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INTERTIDAL MANGROVE FORAMINIFEM FROM THE CENTRAL GREAT 
BARRIER REEF SHELF, AUSTRALIA: IMPLICATIONS FOR 

SEA-LEVEL RECONSTRUCTION 

SARAH A. WOODROWE~, BEN F! HORTON', PIERS LARCOMBE~ AND JOHN E. W H I ~ T A K E R ~  

ABSTRACT 

Contemporary foraminiferal samples and environ- 
mental information .were collected fram three fringing 
mangrove environments (Sandfly Creek Transect 1 and 
2, and Cocoa Creek) in Cleveland Bay, and an estuarine 
mangrove environment (Saunders Creek) in Halifax 
Bay, on the central Great Barrier Reef (GBR) coastline, 
Australia, to elucidate the relationship of the foraminif- 
era1 assemblages with the environment. The data sap- 
port the vertical zonation concept, which suggests that 
the distribution of foraminifera in the intertidal zone is 
usually a direct function of elevation, with the duration 
and frequency of subaerial exposure as the most impor- 
tant factor. An agglutinated foraminifera1 assemblage 
dominated by Miliammina fusca, Trochammina inflata, 
Anzmotiurn directum and Haplophragmoides sp. exists at 
the landward edge of the field site!;, in a zone between 
just above Mean Low Water of Nrap Tides to Highest 
Astronomical Tide level (a vertical range of 1.8 m). In 
addition, a foraminiferal assemblage dominated by Am- 
monia ctoteana is found at all sites, existing between just 
below Mean Low Water of Neap Tides and Mean High 
Water.of Neap Tides (a vertical range of 0.8 m). These 
assemblages may be used to reconc:truct sea level from 
fossil cores from the area. 

The study of Holocene relative sea-level (RSL) changes 
in the Great Barrier Reef (GBR) region of Australia is par- 
ticularly important because of its tectonic stability and its 
great distance from the centers of former ice caps. Obser- 
vations of sea-level change in far field locations such as 
Australia provide the most direct estimate of the volume of 
grounded ice existing at various time. periods between the 
Last Glacial Maximum and present. (Milne and others, 
2002). In addition, evidence of a mid-Holocene high stand 
of approximately + 3  m along parts of the east coast of 
Australia and the nature of subsequent RSL fall is of interest 
to geophysical modelers because it yields information on 
the contribution of hydro-isostasy, eql~atorial ocean siphon- 
ing and crustal levering to late Holocene relative sea-level 
change in tropical areas. This increases our understanding 
of solid'earth geophysics (e.g., Mitro~rica and Peltier, 1991; 
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Nakada and Lambeck, 1989; Yokoyama ' ~ n d  others, 2001; 

Lambeck and others, 2002). 
One approach to the study of RSL change is to use mi- 

crofossil sea-level indicators such as forilminifera, diatoms 
and pollen, which are contained in both contemporary and 

fossil sedimentary deposits. Sea-level intl~cators developed 
from observed changes in microfossil assemblages have 
been used for the past 30 years or so to p~ovide reconstruc- 
tions of Holocene RSL change for many areas, including 

Britain, Europe and North America, and have been the pri- 
mary source of data for developing and testing models of 

RSL change (e.g., Shennan and others, 2002; Peltier, 2002; 

Shennan and Horton, 2002). Marsh foraminifera, in partic- 

ular, are highly accurate sea-level indica~ors because they 

have narrow ecological tolerances and narl ow vertical zones 
in the intertidal zone (Scott and Medioli, 1978, 1980a). 

