC1

(if γ1 belonged to this skeleton,α would be contained in its preimage, which (for general translations)
contradicts (a)). Now the statement follows if we apply the case of a single morphism tof1 × . . .× fn :
X → (Rr)n andC := C1 × . . .× Cn. �

Remark1.16. Sticking to the notations of the previous statement, let us assume thatX is a cycle and
that the mapsfk are tropical morphisms. Moreover, we assume that the mapsfk are projections (at
least after composing with an isomorphism) and that the complexesCk are complete intersections.
Thenf∗

1 (C1) · · · f∗
n(Cn) is also a pure-dimensional complex of the same dimension asf−1

1 (C′
1)∩ . . .∩

f−1
n (C′

n). Moreover, 1.12 shows that

|f∗
1 (C1) · · · f

∗
n(Cn)| ⊆ f−1

1 (C′
1) ∩ . . . ∩ f

−1
n (C′

n)

holds. Hence in this case we can think off∗
1 (C1) · · · f∗

n(Cn) as being the polyhedral setf−1
1 (C′

1) ∩
. . . ∩ f−1

n (C′
n) with the additional data of weights (some of which might be zero).

2. INTERSECTIONS ON THE SPACE OF ABSTRACT CURVES

Let us start with a definition of smooth abstract curves. As a local model of a curve we will use the
following fan. Lete1, . . . , er be the standard basis inRr and sete0 := −e1 − . . .− er. We define the
one-dimensional fan

Lr := {{0},R≥(−e0), . . . ,R≥(−er)},

with weightsω(R≥(−ei)) = 1 for all i. This fan is balanced because ofe0 + . . .+ er = 0.
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R3

L3

−e2

−e3

−e1

−e0
R2

L2

R

L1

Note that this fan is also irreducible, ase0 + . . .+ er = 0 is the only relation that the generating vectors
fulfil.

Definition 2.1. A smooth abstract curveC is a one-dimensional connected cycle that is locally isomor-
phic toLr for suitabler, i.e. for each vertexV in C we haveStarC(V ) ∼= Lval(V ). Thegenus ofC is
the first Betti number of|C|. An n-marked smooth abstract curve(C, x1, . . . , xn) is a smooth abstract
curveC with n unbounded rays (calledleaves), which are labelled byx1, . . . xn. If we instead label the
leaves by elements of some finite setI, we will call it anI-marked curve.

Remark2.2. We will often omit the word “smooth” here as we will not consider other abstract curves
(which are allowed to have different one-dimensional fans as local structures). Note that by definition
C is (locally) irreducible. We will always consider abstractcurves up to isomorphisms.
Note that the valence of a vertexV in C completely fixes the local structure (which isLval(V )). Hence
C is in fact completely determined by the underlying metric graph, i.e. the combinatorial graph together
with the (lattice length) of the edges. This is the definitionin most existing literature, in particular in
[GKM07]. We will later be interested in parametrized curves, i.e. mapsf : C → Rr. With the “metric
graph” definition, the balancing condition has to be incorporated in the definition of these maps (see
[GKM07, 4.1]). With our definition we can just impose thatf should be a morphism of tropical cycles,
giving the same result. Note that our definition also requires that a global embeddingC ⊂ RN of
our curve exists (which we then forget as we identify isomorphic curves). This is done to avoid some
technicalities involved in glueing abstract tropical cycles. However, will see that (at least for rational
curves) this is not a restriction as any “metric graph” curvecan be embedded.

Remark2.3 (Smoothness criterion). Let us mention two simple criteria to decide whether a one-dimen-
sional fan withr + 1 rays is isomorphic toLr or not (i.e. smoothness criteria).
Let X be a one dimensional fan inV = Λ ⊗ R with r + 1 rays, all with weight1 and generated by
the primitive vectorsv0, . . . , vr. Let VX be the vector space spanned byX . Then the following are
equivalent.

(a) X is isomorphic toLr.
(b) The equationsv0 + . . .+ vr = 0, dim(VX) = r andVX ∩ Λ = Zv0 + . . .+ Zvr hold.
(c) For arbitrary coefficientsλ0, . . . , λr ∈ R we have

i)
r∑

i=0

λivi = 0 ⇔ λ0 = . . . = λr ⇔ λi − λj = 0 for all i, j,

ii)
r∑

i=0

λivi ∈ Λ ⇔ λi − λj ∈ Z for all i, j.

Themoduli space of (abstract smooth)n-marked rational tropical curves, denoted byMn, is the fan

in R(
n
2)/Im(Φn) that parametrizes metric trees with positive lengths on thebounded edges (and infinite

lengths on the unbounded edges). The explicit constructionof this space can be found in [SS03], [Mi07]
and [GKM07, section 3]. The cones ofMn are in one-to-one correspondence with combinatorial types
of n-marked trees (with2-valent vertices removed), and the dimension of a cone equals the number of
bounded edges in the respective combinatorial type. A general point inMn (i.e. an element in the
interior of a facet) is a3-valent metric tree withn−3 bounded edges (hencedim(Mn) = n−3). When
all facets are equipped with weight1, Mn fulfils the balancing condition. HenceMn is a tropical fan
cycle. We denote the leaves byx1, . . . , xn. If we work withMn+1, the extra leaf is labelled byx0. As
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M3 is just a single point, we assumen ≥ 4 in most cases.
The notationI|J denotes a non-trivial partition of[n] = {1, . . . , n} (or of {0} ∪ [n] if we work with
Mn+1) into the two disjoint subsetsI andJ . In most cases — the few exceptions will be mentioned —
we will consider this partition to be unordered. Occasionally, we useIc to denote the complement ofI
and writeI|Ic. If |I| 6= 1 6= |J |, such a partition describes a ray inMn generated by the metric tree
VI|J ∈ Mn with only one bounded edge:

edge of length1

VI|J := ∈ Mn.
xi,

i ∈ I
xj ,
j ∈ J

An edge of a tree is uniquely determined by the partitionI|J obtained when removing the edge. In this
sense, we can regard the partitionsI|J as “global” labels of the edges of a tree, whereI|J labels the
leaf xi if I = {i} or J = {i}, and a bounded edge otherwise. A coneτ of Mn is generated by the
vectorsVI|J for all partitions which correspond to edges in the combinatorial type ofτ . In particular, it
is natural to use the lengths of the bounded edges as local coordinates of a cone ofMn — this identifies
each coneτ of Mn with the positive orthant ofRdim(τ).

Let us make some remarks here. We sometimes also think ofVI|J as a vector inR(
n
2), in which case

we also allow|I| = 1 or |J | = 1 to get simpler formulas. However, as

V{k}|[n]\{k} = Φn(0, . . . , 0, 1, 0, . . . , 0),

these vectors vanish modulo Im(Φn).

Note that for the following purposes, the underlying lattice ofR(
n

2)/Φn(R
n) is notZ(

n

2)/Φn(Z
n), but

is the lattice generated by the vectorsVI|J , denoted byΛn (see [GKM07, 3.3]). This is a technical issue,
as it does not change the lattices of the conesΛτ , τ ∈ Mn, but is necessary to make maps such as
forgetful mapsintegeraffine.
As mentioned above, any metric tree can be realized uniquelyby a smooth rational curve in the sense
of definition 2.1 (we actually prove this in proposition 2.19). ThereforeMn really parametrizes what is
promised by its name.
ComparingMn to its classical counterpart, note that we will stick to the non-compact part of smooth
curves and will not use a compactification. However, the “recursive structure” of the boundary known
from the classical moduli space of stable curves is already visible inMn (without adding a “boundary”).
Namely, letτ be a cone ofMn and letΓ denote the corresponding combinatorial type ofn-marked trees.
Then it is easy to check that the star aroundτ satisfies

StarMn
(τ) =

∏

ν vertex
of Γ

Mval(ν),

i.e. can be described as the product of “smaller” moduli spaces.
We will now define divisors respectively rational functionsthat play the role of “boundary” divisors

in our moduli space. More precisely, if we actually would compactifyMn, these divisors should be
rationally equivalent to the actual boundary divisors. Allthese divisors lie in the codimension one
skeleton ofMn, therefore represent higher-valent curves. AsMn is simplicial, we can define a rational
function onMn by assigning an integer to eachI|J : The integers are the values of the function atVI|J
and on each cone we extend the function by linearity.

Definition 2.4. We define the rational functionϕI|J by

ϕI|J(VI′|J′) :=

{
1 if I = I ′ or I = J ′,
0 otherwise.

Furthermore, we use the notation
ϕk,l := ϕ{k,l}|[n]\{k,l}

for k 6= l.

The ridges (codimension one cells) ofMn correspond to combinatorial types of curves with one
4-valent vertex, which we will draw like this.

A
D×

B
C
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HereA, B, C andD denote the four parts of the combinatorial type adjacent to the 4-valent vertex
and by abuse of notations also the sets of leaves belonging tothis part (as, in most cases, this is the
only information needed). If we want to compute the weight ofa ridgeAD×

B
C in the divisor of a rational

function onMn, we need to know howMn looks like locally aroundAD×
B
C . Obviously,StarMn

(AD×
B
C)

contains three facets corresponding to the three possibilities of "‘resolving"’ the4-valent vertex by
inserting a new bounded edge.

A

A

B

C

D

ridge

adjacent facets

C D

BA

D C

BA

B D

C

The (representatives of the) primitive vectors areVA∪B|C∪D, VA∪C|B∪D andVA∪D|B∪C . For the bal-
ancing condition aroundAD×

B
C , it suffices to show the equation

VA∪B|C∪D + VA∪C|B∪D + VA∪D|B∪C = VA|B∪C∪D + VB|A∪C∪D + VC|A∪B∪D + VD|A∪B∪C ,

as all vectors on the right hand side lie in the vector space spanned by the ridgeAD×
B
C , as required. But

the equation follows from the fact that, on the level of metric trees, the distance between two marked
leaves is identical on both sides. If both leaves belong to the same setA,B,C,D, the distance is0, if
not, it is2.

Let us now compute the divisors of the functionsϕI|J . In the following, a formula involvingI, J
andA,B,C,D stands for all permuted formulas as well, e.g.I = Ameans “I = A or I = B orJ = A
. . .”.

Lemma 2.5. Theboundary divisordiv(ϕI|J ) carries the weight function

ωϕI|J
(AD×

B
C) =





1 if I = A ∪B,
−1 if I = A,
0 otherwise.

Proof. Following from the previous discussion, the weight ofA
D×

B
C in div(ϕI|J) is by definition

ωϕI|J
(AD×

B
C) = ϕI|J (VA∪B|C∪D) + ϕI|J (VA∪C|B∪D) + ϕI|J(VA∪D|B∪C)

−ϕI|J(VA|B∪C∪D)− ϕI|J(VB|A∪C∪D)− ϕI|J(VC|A∪B∪D)− ϕI|J(VD|A∪B∪C).

Hence, this weight is1 if I is the union of two of the setsA,B,C,D and is−1 if I equals one of the
four sets. Otherwise, it is0. �

These divisors were computed before by Matthias Herold (see[H]).

Remark2.6. In terms of the general toric geometry rules, the functionsϕI|J respectively the divisors
div(ϕI|J ) are the tropical analogues of the irreducible components ofthe boundary of the classical
moduli space of stable curvesM0,n. Instead of using this fact explicitly, in the following we will show
in purely tropical terms that the tropical divisors show thesame intersection-theoretic behaviour as their
classical counterparts. (We will need this anyway when dealing with parametrized curves later on.)

Lemma 2.7. The equation
ϕi,j · ϕi,k ·Mn = 0

holds forn ≥ 4 and pairwise differenti, j, k ∈ [n].

Proof. An abstract curveC cannot simultaneously have bounded edges with partitions{i, j}|{i, j}c

and{i, k}|{i, k}c (as for example the first partition forcesi andk to be adjacent to the same3-valent
vertex). LetC be a curve in|ϕi,k|. At least after resolving a4-valent vertex, it contains an edge with
partition{i, k}|{i, k}c and can thereforenot contain an edge with partition{i, j}|{i, j}c. Butϕi,j just
measures the length of such an edge if present. Thus,ϕi,j ||ϕi,k| ≡ 0. �
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Analogues of Psi-classes on tropicalMn have been defined by G. Mikhalkin ([Mi07]). Their inter-
sections were studied in in [KM07]. We use the notion Psi-divisor instead of Psi-class to emphasize that,
in contrast to the algebro-geometric case, tropically Psi-divisors arenot defined up to rational equiva-
lence. (Again, in the toric geometry language, the tropicalPsi-divisors are just the Minkowski weights
associated to the classical ones.) In order to perform intersections, we need to describe our Psi-divisors
by rational functions. Let us recall the important definitions and results of [KM07] here.

Definition 2.8. We define thek-th Psi-functionψk by

ψk(VI|J ) :=
|I|(|I| − 1)

(n− 1)(n− 2)

for all partitionsI|J with |I|, |J | ≥ 2 andk ∈ J .

Remark2.9. Our functionψk equals the function 1

(n−1
2 )

fk defined in [KM07] (follows from [KM07,

Lemma 2.6]). In particular,ψk is a convex function (cf. [KM07, Remark 2.5]). Note that in this paper,
ψk andϕI|J denote functions andnot their corresponding divisors. On the other hand, as mentioned in
subsection 1.6, this is only a matter of notation. For intersection-theoretic purposes, the actual choice of
a function defining the same divisor does not matter.

Remark2.10. Obviously the numbersψk(VI|J) are only rational. A generalization of intersection theory
to rational numbers is straightforward, but also essentially unnecessary: The weights of the divisor ofψk
turn out to be integers (see the following proposition) and there exist integer rational functions producing
the same divisor (see 2.24). This particular functionψk was chosen in [KM07] because of its symmetry.

