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We propose and test the interstitial-electron model (IEM) for lattice dynamics in close-packed
structures. The IEM model treats the valence electrons as classical lattice particles localized at in-
terstitial tetrahedral positions, as suggested by the ab initio generalized-valence-bond cluster calcu-
lations of McAdon and Goddard. We apply the IEM to the fcc metals Ni, Pd, Pt, Ag, Au, and Cu
using a simple six-parameter description (nearest-neighbor electron-electron, electron-ion, ion-ion
terms, each with two parameters) to exactly fit lattice constants, elastic constants (Cy;, C, Cy4), and
the two lattice modes at the X point in the first Brillouin zone. The predicted phonon-dispersion re-
lations are in excellent agreement with experiment for all branches in the high-symmetry [100],
[110], and [111] directions. The explicit inclusion of valence electrons in the interparticle interac-
tions implicitly includes what would be considered as many-body effects in the usual ion-ion scheme
(e.g., C1,7Cy4,). Such force fields should also be useful for describing nonperiodic systems (surfaces,

clusters, and defects).

I. INTRODUCTION

Recent ab initio quantum-mechanical calculations by
McAdon and Goddard"? of many-body electron-
correlation effects in small metal clusters (6—14 atoms)
showed that the electrons tend to localize into interstitial
regions with each electron in a different site. This is illus-
trated in Fig. 1 for the icosahedral cluster of Li;;*, where
the 12 electrons each localize in a different tetrahedron.
In the ground state, pairs of such interstitial orbitals are
singlet paired but the states with triplet and higher pair-
ing are low-lying excited states. In contrast, similar cal-
culations on nonmetallic clusters (e.g., C, Si, etc.) lead to
two-electron bonds, each localized between two atoms.
In this case, the two generalized-valence-bond (GVB) or-
bitals are singlet paired and localize along the bond with
one orbital toward each atom. Triplet pairing of these
orbitals leads to high-lying antibonding excited states.
The major factor distinguishing the metallic and nonme-
tallic clusters is that the metallic clusters have far more
bonding orbitals than electrons so that it is possible to ac-
count for all electrons by singly occupying orbitals that
are in different bond regions. McAdon and Goddard sug-
gested that this description in terms of interstitial elec-
trons would apply to infinite fcc metals (quantum-
mechanical GVB calculations are not yet possible on
such systems) and suggested that two- and three-body po-
tentials incorporating the valence electrons explicitly
might be useful.

Based on the GVB calculations, we propose and test
the interstitial electron model (IEM) for face-centered cu-
bic metals. In this model we consider that an electron
can localize at each of the tetrahedral locations in a fcc
metal (two sites per atom). At equilibrium, each orbital is
centered in the tetrahedral site, but the orbital would
shift position adiabatically under lattice vibrations. With
IEM we treat the various electrons as pseudoparticles of
a small mass (zero in the current calculations) whose
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center corresponds to the center of the GVB orbital. The
quantum mechanics of the electronic states is replaced by
potentials depending upon the electron-ion and electron-
electron distances. As a first test of this model we simpli-

(a) Z

FIG. 1. GVB orbitals for the icosahedral Li;; " cluster. Each
orbital is in a different tetrahedron and spin paired to an orbital
in an adjacent tetrahedron (from Ref. 1). Shown are two views,
(a) a top view and (b) side view, of the two GVB orbitals of one
pair localized in the two tetrahedral along the +x axis. There
are equivalent pairs along the —x, +y, and +z directions. In
each case the atoms in the plotting plane are marked by solid
circles, while atoms above and below the plane are marked by
open circles. Connected dots represent the spin-paired elec-
trons. Shaded triangular faces do not contain orbitals. Over-
laps of spin-paired orbitals are 0.63.
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fy the IEM to include only pairwise interactions of
nearest neighbors, with three independent potentials:

) ¢;.;(r) for ion-ion interactions ,
(ii) ¢,.(r) for ion-electron interactions ,
(iii) ¢,..(r) for electron-electron interactions , (1)

and where just two parameters (¢'=d¢/dr and
¢’ =d?¢ /dr? evaluated at the nearest-neighbor distance)
are used for each two-body potential. These restrictions
are made solely to simplify these initial studies. It is
plausible that longer-range interactions and three-body
terms (e.g., ion-electron-ion, electron-ion-electron, etc.)
should be present, but they are not included here.