However, all microfossil data and their associated RSL re- 
constructions are subject to errors, which limit the precision 

of determining both age and elevation, anti as smaller mag- 
nitude sea-level changes are analyzed, the magnitude of er- 

rors becomes increasingly important. To ;~ddress this limi- 

tation we must use the most precise indicators available, and 
use statistically robust quantitative techniques in reconstruc- 

tions. 
To this end, a new generation of microl'ossil-based quan- 

titative paleoenvironmental reconstructions has been devel- 
oped (e.g., Horton, 1999; Zong and Horton, 1999; Edwards 

and Horton, 2000; Gehrels and others, 2001; Horton and 

others, 2003), allowing a relatively precise reconstruction of 

former sea levels, using a statistically-based relationship be- 
tween contemporary foraminiferal assemblages, their rela- 

tionships to sea level and their fossil counterparts. This de- 
veloping research field is generating high precision in KSL 

reconstructions (Horton and others, 2000; Edwards and Hor- 
ton, 2000; Horton and Edwards, 2005; Sawai and others, 
2004). 

In contrast to mid-latitude, temperate environments, there 

have been relatively few studies of intertidal foraminifera 
and their relationship to RSL in tropical coastal environ- 
ments. The studies include Michie (northern Australia, 

1987), Scott and others (Brazil, 1990), Barbosa and Suguio 

(Brazil, 1999), Hayward and others (New Zealand, 1999b, 
2004b), Debenay and others (west coast 01' Africa, New Ca- 
ledonia and northern Australia, 2000), Haslett (northern 
Australia, 2001), Debenay and others (French Guiana, 
2002), Javaux and Javaux and Scott (Bermuda 1999,2003), 
Horton and others (Great Barrier Reef coastline, Australia, 
2003), and Horton and others (Indonesia, 2005). Further- 
more, most studies concentrate on individual sites and do 
not investigate the potential for diversity in foraminiferal 
faunas over local or regional scales. The tropical environ- 

ment has many different challenges for foraminifera1 assem- 
blages, including the widespread presence of bioturbators 
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FIC~UKE I .  Location niap of the central Great Barrier Reef showing 
sites studied. (a) The Great Barrier Reef coastline froni Cape Tribula- 
tion in the north to the Whitsunday Islands in the south. (b) The central 
Great Barrier Reef province around Townsville showing the location 
of the lield sites Saunders Creek, Sandfly Creek and Cocoa Creek. 

(e.g., fiddler crabs) which disturb the surface sediment, cre- 
ating potentially increased sources of error when trying to 
reconstruct former sea levels and post-depositional changes 
in foraminifera1 assemblages due to disaggregation and dis- 
solution. This paper documents the characteristics of mod- 
ern intertidal environments from four different locations in 
the central GBR ~)rovince, and compares and contrasts their 
foraminiferal faunas, identifying inlplications for sea-level 
reconslructions. 

STUDY AREAS 
I 

The shoreline of the central GBR is characterized by a 
series of north-facing coastal embayments (e.g., Halifax 
Bay, Cleveland Bay, Howling Green Bay), which are pro- 
tected from the dominant southeast trade wind by granite 
headlands or sand spits;, but are open to northerly and north- 
easterly weather and the impact of occasional tropical cy- 
clones (Belperio, 1983; Carter and others, 1993). Cleveland 
Bay lies immediately offshore from Townsville, Queens- 
land, and Halifax Bay lies north of it, approximately 600 
km north of the soutliernrnost limit of the GBR (Fig. 1). 

The bays lie at approximately 19" S 146"-147" 30' E. Cleve- 
land Bay is approximately 20 km square and is landlocked 
around its southern and eastern margins by the mainland. 
Within the bay lies Magnetic Island, which is granitic and 
-12 km in diameter, a.nd rises to an altitude of 495 m. This 
island shields the northerly part of Cleveland Bay. The 
southern part of the bay is shielded by the granite headland 
of Cape Cleveland, which rises to an. elevation of 557 m. 
Halifax Bay is more open, but the granite promontory of 
Cape Pallarenda also shields the southern half. Cleveland 
and Halifax Bays are relatively shallow, both reaching a 