Proposition 2.11(see [KM07] 3.5). The divisordiv(ψk) consists of the cones corresponding to trees
where the marked leafk is at a4-valent vertex, i.e. the weight of a facet indiv(ψk) (which is a ridge in
Mn) is

ωψk
(AD×

B
C) =

{
1 if {k} = A,
0 otherwise

Remark2.12. As mentioned above, in toric geometry language and using theconsidering the embedding
of the classical moduli space of stable curves in the toric variety associated toMn, it is easy to see that
div(ψk) indeed represents the Minkowski weight associated to the classicalk-th Psi-class. To check
this, consider the one-dimensional boundary stratumS in the classical moduli space corresponding to
reducible curves with dual graphAD×

B
C . Each of such curves contains exactly oneP1-component with

4 special points, whereas all other components carry exactly3 special points and therefore are rigid.
HenceS is isomorphic to the moduli space of4-marked stable curvesM0,4

∼= P1. Let Lk be the line
bundle whose fibre over a point corresponding to a curveC is the cotangent spaceT ∗

xk
C at the marked

pointxk. By definition the classical Psi-class is just the first Chernclass of this line bundle. To compute
the associated Minkowski weight, we should evaluate this Chern class on the one-dimensional boundary
stratum described above. IfA = {k}, this means thatxk is one of the four special points on the non-
rigid component. It follows thatLk|S is equal to the corresponding Psi line bundle onM0,4 and we can
computedeg(Lk|S) = 1. (For example, representingM0,4 as the pencil of conics through4 points in
the plane, there is exactly one conic with prescribed tangent line at one of the4 points.) IfA 6= {k},
the marked pointxk lies on one of the rigid components. ThereforeLk|S is the trivial line bundle and
deg(Lk|S) = 0. This reproduces the weights from our proposition. Again, let us emphasize that we do
not really use this derivation as our arguments are purely tropical.

Notation 2.13. As in the conventional case we will introduce the followingτ -notation that makes
formulas shorter and hides “unimportant” data such as the number of marked leaves. For any positive
integersa1, . . . , an we define

(τa1 · . . . · τan) := ψa11 · . . . · ψann ·Mn.

Every factorτak stands for a marked leaf and the indexak serves as the exponent with which the
corresponding Psi-function appears in the intersection product. If

∑
ak = dim(Mn) = n − 3, the

above cycle is zero-dimensional (in fact, its only point corresponds to the curve without bounded edges
where all leaves are adjacent to one single vertex) and we define

〈τa1 · . . . · τan〉 := deg
(
ψa11 · . . . · ψann ·Mn

)
.
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The main theorem of [KM07] computes these intersection products of Psi-divisors.

Theorem 2.14(Intersections of Psi-divisors for abstract curves, see [KM07] 4.1). The intersection
product(τa1 · . . . · τan) is the subfan ofMn consisting of the closure of the cones of dimensionn− 3−∑n

i=1 ai whose interior curvesC have the following property.
Letk1, . . . , kq ⊆ N be the marked leaves adjacent to a vertexV ofC. Then the valence ofV is

val(V ) = ak1 + . . .+ akq + 3.

Let us define the multiplicity of this vertex to bemult(V ) :=
(
val(V )−3
ak1 ,...,akq

)
. Then the weight of such a

coneσ in X is

ωX(σ) =
∏

V

mult(V ),

where the product runs through all verticesV of an interior curve ofσ.

In this section we reprove the zero-dimensional case of thistheorem (see 2.22). To do this, we first
have to analyse how Psi- and boundary divisors intersect andhow they behave when pulled back or
pushed forward along forgetful morphisms.

Lemma 2.15. It holds

ϕi,j · ψi ·Mn = 0

for n ≥ 4 andi 6= j ∈ [n].

Proof. Curves in|ψi| cannot contain a bounded edge with partition{i, j}|{i, j}c, as the leafi does not
lie at a3-valent vertex. Thusϕi,j vanishes on|ψi|. �

The forgetful mapMn+1 → Mn that forgets the extra leafx0 is denoted byft0 (cf. [GM05, 4.1]
and [GKM07, 3.8]). By [GKM07, 3.9] this map is a tropical morphism. Therefore we can ask how
Psi-functions behave when pulled back alongft0.

Lemma 2.16(Pull-back of Psi-functions). Letn ≥ 4 and letft0 : Mn+1 → Mn be the morphism that
forgets the leafx0. For k ∈ [n] it holds

div(ψk) = div(ft∗0 ψk) + div(ϕ0,k).

Proof. This can be proven by explicitly computing the weights of thecodimension one faces of the three
divisors. We distinguish four cases (up to renamingA, B, C andD):

ωf (
A
D×

B
C) f = ψk f = ft∗0 ψk f = ϕ0,k

A = {0, k} 0 1 −1
A = {0}, B = {k} 1 0 1

A = {0, . . .}, B = {k} 1 1 0
otherwise 0 0 0

�

Corollary 2.17. Letn ≥ 4 and letft0 : Mn+1 → Mn be the morphism that forgets the leafx0. Then
for k ∈ [n] the following formulas hold.

(a) ϕ2
0,k = − ft∗0(ψk) · ϕ0,k

(b) ψak = ft∗0(ψk)
a + ft∗0(ψk)

a−1 · ϕ0,k

(c) ψak = ft∗0(ψk)
a + (−1)a−1ϕa0,k

Proof. All the formulas follow directly from 2.15 and 2.16. �

Lemma 2.18. Let n ≥ 4 and let ft0 : Mn+1 → Mn be the morphism that forgets the leafx0 and
choosek ∈ [n]. Then

ft0∗(div(ϕ0,k)) = ft0∗(div(ψk)) = Mn.
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Proof. We showft0∗(div(ϕ0,k)) = Mn by direct computation. Letσ′ be a facet ofMn corresponding
to a3-valent combinatorial type. LetV be the vertex adjacent tok. Then there exists precisely one cone
σ in div(ϕ0,k) whose image underft0 is σ′, namely the cone obtained by attaching the additional leaf
x0 to the vertexV . Moreover, on such a cone, the length of the bounded edges remain unchanged under
ft0 and thereforeft0(Λσ) = Λσ′ . On the other hand, cones indiv(ϕ0,k) with negative weight are not
mapped injectively, as in this casex0 is adjacent to a3-valent vertex and stabilization is needed. This
shows thatft0∗(div(ϕ0,k)) = Mn.
The equationft0∗(div(ψk)) = Mn follows from the same argument or by using 2.16, the projection
formula andft0∗(Mn+1) = 0 (because the dimension is too big). �

It is well-known that for the classical moduli spaceM0,n, the forgetful morphism plays the role of the
universal family (cf. [KV07, section 1.3]). In the tropicalsetting we can prove the following statement

Proposition 2.19(Family property offt0 for abstract curves). Let p be a point inMn and letCp =

ft−1
0 (p) be the fibre ofp under the forgetful morphismft0 : Mn+1 → Mn. Then the following holds.

(a) Cp has the canonical structure of a one-dimensional polyhedral complex.
(b) The leaves ofCp (as graph itself) are the facets wherex0 and another leafxi lie at the same

3-valent vertex (i.e. the leaves are given byLi := {y ∈ Cp|ϕ0,i(y) > 0}). Moreoverp ∈ Mn

represents then-marked metric graph(Cp, L1, . . . , Ln).
(c) When we equip all its facets with weight1, Cp is a smooth abstract curve (in the sense of 2.1).
(d) Let

∑
k µkpk = ϕ1 · . . . · ϕn−3 · Mn be a zero-dimensional cycle inMn obtained as the

intersection product of convex functionsϕj . Then

ft∗0(ϕ1) · . . . · ft
∗
0(ϕn−3) · Mn+1 =

∑

k

µkCpk .

We write this asft∗0(
∑

k µkpk) =
∑
k µkCpk .

Proof. (a): As polyhedral complex,Cp consists of the polyhedraft0 |−1
σ (p) for each coneσ of Mn+1.

The dimension of these polyhedra can be at most one asdim(f0(σ)) ≥ dim(σ) − 1 (it depends on
whetherx0 is adjacent to a3-valent or higher-valent vertex).
(b): LetΓp denote then-marked metric graph represented byp. The bijective mapΓp → Cp indicated
in the picture identifies the two graphs.

x5

x4

x2

x1Γp x5

x4

x2

x1

x0x3x3

∈ Cp

(c): Let V be a vertex ofCp. It corresponds to the metric graphΓp with the extra leafx0 adjacent to
one of the vertices. Let us label the other edges adjacent to this vertex by1, . . . ,m and let us divide
the other leaves[n] = I1 ·∪ . . . ·∪ Im according to via which edge one reachesxi from x0. There arem
facets inCp adjacent toV corresponding to movingx0 on one of the edges. Hereby on has to shorten
the edgeIk|Ick as much as the length ofIk ∪ {x0}|(Ik ∪ {x0})c increases.

...

...

E2

xi, i ∈ I1
xi, i ∈ Im

E1 Em

xi, i ∈ I2

x0

x0 x0

x0
1 −1

−1
1

V1
V2

Vm

−1 1
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Thus the primitive integer vector of the corresponding facet with respect toV is given by

Vk := VIk∪{x0} − VIk .

Note that this formula as well as the following ones also holds in the case thatIk consists only of a single

leafxi (which meansxi is adjacent to the same vertex asx0), asV{xi} = 0 ∈ R(
n+1
2 )/Im(Φn+1). To

prove the statement we now use 2.3 and verify the conditions i) and ii), which can be done by applying
some formulas of [KM07]. LetS be the set of two-element subsets of[n] (i.e. not containing0). It fol-

lows from [KM07, 2.3, 2.4, 2.6] that the vectorsVS , S ∈ S fulfil i) and ii) (with V = R(
n+1
2 )/Im(Φn+1)

andΛ = Λn). Furthermore [KM07, 2.6] gives us a representation of our vectors in terms of the vectors
VS , namely

VIk =
∑

S∈S
S⊆Ik

VS

VIk∪{x0} =
∑

S∈S
S∩Ik=∅

VS ,= −
( ∑

S∈S
S∩Ik 6=∅

VS

)
,

and therefore

Vk = −
(∑

S∈S

|S ∩ Ik| · VS
)
.

Now letλ1, . . . , λm be arbitrary real coefficients. Then we obtain the formula
m∑

k=1

λkVk = −
( ∑

{i,j}∈S
i∈Ik,j∈Ik′

(λk + λk′ ) · V{i,j}

)
.

Now all differences of two coefficients on the left hand sideλk − λ′k can be obtained as differences of
two coefficients on the right hand side (choose elementsi ∈ Ik, j ∈ Ik′ , l ∈ Ik′′ ; then the coefficients of
V{i,l} andV{j,l} differ byλk+λk′′ −λk′ −λk′′ = λk−λk′ ). Conversely, a right hand side difference of
coefficients equals the sum of two left hand side differences. (The coefficients ofV{i1,i2} andV{j1,j2}
differ by (λk1 − λl1) + (λk2 − λl2), wherei1 ∈ Ik1 , i2 ∈ Ik2 , j1 ∈ Il1 , j2 ∈ Il2 .) Hence, as conditions
2.3 i) and ii) hold for the vectorsVS , they also hold for the vectorsVk.
(d): First of all, the set-theoretic equation

| ft∗0(ϕ1) · . . . · ft
∗
0(ϕn−3) · Mn+1| ⊆ ft−1

0 (|ϕ1 · . . . · ϕn−3 · Mn|) =
⋃

k

|Cpk |.

follows from 1.11. But the sets|Cpk | are pairwise disjoint (as they are fibres of pairwise different
points) and belong to irreducible cycles (as the curvesCpk are smooth abstract curves). Thus any one-
dimensional cycle whose support lies in

⋃
i |Cpk | is actually a sum

∑
k λkCpk , λk ∈ Z. So it remains

to check that in our case these coefficientsλk coincide withµk. To do this, we choose an arbitrary leaf
xi 6= x0 and consider the functionϕ0,i onCpk . On the leafLi of Cpk , wherex0 andxi are adjacent
to the same3-valent vertex, it measures the length of the third edge, elsewhere it is constantly zero.
Thusϕ0,i · Cpk = Vpk , whereVpk is the vertex ofCpk adjacent toLi (wherex0 andxi lie together at a
higher-valent vertex). Thus we get

ft0∗
(
ϕ0,i · (

∑

k

λkCpk)
)
= ft0∗

(∑

k

λkVpk
)
=

∑

k

λkpk.

On the other hand we can use projection formula and 2.18 and compute

ft0∗
(
ϕ0,i · ft

∗
0(ϕ1) · . . . · ft

∗
0(ϕn−3) · Mn+1

)
= ϕ1 · . . . · ϕn−3 · ft0∗(ϕ0,i ·Mn+1) =

∑

k

µkpk.

Comparing the coefficients proves the statement. �

Remark2.20. Hence there is a one-to-one correspondence between curves according to the “old” defi-
nition (i.e. as metric graphs) and definition 2.1. In particular,Mn parametrizes smooth abstract curves
in our sense.
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Theorem 2.21(String equation for abstract curves). For zero-dimensional intersection products of Psi-
divisors the following holds.

〈τ0

n∏

k=1

τak〉d =
n∑

i=1

〈τai−1

∏
k 6=i

τak〉d

Proof. The proof is identical to the algebro-geometric one. We haveto compute degree of the intersec-
tion product

∏n
k=1 ψ

ak
k ·Mn+1. First we replace each termψakk (k 6= 0) by ft∗0(ψk)

ak + ft∗0(ψk)
ak−1 ·

ϕ0,k using 2.17 (b) and multiply the product out. Asϕ0,k · ϕ0,k′ = 0 for k 6= k′ (see 2.7), we only get
the followingn+ 1 terms.

n∏

k=1

ft∗0(ψk)
ak · Mn+1 +

n∑

i=1

ft∗0(ψi)
ai−1 ·

∏
k 6=i

ft∗0(ψk)
ak · ϕ0,i · Mn+1

Now we push this cycle forward alongft0 and use projection formula. The first term vanishes for
dimension reasons and, asϕ0,i pushes forward toMn by 2.18, the other terms provide the desired
result. �

Remark2.22. As in the classical case, the string equation suffices to compute all intersection numbers
of Psi-divisors of abstract curves. Namely, if

∑
ai = n− 3, the equation

〈τa1 · . . . · τan〉 =
(n− 3)!

a1! · . . . · an!

holds. This was proven in [KM07, 4.2] using the paper’s main theorem [KM07, 4.1] (cited here in
2.14). Note, however, that in order to prove the string equation it was not necessary to use [KM07, 4.1].
Another independent proof of the above equality is given in [Ka09, Proposition 7.4].