In this paper we test the efficacy of this description by
using the IEM to fit the lattice dynamics and elastic con-
stants of six fcc metals: Ni, Pd, Pt, Cu, Ag, and Au.
Thus we approximate each electron as a classical lattice
particle centered at each tetrahedral interstitial site and
treat the electron and the ions equally in setting up the
dynamical matrix. We find that this approach (using
only nearest-neighbor interactions with a total of six ad-
justable parameters) leads to a description of the lattice
dynamics in excellent agreement with experiment.

In Sec. II we present the general formalism of the IEM
for describing lattice dynamics and for calculating the
elastic constants. The numerical results and comparisons
with other first-principle and phenomenological models
are illustrated in Sec. III. Section IV includes some
analysis of the results including a comparison with this
method and some ideas on extending the IEM to simula-
tions of more complicated systems.

II. MODEL

Within the harmonic approximation, the equations of
motion for the lattice particles become

M (Quy(k)=3 Dy [k‘}(, ]uﬁuc') @)
kB

where k denotes each lattice particle (electron and nu-
cleus) in the unit cell, u (k) are the normal mode coordi-
nates for energy () and wave vector (q), and M, is the

mass. The components of the dynamical matrix are given
by

I r
k k'

I r
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where (a) r(} ) is the position of the kth lattice particle in
the Ith cell, (b) xa(i) is its Cartesian component, (c) a,f3
are the Cartesian indices, and (d) the force constant ma-
trix of the particles separated by r(}{)=r(})—r(}.), or
(44, is given by

1 r
k k'
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For fcc metals the unit cell contains one ion and two in-
terstitial electron particles at [000], [ {441, and [$33], re-
spectively.
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In the current calculations we take the mass of the
electron M; to be zero (analogous to the Born-
Oppenheimer approximation). A nonzero mass of the
electrons would be used to describe plasma oscillations
and the response of the electrons to high-frequency fields.
Transforming to remove the electron coordinates reduces
(2) to the equations of motion for the ions

up(k’) ®)

Miol@ugk)= 3 Dl K

where k,k’ describes ions only.
new dynamical matrix D} are

The components of the

tot

i-i ] q
af kk']

o[ )osz 8] bl 4] o

where 5,5’ denotes electrons. The summation convention
is used here for repeated indices. Each type of dynamical
matrix in (6) is still given by (3) and (4) but we use super-
scripts i-i, i-e, and e- e to emphasize the type of interac-
tion. Thus we use ¢(%%.) for ion-ion (D), ¢(}!) for ion-
electron (D), and (%) for electron- electron (D).
The dynamic matrices can be obtained from force con-
stant matrices such as are given in the Appendix. The
secular equation

wt [kkl ] _Saﬁﬁkk'Mk'wz(q) =0 7

gives the phonon-dispersion relations w(q).

In order to keep the model simple, we limited the
present calculations to first nearest neighbors for each of
the three types of interactions in (1). Since only nearest-
neighbor terms are included, a total of six parameters
(Pris» Biis Pies Orrer Do, and @) is used in (6) for the
IEM (see Appendix). The symmetry group of the bonds
for the first nearest neighbors reduces the components of
the corresponding force constant matrix (which are linear
superpositions of the above six parameters) to a total of
seven, one of which is the linear superposition of the oth-
ers. Instead of using the parameters ¢’ and ¢’ directly,
we employ six independent force constants (a, v, u, A, 5,
and p) as free parameters in the lattice dynamical calcu-
lations,

[kk']=

— 1 ’ rn
a=— V3 A LY

1 ? (22
=~‘73_¢i—i_%¢i-i »
H= 03\/3 ¢l e 3 i-e
(8)
a3V3 ¢le ¢le ’
8_—¢ee H
PZ_;‘ﬁ;Ae »

where a is the cubic lattice constant.
The phonon-dispersion relations w(q) in the three
high-symmetry directions [100], [110], and [111] were ob-
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tained by solving (7). The [100] branches are related to
the force constants by

T
594

- ’
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M, 0% (q)=—16a sin’ ﬂq
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where g is the reduced wave vector, ¢ =|q| /gy, The
@ max €quals 2m/a, 2V'2 1 /a, and 2V'3 7 /a in the [100],
[110], and [111] directions, respectively. The correspond-
ing dispersion relations for the [111] and [110] branches
are given in the Appendix. It is clear from (9) that the
ion-electron (u,A) and electron-electron (8,p) terms
modify the o(q) from that of the ion-ion interactions
(a,y). The eléctron contributions to the phonon-
dispersion relations become substantial in all branches at
large g, where the electrons vibrate out of phase with
10ns.

