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Interspecific scaling of blood flow rates and arterial sizes
in mammals
Roger S. Seymour1,*, Qiaohui Hu1, Edward P. Snelling2,3 and Craig R. White4

ABSTRACT
Thismeta-study investigated the relationships between blood flow rate
( _Q; cm3 s−1), wall shear stress (τw; dyn cm−2) and lumen radius (ri; cm)
in 20 named systemic arteries of nine species of mammals, ranging in
mass from 23 g mice to 652 kg cows, at rest. In the dataset, derived
from 50 studies, lumen radius varied between 3.7 µm in a cremaster
arteryof a rat and 11.2 mm in the aorta of a human. The 92 logged data
points of _Q and ri are described by a single second-order polynomial
curve with the equation: log _Q ¼ �0:20 log r2i þ 1:91 log ri þ 1:82. The
slope of the curve increased from approximately 2 in the largest
arteries to approximately 3 in the smallest ones. Thus, da Vinci’s rule
( _Q/r2i ) applies to themainarteries andMurray’s law ( _Q/r3i ) applies to
the microcirculation. A subset of the data, comprising only cephalic
arteries in which _Q is fairly constant, yielded the allometric power
equation: _Q ¼ 155r2:49i . These empirical equations allow calculation of
resting perfusion rates from arterial lumen size alone, without reliance
on theoretical models or assumptions on the scaling of wall shear
stress in relation to body mass. As expected, _Q of individual named
arteries is strongly affected by body mass; however, _Q of the common
carotid artery from six species (mouse to horse) is also sensitive to
differences in whole-body basal metabolic rate, independent of the
effect of body mass.

KEY WORDS: Artery, Blood flow rate, Circulation, Da Vinci’s rule,
Murray’s law, Wall shear stress

INTRODUCTION
The systemic arteries of mammals carry oxygenated blood to the
tissues to support their aerobic metabolic demands. Therefore,
there is a functional link between the size of the arteries, the rate of
blood flow they transmit and the metabolic demand of the supplied
tissues. Metabolic rate scales allometrically with body size, so there
are likely to be patterns of cardiovascular variables that relate to
body size in a functionally meaningful way. The empirical
relationships between mammalian body size and heart mass,
stroke volume, heart rate, cardiac output and blood pressure have
each been shown to be related to metabolic rate, either directly or
indirectly (Calder, 1996; Hillman and Hedrick, 2015; Seymour
and Blaylock, 2000). The branching morphology of the arterial

system has been measured and modelled to test the optimality
theory of a space-filling fractal network that supplies oxygenated
blood with the least energy cost (Brummer et al., 2017; Hunt and
Savage, 2016; Huo and Kassab, 2012, 2016; Kassab, 2006;
Newberry et al., 2015; Price et al., 2007; Tekin et al., 2016).
However, most of these studies focused only on the morphology of
the network, and so it is difficult to extract the relationships between
arterial size and actual blood flow rate. To address this limitation,
the present study took an empirical approach by searching the
literature and collecting paired measurements of arterial lumen radii
and blood flow rates in 20 named systemic arteries of mammals.
We hypothesized that the sizes of branching arteries should be
related to the rate of blood flow within them, which depends directly
on the absolute metabolic demand of the tissues and indirectly on
body size.