Lemma 2.23. Letn > 4 and letft0 : Mn+1 → Mn be the morphism that forgets the last leaf. Then

ft0∗(div(ϕI|J )) =

{
Mn if I = {0, k} or J = {0, k} for somek ∈ [n],
0 otherwise.

Proof. The first part is shown in 2.18. So let us prove the second part.First, we choosei ∈ I andj ∈ J ,
both different from0. Consider a facetσ′ in Mn corresponding to a combinatorial type wherexi and
xj are adjacent to the same3-valent vertexV . All ridges in Mn+1 mapping ontoσ′, are obtained
by attachingx0 to any of the vertices. If not attached toV , the induced partitionA,B,C,D cannot
separatei andj. If attached toV , the induced partition is{0}, {i}, {j}, D. It follows from {0, i} 6=
I and{0, j} 6= J thatD intersects bothI andJ and therefore none of these types is contained in
div(ϕI|J ). Henceσ′ is not contained in the push-forward ofdiv(ϕI|J ). But Mn is irreducible, thus
ft0∗(div(ϕI|J )) = 0. �

Lemma 2.24. For n ≥ 4 we define

(x1|x2, x3) :=
∑

I|J
1∈I; 2,3∈J

div(ϕI|J ).

Then
div(ψ1) = (x1|x2, x3).

Proof. We use induction on the number of leavesn. Forn = 4, only the partition{1, 4}|{2, 3} con-
tributes to the sum. Butdiv(ψ1) as well asdiv(ϕ1,4|2,3) is just the single vertex inM4 parametriz-
ing the curve14×

2
3 with weight 1. For the induction step, assumen ≥ 4 and consider the morphism

ft0 : Mn+1 → Mn that forgets the leafx0 and letI ′|J ′ be a partition of[n]. Thenft∗0(ϕI′|J′) measures
the sum of the lengths of the edges separatingI ′ andJ ′ if present. Hence we obtain

ft∗0(ϕI′|J′) = ϕI′∪{0}|J′ + ϕI′|J′∪{0}.

Using the induction hypothesis, we conclude thatft∗0(ψ1) equals the sum on the right hand side except
for the partition{0, 1}|{0, 1}c. This missing summand is provided by 2.16. �

Lemma 2.25. Letn ≥ 4 and letft0 : Mn+1 → Mn be the morphism that forgets the leafx0. Then

ft0∗(div(ψ0)) = (n− 2)Mn.
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Proof. We expressψ0 as(x0|x1, x2) by 2.24 and use linearity of the push-forward. Lemma 2.23 says
that we getoneMn for eachϕ{0,k}|{0,k}c and zero for each otherϕI|J . As k runs through{3, . . . , n},
the statement follows. �

Proposition 2.26(Dilaton equation for abstract curves). Let 〈
∏n
k=1 τak〉 be a zero-dimensional inter-

section product. Then

〈τ1 ·
n∏

k=1

τak〉 = (n− 2)〈
n∏

k=1

τak〉.

Proof. The proof is identical to the algebro-geometric one, using 2.17, 2.15, 2.18, 2.25 and the projec-
tion formula.
As degree is preserved, we push forward(τ1 ·

∏n
k=1 τak) along the forgetful morphismft0 forgetting

the extra leafx0 corresponding to the factorτ1. To see what happens, we use 2.17 (b) and replace each
termψakk by ft∗0(ψk)

ak + ft∗0(ψk)
ak−1 · ϕ0,k. When we multiply the whole product out, all summands

containing a factorϕ0,k vanish when multiplied withψ0 (see 2.15). It follows

ψ0 ·
n∏

k=1

ψakk = ψ0 ·
n∏

k=1

ft∗0(ψk)
ak

and the projection formula together withft0∗(div(ψ0)) = (n−2)Mn from 2.25 gives the desired result.
�

3. INTERSECTIONS ON THE SPACE OF PARAMETRIZED CURVES

In the previous section, we proved that the tropical "‘boundary divisors"’ and Psi-divisors satisfy
exactly the same intersection-theoretic formulas as theirclassical counterparts. We did this using purely
tropical arguments, but could have used instead tropicalization methods and toric intersection theory
(cf. [Ka09]). The situation changes as we move on to curves together with maps toRn. In this case, as
M0,n(P

n, d) does not admit a nice toric embedding and therefore the tropicalization of its intersection
ring is not yet well understood. (In fact, we will see that, atleast with our definitions, the intersection
theories are not completely identical.) So at least from nowon, we are somehow forced to take this
purely tropical approach. Let us start with the necessary definitions.

A (labelled) degree∆ in Rr is a finite set of labels together with a map∆ → Zr \ {0} to the set
of non-zero integer vectors. Furthermore the images of thismap, denoted byv(xi), i ∈ ∆ as they will
later play the role of the directions of the leavesxi, sum up to zero, i.e.

∑
i∈∆ v(xi) = 0. The number

of elements in∆ is denoted by#∆ (to distinguish it from the support of a cycle). As an example, we
define theprojective degreed (in dimensionr) to be the set[(r + 1)d] with the map

[(r + 1)d] → Zr \ {0},

1, . . . , d 7→ −e0,

d+ 1, . . . , 2d 7→ −e1,

...
...

rd+ 1, . . . , (r + 1)d 7→ −er,

where, as usual,e1, . . . , er denote the standard basis vectors ande0 := e1 + . . .+ er.

Definition 3.1. An n-marked (labelled) parametrized curve of degree∆ in Rr is a tuple(C, h), where
C is an[n] ·∪∆-marked smooth abstract curve andh : C → Rr is a tropical morphism such that for all
leavesxi the rayh(xi) ⊆ Rr has directionv(xi). Herev(xi) is set to be zero ifi ∈ [n] (i.e. the marked
leavesxi, i ∈ [n] are contracted to a point). The genus of(C, h) is defined to be the genus ofC.

Remark3.2. The leavesxi, i ∈ [n] are calledmarked leaves, as they correspond to the marked points
of stable maps classically. Marked leaves are contracted byh. In contrast to that we call the leaves
xi, i ∈ ∆ non-contracted leaves. Our curves are called “labelled” as also the non-contracted leaves are
labelled.
Two parametrized curves(C, h) and(C′, h′) are called isomorphic (and therefore identified in the fol-
lowing) if there exists an isomorphismΦ : C → C′ identifying the labels and satisfyingh = h′ ◦ Φ.
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Let us compare our definition to [GKM07, definition 4.1]. Conditions (a) and (b) in that definition
make sure thath is a tropical morphism in our sense (at least locally; but again, considering the family
property offt0, ev0 overMlab

n (Rr,∆) we will see that a global integer affine maph always exists).
Condition (c) is also contained in our definition.

LetMlab
n (Rr,∆) be the moduli space of rationaln-marked labelled parametrized curves of degree∆

in Rr. Its construction as a tropical cycle can be found in [GKM07,4.7]. After fixing one of the marked
leavesxi asanchor leaf (we avoid “root leaf” as, from the botanic point of view, thisdoes not make
much sense), we can identifyMlab

n (Rr,∆) with M[n]∪∆ × Rr, where the first factor parametrizes the
abstract curveC and the second factor contains the coordinates of the image point of the anchor leafxi.
As our curves are rational, this suffices to fix the morphismh. Indeed, as∆ determines the directions
of all leaves, we can use the balancing condition to recursively compute the directions of all bounded
edges as well. Henceh is uniquely determined by the lengths of the edges and the coordinates of one
image point (in our caseh(xi)).

So again, cones inMlab
n (Rr,∆) correspond to combinatorial types of the underlying abstract curves,

but this time the minimal cone is not zero- butr-dimensional because we can move the curve inRr.
For enumerative purposes, we would like to identify curves whose only difference is the labelling of
the non-contracted leaves. LetMn(R

r,∆) denote the set of theseunlabelledcurves. Then the number
of elements in a general fibre of the mapMlab

n (Rr,∆) → Mn(R
r,∆) forgetting the labelling of the

non-contracted leaves equals the number of possibilities to label a general unlabelled curve, which is

∆! :=
∏

v∈Zr\{0}

n(v)!,

wheren(v) denotes the number of timesv occurs asv(xi), i ∈ ∆. Therefore each enumerative invariant
computed onMlab

n (Rr,∆) must simply be divided by∆! to get the corresponding one inMn(R
r,∆).

From now on,I|J denotes a (non-empty) partition of[n] ·∪∆ (or {0} ·∪ [n] ·∪∆ if we work with
Mlab

n+1(R
r,∆)). Again such partitions can be used as global labels of the edges of our curves. The

direction of the image of the corresponding edge underh is given by

vI|J :=
∑

i∈I

v(xi) = −(
∑

j∈J

v(xj))

(as an exception, the ordering ofI andJ plays a little role here, namelyvI|J = −vJ|I ). We callI|J
reducibleif vI|J = 0 (i.e. if the corresponding edge is contracted). This is equivalent to requiring that
the corresponding split sets∆I = I ∩∆ and∆J = J ∩∆ fulfil the balancing condition, i.e. are degrees
on its own. Also the marked leaves split up into[n] = {i ∈ I|v(xi) = 0} ·∪ {j ∈ I|v(xj) = 0}. In
this sense, the partition corresponds (nearly) to a conventional partition(S′, β′|S′′, β′′) of the marked
pointsS = S′ ·∪S′′ and the degreeβ = β′ + β′′, occurring for example in the classical splitting
lemma. However, note that in the tropical setting it is possible to permute non-contracted leaves with
the same direction vector betweenI andJ without changing the corresponding conventional partition,
hence in general several tropical reducible partitions correspond to the same conventional partition. The
non-reduciblepartitionsI|J (i.e.vI|J 6= 0) do not correspond to such a partition.

There exists a forgetful mapft′ : Mlab
n (Rr,∆) → M[n]∪∆ forgetting just the position of a curve

in Rr. This forgetful mapft′ : Mlab
n (Rr,∆) → M[n]∪∆ is a morphism of tropical varieties, as after

choosing a anchor leaf and identifyingMlab
n (Rr,∆) with M[n]∪∆ × Rr, ft′ is just the projection onto

the first factor. We use this to define Psi-functions onMlab
n (Rr,∆).

Definition 3.3 (Psi-functions for parametrized curves). For a partitionI|J of [n] ∪ ∆ we define the
functionϕI|J onMlab

n (Rr,∆) to beft′∗(ϕabstr
I|J ), whereϕabstr

I|J is the corresponding function onM[n]∪∆.

For i = 1, . . . , n we definethek-th Psi-function onMlab
n (Rr,∆) to beψk := ft′∗(ψabstr

k ), where the
ψabstr
k is thek-th Psi-function onM[n]∪∆.

Remark3.4. Again, in spite of defining functions we are actually interested in its divisors. Note that
by 1.12 the pull-backs of the respective divisors do not depend on the particular functions. Note that in
[MR08, Definition 2.2] we used the notationψk for the divisor instead of the rational function.

We can immediately generalize statement 2.14 to parametrized curves (cf. [MR08, Lemma 2.4]).
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Proposition 3.5(Intersections of Psi-divisors for parametrized curves). Let a1, . . . , an be positive in-
tegers and letX =

∏n
k=1 ψ

ak
k · Mlab

n (Rr,∆) be a product of Psi-divisors. ThenX is the subfan of
Mlab

n (Rr,∆) consisting of the closure of the cones of dimensionn+#∆− 3−
∑n
i=1 ai whose interior

curvesC have the following property.
Letk1, . . . , kq ⊆ [n] be the marked leaves adjacent to a vertexV ofC. Then the valence ofV is

val(V ) = ak1 + . . .+ akq + 3.

Let us define the multiplicity of this vertex to bemult(V ) :=
(
val(V )−3
ak1 ,...,akq

)
. Then the weight of such a

coneσ in X is
ωX(σ) =

∏

V

mult(V ),

where the product runs through all verticesV of an interior curve ofσ.

Proof. Choose an anchor leaf and identifyMlab
n (Rr,∆) with M[n]∪∆×Rr. Thenft′ is just the projec-

tion on the first factor and we can apply [AR07, 9.6], i.e. instead of intersecting the pull-backs of thefk
on the product, we can just intersect thefk on the first factor and then multiply withR2. Thus,

X = (
n∏

k=1

(ψabstr
k )ak ·M[n]∪∆)× Rr,

where hereψabstr
k denotes a Psi-function onM[n]∪∆. Now, as the weight ofRr is one and the combina-

torics of a curve do not change underft′, the statements follows from 2.14. �

Proposition 3.6. Let ft0 be the mapMlab
n+1(R

r,∆) → Mlab
n (Rr,∆) that forgets the extra leafx0 and

assumen + #∆ ≥ 4 (andn ≥ 1). Furthermore, letxi, xj , xk be pairwise different leaves. Then the
following equations hold (where all the occurring intersection products are computed inMlab

n (Rr,∆)
or Mlab

n+1(R
r ,∆) respectively):

(a) ϕi,j · ϕi,k = 0

(b) ϕi,j · ψi = 0

(c) div(ψk) = div(ft∗0 ψk) + div(ϕ0,k)

(d) ϕ2
0,k = − ft∗0(ψk) · ϕ0,k

(e) ψak = ft∗0(ψk)
a + ft∗0(ψk)

a−1 · ϕ0,k

(f) ψak = ft∗0(ψk)
a + (−1)a−1ϕa0,k

(g) ft0∗(div(ϕ0,k)) = ft0∗(div(ψk)) = Mlab
n (Rr,∆)

(h) ft0∗(div(ϕI|J )) =

{
Mlab

n (Rr,∆) if I = {0, k} or J = {0, k} for somek ∈ [n],
0 otherwise.