In the long-wave limit (q—0) the equilibrium condi-
tions and three elastic constants can be expressed in
terms of the force constants,

—2a+2y—u+i—p=0,
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where V,=;a 3 is the volume per atom.

Using only pairwise ion-ion interactions (where u, A, 8,
and p are all zero) leads to the Cauchy relation C, =Cy,;
whereas real metals lead to very different values
(C,=4Cy, for Pt and Au). However, IEM leads to the
Cauchy discrepancy of

a2 7\,2

—_—— 12
2V, u+6+2p 12

C,—Cy=

and the optimum parameters agree exactly with experi-
ment. Thus the many-body effects implicit in the u, A, 5,
and p parameters of the ion-electron and electron-
electron interactions lead to the correct nonzero values.>

III. NUMERICAL CALCULATIONS

The six free parameters introduced in the interstitial
electron model were determined analytically by solving
six equations: the equilibrium condition (10), the three
elastic constants (11), and the two vibrational frequencies
at the X point in the [100] direction,

M, 0}(qy)=—16a—38u (13)

and

812

ps T (14)

M, 0%(qy)=—82a—y)—8u+
The lattice constant (a), elastic constants (C;,, Cy5, Cyy),
and vibration frequencies [w;(qy),wr(qy)] are taken
from experiment (Refs. 4-10) and tabulated in Table 1.

The parameters were determined by the above six
equations, which ultimately lead to a cubic equation for
p- In each case there are three real solutions leading to
three different sets of parameters. Among those sets of
parameters, two ultimately give imaginary phonon
dispersion relations. Therefore, only one solution is ac-
ceptable, leading to a unique set of parameters. These pa-

s (10) rameters are given in Table II for Ni, Pd, Pt, Cu, Ag, and
Cy=— a (2a+u+d), Au, while the ¢’ and ¢"' from (8) are giYen _in Table III.
2V, These parameters reproduce the quantities in Table I to
a2 the accuracy of the calculations (nine decimal values).
Cp=-— v (—2a+3y—u+2r—p), Using these parameters, we calculated the phonon-
a 11) dispersion relations in the three high-symmetry direc-
2 A2 tions (where data are available from experiment). We
Cu=— Y 2a—y+u +p~W s find excellent agreement with experiments, as shown in
a Hu P Figs. 2-7.
TABLE L Experimental data used in fitting parameters to the IEM.
Ni Cu Pd Ag Pt Au
a (A) 3.5239 3.6150 3.8907 4.0857 3.9239 4.0780
Cy; (GPa)? 250.80 168.40 230.80 124.00 346.70 193.00
C;, (GPa) 150.00 121.40 176.20 93.40 250.70 163.44
C, (GPa) 123.50 75.40 70.00 46.10 76.50 42.00
0% (THz) 8.550 7.190 6.720 4.936 5.780 4.610
o} (THz) 6.170 5.080 4.640 3.448 3.730 2.750
Mass (amu) 58.710 63.540 106.400 107.873 195.090 197.000

21 GPa=10'" dyn/cm>.
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TABLE II. Theoretical parameters describing the IEM potentials. All quantities in units of erg/cm?=dyn/cm.
Ni Cu Pd Ag Pt Au
a —170.233 1676.728 7665.901 3993.953 7687.027 7306.492
¥ —11288.606 —5093.518 —1267.643 —1586.597 895.448 1535.036
“ —34753.832 —30212.914 —54620.932 —29478.840 —66668.619 —48 847.195
A —15140.644 —16849.532 —33009.424 —17493.622 —50081.534 —34860.452
8 —9095.409 —3578.843 —5069.548 —3840.405 —14726.241 —5118.489
p —2623.558 —177.11 3744.420 824.119 5003.927 2443.831

IV. DISCUSSION

A. Dispersion curves

As can be seen in Figs. 2-7, the calculated phonon-
dispersion curves are nearly always within experimental
uncertainty. In Ni and Cu, the biggest errors occur for
the longitudinal branch at the zone edge for the [111]
direction. For Pd, Pt, and Au, the biggest error is for the
transverse branch at the same point. All together, these
results provide strong support for the IEM.