Correlations between the metabolic rates of animals and the
structure of supply networks are well known, but the direction of
dependence is confusing in the literature. West, Brown and Enquist
began a revolution in thinking about physiological scaling by
suggesting that quarter-power scaling of metabolic rate and other
traits should arise if vascular networks are selected to fill space
while minimizing the energy required to distribute resources
(Brummer et al., 2017; West et al., 1997). The vascular system
has therefore been hypothesized to determine rates of metabolism
(Newberry et al., 2015). An alternative perspective is that the
allometric scaling of metabolic rate arises for reasons unrelated to
the geometry of the vascular system (Kozłowski andWeiner, 1997).
The need to deliver oxygen and nutrients to fuel rates of metabolism
would then determine the structure of the vascular system.
Distinguishing between the evolutionary explanations for the
origin of metabolic scaling is challenging, but there are numerous
examples demonstrating that metabolic demand determines the
structure of the circulatory system. For example, the number and size
of arteries are dynamically and reversibly adjusted throughout life to
match the required rates of blood flow. Arteriogenesis (the increase
in arterial diameter and wall thickness) and angiogenesis (the
increase in the number of vessels by splitting or sprouting) occur in
response to increases in metabolic demand of growing organs (Heil
et al., 2006). The same phenomena occur in skeletal muscles during
athletic training (Prior et al., 2004; Thijssen et al., 2012). Tumour
metabolism becomes limited by perfusion during rapid growth,
resulting in anaerobic metabolism and lactate that stimulates
angiogenesis and subsequent oxygenation (Polet and Feron,
2013). Experimental changes in the blood flow regime of major
arteries result in appropriate changes in diameter and wall thickness
(Caro et al., 2012; Kamiya et al., 1984; Kamiya and Togawa, 1980;
Langille, 1999; Smiesko and Johnson, 1993; Tronc et al., 1996;
Wolinsky and Glagov, 1967). The success of coronary bypass
surgery in which a vein is substituted for the diseased artery is due to
the fact that the vein assumes a morphology similar to that of a
healthy artery in a matter of weeks (Owens, 2010). It is clear that theReceived 10 January 2019; Accepted 7 March 2019
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morphology of the arteries is responsive to changes in metabolic
demand, through changes in blood flow rate and blood pressure.
The physiological mechanisms responsible for controlling

arterial size involve reversible interactions between blood flowing
adjacent to the endothelium of the vessels and circumferential wall
tension caused by blood pressure (Lu and Kassab, 2011). Higher
blood flow rates over the glycocalyx of the endothelium initiate a
series of responses involving inflammation, nitric oxide, vascular
endothelial growth factor receptor proteins, metalloproteinases,
cytokines and extracellular matrix proteins (Baeyens et al., 2015;
Reitsma et al., 2007; Silvestre et al., 2013). The result is cellular
proliferation in the vessel wall that enlarges the lumen and reduces
blood velocity near the wall (Lehoux et al., 2006). Because the
effects are reversible, they are thought to normalize wall shear stress
(τw), which is an indirect measure of the stress on the glycocalyx of
the endothelium. τw (dyn cm−2) can be measured directly as the
derivative of the velocity gradient adjacent to the wall (Papaioannou
and Stefanadis, 2005). τw can also be calculated from blood flow
rate ( _Q, cm3 s−1), blood viscosity (η, dyn s cm−2) and arterial lumen
radius (ri, cm) according to the Poiseuille shear stress equation,
tw ¼ð4 _QhÞ=ðp r3i Þ, assuming that the flow conforms to the
Poiseuille regime of a Newtonian fluid in a straight cylinder
where the velocity profile is parabolic (Lehoux and Tedgui, 2003).
However, the quantitative connection between the level of τw and
the extent of vascular remodelling is obscure, because τw is either
measured by the velocity gradient far from the wall or calculated
from the shear stress equation without reference to the wall at all.
Thus, the site of measurement in larger arteries is much farther from
the wall than the very short (<5 µm) length of the glycocalyx
(Reitsma et al., 2007).
Much of the twentieth century literature includes the idea that τw

has a narrow ‘set-point’ range, typically ∼10–20 dyn cm−2,
throughout the circulatory system (Glagov et al., 1988; Ku, 1997).
However, Langille realized that τw in any particular artery is
dependent on body mass (Mb; kg) (Langille, 1993). Based on his
assumed scaling of cardiac output (∝Mb

0.8) and geometrically
proportional scaling of arterial linear dimension (∝Mb

0.33), he
calculated that aortic τw should scale allometrically with Mb

−0.2.
More recently, data from mouse to human indicated that τw scales
with Mb

−0.38 for the infrarenal aorta (Greve et al., 2006; Weinberg
and Ethier, 2007),Mb

−0.23 for the common carotid artery (from fig. 2
in Cheng et al., 2007) and Mb

−0.21 for the common carotid artery
(from data in Weinberg and Ethier, 2007). For primates, τw appears
to scale with Mb