(i) div(ψi) = (xi|xj , xk) :=
∑

I|J
i∈I; j,k∈J

div(ϕI|J ),

where the sum runs also throughnon-reduciblepartitions.

(j) ft0∗(div(ψ0)) = (n+#∆− 2)Mlab
n (Rr,∆),

(which isdifferentto the algebro-geometric factorn− 2 that equals the abstract case).

Proof. As in the proof of 3.5, we apply [AR07, 9.6] to the morphismft′ : Mlab
n (Rr,∆) = M[n]∪∆ ×

Rr → M[n]∪∆ forgetting the position inRr. This means that instead of computing the intersection
product onMlab

n (Rr,∆) we can compute them onM[n]∪∆ and therefore use the corresponding state-
ments for abstract curves. For statements (c) – (h) and (j) wealso useft0 = ftabstr

0 × id. �

Definition 3.7 (Evaluation maps and their pull-backs). Theevaluation mapevk : Mlab
n (Rr,∆) → Rr,

for k ∈ [n], maps each parametrized curve(C, h) to the position of itsk-th leafh(xk) (see [GKM07,
4.2]). If we choose one of the marked leaves, sayxa, as anchor leaf, then the evaluation maps are
morphisms fromM[n]∪∆ × Rr toRr obeying the following mapping rule.

(Cabstr, P ) 7→ P +
∑

I|J
a∈I,k∈J

ϕI|J(C
abstr) vI|J
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In particular, if our anchor leaf is chosen to bexk, thenevk is just the projection onto the second factor.
LetC ∈ Zc.i.

m (Rr) be given byC = h1 · . . . · hl ·X . Then we can apply 1.12 which states that there is a
well-definedpull-back ofC alongevk

ev∗k(C) := ev∗k(h1) · . . . · ev
∗
k(hl).

Proposition 3.8(Family property offt0, ev0 for parametrized curves). Letp be a point inMlab
n (Rr,∆)

and letCp = ft−1
0 (p) be the fibre ofp under the forgetful morphismft0 : Mlab

n+1(R
r,∆) → Mlab

n (Rr,∆).
Then the following holds.

(a) When we equip all its facets with weight1, Cp is a rational smooth abstract curve. Its leaves
are naturally[n] ·∪∆-marked byLi := {y ∈ Cp|ϕ0,i(y) > 0}.

(b) The tuple(Cp, ev0 ||Cp|) is ann-marked parametrized curve of degree∆. Moreover,p repre-
sents(Cp, ev0 ||Cp|).

(c) Let
∑
k µkpk = ϕ1 · . . . ·ϕn+#∆−3 ·Mlab

n (Rr,∆) be a zero-dimensional cycle inMlab
n (Rr,∆)

obtained as the intersection product of convex functionsϕj . Then

ft∗0(ϕ1) · . . . · ft
∗
0(ϕn+#∆−3) ·M

lab
n+1(R

r,∆) =
∑

k

µkCpk .

We write this asft∗0(
∑

k µkpk) =
∑
k µkCpk .

Proof. (a): First of all, let us fix an anchor leafxa, a ∈ [n] in order to identifyMlab
n+1(R

r,∆) =

Mn+#∆+1 × Rr andMlab
n (Rr,∆) = M[n]∪∆ × Rr. We use againft0 = ftabstr

0 × id, whereftabstr
0 is

the corresponding forgetful map on the abstract spaces. Then the fibre ofp = (p′, P ) equalsCp′ ×{P},
whereCp′ is the[n] ·∪∆-marked rational smooth abstract curve considered in 2.19 (a)–(c).
(b): We have to check that the direction of the raysev0(Li) are correct. For curves inLi, the only length
that varies is that of the third edge adjacent to the same3-valent vertex asxi andx0. Hence we can use
the description ofev0 in 3.7 and obtain for ally ∈ Li

ev0 |Li
(y) = Q+ ϕ0,i(y) · v{0,i}|{0,i}c ,

whereQ ∈ Rr is some constant vector. Butv{0,i}|{0,i}c = v(xi) + v(x0) = v(xi) is the expected
direction.
To show thatp = (p′, P ) represents(Cp, ev0 ||Cp|) it actually suffices to prove that the anchor leafLa
of Cp is mapped to the pointP underev0, which is obviously the case asev0 |La

= eva |La
andeva is

just the projection on the second factor ofCp′ × {P}.
(c): We can use literally the same proof as in the abstract case 2.19 (d) using 3.6 (g). �

Notation 3.9 (Tropical Gromov-Witten invariants). Let us now extend ourτ -notation to the case of
parametrized curves. For any positive integersa1, . . . , an and complete intersection cyclesC1, . . . , Cn
∈ Zc.i.

∗ (Rr) we define

(τa1(C1) · . . . · τan(Cn))
R

r

∆ := ψa11 · ev∗1(C1) · . . . · ψ
an
n · ev∗n(Cn) ·M

lab
n (Rr,∆).

Once again, each factorτak(Ck) stands for a marked leaf subject toak Psi-conditions and to the condi-
tion that it must meetCk. Let ck be the codimension ofCk in Rr. If

∑
(ak+ ck) = dim(Mlab

n (Rr,∆))
= n+#∆+ r − 3, the above cycle is zero-dimensional and we denote its degree by

〈τa1 (C1) · . . . · τan(Cn)〉
R

r

∆ .

These numbers are calledtropical descendant Gromov-Witten invariants. In [MR08] these numbers
were studied in the caser = 2,∆ = d and allCi are tropical lines.

Remark3.10 (Enumerative meaning of tropical Gromov-Witten invariants). Let (τa1 (C1)·. . .·τan(Cn))
be an intersection product as defined above. If we setX =

∏n
k=1 ψ

ak
k · Mlab

n (Rr,∆) and apply 1.15 to
the morphismsevk : X → Rr, we can conclude the following (as discussed in 1.16): Afterreplacing
all the cyclesCk by general translations (calledgeneral conditionsin the following),Z := τa1(C1) ·
. . . · τan(Cn)) is the set of curvesC such that

• every vertexV ∈ C with adjacent marked leavesk1, . . . , kq fulfils

val(V ) ≥ ak1 + . . .+ akq + 3,
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• for all k = 1, . . . , n it holds

evk(C) ∈ Ck.

Additionally, the facets ofZ (i.e. general curves) are equipped with (possibly zero) weights.
Moreover, assume that all the cyclesCk can be described by convex functionsh1 · · ·hl · Rr. Then by
1.10, all these weights are positive (in particular,|Z| really is the set of such curves).
Thus, ifZ is zero-dimensional,deg(Z) = 〈τa1(C1) · . . . · τan(Cn)〉 is the number of curves satisfying
the above properties, counted with a certain integer multiplicity/weight. Now again, if allCk can be
described by convex functions, all these multiplicities and in particular〈τa1(C1) · . . . · τan(Cn)〉 are
positive.

Let ft0 : Mlab
n+1(R

r,∆) → Mlab
n (Rr,∆) be the morphism that forgets the leafx0. Then by abuse of

notation the equation

ft∗0(evk) = evk

holds for allk ∈ [n]. This equality directly implies the following extensions of the string and dilaton
equation to the case of parametrized curves.

Theorem 3.11(String equation for parametrized curves). Let (τ0(Rr) ·
∏n
k=1 τak(Ck))∆ be a zero-

dimensional cycle. Then

〈τ0(R
r) ·

n∏

k=1

τak(Ck)〉∆ =

n∑

k=1

〈τak−1(Ck) ·
∏

l 6=k

τal(Cl)〉∆.

Theorem 3.12(Dilaton equation for parametrized curves). Let (τ1(Rr) ·
∏n
k=1 τak(Ck))∆ be a zero-

dimensional cycle. The following equation holds.

〈τ1(R
r) ·

n∏

k=1

τak(Ck)〉∆ = (n+#∆− 2)〈
n∏

k=1

τak(Ck)〉∆.

Proofs. In both cases, the proofs are completely analogous to the abstract case using 3.6 andft∗0(evk) =
evk. �

Remark3.13. Note that the factor appearing in the dilaton equation is different from the algebro-
geometric one, due toft0∗(ψ0) = (n+#∆− 2) · Mlab

n (Rr,∆) (cf. 3.6 (j)).

Lemma 3.14. Leth be a rational function. Then

ev∗k(h) · ϕk,l ·M
lab
n (Rr,∆) = ev∗l (h) · ϕk,l · M

lab
n (Rr,∆)

Proof. In all curves corresponding to points indiv(ϕk,l), the leavesk and l lie at a common vertex.
Therefore their coordinates inRr must agree, which meansevk || div(ϕk,l)| = evl || div(ϕk,l)|. The result
follows. �

For a given labelled degree∆, we defineδ(∆) to be the associated unlabelled degree in the sense of
subsection 1.1:δ(∆) is the one-dimensional balanced fan inRr consisting of all the rays generated by
the direction vectorsvk, k ∈ ∆ appearing in∆. The weight of such a rayR≥v, wherev is primitive, is
given by

∑

k∈∆
vk∈Z>0v

|Zv/Zvk|.

Obviously, if (C, h) ∈ Mlab
n (Rr,∆) is an arbitraryn-marked parametrized curve of degree∆, then by

definitionδ(h(C)) = δ(∆) holds.
For a given rational functionh onRr we defineh ·∆ to bedeg(h · δ(∆)).

Lemma 3.15. Leth be a rational function onRr and defineY := ev∗0(h) · M
lab
n+1(R

r ,∆). Then

ft0∗(Y ) = (h ·∆)Mlab
n (Rr,∆).
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Proof. As our moduli spaceMlab
n (Rr,∆) is irreducible, we know thatft0∗(Y ) = α · Mlab

n (Rr,∆) for
an integerα. To compute this number, we setm := n+#∆+ r− 3 and consider the zero-dimensional
intersection productZ = ϕ1 · · ·ϕm · Mlab

n (Rr,∆) of arbitrary convex functionsϕ1, . . . , ϕm such that
deg(Z) 6= 0 (e.g.Z = ψm−r

1 · ev1(P ) for some pointP ∈ Rr). If we pull backZ alongft0, we know
by the projection formula

deg(ev0(h) · ft
∗
0(Z)) = α · deg(Z).

On the other hand, by the family property offt0 we know thatZ is the union of the curves represented
by the points inZ (with according weights) and therefore the push-forwardev0∗(ft

∗
0(Z)) is rationally

equivalent to its degree
δ(ev0∗(ft

∗
0(Z))) = deg(Z) · δ(∆).

So, applying the projection formula toev0, we obtain

deg(ev0(h) · ft
∗
0(Z)) = deg(Z) · (h ·∆).

But this impliesh ·∆ = α, which proves the claim. �

We can now prove the following rather general version of the divisor equation.

Theorem 3.16(Divisor equation). Let h be a rational function onRr and let(
∏n
k=1 τak(Ck))∆ be a

one-dimensional cycle. Then

〈τ0(h) ·
n∏

k=1

τak(Ck)〉∆ = (h ·∆)〈
n∏

k=1

τak(Ck)〉∆ +

n∑

k=1

〈τak−1(h · Ck)
∏

l 6=k

τal(Cl)〉∆.

Proof. First we use 3.6 (e) and (a): We replace each factorψakk by ft∗0(ψk)
ak + ft∗0(ψk)

ak−1 · ϕ0,k and
multiply out. All terms containing twoϕ-factors vanish. In terms with only one factorϕ0,k, we replace
ev0(h) by evk(h) using 3.14. Now we push forward alongft0 and produce the desired equation by
applying 3.15 andft0∗(div(ϕ0,k)) = Mlab

n (Rr,∆). �

Note that the divisor equation can be used to prove the statement of [MR08, Proposition 2.10].

4. THE SPLITTING LEMMA

The basic fact used to compute Gromov-Witten type invariants ofMg,n(X, β) is the recursive struc-
ture of its boundary: Its irreducible components correspond to reducible curves with a certain partition
of the combinatoric data and therefore are (nearly) a product of two “smaller” moduli spaces. In this
section we will investigate how far this principle can be carried over to the tropical world.

4.1. The case of abstract curves.

Definition 4.1. Let S be a finite set. ByMS we denote the moduli space of|S|-marked tropical
curvesM|S| where we label the leaves by elements inS. For each partitionI|J of [n] we construct
the mapρI|J : MI∪{x} ×MJ∪{y} → ϕI|J · Mn by the following rule: Given two curves(pI , pJ) ∈
MI∪{x}×MJ∪{y}, we remove the extra leavesx andy and glue the curves together at the two vertices
to which these leaves have been adjacent. In other words, we glue x and y together by creating a
bounded edge whose length we define to be0. In the coordinates of the space of tree metrics, this map
is given by the linear map

ρI|J : R(
I

2) × R(
J

2) → R(
n

2),

(pI , pJ) 7→ p,

where

pk,l :=





pIk,l if k, l ∈ I,
pJk,l if k, l ∈ J,
pIk,x + pJy,l if k ∈ I, l ∈ J.

Caution: This map doesnot induce a linear map on the corresponding quotients in which our moduli
spaces are balanced and thereforeρI|J is not a tropical morphism of our moduli spaces. Even more,
ρI|J is not even locally linear around ridges of our moduli spacesconsidered as balanced complexes
in the quotients. On the other hand,ρI|J is at least piecewise linear (i.e. it is linear on all cones of
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MI∪{x} ×MJ∪{y}). Its image is a polyhedral complex, namely the positive part of ϕI|J · Mn (i.e. it
consists of all (faces of) facetsAD×

B
C with A ∪B = I).