maximum water depth of 15 m at their seaward edges (Cart- 
er and others, 1993). Complex water motions occur in 
Cleveland Bay, inclutling the effects of refracted SE-gen- 
erated swell waves, and the tidal range for both bays is 
generally mesotidal (-2.3 m; Carter and others, 1993; Lar- 
combe and others, 19!>5). Australian Height Datum. (AHD) 
is the local height datum used in this study. Mean Sea Level 
is 0.1 m above 0 m AHD. Lowest Astronomical Tide (LAT) 
is -1.86 m AHD, Mean High Water of Spring Tides 
(MHWST) is + 1.21 m AHD, and Highest Astronomical 
Tide (HAT) is +2.15 m AHD. 

Cocoa Creek is the southernmost of four tidal creeks en- 
tering Cleveland Bay. The main channel meanders for 9.5 
km through an extensive chenier plain close to the granite 
escarpment of Cape Cleveland, and extends 600 m seawards 
of the last chenier riclge through an extensive, well-devel- 
oped mangrove fringe that is in places up to 400 m wide. 
The mangroves are mature and florally diverse, with trees 
up to 8 m in height. 'The mean spring tide range is 2.3 m. 
The transect at Cocoa Creek was taken perpendicular to the 
shoreline, in a series of  sub-transects which cover the range 
from -4.5 m AHD (-2.72 m LAT) to 1.16 m AHD (0.05 
m below MHWST; Table 1). We collected data from 35 
sample stations. We took samples at 10-cm elevation inter- 
vals where possible (apart from below LAT, where this was 

TABLE I .  Et~vironmental and elevation information for the 4 contemporary mangrove transects in Cleveland Bay and Halifax Bay. 

Cocon Creek Sandfly Creek Transect I Sandfly Cm:k Transect 2 Snunders Creek 

PH range 5.5-8.28 4.14-7.32 7.16-8.2 5.6-7.87 
Salinity range (ppt) 5.9-19.5 7.5-13 8-15 5.3-28 

O/o LO1 range 2.2-19.5 0.5-9.5 0.4-2.6 0.5-7.0 
% Sand range 0-0 0-86.2 0-75.3 0-97.6 
Vegetation cover (% ) range 0-90 0-90 0-75 0-90 

Elevation ranae (m) AHD -4.58 to 1.16 -0.346 to +0.894 -0.856 to +0.304 -0.466 to + 1.694 
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not possible). The shallow subtidal and lower intertidal en- 
vironment (-4.5 m AHD to -0.05 m AHD) is dominated 

by a silty substrate (-70% silt), with a low organic content 
(<5%), low salinity and neutral pH. The fringing Rhizo- 
phora stylosa-dominated floral zone starts at 0 m AHD, 
marked by a distinct change in grain size distributions from 
-70% silt to -90% clay, an increase in organic content to 
-lo%, increasing salinity (10-15%0) imd a drop in pH. The 
Rhizophora stylosa mangroves are mature and vegetation 
cover is dense. At 0.78 m AHD there is a transition to a 
Ceriops sp. floral zone, which is accompanied by an in- 
crease in organic content to -19%, a further increase in 

salinity. to -20%0 and a further drop in pH. The transect 
stops at 1.16 m AHD against an unvegetated, sand-rich, 3- 
m-high chenier ridge. 

Sandfly Creek is the northernmost and smallest of the 
four tidal estuaries in Cleveland Bay (Fig. 1). The main 
channel of Sandfly Creek meanders through a series of chen- 
ier ridges, and extends 800 ni seaward of the final ridge 
through fairly mature mangroves and shallow tidal flats. The 
fringing mangroves extend along the coast on either side of 
the mouth of the creek for some distance, with large stands 
of Rhizophora stylosa and Avicennin marina at the mouth 
of the creek (Bunt and Bunt, 1999). The mean spring tidal 
range is 2.3 m. 