−0.20 for the internal carotid artery (Seymour
et al., 2015) and Mb

−0.22 for the vertebral artery (Boyer and
Harrington, 2018a).
Few studies have considered the scaling of both the anatomy and

the physiology of the cardiovascular system of mammals. In a now
classic paper, Holt and colleagues (1981) measured the sizes of the
main arteries and veins of seven species of mammals ranging inMb

from mice (∼0.02 kg) to horses and cows (∼500 kg) (Holt et al.,
1981). The internal radius (ri; cm) of the ascending aorta scaled with

Mb according to ri=0.33Mb
0.36. The authors estimated the scaling of

cardiac output to be proportional toMb
0.79 and, as radius scaled with

Mb
0.36, radius squared (proportional to aortic cross-sectional area)

scaled with Mb
0.72, and therefore the mean velocity of the blood

scaled withMb
(0.79−0.72)=Mb

0.07. Although the authors concluded that
mean blood velocity is Mb independent, the exponent of 0.07
produces a doubling of velocity between mice and horses and cows.
τw is also shown to decrease in the same artery of larger species;
assuming that tw/ _Q=r3, then τw∝Mb

(0.79−(3×0.36)=Mb
−0.29.

In the present study, we hypothesized that the negative scaling of
τw withMb is due to differences in the scaling of metabolic rate that
would be reflected in the blood flow rates and the morphology of the
arterial system. Rather than approaching the question from a
theoretical model of fractal branching, we used an empirical
approach to gather data from recent imaging studies of blood flow
rate and arterial lumen size. This meta-study was designed to
determine whether there are patterns of blood flow rate and τw in
relation to in vivo arterial size among mammals over a wide range of
Mb, and to determine whether blood flow rate is associated
with whole-body basal metabolic rate, independent of Mb. The
unexpected finding of our meta-study is that allometric equations
can be used to estimate blood flow rate in mammalian arteries from
their radius alone, without reference to theoretical equations or
knowledge of τw, metabolic rate or Mb.

MATERIALS AND METHODS
Data collection
Recent advancements in ultrasonic, X-ray and magnetic resonance
imaging allowed us to collect data on systemic arterial radii and
blood flow rates in mammals. The literature was searched for
individual studies that included both pressurized internal radius and
volume blood flow rate in the same arteries and the same species.
All studies that presented data for both variables together were
accepted and none were excluded. No record was made of the
number of searched papers that failed to present data for both
variables. However, because the literature was strongly biased
toward studies on humans, followed by laboratory rodents, a
deliberate effort was made to search for other species.

Arterial lumen size and volume blood flow rate were taken as
reported means from control groups. In some instances, flow rate
was calculated from mean velocity multiplied by cross-sectional
lumen area. Arterial radius was calculated from either reported
diameter or cross-sectional area, assuming the geometry of a perfect
circle. τw was calculated from the Poiseuille shear stress equation,
given in the Introduction, assuming a constant blood viscosity of
0.04 dyn s cm−2 (Amin and Sirs, 1985; Schmid-Schönbein et al.,
1969). There was good correlation between τw calculated this way
and values reported in some individual studies that used the
derivative of near-wall blood velocity gradients. Flow in a given
artery was considered constant, laminar and Newtonian. Turbulent
flow occurs only occasionally for the descending aorta or near a
stenosis, valve or aneurysm (Winkel et al., 2015), so such conditions
were excluded. Most animal studies involved some level of
general anaesthesia or sedation, in which case the anaesthetic was
recorded. Data from exercising animals were also recorded but
excluded from the dataset because too few records were available.
Body mass was taken from individual studies, either as a reported
mean or as the average of a reported range. Missing Mb data were
replaced with means from laboratory and domestic species (Jones
et al., 2009; Seymour and Blaylock, 2000). Data for basal
metabolic rate (BMR) were taken from a published compilation
(Sieg et al., 2009) and supplemented with additional data for

List of symbols and abbreviations
BMR basal metabolic rate (ml O2 h−1)
Mb body mass (kg)
_Q volume blood flow rate (cm3 s−1)
ri internal radius (cm)
η blood viscosity (dyn s cm−2)
τw wall shear stress (dyn cm−2)
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horses (Eisenberg, 1981; Evans and Rose, 1988). BMR data for
crab-eating macaques (Macaca fascicularis) were unavailable, so
BMR data for similarly sized rhesus macaques (Macaca mulatta)
were substituted.