Definition 4.2 (Morphisms of rational polyhedral complexes). Let X andY be (rational) polyhedral
complexes. Then amorphism of polyhedral complexesis a mapρ : |X | → |Y | that satisfies for each
polyhedronσ ∈ X

(a) ρ(σ) ∈ Y ,
(b) ρ|σ is affine linear,
(c) ρ(Λσ) ⊆ Λρ(σ).

We callρ an isomorphism of polyhedral complexesif there exists an inverse morphism. It other words,
an isomorphism is a bijection between|X | and|Y | (as well as betweenX andY ) andρ(Λσ) = Λρ(σ)
for all σ ∈ X .

Lemma 4.3(Intersections of Psi-functions with the boundary). The facets of the fanϕI|J · ψa11 · . . . ·
ψann · Mn with positive weight are precisely the conesσ in Mn with the following properties.
Consider a curve in the interior ofσ. LetE(V ) ∈ [n] be the set of leaves adjacent to a vertexV and let
P (V ) be theval(V )-fold partition of[n] obtained by removingV . Then the following holds.

(a) There exists one special vertexVspecwhose partitionP (Vspec) is a subpartition ofI|J and whose
valence is(

∑
k∈E(V ) ak) + 4.

(b) LetmI be the number of sets inP (Vspec) contained inI. ThenmI + 1 = (
∑

k∈E(V )∩I ak) +

3 (together with (a), the analoguemJ + 1 = (
∑

k∈E(V )∩J ak) + 3 follows). In particular,
mI ,mJ > 1.

(c) The valence of all other verticesV equals(
∑

k∈E(V ) ak) + 3.

Furthermore, the facets ofϕI|J ·ψ
a1
1 · . . . ·ψann ·Mn with negative weight fulfil the same properties (a)

and (c) and the property

(b’) LetmI (resp.mJ ) be the number of sets inP (Vspec) contained inI (resp.J). ThenmI = 1 or
mJ = 1, i.e. I ∈ P (Vspec) or J ∈ P (Vspec).

Proof. We know howX := ψa11 · . . . ·ψann ·Mn looks like by 2.14. In the combinatorial type of a facet
of X the valence of each vertex is(

∑
k∈E(V ) ak) + 3; in the combinatorial type of a ridge, there is one

special vertexVspecwith valence(
∑

k∈E(V ) ak) + 4. The balancing condition of a ridge is given by the
equation

∑

I′|J′

ωI′|J′VI′|J′ =
∑

I′|J′

I′∈P (Vspec)

λI′|J′VI′|J′ ,

where the left hand sum runs through all superpartitionsI ′|J ′ of P (Vspec) not appearing in the right
hand sum,ωI′|J′ denotes the weight of the facet obtained by inserting an edgeI ′|J ′ andλI′|J′ is some
(rational) coefficient. Therefore the weightω that this ridge obtains when intersectingX with ϕI|J is
given by

ω =





0 if I|J is not a superpartition ofP (Vspec),

λI|J if I ∈ P (Vspec) or J ∈ P (Vspec),

ωI|J otherwise.

This already shows two implications. As all weightsωI′|J′ are at least non-negative, a ridge can only
obtain a negative weight if it fulfils conditions (a), (b’) and (c). On the other hand, if a ridge ofX
satisfies properties (a), (b) and (c), thenωI|J and hence the ridge obtains a positive weight. It remains
to show the converse, which can be done by proving that allλI′|J′ are non-negative. To see this, we

consider the balancing equation inR(
r

2) and compare some coordinate entries.
Let K be an arbitrary element ofP (Vspec); we want to show thatλK := λK|Kc is non-negative. We
choose two more arbitrary elementsL1, L2 in P (Vspec) and fix some leavesk ∈ K, li ∈ Li. Now the
k, li-entry of the right hand side equalsλK + λLi

and analogously thel1, l2-entry equalsλL1 + λL2 .
Therefore, by adding the twok, li-entries and subtracting thel1, l2-entry we get2λK . Meanwhile, on
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the left hand side we get

2λK =
∑

I′|J′

k∈I′

l1∈J
′

ωI′|J′ +
∑

I′|J′

k∈I′

l2∈J
′

ωI′|J′ −
∑

I′|J′

l1∈I
′

l2∈J
′

ωI′|J′

=
∑

I′|J′

αI′|J′ωI′|J′ ,

where

αI′|J′ =





2 if k ∈ I ′, l1, l2 ∈ J ′

0 if k, l1 ∈ I ′, l2 ∈ J ′

0 if k, l2 ∈ I ′, l1 ∈ J ′

0 if k, l1, l2 ∈ I ′.

But as all the weightsωI′|J′ are non-negative, it follows thatλK is non-negative. �

Proposition 4.4. The map

ρI|J :
(∏

k∈I

ψakk ·MI∪{x}

)
×
( ∏

k∈J

ψakk · MJ∪{y}

)
→ (ϕI|J · ψa11 · . . . · ψann ·Mn)

+

is a well-defined isomorphism of polyhedral complexes.

Proof. We have to check the conditions of 4.2. Using the lengths of the bounded edges as local coordi-
nates on the cones, this follows directly from the description of the target complex in 4.3. The inverse
map is given by splitting a given curve at its special vertexVspec. �

4.2. The case of parametrized curves.

Definition 4.5. Let I|J be a reducible partition and let∆I ,∆J be the corresponding splitting of the
tropical degree∆. LetZ = max(x1, y1) · . . . ·max(xr , yr) · Rr × Rr denote the diagonal inRr × Rr

and consider the map

evx× evy : Mlab
I∪{x}(R

r,∆I)×Mlab
J∪{y}(R

r,∆J ) → Rr × Rr.

We define

ZI|J := (evx× evy)
∗(Z)

We furthermore defineπI|J : ZI|J → Mlab
n (Rr ,∆) by

MI∪{x} × Rr ×MJ∪{y} × Rr → M[n]∪∆ × Rr

(
(pI , P ), (pJ , Q)

)
7→ (ρ(pI , pJ), P ),

where we choose the same anchor leaf forMlab
I∪{x}(R

r,∆I) andMlab
n (Rr,∆) andρ is the gluing map

for abstract curves from the previous subsection.

Proposition 4.6. The map

πI|J : ψa11 · . . . · ψann · ZI|J → (ϕI|J · ψa11 · . . . · ψann · Mlab
n (Rr,∆))+

is a well-defined isomorphism of polyhedral complexes.

Proof. This follows from 4.4 and fromevx |ZI|J
= evy |ZI|J

(which follows from both 1.11 (Z is
described by convex functions) as well as from 1.12 (evx× evy can be considered as a projection)).�

Remark4.7. Restricting to curves fromZI|J makes sure that the positions of the marked leaves are
preserved underπI|J , i.e. (by abuse of notation) for alli ∈ I, but alsoj ∈ J we haveevi ◦πI|J = evi
resp.evj ◦πI|J = evj .

Lemma 4.8. LetE = (ϕI|J · τa1(C1) · . . . · τan(Cn))∆ be a zero-dimensional cycle. Then all points of
E lie in (ϕI|J · ψa11 · . . . · ψann · Mlab

n (Rr,∆))+.
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Proof. By 1.1 we can compute the weight of a pointp ∈ E locally aroundp inX := ϕI|J ·ψ
a1
1 ·. . .·ψann ·

Mlab
n (Rr,∆), namely we can focus onStarX(p). Assumep /∈ (ϕI|J ·ψa11 · . . . ·ψann ·Mlab

n (Rr,∆))+.
Then curves corresponding to points inStarX(p) contain a bounded edge corresponding to the partition
I|J (see 4.3). But asI|J is chosen to be reducible, this edge is a contracted bounded edge whose length
does not change the positions of the marked leaves inRr. Therefore, if we denote byev = ev1 × . . .×
evn the product of all evaluation maps, the image ofStarX(p) underev has smaller dimension which
impliesev∗(StarX(p)) = 0. Hence, by projection formula, the weight ofp in E must be zero. �

The following statement combines 1.15, in particular item (c), and the preceding result.

Corollary 4.9. LetE = (ϕI|J · τa1(C1) · . . . · τan(Cn))∆ be a zero-dimensional cycle. If we substitute
the cyclesCi by general translations, we can assume that all points ofE lie in the interior of a facet of
(ϕI|J ·ψ

a1
1 · . . . ·ψann ·Mlab

n (Rr,∆))+. This operation does not change the degree ofE by remark 1.13.

As provisional result of this discussion, we can formulate the following:

Proposition 4.10. LetE = (ϕI|J · τa1(C1) · . . . · τan(Cn))∆ be a zero-dimensional cycle. Then the
equation

〈ϕI|J · τa1(C1) · . . . · τan(Cn)〉∆ = 〈τa1(C1) · . . . · τan(Cn) · ZI|J〉∆I ,∆J

holds.

Proof. We denoteX := ψa11 · . . . ·ψann ·ZI|J andY := ϕI|J ·ψ
a1
1 · . . . ·ψann ·Mlab

n (Rr,∆) and assume
that the conditionsCi are general. Then 4.9 implies that, for each pointp ∈ E, we have an isomorphism
of cyclesπI|J : StarX(π−1

I|J (p)) → StarY (p). By 1.1 this suffices to show that the weights ofp and

π−1
I|J(p) in their respective intersection products coincide. �

4.3. Splitting the diagonal. Up to now, we have seen that intersecting with a “boundary” functionϕI|J
leads to intersection products in two smaller moduli spacesMlab

I∪{x}(R
r,∆I) andMlab

J∪{y}(R
r,∆J).

However, the factor(evx× evy)
∗(Z) still connects these two smaller spaces. In order to obtain inde-

pendent intersection products on the smaller spaces, we have to split the diagonal contribution. In the
algebro-geometric case, this can be easily done as theclassof the diagonalZ in e.g. Pr × Pr can be
written as the sum of products of classes in the factors

[Z] = [L0 × Lr] + [L1 × Lr−1] + . . .+ [Lr × L0],

whereLi denotes ani-dimensional linear space inPr. But this cannot copied directly in our setting
(see below). In some sense, for the first time we meet a disadvantage due to the non-compactness of our
spaces. Our notion of rational equivalence is “too strong” for this application, as it is inspired by the
idea that two rationally equivalent objects should be rationally equivalent inanytoric compactification.
However, we will discuss here how far the conventional plan can be carried out anyway.

The general plan is the following. Set

XI := (τ0(R
r) ·

∏

k∈I

τak(Ck))∆I
in Mlab

I∪{x}(R
r,∆I)

and
XJ := (τ0(R

r) ·
∏

k∈J

τak(Ck))∆J
in Mlab

J∪{y}(R
r,∆J).

We want to compute the degree of

(τa1 (C1) · . . . · τan(Cn) · ZI|J)∆I ,∆J
= (evx× evy)

∗(Z) · (XI ×XJ),

or, by the projection formula,
deg(Z · (evx(XI)× evy(XJ ))).

Now we would like to replace the diagonalZ by something like

S :=
∑

α

(Mα ×Nα),

whereMα, Nα are cycles inRr such thatS intersectsevx(XI) × evy(XJ) like Z. But note thatS
cannot be rationally equivalent toZ (in the sense of [AR08]), as this would imply that both cyclesmust
have the same recession fan, i.e. must have the same directions towards infinity. To come out of this, we



28 JOHANNES RAU

need more information about how the push-forwardsevx(XI) andevy(XJ) look like; in particular, we
would like to know how their degrees/recession fans can looklike. Let us formalize this first.

Let Θ be a complete simplicial fan inRr and letZk(Θ) be the group ofk-dimensional cyclesX
whose support lies in thek-dimensional skeleton ofΘ, i.e. |X | ⊆ |Θ(k)|. Fix a basis ofZ∗(Θ) :=
⊕rk=0Zk(Θ) denoted byB0, . . . , Bm (where we may assumeB0 = {0} andBm = Rr). If the degree
δ(X) of an arbitrary cycle is contained inZ∗(Θ), we sayX is Θ-directional. For such a cycle there
exist integer coefficientsλe such thatX ∼ δ(X) =

∑m
e=1 λeBe.

For each rayρ ∈ Θ(1) with primitive vectorvρ letϕρ be the rational function onΘ uniquely defined by

ϕρ(vρ′ ) =

{
1 if ρ′ = ρ,
0 otherwise.

Lemma 4.11. The linear map

Z∗(Θ) → Zm+1,

X 7→ (deg(B0 ·X), . . . , deg(Bm ·X)),

(wheredeg(.) is set to be zero if the dimension of the argument is non-zero)is injective.

Proof. Let X ∈ Zk(Θ) be an element of the kernel, which implies thatdeg(X · Y ) = 0 for all Y ∈
Zr−k(Θ). Now, in fact the remaining is identical to the proof of [AR08, Lemma 6]: Assume thatX
is non-zero and therefore there exists a coneσ ∈ Θ(k) such thatωX(σ) 6= 0. As Θ is simplicial,
this cone is generated byk raysρ1, . . . , ρk. Let us considerϕρk · X and in particular the weight of
τ := 〈ρ1, . . . , ρk−1〉 in this intersection product. As primitive vectorvσ/τ we can use 1

|Λσ/(Λτ+Λρk
)|vρk

(it might not be an integer vector, but moduloVτ , it is a primitive generator ofσ). Analogously, we can
get any primitive vector aroundτ as a multiple of an appropriatevρ. But asϕρk is zero on all of these
vectors butvρk , we get

ωϕρk
·X(τ) =

ωX(σ)

|Λσ/(Λτ + Λρk)|
6= 0.

Now induction shows

deg(ϕρ1 · · ·ϕρk ·X) = ωϕρ1 ···ϕρk
·X({0}) =

ωX(σ)

|Λσ/(Λρ1 + . . .+ Λρk)|
6= 0.