Sandfly Creek Transect 1 

This transect was taken diagonally from the creek mouth, 
perpendicular to the shoreline, and has 14 sample stations, 
which we placed strategically where there are changes in 
topography or vegetation. The transecl covers a range from 
just below MLWST to MHWST (Tablo 1). The sedimentary 
environment consists of a silt-rich unvegetated tidal flat be- 

low approximately -0.3 m AHD, moving into a sparsely 
vegetated fringing Avicennia marina-dominated floral zone 
at approximately 0 m AHD, with an increasingly sandy sub- 
strate. Salinity is low in these two zones, whereas p~ is 
neutral. At 0.15 m AHD, there is a transition to a densely 
vegetated Rhizophora' stylosa-dominated floral zone, with 
between 80-90% vegetation cover. The substrate remains 
predominantly sandy. Salinity increases while pH decreases 
through this zone. At approximately 0.6 m AHD, a transi- 
tion occurs to a second, more dense Aviceiznia marina-dom- 
inated floral zone. This floral zone is less dense than the 
Rhizophora stylosa-dominated zone it replaces. The sub- 
strate becomes more clay-rich, salinity continues to increase 
(-13%0) and pH rises slightly. This zone is interrupted at 

0.9 m AHD by an unvegetated, sand-rich chenier ridge, ap- 
proximately 5 m wide and 2 m high. The mangrove contin- 
ues behind this chenier ridge, consisting predominantly of 
Aegiceras cornicr~latum mangrove species, which are infre- 
quently inundated by saline waters from the estuarine chan- 
nel. 

Sandfly creek Transect 2 

This transect was taken perpendic~~lar to the shoreline 
through a. series of floral mangrove ;:ones, approximately 

A OF NE AUSTRALIA 26  1 

100 m west of the mouth of Sandfly Creek, and has 20 
sample stations, which we placed strategically where there 

were marked changes in topography or vegetation. The tran- 
sect covers a range from just below MLWST to MHWST 
(Table 1). There is an unvegetated, silty tidal flat at approx- 
imately -0.8 m AHD, grading into a sljarsely vegetated 
fringing Avicennia marina-dominated flol-:~l zone at -0.6 m 
AHD. A few small, sandy tidal channels occur in this zone. 
Salinity is low in these zones (--8%0) ant1 pH is relatively 
high. At -0.3 m AHD, there is a transition to a poorly 
developed Rlzizophora stylosn-dominated floral zone. The 
Rhizophora stylosa mangroves are juvenil~: and do not have 

well-developed prop roots. Salinity increases lhrough this 
zone (-13%0) and pH drops to near neutral. At 0 m AHD, 

there is a transition to an open Avicennin iilarina-dominated 
floral zone. Salinity increases again through this zone 
(-15%0), and pH remains fairly neutral. This zone is inter- 
nipted at 0.25 m AHD by an unvegetated. sand-rich chenier 

ridge, which is also present at Transect I .  

Approximately 50 km north of Townsville, in southern 
Halifax Bay, is Saunders Creek, which nieanders through 

dense, estuarine mangroves towards the final shoreline, 
formed by a beach ridge. The transect at Saunders Creek 
was taken perpendicular to the estuarine channel, with a 
total of 10 sample stations, which we pli~ced strategically 
where there were marked changes in topography or vege- 
tation. The transect covers a range from just above MLWST 
to just below Highest Astronomical Tide (HAT; Table 1). 
The unvegetated channel is at approximately -0.5 ni AHD, 
and has a very high sand percentage (95%)), very low salin- 
ity (<5%0) and relatively low pH. At -0.4 rn AHD, there 
is a transition to a densely vegetated Rhizold~ora stylosu- 
dominated floral zone, with increasing salinity values 
(-10%0), a silt-rich substrate (44% silt) and increasing pH 
levels. Vegetation cover is approximately 95% in this zone. 