Statistics
Values are presented as means with 95% confidence intervals (CI),
calculated with Microsoft Excel add-in StatistiXL (www.statistixl.
com). Data for _Q, ri, τw, Mb and BMR were log10-transformed for
analysis. Polynomial or power regression equations were fitted
with graphing and statistical software (GraphPad Software Inc.,
La Jolla, CA, USA). The relationships between _Q, Mb and BMR
were analysed using linear mixed models with species identity as a
random effect in lme4 v1.1-7 (http://CRAN.R-project.org/
package=lme4) and lmerTest v2.0-25 (http://CRAN.R-project.org/
package=lmerTest) packages of R v3.1.3 (http://www.R-project.
org/). The significance of fixed effects was assessed using t-tests
with Satterthwaite approximations to degrees of freedom and
models fitted using maximum likelihood. One value for rats was
excluded from this analysis because the individuals for which
blood flow rate was determined were much smaller (100 g) than
the individuals for which BMR was determined (290 g). For the
remaining species, the logMb of animals used for blood flow rate
measurement were strongly correlated with the logMb of animals
used for metabolic rate measurement (R2=0.99).

RESULTS
_Q and τw in relation to ri
Data for arterial _Q and ri were obtained from 50 studies that included
both variables in the same paper and were measured from mammals
at rest (see Table S1). The nine species comprised Homo sapiens
and various domesticated or laboratory mammals. In total, there
were 92 data points collected from 20 named systemic arteries. Mb

ranged from 23 gmice to 652 kg cows. ri varied between 3.65 µm in
a cremaster artery of a rat to 11.2 mm in the supraceliac aorta of a
human. _Q ranged from 0.16 µm3 s−1 in the cremaster artery in a rat
to 20 cm3 s−1 in the femoral artery of a horse.

The entire dataset was described by a single second-order
polynomial equation relating log _Q to log ri: log _Q ¼
�0:20 log r2i þ 1:91 log ri þ 1:82 (R2=0.97; n=92) (Fig. 1). The
derivative (slope of the line at any point) of this equation revealed a
gradual increase in slope with decreasing arterial size, from
approximately 2 in the largest arteries to approximately 3 in the
smallest ones.

τw is normally calculated according to the assumption of laminar
flow with the Poiseuille shear stress equation, given in the
Introduction. The data show increasing τw from 1.1 dyn cm−2 in
the infrarenal aorta of humans to 163 dyn cm−2 in the small
cremaster artery of the rat (Fig. 2). A polynomial equation was set to
the data: logτw=−0.20logri2−1.09logri+0.53 (R2=0.62; n=92).

_Q in the cephalic arteries only
A subset of the data was selected to include only the major cephalic
arteries, because the blood flow regimes in these vessels are relatively
constant (Fig. 3). These include the common carotid, internal carotid,
vertebral, basilar, anterior cerebral, middle cerebral and posterior
cerebral arteries. An allometric power regressionwas set to these data
yielding the equation: _Q ¼ 155r2:49+0:17

i (R2=0.94; n=57). The
exponent was midway between 2 and 3 of the entire dataset.

Effect of Mb on _Q and τw in the femoral artery, aorta and
common carotid artery
Three major arteries provided sufficient data to relate resting _Q toMb

allometrically (Fig. 4). The exponents were 0.80 for the femoral
artery, 0.74 for the aorta and 0.80 for the common carotid artery. τw
calculated for these arteries yielded exponents of −0.49 for the
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Fig. 1. Blood flow rates in mammalian arteries of different sizes. Relationship between log blood flow rate ( _Q; cm3 s−1) and log systemic arterial lumen radius
(ri; cm) in nine genera of mammals at rest. The equation for the polynomial regression line is: log _Q¼�0:20 log r2i þ1:91 log riþ1:82; 95% confidence bands for the
regression line are shown. The value of the slope of the line at any point (derivative n) is given on the top axis.
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femoral artery,−0.44 for the aorta and−0.14 for the common carotid
artery (Fig. 5). See legends to Figs 4 and 5 for complete equations.