This means we have found aΘ-directional cycleY := ϕρ1 · · ·ϕρk ·R
r ∈ Zr−k(Θ) with deg(X ·Y ) 6= 0,

which contradicts the assumption thatX is an element of the kernel. �

With respect to the basisB0, . . . , Bm, the map defined in the previous lemma has the matrix rep-
resentationα := (deg(Be · Bf ))ef . Obviouslyα is a symmetric matrix. The lemma implies that this
matrix is invertible overQ, and we denote the inverse by(βef )ef . The coefficients of this matrix can
be used to replace the diagonalZ of Rr ×Rr by a sum of products of cycles in the two factors (namely∑

e,f βef (Be ×Bf )) — at least with respect toΘ-directional cycles.

Lemma 4.12. LetX ∼
∑
e λeBe, Y ∼

∑
f µeBe be twoΘ-directional cycles inRr with complemen-

tary dimension. Then

deg(Z · (X × Y )) = deg(X · Y ) =
∑

e,f

deg(X ·Be)βef deg(Y · Bf ).

Proof. Denoteλ := (λ1, . . . , λm), µ := (µ1, . . . , µm). We get
∑

e,f

deg(X ·Be)βef deg(Y ·Bf ) = (α · λ)T · β · (α · µ)

= λT · αT · β · α · µ

= λT · α · β · α · µ

= λT · α · µ = deg(X · Y ).

�

Using this, our original goal of deriving a tropical splitting lemma can be formulated as follows.
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Theorem 4.13(Splitting Lemma). Let E = (ϕI|J ·
∏n
k=1 τak(Ck))

R
r

∆ be a zero-dimensional cycle,
whereI|J is a reducible partition. Moreover, let us assume thatΘ is a complete simplicial fan such that
(with the notations from above)evx(XI) andevy(XJ) areΘ-directional. LetB0, . . . , Bm be a basis of
Z∗(Θ) and let(βef )ef be the inverse matrix (overQ) of (deg(Be ·Bf ))ef . Then the following equation
holds.

〈ϕI|J ·
n∏
k=1

τak(Ck)〉∆ =
∑

e,f

〈
∏
k∈I

τak(Ck) · τ0(Be)〉∆I
βef 〈τ0(Bf ) ·

∏
k∈J

τak(Ck)〉∆J

Proof. Follows from the general plan above and 4.10. �

Remark4.14. Of course, in toric geometry language, the basisB0, . . . , Bm corresponds to a basis
γ0, . . . , γm of the cohomology groups ofX(Θ) (the toric variety associated toΘ). As the cup-product
and the intersection product of cycles are equivalent (cf. theorem 1.9), the correspondingmatrix(deg(γe∪
γf ))ef is equal toα. This implies that the coefficientsβef appearing in the tropical splitting lemma re-
ally are the same as in the associated algebro-geometric version.

4.4. The directions of families of curves.The above splitting lemma is only useful if, at least for a
certain class of invariants, the fan of directionsΘ is fixed and well-known. This is one of the main prob-
lems when transferring the algebro-geometric theory to thetropical set-up. However, in this subsection
we will show that in some cases the problem can be solved.

Remark4.15. In the easiest case, namely ifr = 1, the situation is trivial. There is one unique complete
simplicial fanΘ = {R≤0, {0},R≥0} and any subcycle isΘ-directional. Also, withB0 = {0}, B1 = R,
the statement of 4.12 is obvious here.

Let us now consider curves in the plane, i.e.r = 2. Let F = (τ0(R
2) ·

∏n
k=1 τak(Ck))

R
2

∆ be a
one-dimensional family of plane curves (with unrestrictedleafx0). We defineΘ(F ) to be the complete
fan inR2 which contains the following rays: all directions appearing in ∆ and furthermore all rays in
δ(Ck) if dim(Ck) = 1 andak > 0.

Proposition 4.16. LetF = (τ0(R
2) ·

∏n
k=1 τak(Ck))

R
2

∆ be a one-dimensional family of plane curves
(with unrestricted leafx0). Let us furthermore assume thatak ≤ 1 if dim(Ck) = 2 (i.e. if a leaf is not
restricted byev-conditions, only one Psi-condition is allowed). Thenev0∗(F ) isΘ(F )-directional.

Proof. As before, we replace each factorψakk by ft∗0(ψk)
ak + ft∗0(ψk)

ak−1 · ϕ0,k and multiply out.
Consider the term withoutϕ-factors. It is the fibre of(

∏n
k=1 τak(Ck))∆ (which is finite) underft0 (see

family property 3.8) and moreover the push-forward of the fibre alongev0 is just the sum/union of the
images inRr of the parametrized curves corresponding to the points in(

∏n
k=1 τak(Ck))∆. But these

curves have degree∆, thus by definition their images areΘ(F )-directional.
So let us consider the term with the factorϕ0,k. Here,ev0 andevk coincide (see 3.14), so we can in
fact compute the push-forward alongevk. As evk = evk ◦ ft0 (by abuse of notation), we can first push-
forward alongft0 and get the term(τak−1(Ck) ·

∏
l 6=k τal(Cl)).

Now, if dim(Ck) = 2, by our assumptionsak − 1 = 0 – in which case we can use induction to prove
the statement – or this term does not appear at all.
On the other hand, ifdim(Ck) = 0, 1, we can use the fact that the push-forward is certainly contained
in Ck – therefore,dim(Ck) = 0 is trivial anddim(Ck) = 1 works as we added the directions ofCk to
Θ(F ) if ak > 0.
This finishes the proof, as all terms with moreϕ-factors vanish. �

Remark4.17. A weaker version of this lemma can be obtained by assuming general conditions and
directly studying the behaviour ofev0 on an unbounded ray inF (see [MR08, Lemma 3.7]).

Remark4.18. Consider the familyF = (τ0(R
2)τ0(P )τ2(R

2))R
2

1 = ev∗1(P ) ·ψ
2
2 ·M

lab
3 (R2, 1) of curves

of projective degree1. It consists of the following types of curves.
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0

P P

P P

ev0 ev0 ev0

P

P P
+ + =

ev0∗(F )

0 2
1

2 0 1 12

Its push-forward alongev0 also contains the inverted standard directions(1, 0), (0, 1) and(−1,−1).
Therefore this family is a counterexample to our statement if we drop the condition on the number of
Psi-conditions allowed at leaves not restricted by incidence conditions.

Remark4.19. For higher dimensions (r > 2), only few cases are explored. If we restrict to projective
degreed and banish all Psi-conditions, i.e. for a familyF = (τ0(R

r) ·
∏n
k=1 τ0(Ck))d of arbitrary

dimension, it is proven in [GZ] thatev0∗(F ) isΘ-directional, whereΘ is the complete simplicial fan in
Rr consisting of all cones generated by at mostr of the vectors−e0,−e1, . . . ,−er. We conjecture that
a similar proof also works for Psi-conditions at point-conditions.

5. WDVV EQUATIONS AND TOPOLOGICAL RECURSION

We are now ready to prove the tropical analogues of the WDVV and topological recursion equations
— under certain assumptions. With the help of these equations, we show that certain tropical grav-
itational descendants coincide with their classical counterparts. This reduces the computation of the
classical invariants to counting problem for tropical curves with certain valence and incidence condi-
tions (cf. remark 3.10).

5.1. WDVV equations. Let xi, xj , xk, xl be pairwise different marked leaves and consider the forget-
ful mapft : Mlab

n (Rr,∆) → M{i,j,k,l}.

Lemma 5.1. The equation

ft∗(ϕ{i,j}|{k,l}) =
∑

I|J
i,j∈I,k,l∈J

ϕI|J

holds, where the sum on the right side runs throughall (also non-reducible) partitions withi, j ∈ I and
k, l ∈ J .

Proof. Note thatft(VI|J ) = VI∩{i,j,k,l}|J∩{i,j,k,l}. Thereforeϕ(ft(VI|J )) = 1 if i, j ∈ I, k, l ∈ J and
zero otherwise. �

Now we face the crucial difference to the conventional setting. The right sum also runs over non-
reducible partitions, which do not correspond to somethingin the algebro-geometric case. Let us add
up only thoseϕI|J with I|J non-reducible and denote the sum byφ, i.e.

φi,j|k,l :=
∑

I|J non-red.
i,j∈I,k,l∈J

ϕI|J

We would like to show thatφi,j|k,l is bounded, as then it does not change the degree of a intersection
product and we can derive the same formulas as in the conventional case. So let us investigate what this
function measures.
Let F = (

∏n
k=1 τak(Ck))∆ be a one-dimensional family of curves with general conditions. Consider

a facetσ of F representing curveswith contracted bounded edgeE (calledreducible curves). Then we
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can change the length ofE while keeping all other lengths and our curve will still match the incidence
conditions. As our conditions are general, the set of curvesfulfilling the incidence conditions set-
theoretically is also one-dimensional. Hence, all curves in σ just differ by the length ofE, whereas all
other lengths are fixed. But this means thatφi,j|k,l is constant onσ.
Now, letσ be a facet ofF representing curveswithoutcontracted bounded edgeE (callednon-reducible
curves). This means, for all non-reducible partitionsI|J , the respective functionϕI|J is identically zero
onσ. Therefore, onσ, φi,j|k,l coincides withft∗(ϕ{i,j}|{k,l}).

Lemma 5.2. Let F = (
∏n
k=1 τak(Ck))∆ be a one-dimensional family of curves with general condi-

tions. Letσ be a facet ofF . Then

φi,j|k,l |σ =

{
ϕ{i,j}|{k,l} ◦ ft if interior curves ofσ are non-reducible
const otherwise.

In other words: Proving thatφi,j|k,l is bounded on a family one-dimensional familyF is the same as
proving that curves inF with largeMi,j,k,l-coordinate must contain a contracted bounded edge. This
is the way of speaking in existing literature (e.g. [GM05, proposition 5.1], [KM06, proposition 6.1],
[MR08, section 4]). We will address this problem in its own subsection and first state the desired results
here.

Lemma 5.3. LetF = (
∏n
k=1 τak(Ck))∆ be a one-dimensional family of curves. Furthermore assume

thatφi,j|k,l is bounded. Then the equation

〈ft∗(ϕ{i,j}|{k,l}) ·
n∏
k=1

τak(Ck)〉∆ =
∑

I|J reducible
i,j∈I,k,l∈J

〈ϕI|J ·
n∏
k=1

τak(Ck)〉∆

holds.

Proof. This follows from 5.1 and the fact that the degree of a boundedfunction intersected with a one-
dimensional cycle is zero. Therefore, ifφi,j|k,l is bounded, the degree of

〈φi,j|k,l ·
n∏

k=1

τak(Ck)〉∆

is zero and hence this term can be omitted. �

Finally, we can state the following version of the WDVV equations. A more restrictive version was
proven in [MR08, Theorem 8.1]. Let us emphasize again the difference of the two approaches. In
[MR08], similar to previous works such as [GM05], the proof of certain WDVV equations was based
on two steps. First, under generic conditions it is shown explicitly that the curves under consideration
split into two parts. Second, it is shown that the multiplicity of the big curve factors as a product of the
two smaller parts. This is done by an involved computation interms of a suitable matrix representation
of ev1 × · · · evn× ft (cf. [MR08, Lemma 6.6]). In the present approach, these ad hoc computations are
replaced by intersection-theoretic arguments (e.g. the splitting lemma).

As before, we fix a complete simplicial fanΘ and a basisB0, . . . , Bm of Z∗(Θ). Furthermore, let
(βef )ef be the inverse matrix (overQ) of the matrix(deg(Be ·Bf ))ef .

Theorem 5.4(WDVV equations). LetF = (
∏n
k=1 τak(Ck))∆ be a one-dimensional family of curves

and fix four pairwise different marked leavesxi, xj , xk, xl. Moreover, we assume that the following
conditions hold.

(a) For any reducible partitionI|J with i, j ∈ I; k, l ∈ J or i, k ∈ I; j, l ∈ J the push-forwards
evx(XI) andevy(XJ) areΘ-directional (with notations from section 4).

(b) The functionsφi,j|k,l andφi,k|j,l are bounded onF .

Then the WDVV equation
∑

I|J reducible
i,j∈I,k,l∈J

∑

e,f

〈
∏
k∈I

τak(Ck) · τ0(Be)〉∆I
βef 〈τ0(Bf ) ·

∏
k∈J

τak(Ck)〉∆J
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=
∑

I|J reducible
i,k∈I,j,l∈J

∑

e,f

〈
∏
k∈I

τak(Ck) · τ0(Be)〉∆I
βef 〈τ0(Bf ) ·

∏
k∈J

τak(Ck)〉∆J

holds, where the sums run through reducible partitions only.

Proof. The statement follows from 5.3 and the fact that onM{i,j,k,l} the functionsϕ{i,j}|{k,l} and
ϕ{i,k}|{j,l} are rationally equivalent. In fact, they only differ by a linear function and therefore have the
same divisor, namely the single vertex inM{i,j,k,l}. �

Remark5.5. In the algebro-geometric version of these equations (cf. [FP, equation (54) and (55)])
the big sum(s) usually run like

∑
β1,β2

∑
A,B, whereβ1, β2 are cohomology classes such thatβ1 +

β2 = β andA ·∪B = [n] is a partition of the marks. We can proceed accordingly and let our sum
run through unlabelled instead of labelled degrees, as unlabelled degrees correspond via Minkowski
weights to cohomology classes. If we collect all reducible partitionsI ·∪ J = ∆ ·∪ [n], such that the
unlabelled degreesδ(∆I), δ(∆J ) coincide, we obtain a class of ∆!

∆I !·∆J !
elements. On the other hand,

as mentioned at the beginning of section 3, counting curves with labelled non-contracted leaves leads to
an overcounting by the factor∆!, i.e. if δ := δ(∆) is an unlabelled degree, we should define

〈
n∏

k=1

τak(Ck)〉δ :=
1

∆!
〈
n∏

k=1

τak(Ck)〉∆.