The more traditional lattice dynamics calculations con-
sidering only ion-ion interactions require long-range in-
teractions (out to five or ten neighbors) for similar quality
fits, leading to computational complications and a lack of
clear physical meaning in the parameters (they do not
change smoothly as one goes down or across the Periodic
Table). Thus in such models it is not clear what to do at
a surface or defect or for an alloy. The IEM suggests
that these long-range ion-ion interactions are equivalent
to short-range terms involving electrons (many-body in-
teractions). One approach that has been used to improve
pairwise ion-ion methods is to add explicit volume-
dependent terms.!! However, this still leads to the
compressibility paradox where the calculated compressi-
bility in the long-wave limit is different from that found
by the method of homogeneous deformation. 2

An alternative approach of including many-body
effects is the embedded atom method.'* In this approach,
the volume-dependent term is replaced by an electron
density-dependent term that is usually expressed as a
function of ion coordinates. The calculated phonon-
dispersion relations by the embedded atom method for
Cu, Pd, and Ni are in good agreement with experi-
ments. '+ 13

Pseudopotential calculations incorporating only
two- and three-body interactions lead to phonon-
dispersion relations similar to the IEM results, suggesting
that both include the important many-body effects.

16—18

B. Parameters

The derivatives of the potential (¢’ and ¢’') show
somewhat similar trends for the six metals considered
here. Thus in all cases ¢;; is negative (repulsive) while
¢;_. is positive (attractive). In addition, ¢; ; is always less
repulsive for the group-11 elements than for the group-10
elements. Similarly, ¢;, is always less attractive for
group 11 compared with group 10. The magnitude of ¢;;
and @;, also decreases going down the column of the
Periodic Table for all cases except ¢;, of Au. The mag-
nitude of ¢, , is always much smaller than either ¢, or
¢, but fluctuates a bit more. Thus ¢, _, is attractive for
Ni and Cu, repulsive for Pd, Pt, Ag, and Au, but nearly
zero (slightly repulsive) for Cu.

The magnitudes for ¢;, and ¢, , are always positive,
while ¢;’; is positive for Ni and Cu but negative for Pd,
Ag, Pt, and Au. ¢!, and ¢, , always decreasing going
from group 10 to group 11. ¢}, and ¢, , increase going
down a column except for ¢, , of Pd. There are some-
what more fluctuations in ¢;’,.

These close comparisons for parameters as a function
of row and column of the Periodic Table suggest that
¢(R) functions might be of general utility.

It is, of course, a serious approximation to include only
nearest-neighbor interactions as done here. This approxi-
mation is equivalent to forcing ¢(R) to zero between the
first and second neighbors of each type and necessarily
affects the values of the nearest-neighbor parameters
differently. A better approximation would be to use the
long-range potentials as discussed below.

C. Extensions

The next step in developing the IEM model is to relax
the nearest-neighbor restriction by using longer-rang
functions such as :

TABLE III. Force parameters for the IEM. All ¢’ are in units of dyn/10® and all ¢" are in units of dyn/cm=erg/cm>.

Ni Cu Pd Ag Pt Au

b —27704.468 —17306.042 ~24577.434 —16122.353 —18 844.026 — 16 642.463
b 29927.634 20918.248 36409.394 21203.767 31581.288 24698.151
P 4622.578 320.127 —7284.208 —1683.551 —9817.455 —4982.972
e 11458.838 3416.790 —6398.258 --2407.357 —8582.474 —8841.528
#:, 63035.121 63911.978 12 0639.780 64 466.084 168 813.688 118 568.100
P 9095.409 3578.843 5609.548 3840.405 14726.241 5118.489
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neighbor IEM.
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Solid lines are from the nearest-
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and to fit the parameters A4,B,C,. .. to the elastic con-
stants and phonon curves. Using a superposition of such
functions to describe the energy of the system in terms of
ion and electron positions, we could allow the lattice to
distort farther from equilibrium and calculate the energy
and structure for a number of defects including stacking
faults, vacancies, dislocations, surfaces, and grain boun-
daries. In such calculations the IEM electrons would not
necessarily remain at the center of the tetrahedron and
their location would be recalculated as a function of ion
position (this is equivalent to the Born-Oppenheimer ap-
proximation). We intend to explore this in future work.
Since the electrons and nuclei can respond separately
to external electric and magnetic fields, it will be interest-
ing to examine transport properties (electrical and ther-

Y‘-»A-—X<——E<—I’->A~——L

e [o0] [110]

[m]/

A % v/

'YZ’L /]

bidd
=
T

Frequency w (THz)
AN
/
-
~
—
_‘
\?