Effect of BMR on _Q in the common carotid artery
For species in which data on common carotid artery _Q
were available, we found that their whole-body BMR (ml O2 h

−1)

scaled as 6.09Mb
0.71±0.07. Common carotid artery _Q (cm3 s−1) scaled

as 0.24Mb
0.80±0.09 and as 0.000157BMR1.11±0.09. The correlation

between common carotid artery _Q and BMR remained positive
and significant (t11.6=3.49, P=0.005) (Fig. 6), after accounting
for the effect of Mb on _Q, which was not significant in
the model that included BMR (t11.6=−0.90, P=0.38):
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Fig. 2. Wall shear stress in mammalian arteries of different sizes. Relationship between log wall shear stress (τw; dyn cm−2) and log systemic arterial lumen
radius (ri; cm) in mammals at rest, calculated from the Poiseuille shear stress equation: tw¼ð4 _QhÞ=ðp r3i Þ. The equation for the polynomial mean regression line
is: logτw=−0.20logri2−1.09logri+0.53; 95% confidence bands for the regression line are shown.

1.0

1

ri (cm)

Q
 (c

m
3  

s–
1 )

0.01 0.02 0.05 0.1 0.2 0.5

10

100

0.1

0.01

.

Fig. 3. Blood flow rates in cephalic arteries of different sizes. Subset of the data for blood flow rate ( _Q) in relation to lumen radius (ri) in the major
cephalic arteries only, including the common carotid, internal carotid, vertebral, basilar, anterior cerebral, middle cerebral and posterior cerebral arteries
for six genera of mammals (Mus,Rattus,Oryctolagus,Canus,Homo, Equus) at rest. The allometric equation for the power mean regression line of these arteries
is: _Q¼155r2:49+0:17

i ; 95% confidence bands for the regression line are shown. Note that arithmetic data are plotted on log axes.
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log _Q¼�4:90þ1:49logBMR� 0:279 logMb. The effect of
whole-body BMR on common carotid artery _Q remained
significant (t30=3.60, P=0.001) in a model that included vessel ri
(t30=2.14, P=0.04) and Mb (t30=−1.53, P=0.14): log _Q¼
�3:02þ1:23logBMRþ1:03 log ri�0:411 logMb.

DISCUSSION
_Q and ri in resting mammals
The data gathered from 20 different systemic arteries in nine species
of mammals differing in Mb by 4.5 orders of magnitude fell
remarkably along a single, second-order polynomial regression line
(Fig. 1). This close relationship is not simply a result of the influence
of Mb. Although Mb is related to the size of individual named

arteries, the six smallest arteries in the dataset include those from
rats, cats and humans, which differ greatly in Mb. The relationship
between _Q and ri is curved, with the derivative decreasing from a
slope of approximately 2 in the largest arteries to about 3 in the
smallest ones. The pattern is also apparent in different-sized arteries
from humans and rats (Fig. 1). The explanation for this phenomenon
was sought in the following theoretical models.

The circulatory system was analysed as a fractal-like branching
network. Although the distal arteries appear to be close to
geometrically dichotomously self-similar at every level (Family
et al., 1989), the proximal arteries are not fractal, branching is not
uniform and arterial anastomoses occur (Huo and Kassab, 2016).
There are two classical models for anatomical branching pattern of
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Fig. 4. Effect of body mass (Mb) on blood flow rate ( _Q) in three major arteries of mammals at rest. The allometric equations are: femoral artery,
_Q¼0:12M0:80+0:34

b (R2=0.88; n=7); aorta, _Q¼1:15M0:74+0:24
b (R2=0.95; n=6); common carotid artery, _Q¼0:24M0:80+0:06

b (R2=0.97; n=31); 95% confidence bands
for each regression line are shown. Note that arithmetic data are plotted on log axes.
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the arterial tree. The first is the minimum energy loss hypothesis
known as Murray’s law, which predicts that _Q/r3, such that r3 of a
parent artery is equal to the sum of r3 of two daughter arteries
(Murray, 1926). The other model, known as da Vinci’s rule because
the anatomist and artist Leonardo da Vinci recorded that the cross-
sectional area of a parent artery is equal to the combined areas of the
daughter arteries (Richter, 1970), predicts that _Q/r2 (Zamir et al.,
1992). Both are cases of the common relationship rp