So by switching to “unlabelled” invariants, the above factor ∆!
∆I !·∆J !

cancels and we obtain
∑

δI ,δJ
δI+δJ=δ

∑

A ·∪ B=[n]

i,j∈A,k,l∈B

∑

e,f

〈
∏
k∈A

τak(Ck) · τ0(Be)〉δI βef 〈τ0(Bf ) ·
∏
k∈B

τak(Ck)〉δJ

=
∑

δI ,δJ
δI+δJ=δ

∑

A ·∪B=[n]

i,k∈A,j,l∈B

∑

e,f

〈
∏
k∈A

τak(Ck) · τ0(Be)〉δI βef 〈τ0(Bf ) ·
∏
k∈B

τak(Ck)〉δJ ,

which is now combinatorially identical to the algebro-geometric version.

5.2. Topological recursion. In the same flavour as in the previous subsection, we will alsoformulate
a tropical version of the equations known as “topological recursion”.

Let xi, xk, xl be pairwise different marked leaves. We know from 2.24 that we can express the
Psi-divisorψi in terms of “boundary” divisors, namely

div(ψi) =
∑

I|J
i∈I,k,l∈J

div(ϕI|J ).

Now again we give a name to the term that has no algebro-geometric counterpart

φi|k,l =
∑

I|J non-red.
i∈I;k,l∈J

ϕI|J .

As in the previous subsection, we can describe this functionas follows.

Lemma 5.6. Let F = (
∏n
k=1 τak(Ck))∆ be a one-dimensional family of curves with general condi-

tions. Letσ be a facet ofF . Then

φi|k,l|σ =

{ ∑
length of edge that separatesi fromk, l if interior curves ofσ are non-reducible,

constant otherwise.

Again, we fix a complete simplicial fanΘ and a basisB0, . . . , Bm of Z∗(Θ). Furthermore, let
(βef )ef be the inverse matrix (overQ) of the matrix(deg(Be ·Bf ))ef .

Theorem 5.7 (Topological recursion). Let F = (
∏n
k=1 τak(Ck))∆ be a one-dimensional family of

curves and fix three pairwise different marked leavesxi, xk, xl. Moreover, we assume that the following
conditions hold.

(a) For any reducible partitionI|J with i ∈ I; k, l ∈ J the push-forwardsevx(XI) andevy(XJ )
areΘ-directional (with notations from section 4).
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(b) The functionφi|k,l is bounded onF .

Then the topological recursion

〈ψi ·
n∏
k=1

τak(Ck)〉∆ =
∑

I|J reducible
i∈I,k,l∈J

∑

e,f

〈
∏
k∈I

τak(Ck) · τ0(Be)〉∆I
βef 〈τ0(Bf ) ·

∏
k∈J

τak(Ck)〉∆J

holds, where the sum runs through reducible partitions only.

Remark5.8. In the same way as in 5.5 we obtain the “unlabelled” version

〈ψi ·
n∏
k=1

τak(Ck)〉δ =
∑

δI ,δJ
δI+δJ=δ

∑

A ·∪B=[n]

i∈A,k,l∈B

∑

e,f

〈
∏
k∈A

τak(Ck) · τ0(Be)〉δI βef 〈τ0(Bf ) ·
∏
k∈B

τak(Ck)〉δJ ,

which coincides combinatorially with the algebro-geometric version of this equation.

5.3. Contracted bounded edges.As a preparation for the more difficult case of plane curves, we first
assumer = 1.

Proposition 5.9. Let P1, . . . , Pn be points in general position inR1 and letF = (
∏n
k=1 τak(Pk))

R
1

d

be a one-dimensional family inMlab
n (R1, d). Then for any choice of marked leavesxi, xj , xk, xl, the

functionsφi,j|k,l andφi|k,l are bounded onF .

Proof. For general conditions,F set-theoretically coincides with the set of curves satisfying the given
incidence and valence conditions. Consider a general curveC ∈ F . ThenC is also a general curve
in the Psi-productX :=

∏n
k=1 ψ

ak
k . As we cut downX by n point conditions anddim(F ) = 1, the

dimension ofX must ben+1, henceC containsn bounded edges. This implies thatC, as it is a rational
curve, hasn + 1 vertices. Therefore there exists a vertexV not adjacent to a marked leafxk, k ∈ [n].
Now one of the three adjacent edges might be a contracted bounded edge. Then the deformation ofC
in F is given by changing the length of this edge, but this does notaffectφi,j|k,l or φi|k,l by definition.
Otherwise, if all of the adjacent edges are non-contracted,the deformation ofC in F is given by moving
V (and changing the lengths accordingly).

v1 v

v2

Note that the edgev cannot be unbounded as its direction “vector” is not primitive. Therefore, if this
deformation is supposed to be unbounded,v1, v2 must be unbounded. But in this case only the length
of v grows infinitely. But asv does not separate any marked leaves, this does not changeφi,j|k,l and
φi|k,l. �

Now let us consider the case of plane curves, i.e.r = 2. The whole subsection should be compared
with [MR08, Section 4], where we dealt with the special case∆ = d. We fix the following notation.
Let F = (

∏n
k=1 τak(Ck))

R
2

∆ be a one-dimensional family of plane curves with general conditions and
and letL ·∪M ·∪N = [n] be the partition of the labels such that

codim(Ck) =





0 if k ∈ L,

1 if k ∈M,

2 if k ∈ N.

First we study how the deformation of a general curveC in F can look like.

Lemma 5.10(Variation of [MR08] 4.4). Let us assume

i) ak = 0 for all k ∈ L ∪M , i.e. Psi-conditions are only allowed together with point conditions.

Then the following holds.
Letσ be a facet ofF and letC ∈ σ be a general curve. Then the deformation ofC insideσ is described
by one of the following cases.

(I) C contains acontracted bounded edge. Then the deformation insideσ is given by changing the
length of this edge arbitrarily.
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(II) C has a three-valentdegenerated vertexV of one of the following three types.
(a) One of the adjacent edges is a marked leafi ∈ L.
(b) One of the adjacent edges is a marked leafj ∈M and the linear spans of the corresponding

lineCj at evj(C) and of the other two edges adjacent toV coincide (i.e. the curvesC and
theCj donot intersect transversally atevj(C)).

(c) All edges adjacent toV are non-contracted, but their span nearV is still only one-dimen-
sional; w.l.o.g. we denote the edge alone on one side ofV by v and the two edges on the
other side byv1, v2.

(b) (c)(a)

v1 v1v2 v2

j

v

v2

v1

i

Cj

In all these cases the deformation insideσ is given by movingV .
(III) C contains amovable stringS, i.e. a two-valent subgraph ofC homeomorphic toR such that

all edges are non-contracted and all vertices ofS are three-valent inC and not degenerated in
the sense of case (II). Then the deformation ofC is given by movingS while all vertices not
contained inS remain fixed (in particular, only edges in or adjacent toS change their lengths).

Proof. Again, for general conditions,F set-theoretically coincides with the set of curves satisfying the
given incidence and valence conditions. Thus finding the deformation ofC insideσ is the same as
finding a way of changing the position and the length of the bounded edges ofC such that the resulting
curve still meets the incidence conditionsCk.
It is obvious that in the cases (I) and (II) changing the length of the contracted bounded edge respectively
moving the degenerated vertexV leads to such deformations.
In case (III) the non-degeneracy of the vertices makes sure that both ends ofS consist of non-contracted
ends and that a small movement of one of these ends leads to a well-defined movement of the whole
string (a more detailed description can be found in the proofof [MR08, 4.4]).
Finally, this list of cases is really complete, asC always contains a string whose vertices are three-
valent inC and whose ends are either non-contracted leaves or marked leaves inL. This follows from
the same calculation as in [MR08, 4.3], with the only difference that we have to replace the number3d
by#∆. �

We have now seen how a general curveC ∈ F can be deformed. In a second step, we will now focus
on unbounded deformations.

Definition 5.11. A complete fanΘ in R2 is calleddel Pezzoif the associated toric surface is a smooth
del Pezzo surface. Here is a complete list, up to the action ofSL(2,Z).

Θ
P2 Θ

P1×P1

ΘF1
ΘBl2(P2)

ΘBl3(P2)

It is easy to see that an alternative characterization of these fans is as follows:Any two independent
primitive vectors generating rays ofΘ form a basis ofZ2. A degree∆ in R2 is calleddel Pezzoif Θ(∆)
is del Pezzo and if all direction vectors appearing in∆ are primitive. This ensures that for every pair of
independent vectorsv1, v2 appearing in∆, the dual triangle to the fan spanned byv1, v2 and−(v1+v2)
does not contain lattice points apart from its vertices.
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Lemma 5.12(Variation of [MR08] 4.4). We assume

i) ak = 0 for all k ∈ L ∪M ,
ii) ∆ is del Pezzo.

Then the following holds.
Letσ be aunboundedfacet ofF and letC ∈ σ be a general curve. Then the deformation ofC in σ is
described by one of the following cases.

(I) C contains a contracted bounded edge whose length can be changed arbitrarily.
(II) C has a three-valent degenerated vertexV of one the three types described above. Furthermore,

in the cases (a) and (b) (of 5.10 (II)) one of the edgesv1, v2 is bounded, the other one unbounded,
whereas in case (c) the edgev is bounded andv1, v2 are unbounded.

(III) C contains a movable stringS with two non-contracted leavesv1, v2 and only one adjacent
bounded edgew. The deformation ofC is given by increasing the length ofw.

xk

v2

w

Ck

v1

Furthermore, ifxk, k ∈ M is a marked leaf adjacent toS, thenh(xk) is a general point in an
unbounded facet ofCk whose outgoing direction vectorv lies in the interior of the cone spanned
byv1, v2.

Proof. Nothing happens in the cases (I), (II) (a) and (b). In case (II) (c), the edgev cannot be unbounded
asv = −v1 − v2 is not primitive. Therefore the two edges on the other side ofV must be unbounded.

In case (III), the proof of the first statement is fully contained in the last part of the proof of [MR08,
4.4]. We assume that we have a stringS with two unique non-contracted ends and all of its vertices
are three-valent and not degenerated in the sense of case (II). The deformation only moves the stringS;
the adjacent edges are shortened or elongated and the other parts of the curve remain fixed. We want to
show thatS has only one adjacent bounded edge.

If there are bounded edges adjacent toS to both sides ofS as in picture (a) below then the movement
of the string is bounded. (This is true because if we move the string to either side, we can only move
until the length of one of the adjacent bounded edges shrinksto 0.) So we only have to consider the
case when all adjacent bounded edges ofS are on the same side ofS, say on the right side as in picture
(b) below. Label the edges ofS (respectively, their direction vectors) byv1, . . . , vk and the adjacent
bounded edges of the curve byw1, . . . , wk−1 as in the picture. As above the movement of the string to
the right is bounded. If one of the directionswi+1 is obtained fromwi by a left turn (as it is the case for
i = 1 in the picture) then the edgeswi andwi+1 meet on the left ofS. This restricts the movement of
the string to the left, too, since the corresponding edgevi+1 then shrinks to length0.

(a) (b)

w3

v1

w2

w3

(c)

v4

v3

v2

v1
w1

v1

v4 w3

w2

w1

(d)

v1

v2

w1

(e)

v4

w1

w2v2

v3

S S

S

So we can assume that for alli the directionwi+1 is either the same aswi or obtained fromwi by a
right turn as in picture (c). The balancing condition then shows that for alli both the directionsvi+1 and
−wi+1 lie in the angle betweenvi and−wi (shaded in the picture above). Therefore, all directionsvi
and−wi lie within the angle betweenv1 and−w1. In particular, the image of the stringS cannot have
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any self-intersections inR2. We can therefore pass to the (local) dual picture (d) where the edges dual
towi correspond to a concave side of the polygon whose other two edges are the ones dual tov1 andvk.

But from our assumption that∆ is del Pezzo we know that the triangle dual tov1 andvk does not
contain more integer points than its vertices. We conclude that the concave side of the polygon in picture
(d) actually must coincide with the triangle dual tov1 andvk and therefore the string consists of the two
endsv1 andv2 that are connected to the rest of the curve by exactly one bounded edgew1 = w (as
shown in picture (e)).

The second statement concerning adjacent marked leavesxk, k ∈ M is obvious as the deformation
is supposed to be unbounded. �

Theorem 5.13. Letxi, xj , xk, xl be pairwise different marked leaves and let us assume

i) ak = 0 for all k ∈ L ∪M ,
ii) ∆ is del Pezzo,
iii) if i, j ∈M (resp.k, l ∈M ), then for any pair of independent direction vectorsv1, v2 appearing

in ∆, the interior of the cone spanned byv1, v2 does not intersect both degreesδ(Ci) andδ(Cj)
(resp.δ(Ck) andδ(Cl)).

Thenφi,j|k,l is bounded.
If we additionally require

iv) i ∈ N ,

then alsoφi|k,l is bounded.

Proof. As conditions i) and ii) hold, we can apply 5.12, which describes the unbounded facets ofF .
We have to show thatφi,j|k,l (resp. φi|k,l) is bounded on these facets. In case (I), the only changing
length is that of a contracted edge and therefore not measured by bothφi,j|k,l andφi|k,l. In case (II),
the edge whose length is growing infinitely cannot separate more then one marked leafxk, k ∈ L ∪M
from the others. Therefore this length cannot contribute toφi,j|k,l and — by condition iv) — toφi|k,l.
Finally, condition iii) (and also condition iv)) is made such thatφi,j|k,l andφi|k,l are also bounded in
case (III). �

Remark5.14. The conditions i) – iv) appearing in the above statements arenot only sufficient but, in
most cases, also necessary for the statements to hold.

iv) If condition iv) in 5.13 is not satisfied, we can get the following things.
• If i ∈ L, then the degenerated vertex of type (a) leads to an unboundedφi|k,l.
• If i ∈ M andρ is a ray inCi whose direction vectorvρ also appears in∆, then in general

we will find curves inF with a degenerated vertex of type (b), whose unbounded movement
will makeφi|k,l unbounded.