0.01 L .
00 02 04 06 08 (0 08 06 04 02 00 02 04

q/q[loo]_’ = 9/910) /A
Reduced Wave Vector

FIG. 3. Phonon dispersion for Cu: Dots represent experi-
mental data (from Ref. 6). Solid lines are from the nearest-
neighbor IEM.
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FIG. 4. Phonon dispersion for Pd: Dots represent experi-
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mogalvanic). Allowing a finite mass for the electrons
would make the Born-Oppenheimer breakdown impor-
tant for electron transport in metallic systems. The mag-
nitude of the electron mass could be determined by pre-
dicting the plasma oscillators and comparing with experi-
ment.

For alloys and intermetallic compounds, we would ex-
pect the e-i and e-e terms to depend only on the number
of nearest-neighbor ions of each type and to change
smoothly as a function of composition. The i-i and i-e
terms should depend on which ion is present and change
smoothly after obtaining the full function of R for the
various ¢(R). We intend to examine some ordered
phases (e.g., CuAu) to explore transferrability of the po-
tentials.

This IEM approach is equally valid for hexagonal
closest packed (hcp) systems; however, for hcp there are
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FIG. 5. Phonon dispersion for Ag: Dots represent experi-
mental data (from Ref. 8). Solid lines are from the nearest-
neighbor IEM.
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two quite distinct e-e terms. There is a short-range in-
teraction between tetrahedra that share faces (not present
in fcc) and a long-range interaction between tetrahedra
sharing corners. In contrast, the fcc system has tetrahe-
dra sharing edges, leading to intermediate distances. To
obtain the most accurate potentials, particularly ¢, . (R),
it would be useful to consider metals exhibiting both
structures (fcc and hcp) fitting the potentials to relative
energies in addition to elastic constants and phonon
states. Although there are no experimental data for such
systems, we could use the calculated properties from bulk
band calculations as the input data to the IEM.

The concept of the IEM is based on calculations of
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FIG. 7. Phonon dispersion for Au: Dots represent experi-
mental data (from Ref. 7).
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clusters of Ni, Cu, Ag, Au, Li, and Na, where there is
effectively only one valence electron (with a d° localized
configuration on each Ni and a d'° configuration for the
noble metals). Since there are two tetrahedral sites per
atom in a fcc crystal, we consider that there is one-half an
electron at each interstitial site. Thus in IEM, the d elec-
trons (d° for group 10, d!° for group 11) are included in
the ion terms. This is roughly equivalent to assuming
that each atom has n —1 electrons in localized (small
dispersion) band states and one electron in a delocalized
(large dispersion) sp bond. This approximation is, we be-
lieve, most justified for group 11 and for the first transi-
tion row.

The GVB calculations on clusters suggest that as the
number of electrons per tetrahedron (n,) are increased
from 1 to 1 there is a tendency to stabilize the geometries
with face-shared tetrahedra (hcp) but that for n, > 1, the
face-shared tetrahedra are strongly destabilized. Similar-
ly, these calculations suggest that for edge-shared
tetrahedra (fcc), n, > 3 is strongly destabilizing. It will be
interesting to see if trends in ¢, , bear out these expecta-
tions.

The assumption that the interstitial electrons localize
in tetrahedra locations is based on the GVB calculations.
These calculations do not suggest how much worse it will
be to localize the electrons in octahedral sites nor have
GYVB calculations been carried out for bce clusters to ex-
amine the character of the interstitial electrons. It would
be interesting to make similar fits to these systems in or-
der to obtain empirical data that might be useful in as-
sessing the validity of these schemes.