n=rd1
n+rd2

n,
where rp is the radius of the parent artery and rd1 and rd2 are the radii
of the two daughter arteries. The exponent, n, is 3 for Murray’s law
and 2 for da Vinci’s rule.
The present study shows that neither model holds for the entire

arterial system. Rather, Murray’s law applies to the smaller arteries,

as the derivative of the regression is close to 3, but da Vinci’s rule
applies to the larger arteries, where the derivative is approximately
2. These results confirm other indications from the literature. For
example, among small arteries, _Q/r2:76 in human retinal arteries
(Riva et al., 1985), similar to retinal arteries of rhesus monkeys
(Zamir and Medeiros, 1982), _Q/r3:01 in the cremaster muscle
arteries of rats (Mayrovitz and Roy, 1983) and _Q/r2:98 in pial
arteries on the surface of the brain of cats (Kobari et al., 1984).

For the larger arteries, several studies conclude that _Q should be
proportional to radius squared. A meta-study of five species of
mammals indicated that τw is related to arterial diameter to the
−0.50 power, which indicates that _Q/r2:5 (Cheng et al., 2007).
Zamir et al. (1992) measured diameters in casts made from human
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central arteries and found that n is closer to 2 than 3. An
intraspecific analysis of all major arteries with 3–10 branch levels
in the human head and torso revealed high variability, but a mean
empirical exponent equivalent to 2.04 or 2.44, depending on the
estimation model employed (Newberry et al., 2015). The
exponents for arterial size of vascular trees in organs of humans
and laboratory animals range widely, approximately from 2 to 4
(Kassab, 2006). An alternative model to Murray’s law, but also
based on fractal-like branching of the arterial tree with minimal
energy loss, concludes that the exponent is between 2 and 3 (Huo
and Kassab, 2016).
The shift from da Vinci’s rule in larger arteries to Murray’s law in

smaller ones has been explained in theoretical studies (Savage et al.,
2008; West et al., 1997, 1999). The area-preserving relationship of
da Vinci’s rule (where exponent n=2) ensures that energy loss by
reflected pressure waves is minimized in the major arteries
(Gafiychuk and Lubashevsky, 2001). If the mean velocity in the
parent is equal to the mean velocity in the daughters, and the wall
characteristics are the same in the parent and daughters, then
changes in velocity at the junction are not converted to reflected
waves (Caro et al., 2012). Murray’s law (where exponent n=3)
minimizes friction-related energy loss, because wall shear stress is
equal in parent and daughter arteries, and permits the velocity of the
blood to slow down at the level of the capillaries to allow sufficient
time for gas exchange.

Scaling of _Q and ri in the cephalic arteries only
The entire dataset contains arteries that service tissues of varying
metabolic rate. In particular, the inferior aorta, femoral arteries and
brachial arteries largely supply skeletal muscles, while the common
carotid and vertebral arteries and their branches mainly supply the