• If i ∈ M andρ is a ray inCi whose direction vectorvρ lies between two direction vectors
v1, v2 appearing in∆, this will in general lead to curves inF with unbounded deformations
of case (III) such that the outward directions arev1, v2 and such thatxi is adjacent to the
moved string. So again,φi|k,l is in general unbounded.

iii) If condition iii) is not satisfied, we will in general getunbounded deformations of the following
type.

xj
v1

v2

Cj

xi Ci

In this case we havei, j ∈ M and the interior of the cone spanned byv1, v2 contains direction
vectors of bothCi andCj . As in generalxk, xl will lie on the other side of the growing edgew,
φi,j|k,l will be unbounded.

ii) If we drop condition ii), i.e. if we allow non-del Pezzo degrees∆, two things can happen. If
we allow non-primitive direction vectors, then we get deformations of type (II) (c) with un-
bounded edgev. Therefore the lengths ofv1 andv2, which can in general separate arbitrary
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marked leaves, grow infinitely. IfΘ(∆) is not supposed to be del Pezzo, then the description of
unbounded deformations of case (III) in 5.12 becomes incorrect, as there will appear more com-
plicated strings with more adjacent bounded edges than justone. The example ofF2 is analysed
in detail in [Fra] and [FM, e.g. 2.10].

i) If we drop condition i), i.e. if we allow Psi-conditions also at marked leaves which are not fixed
by points, we end up with more complicated kinds of deformations of general curves inF . The
following picture shows an example of an unbounded deformation in a one-dimensional family
of plane curves of projective degree2.

e

C2

C3

C4

C ∈ F = (τ1(C1)τ1(C2)τ1(C3)τ1(C4))
R

2

2

C1

Here,C has to meet all the four tropical linesC1, . . . , C4 with one Psi-condition. Note that the
indicated deformation ofC is indeed unbounded and that the length of the(1,−1)-edgee grows
infinitely. This example can be extended in the following way. One can glue arbitrary (fixed)
curves to the non-contracted leaves ofC in direction(1, 1), obtaining more families admitting
such a deformation. In particular, the edgee can separate arbitrary kinds of points, showing that
in generalφi,j|k,l andφi|k,l can be unbounded for any choice ofi, j, k, l.

In higher dimensions (r ≥ 3), up to now only the following case is studied.

Theorem 5.15([Zim] 4.86). Let F = (
∏n
k=1 τ0(Vk))

R
r

d be a one-dimensional family of curves of
projective degreed in Rr which donotsatisfy Psi-conditions, but incidence conditions given byconven-
tional linear spacesVk ⊆ Rr. Then for any choice of{i, j, k, l} ∈ [n] the functionφi,j|k,l is bounded
onF .

5.4. Comparison to the algebro-geometric invariants.In the special case of an empty degree, de-
noted by∆ = 0, the situation is analogous to the algebro-geometric one.

Proposition 5.16.LetZ = (
∏n
k=1 τak(Ck))0 be a zero-dimensional intersection product inMlab

n (Rr, 0).
Thendeg(Z) is non-zero if and only if

∑n
k=1 codim(Ck) = r (or equivalently

∑n
k=1 ak = n − 3). In

this case,

deg(Z) =

(
n− 3

a1, . . . , an

)
deg(C1 · · ·Ck)

holds.

Proof. By definitionMlab
n (Rr, 0) is isomorphic toMn×Rr. Moreover, as∆ = 0, all evaluation maps

evi coincide with the projection onto the second factor, which we therefore denote byev. Now let
X :=

∏n
k=1 ψ

ak
k = (

∏n
k=1(ψ

abstr
k )ak) × Rr be the intersection of all Psi-divisors. Then the projection

formula applied toev yields
deg(Z) = deg(C1 · · ·Cn · ev∗(X)).

But ev∗(X) is non-zero if and only if
∑n

k=1 ak = n− 3. If so, by 2.22 we knowev∗(X) =
(

n−3
a1,...,an

)
·

Rr, which proves the statement. �

Remark5.17. The goal of the following theorem is to show that certain tropical and classical gravita-
tional descendants coincide. The idea is to show that — underthe restrictions which we accumulated
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in the preceding sections — both sets of numbers satisfy the same WDVV and topological recursion
equations, which are sufficient to determine the numbers from some initial values. However, there is
one further problem concerning this plan, which we already mentioned in remark 5.5. The classical
WDVV and topological recursion equations run through splittings of the given cohomology classβ into
sumsβ = β1 + β2. AsM0,n(X, β) is empty ifβ is not effective, we can restrict to effective classes
β, β1, β2.

Now, for P2 andP1 × P1, effectivity is equivalent to the fact that the associated one-dimensional
tropical fans are positive (asP2 andP1 × P1 do not contain curves with negative self-intersection). So
a splittingβ = β1 + β2 of effective cohomology classes corresponds bijectively to a sum of unlabelled
tropical degreesδ = δ1 + δ2, and therefore the tropical and classical equations are really equivalent in
this case.

However, for the blow ups ofP2 in up to three torus-fixed points (i.e. forF2,Bl2(P2) andBl3(P2), cf.
definition 5.11), the same argument fails as the exceptionaldivisors induce tropical fans with negative
weights. The following picture shows the example of the tropical fan associated to the exceptional
divisorV (̺) of F1.

 ̺

ΘF1

−1

1

1

[V (̺)]

In these cases, i.e. when classical curves can split into reducible curves with a rigid component in the
toric boundary, we cannot expect that our purely non-compact approach will yield the same results.
It should be possible to deal with this by (partially) compactifying our spaces and/or adding suitable
correction terms (as in [FM]). This needs to be addressed in further work. For now, we just restrict
ourselves toP2 andP1 × P1.

Now we are finally ready to compare the tropical invariants for plane tropical curves to the algebro-
geometric ones, for some cases, using the equations proven in the previous subsections. The theorem is
an extension of [MR08, Theorem 8.4], which proves the statement for the caseP2.

Theorem 5.18. Let

• Θ beΘP2 or ΘP1×P1 , and setX := X(Θ) (i.e.X = P2 or X = P1 × P1),
• C1, . . . , Cn be Θ-directional tropical cycles, and letγ1, . . . , γn ∈ A∗(X) be the associated

cohomology classes ofX,
• ∆ be a labelled degree with primitive direction vectors whoseunlabelled degreeδ(∆) is Θ-

directional, and letβ ∈ Ar−1(X) be the corresponding cohomology class,
• a1, . . . , an be non-negative integers such thatak = 0 if dim(Ck) > 0.

Then the tropical and algebro-geometric gravitational descendants are equal, i.e.

1

∆!
〈τa1(C1) · · · τan(Cn)〉

R
2

∆ = 〈τa1(γ1) · · · τan(γn)〉
X

β .

Proof. First we choose a basisB0, . . . , Bm of Z∗(Θ). This also determines a basisη0, . . . , ηm of
A∗(X), and we know from the comparison to the fan displacement rule(cf. theorem 1.9) that

deg(Be · Bf ) = deg(ηe · ηf )

holds. This implies that, if we use WDVV equations or topological recursion with respect to these
bases, then the diagonal coefficientsβef appearing in the tropical and in the algebro-geometric setting
coincide. Thus, using the results of the previous sections we know that the numbers1∆!〈τa1(C1) · · ·

τan(Cn)〉∆ = 〈τa1(C1) · · · τan(Cn)〉δ(∆) and〈τa1(γ1) · · · τan(γn)〉
X

β satisfy a certain set of identical
equations, namely the WDVV and topological recursion equations (where on the tropical side we have
to be slightly more careful abouti, j, k, l satisfying condition iii) and iv) of theorem 5.13) as well as
the string and divisor equation. Therefore we can finish the proof by showing that the numbers can be
computed recursively, using these equations, from some initial numbers and proving that these initial
numbers coincide.
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We separate the labels of the marked leaves into the setsL ·∪M ·∪N = [n] according to the di-
mension ofCk as in subsection 5.3. First we use topological recursion to reduce the number of Psi-
conditions: We pick a marked leafxi with ai > 0 (and thereforei ∈ N ) and an arbitrary pair of marked
leavesxk, xl satisfying condition iii) of 5.13. If suchxk, xl do not exist, we can add them using the
divisor equation backwards with appropriate rational functionshk, hl. Namely, ifX = P1 × P1 we can
usehk = hl = max{0, x, y, x+ y}, otherwise we can usehk = hl = max{0, x, y}. Note also that this
choice ensures thathk ·∆ = hl ·∆ is non-zero for every possible degree, so we do not divide by zero.

After eliminating all Psi-conditions in this way, we can assumeak = 0 for all k ∈ [n], i.e. we are back
in the case of usual (primary) Gromov-Witten invariants. After applying the string and divisor equation
we can assume thatL = M = ∅ and it remains to compute invariants of the form〈

∏n
k=1 τ0(Pk)〉∆ for

pointsP1, . . . , Pn ∈ R2. Comparing dimension shows#∆ = n + 1. Let us first consider the general
casen ≥ 3. Here we consider the one-dimensional familyF = (τ0(Ci)τ0(Cj)

∏n−1
k=1 τ0(Pk))∆ with

arbitraryΘ-directional curvesCi, Cj such thatCi ·Cj is non-zero and such that condition iii) of 5.13 is
satisfied (e.g. we can choose the divisors of the functions chosen above). We letxi, xj be the first two
marked leaves as indicated, and choosek, l ∈ [n− 1] arbitrarily. In the corresponding WDVV equation
only one extremal partitionI|J with ∆I = 0,∆J = ∆ does not vanish. This follows from lemma
5.16 and the fact that the three sumscodim(Pk) + codim(Pl), codim(Ci) + codim(Pk), codim(Cj) +
codim(Pl) are greater than2. Moreover, the only remaining extremal partitionI = {i, j}, J = ∆ ·∪ [n−
1] provides the term

〈τ0(Ci)τ0(Cj)τ0(R
2)〉0 · 〈τ0(P )

n−1∏

k=1

τ0(Pk)〉∆ = deg(Ci · Cj) · 〈
n∏

k=1

τ0(Pk)〉∆.

Hence, we can reduce the computation of〈
∏n
k=1 τ0(Pk)〉∆ to invariants of smaller degree. We can

repeat this until we arrive at the initial invariants withn = 1 or n = 2. In these cases#∆ = 2
or #∆ = 3 and therefore the only possible degrees (up to identification via linear isomorphisms of
Z2) are∆ = {−e1, e1} and∆ = {−e1,−e2, e1 + e2}. In both cases, it is easy to show by direct
computation that〈τ0(P1)〉∆ = 1 and〈τ0(P1)τ0(P2)〉∆ = 1 hold (given a point inR2, there is exactly
one horizontal line through it; given two points, there is exactly one tropical line connecting them). But
now, as discussed above, the same recursion for the classical numbers proves the claim. �

Remark5.19 (Multiplicities of tropical curves). The above theorem reduces the computation of the
classical gravitational descendants to the count of certain tropical curvesC with multiplicitiesmult(C)
(cf. remark 3.10). In the above case of plane curves, an easy formula for this multiplicity exists (cf.
[MR08, lemma 9.3]). Namely, if we assume general position, the multiplicity of a curve in the count is
obtained as the product

mult(C) =
∏

V

mult(V ),

where the product runs through all vertices to which no marked leaf is adjacent andmult(V ) of these
necessarily3-valent vertices is the well-known vertex multiplicity introduced by Mikhalkin (cf. [Mi03,
definition 2.16]). This is correct for labelled curvesC, but we can as well count unlabelled curvesC̃ (as
the incidence and valence conditions do not depend on the labelling) by setting

mult(C̃) =
1

#Aut(C̃)
mult(C).

Here#Aut(C̃) denotes the number of automorphisms ofC̃.
Moreover, as well as for the usual Gromov-Witten invariantsconsidered in [Mi03], there exists a

so-called lattice path algorithm to compute these counts easily (cf. [MR08, section 9]).

Remark5.20. Similarly we can deal with the caser = 1, i.e. we can prove

1

d!2
〈τ0(R

1)l
n∏

k=1

τak(Pk)〉
R

1

d = 〈τ0([P
1])l

n∏

k=1

τak([pt])〉
P
1

d ,

where the left hand side is a tropical, the right hand side a conventional invariant and[pt] denotes the
class of a pointpt ∈ P1. In fact, after applying the string equation, we are left with the case wherel = 0.
Now we use 5.9 and topological recursion to reduce the numberof Psi-conditions (where, ifn < 3, we
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first add more marked leaves using the divisor equation). Finally, whenak = 0 for all k ∈ [n], it follows
d = 1 and we can compute directly〈τ0(P )〉R

1

1 = 1.
This fits with the previously known result for rational Hurwitz numbersH0

d := 〈τ1([pt])2d−2〉P
1

d (cf.
[CJM08, lemma 9.7]).

Remark5.21. The discussion in 5.14 and the factorn + #∆ − 2 appearing in the tropical dilaton
equation 3.12, instead ofn − 2 in the algebro-geometric version, show that for more difficult degrees
∆ (if r = 2) and for Psi-conditions at marked leavesxk with dim(Ck) > 0, the corresponding tropical
and conventional invariants are in general different. For example, if we add a marked leaf that has to
satisfy only a Psi-condition, the different factors in the dilaton equations immediately lead to different
invariants.

Remark5.22. Of course, the machinery developed here is ready to use in higher dimensions as well.
For example, by remark 4.19 and theorem 5.15, the same approach can be used to show that tropical
and classical Gromov-Witten invariants (without Psi-classes) ofPr, r arbitrary, coincide.
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