At 1.4 m AHD, there is a transition to a narrow Avicennia 
marina-dominated floral zone, which has high salinity 
(-18%0) and high pH. At 1.55 m AHD, there is a transition 
to an open, Aegiceras corniculaturn-dorni~iated floral zone. 
Salinity continues to increase to approximi~tely 20%0, where- 
as pH remains high. The substrate is silt-rich, and the den- 
sity of vegetation cover decreases to approximately 60%. At 
1.6 m AHD, there is a transition from an Aegiceras corni- 

culatum-dominated floral zone to a saltpan. Salinity increas- 
es to approximately 28%0, and vegetation cover decreases 
to approximately 10% and is made up 01. slnall stands of 
Salicornia australis and other salt-tolerant marsh species. 

MATERIALS AND METHODS 

We collected foraminifer samples (10 C I ~ I *  surface sample 
by 1 cm thick) and environmental samples (30 cm2 surface 
sample by 1 cm thick) from transects which crossed the 
whole of the mangrove zonation and intertidal zone where 
possible (following Horton, 1999). All readings were taken 
at low tide during a neap tidal cycle in the southern hemi- 
sphere winter. The environmental samples were analyzed for 
grain size, loss on ignition, pH and salinity. Salinity and pH 
analyses were performed by adding 25 ml of distilled water 
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to 5 g o f  sediment and measuring levels in the water. Sur- 

face samples were generally concentrated within subenvi- 

ronments near t o  mean sea level, particularly within the 

mangrove swamp, intertidal mudflat and shallow subtidal 

mudflat. All stations were leveled using a level and staff. 
An altitude for each station in relation to Australian Height 

Datum was achieved by either leveling the altitude o f  the 

swashmark from the previous high tide, or leveling to the 
sea and using a 'timed still' water reading to relate the al- 

titudes to the tidal curve for Townsville (following Horton 

and others, 2003). 

Sample preparation followed that o f  Scott and others 

(2001). Each san~ple was placed in buffered ethanol with 

the protein stain rose Bengal to identify organisms living at 

the time o f  col1t:ction (after Murray, 1991). Samples were 

subdivided into eight aliquots using a wet-splitter (Scott and 

others, 2001), and 200 tests were counted where possible. 

Taxononly (PI. I )  follows Albani (1968), Haig (1988), Bron- 

niman and Whiltalter (1993), Wynn-Jones (1994), Yassini 

and Jones (1995), Hayward and others (1999a), Revets 

(2000) and Horton and others (2003). Recent advances in 

molecular and rnorphometric analysis (Hayward and others, 

2004a) have allowed the distinction o f  different morpholog- 

ical types o f  Am~r~onia, commonly described in the literature 

as Arnrnorziu bec.carii. In light o f  this work we have illus- 

trated most morphological types described in this paper as 

Ammonia rzotea/icz (PI. I ) .  
The foraminii'eral data are expressed as a percentage o f  

dead assemblages only (following Horton, 1999). Horton 
(1999) found that the dead assemblage most closely resem- 

bles fossilized ;asemblages found in cores. However, the 

issue o f  using live, dead or total assemblages remains a 

matter o f  contention (eg., Scott and Medioli, 1980b; Murray, 

2000). The deatl assemblage differs from the live assem- 

blage through life processes and postmortem changes (Mur- 

ray, 1991). It has been argued by Murray (1991, 2000) and 

others (Horton and Edwards, 2004 in press; Horton and oth- 

ers. 2005) that the live comuonent is variable and is not 

transferred into subsurface environments; therefore, its in- 

cl~~sion would dcgrade the utility o f  the dataset. By using 

the dead assemblage, we are able to compare our data with 

that o f  Horton i~nd others (2003) from the same coastline. 

Dead individual:; contribute at least 86% of  the total number 

o f  tests counted at each site. 