brain. Flow regimes in these two categories are vastly different. For
instance, _Q in the femoral artery can increase 10-fold between rest
and activity (Jorfeldt andWahren, 1971). Therefore, the diameter of
the femoral artery is matched better with maximum _Q than resting
_Q. In contrast to muscle perfusion, brain perfusion is autoregulated
and relatively constant globally, although there may be regional
redistribution of blood (Ogoh and Ainslie, 2009; Payne, 2016). For
example, _Q in the common carotid artery of humans is independent
of heart rate (Wilcox et al., 1970). During moderate, steady-state
cycling exercise that causes a doubling of cardiac output, global
cerebral _Q increases only 28% above resting rates after 3 min and
returns to resting rates after a further 13 min of exercise (Hiura et al.,
2014). _Q in the middle cerebral and internal carotid arteries
increases by only 14% and 17%, respectively, despite doubling of
heart rate during moderate cycling exercise (at 60–67% of maximal
aerobic capacity), and the increase in _Q along these arteries is even
less during more intense cycling exercise (80–90% of maximal
aerobic capacity) (Hellström et al., 1996). In a similar experiment,
Japanese women increased cardiac output by 260% during
moderate cycling exercise, but increased internal carotid arterial _Q
by only 18% and vertebral artery _Q by 33% (Sato and Sadamoto,
2010). The diameters of the cerebral arteries also change very little
between rest and activity (Hellström et al., 1996) or in response
to changes in blood pressure and blood gas levels (Payne, 2016).
There is also almost no difference in cerebral _Q when humans
engage in mental arithmetic (Sokoloff et al., 1955) or between
awake and sleeping states (Townsend et al., 1973). Cerebral _Q of
humans decreases gradually with age in absolute terms, but not
when expressed relative to brain mass, despite rising arterial blood
pressure (Meltzer et al., 2000; Tarumi and Zhang, 2018; van Es
et al., 2010). However, cerebral _Q in humans is responsive to
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Fig. 6. Influence of basal metabolic rate on arterial blood flow rate. Relationship between the residuals of log common carotid artery blood flow rate
( _Q, cm3 s−1) and the residuals of log whole-body basal metabolic rate (BMR, ml O2 h−1). Because both variables are significantly related to body mass (Mb, kg),
residuals of each variable from linear regressions that relate _Q and BMR to Mb are shown. The line represents the parameter estimate for the effect of BMR
on _Q, accounting for Mb, in a linear mixed model including a random effect of species identity: log _Q ¼ �4:90þ1:49logBMR � 0:279 logMb.
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short-term experimental alterations in mean arterial blood pressure
(Tan, 2012; Willie et al., 2014), defending more strongly against
increases in pressure than decreases (Numan et al., 2014).
The relationship between _Q and ri in the cephalic arteries was best

described by an allometric power equation (Fig. 3). The relationship
was determined mainly by the data for the common carotid arteries
from a 27 g mouse to a 500 kg horse. The exponent of the equation
was 2.49 and the 95% CI of the exponent was 0.17. Thus, the
exponent lies midway between, but is significantly different from,
those expected for da Vinci’s rule (where n=2) and Murray’s law
(where n=3).

τw in relation to ri and Mb
The general trend in this meta-study indicates that τw increases as
blood passes into progressively smaller arteries (Fig. 2), in contrast
to a generally assumed independence of τw from vessel size andMb

according to Murray’s law. Thus, our results from 50 studies of nine
species of mammals confirm the pattern from seven studies of five
species of mammals, which showed that τw in the common carotid
artery increases from approximately 11 to 65 dyn cm−2 from
humans to mice (Cheng et al., 2007). Our data indicate an increase
from 14 to 42 dyn cm−2 over the same Mb range.

_Q in three major arteries scaled with Mb with exponents between
0.74 and 0.80 (Fig. 4), which is consistent with the scaling of
cardiac output in resting mammals, ca. 0.80 (Calder, 1996; Holt
et al., 1981). Calculated τw in these arteries decreased with
increasing Mb, with large negative exponents in the femoral artery
(−0.49) and aorta (−0.44), but a smaller negative exponent in the
common carotid artery (−0.14) (Fig. 5). By comparison, the
exponent was reported to be −0.38 in the aorta (Greve et al., 2006;
Weinberg and Ethier, 2007) and between −0.20 and −0.23 in the
common carotid, internal carotid and vertebral arteries (Boyer and
Harrington, 2018a; Cheng et al., 2007; Greve et al., 2006; Seymour
et al., 2015; Weinberg and Ethier, 2007). This may represent a
decreased sensitivity of τw to body size in arteries that supply mainly
nervous tissue as opposed to arteries that supply a large fraction of
blood to muscles during activity, but are measured at rest. In fact, τw
is quite low in the femoral artery at rest, but increases during activity
to be comparable to that in the similarly sized common carotid
artery at rest (Kornet et al., 2000).
The standard shear stress equation assumes that τw is inversely

proportional to ri
3. If _Q is also proportional to ri

3, then τw is a constant
(i.e. τw∝ri0). If _Q is proportional to ri

2, then τw should increase in
smaller arteries (τw∝ri−1), which appears to be the case (Fig. 2).
However, we found that the exponent in fact varies between 3 and 2
depending on arterial size, so we can calculate τw according to a
modified shear stress equation, tw¼ð4 _QhÞ=ðp rni Þ, where n is
the derivative of the polynomial equation for _Q and ri. The
descriptive equation for the curve based on the derivative is
logτw=0.200logri2−0.017logri+0.530 (R2=0.70; n=92) (Fig. S1).
This modified equation also shows that τw increases with decreasing
arterial size, from nearly 3 dyn cm−2 in the largest arteries to above
1500 dyn cm−2 in the cremaster arteries of rats, which is certainly
unrealistically high. All of the calculations of τw should be
approached with caution for three reasons. First, the standard
equation assumes that τw is inversely proportional to ri