V. CONCLUSIONS

Treating the interstitial valence electrons as lattice par-
ticles and assuming that all interactions are pairwise and
short ranged (only to first nearest neighbors), the IEM for
lattice dynamics in fcc metals give quite satisfactory re-
sults for the phonon-dispersion relations at all q vectors
for all the branches in the three symmetric directions
with only six adjustable parameters. Since the parame-
ters are directly related to the curvature and slope of the
interparticle potentials at a particular position, they have
a clear physical meaning that should be useful for
describing distorted systems, surface reconstruction, etc.
The inclusion of electrons in the force fields introduces no
special computational complications and is simpler, for
example, than using empirical pair interatomic interac-
tions with crystal volume-dependent many-body contri-
butions. Thus we believe that the IEM provides an at-
tractive approach for developing force fields useful for
calculating the structures and dynamics of metallic sys-
tems.
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APPENDIX

Using two-body interactions for each pair of lattice
particles (ion-ion, ion-electron, electron-ion, and
electron-electron) leads to force constant matrices of the
form

1 1 1 1
pory e Tek kTR kK 8op v ek kT )YB |k K
Pas |k k|7 |k K ] 1'] - ‘, ST e ke T Al
k k' k k' k k'

where only two parameters ¢’ and ¢"’, are required to de-
scribe the interactions of nearest neighbors.

The number of components of the force constant ma-
trices can be further reduced by using the space group
symmetry of the crystal for unit cell containing one ion
and two electrons. For nearest-neighbors interactions
this leads to a total of seven force constant matrix com-
ponents. For instance, the interaction between the elec-
tron at [T T I] and the ion at [000] is

344
I uw A A
P |y o L ; i A (A2)
m

where u=® (5 §),;, A=®,(} §),.;, and where the ion
and two electrons of the unit cell are denoted O, 1, and 2,

For ions sitting in positions different from [000}, the cor-
responding force constant matrices of the electron-ion in-
teraction are obtained through the operations of
tetrahedral symmetry. The ®;_, between a [000] ion and
a [44+] electron is given by (A2) and that between a
[000] ion and a [T T T] electron is given by (A3).

The symmetry group for the ion-ion and electron-
electron interactions is simple, and the corresponding
force constant matrices are also given herein. For ions

located at [000] and [£,1,0], we obtain

1l a vy 0

Pplg o =¥ a 0 (A4)
i-i 0 0 B

where oa=®,(0{),;, and y=®,(}}),,;, and

B =40, ;. For pair interactions, we have B =a—y.

respectively. For electrons sitting at [34+] and [ }11], we obtain
The interaction between the electron at [144] and the
ion at {000] gives the force constant matrix 1! 500
(Daﬁ 1 2 e 0 P 0 (AS)
I r u A A , 00p ,
q)aﬁ 1 0 = X j22 )\. (A3) WhereS:q)ll({ é)e~e andp:q)ZZ(g é)e-e‘
e-i T A The phonon-dispersion relations in the [110] direction
K are given by
2
8 |pcos? | Zq | —Asin? | Lgq J ]
2 2 2¢in2
4 4 4A°sin“(7rq) , (A6)
(8+p)sin? {;Tq +u 2p cos? ~27T—q +(6+up)
2. 4T
T Sueos” |7 4\>sin*(wq)
M, 0% (@)= —4(a—7y)sin®(7q)— 16asin? | =—q | —8u+ + > , (A7)
2 . (8+picos“(mq)+(u+p)
2p sin? ?q +u
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M, 0% (q)= —4(a—7y)sin*(7q) —8(2a — 1y )sin’ iq

MO LI AND WILLIAM A. GODDARD III

—8u+

8 | cos? + A sin®

m m
29 29

) (A8)

(8+p)sin? | Zg | +u

where T, is polarized in the [110] direction and T, is polarized in the [001] direction. The [111] branches are given as

follows:

M, 0% (q)=—43a—2y)sin*(7mq)—8u

2
(e—A)cos ﬂq +(3u+A)cos %q
+
2 [2p sin? %q +u
3 2
(—A)sin Ty —(3p+A)sin T
4 , (A9)
2 [2p cos? %q +u+s
M, w%(q)=—4(3a+7y)sin’(7rq)—8u
3 2
(u+2A%)cos lq +(3u—2A)cos %q
_.(..
2 |2p sin? j—T—q +u
3 2
(p+20)sin | 2Xg |4+ (3u—2A)sin %q
+ (A10)
2 |2p cos? —;Lq +u+8
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