The foraminil'cral preservation was generally very good, 

although samples in Sandfly Creek Transect 1 often yielded 

less than 40 specimens. For samples from the other three 

transects, a total o f  at least 200 was reached (following Pat- 

terson and Fishbein, 1989). We used unconstrained incre- 

mental sum-of-squares cluster analysis to detect, describe 
and classify patlcrns within the foraminiferal data from Co- 
coa Creek, Santlfly Creek Transect 2 and Saunders Creek. 
We used unconstrained cluster analysis based on unweighted 
Euclidean distance with foraminifera as unstandardized per- 
centage abunclarices to classify contemporary samples into 

more-or-less homogeneous groups (clusters). Detrended 
Correspondence Analysis (DCA) was used to represent sam- 
ples as points in multidimensional space. Only samples with 

counts greater than 160 individuals and species that reach 

5% o f  the total sum were included. Cluster analysis is ef- 

fective in classifying the samples according to their fora- 

miniferal assemblage, but Detrended Correspondence Anal- 

ysis gives further information about the pattern o f  variation 
within and between ;:roups, which is important because the 

precise boundaries between clusters can be arbitrary. The 

elevation o f  each station within the reliable clusters was 

analyzed to determine a vertical zonation o f  each intertidal 
environment. Cluster analysis and DCA are illustrated for 

Cocoa Creek in Figure 2. Other sites are not shown, but this 

information is available from the authors. A repository with 

all foraminiferal data from this study is  located at http:// 

www.CushmanFountlation.org, with reference number JFR 

DR200508. 

RESULTS 

A total o f  72 dead foraminiferal species were found in 

samples taken frotr~ the intertidal and shallow subtidal 

zones. The composition o f  the foraminiferal assemblages 
and their vertical zor~ation are given below. 

There were abundant foraminifera within this transect, 

with counts in excess o f  200 possible at all sample stations 

(Figs. 2, 3). The dominant species in the subtidal and inter- 

tidal mudflat were Pararotalia venusta, Parrellina hispi- 
dula, Arnmorzia aoteana and A. tepicla. The fauna in the 

mudflat zone was highly diverse, with up to 30 different 

species recorded at each sample station. The Rhizophora 
stylosa zone marks a transition froni a fully calcareous as- 

semblage to a mixed calcareous and agglutinated assem- 

blage, dominated by A. aoteana, Rosalina sp., Miliarnmina 
fusca and Paratrockarnrnina stoeni. The uppermost part o f  

the transect, in the Ceriops sp. zone close to MHWST, has 
a fully agglutinated assemblage dominated by M, fusca, 
Trochantmina influla and Haplophragrnoides sp. Cluster 

analysis o f  foraminiferal death assemblages at each sample 

station detects three zones ( F i g .  2): 

Zone CC 1 is an agglutinated foraminiferal zone with a 
low species diversity (approximately 12 species per sam- 

ple). The dominant species are Miliarnrnina fusca, Tro- 
charnrnina irzjlata, Artzrnotium directurn and Hal~loplzrag- 
nzoides sp. The elevation range o f  this zone is 0.32-1.16 

m AHD (vertical range o f  0.84 m). 
Zone CC IIa is a mixed calcareous and agglutinated fo- 

raminifera] zone with a reasonably diverse fauna (ap- 
proximately 18 species found at each sample station). The 

dominant species are A. aoteana, Rosalina sp., Paratro- 
charnrnina stoeni and M. jksca. The elevation range of  

this zone is 0.044.30 m AHD (vertical range o f  0.26 m). 
Zone CC IIb is a fully calcareous foraminiferal zone with 
a highly diverse fauna (approximately 30 species found 
at each sample station). The dominant species are Par- 
arotalia venusta, Parrellina hispidula, A. aoteana and 
A. tepida. Pararotalia venusta alone accounts for be- 
tween 20-54 % o f  the count at each sample station. The 
elevation range o f  this zone is -4.58--0.05 m AHD 
(vertical range o f  4.53 m). 
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SANDFI..~ CREEK TRANSECT 1 fusca and Trocharnmir~a injlata (Fig. 6). Through the Sring- 