3, which is
doubtful. Second, they are based on flow rates during rest, but flow
rates in large arteries supplying muscles can increase greatly,
without a complete compensatory increase in radius (Cheng et al.,
2003). Third, they assume that blood viscosity is constant, but the
effective viscosity near the wall of the smallest arteries might be
reduced (Sriram et al., 2014).

_Q in relation to BMR
The most represented artery in the dataset was the common carotid
artery. When the effect of Mb was accounted for, there was a
positive relationship between common carotid artery _Q and whole-
body BMR (Fig. 6). This implies that species with higher BMR
also have higher cephalic perfusion rates and brain metabolic rates.
This positive relationship is similar to the relationship observed
between brain size and metabolic rate in several studies of
eutherian mammals. Mb-independent brain size is positively
correlated with Mb-independent metabolic rate in humans (Javed
et al., 2010; Müller et al., 2011) and inbred strains of mice
(Konarzewski and Diamond, 1995), and in eutherian mammals in
general (Navarrete et al., 2011; Weisbecker and Goswami, 2010).
In contrast, there is no relationship between brain size and
metabolic rate in marsupials (Weisbecker and Goswami, 2010),
birds (Isler and van Schaik, 2006) or teleost fishes (Killen et al.,
2016).

The correlation between brain size and metabolic rate, where
present, and the correlation between common carotid artery blood
flow rate and whole-body BMR may arise because the brain is
energetically expensive to maintain and contributes significantly to
whole-body metabolism. The human brain is certainly expensive,
accounting for around 20% of BMR, but the contribution is much
smaller (2–8%) in most non-primate species (Mink et al., 1981),
although there are some notable exceptions (Nilsson, 1996). The
proximate cause of the relationship between Mb-independent BMR
andMb-independent brain size has long been controversial (McNab
and Eisenberg, 1989). It may arise indirectly via extrinsic factors
that influence both brain size and metabolic rate, rather than directly
as a functional consequence of the contribution of the brain to
whole-body metabolism (Glazier, 2018; McNab and Köhler, 2017;
White and Kearney, 2013). It is possible that mammals with high
BMR are generally more active and require a greater ability to
process sensory information quickly.

Practical use of the equations
If the size of the lumen of an artery subject to normal physiological
blood pressures is known, _Q can be estimated. The second-order
polynomial equation for the entire dataset (Fig. 1) is useful over the
broad range of vessel size and can be applied loosely to any
mammal, even if the destination of the arterial blood (e.g. neural or
muscular) is not known. Because _Q in the cephalic arteries is
rather constant, the power equation (Fig. 3) can be used more
precisely to estimate _Q to the brain. The usefulness of the equations
is enhanced over previous attempts, because they do not involve
adherence to theory ( _Q/r3i ) and there are no assumptions about
the scaling of τw on Mb. In particular, we previously used the
relationship _Q ¼ ðtwp r3i Þ=ð4hÞ and assumed that τw=167Mb

−0.20,
based on data from only humans and rats, to estimate _Q through the
internal carotid artery from the radius of the carotid foramen
(Seymour et al., 2015). This assumption was tenuous, not only
because it was based on just two species but also because the
functional relationship between τw and Mb was quite obscure. This
aspect of our method was criticized (Boyer and Harrington, 2018a),
defended (Seymour and Snelling, 2018) and then supported (Boyer
and Harrington, 2018b). With the present analysis, however, we can
circumvent the issue altogether and not involve τw or Mb. The new
empirical equations apply well to a broad range of arteries over a
broad range of body size under resting conditions, so they offer the
prospect of estimating blood flow rate (and hence oxygen delivery
and metabolic rate) in organs according to the size of their supply
arteries.
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