The foraminiferal preservation in the surface sediments 
ranged between several hundred and 0 tests per 10 cm3 (Fig. 
4). The tidal mudflat had abundant and diverse calcareous 
species, and counts in excess of 200 were possible. The 
calcareous species Miliolinella lakernarquiensis, Ammonia 
tepida and A. aoteana were dominant. In the densely veg- 
etated, fringing Rhizophora stylosa floral zone and the more 

sparsely vegetated Avicennia marina floral zone, the fora- 

miniferal counts were extremely low (as few as 8 specimens 

per 1Occ sample), consisting of a mixture of calcareous and 

agglutinated species, mostly Trochamrnir~a inJInta and Cri- 
broelphidium poeynum. Only one assemblage zone was de- 

tected and classified at this site, being a calcareous zone 
dominated by Ammonia aoteana (TI 11). The elevation 
range of this zone is -0.36-0.36 m.. a vertical range of 

0.61 ni. ' 

Foraminifera1 preservation in this transect was good, and 

counts in excess of 200 were possible (Fig. 5). The domi- 

nant species in the tidal mudflat were Miliolinella lakemar- 
quiensis, Ammonia tepida and A. aoteana, together ac- 
counting for between 40 and 50% of the total foraminiferal 

count. Generally, the 'assemblage in the mudflat zone was 
highly diverse, with up to 30 species recorded at each sam- 

ple station. The foraminiferal fauna was uniform through 

the fringing Avicenrzia marina- and Rhizophora stylosa- 
dominated floral zones, but showed a slight increase in Am- 
monia tepida at the expense of A. aoteana through the Rhi- 
zophora stylosa zone. The second Avicennia ntarina-dom- 
inated floral zone had fluctuating values of Ammonia 
aoteana and A. tepida, but retained species diversity. The 

uppermost transect station, situated at the base of the chenier 
ridge, had a unique fauna consisting primarily of Quin- 
queloculina suborbicularis and A. aoreana (together total- 
ing 77% of the count at this sample station). Cluster analysis 

of foraminiferal death assemblages at each sample station 

detects two zones: 

Zone T2 IIa is dominated by calcareous species, with 
moderately low species diversity (approximately 15 spe- 

cies found at each sample station). l'he dominant species 

are Ammonia aoteana and Qiiinquc?loculina suborbicu- 
laris,.with a maximum relative abundance of 45%. The 
elevation range of this zone is 0.1-0.3 m AHD (vertical 

range of 0.2 m). 
Zone T2 IIb is a calcareous foraminirera-dominated zone, 
with a highly diverse fauna (approximately 25 species 
found at each sampre station). Ammonia tepida and Mil- 
iolinella lakemarquiensis are the dominant species, with 
a maximum relative abundance of li6 %. Other notable 
species include A. aoteana, Triloculina oblonga and 
Wiesnerella auriculata. The elevation range of this zone 
is -0.9-0.2 m AHD (vertical range of 1.1 m). 

ing Rhizophora stylosa floral zone, Amm,~nia aoteana de- 
creases and agglutinated species increase rapidly. Milimz- 
mina fusca peaks through this floral zone. The ratio of ag- 
glutinated to calcareous species is 60:40 through the 
Rhizophora zone. Moving into the Avicerznia marina-dom- 
inated floral zone, Trochamntina irtflata gains in relative 
importance, and in the Aegiceras corniculatum floral zone. 

Trochammirzn injlata is the dominant spccies (60% of the 

counts). In the upper intertidal saltpan, both Trochanzmina 
injlota and Miliantnzinafusca dominate. Multivariate anal- 

ysis of foraminifera1 death assemblages from Saonders 

Creek delineates two zones: 

Zone SC I has both calcareous and agglutinared species 

and consists of eight samples. Species diversity is fairly 

low (approximately 15 species per sample). The dominant 

species are Miliammina fzisca, Troclmrrimina irijlata and 
Ammonia aoteana, together accounting for a niaximu~n 

of 84% relative abundance. The elevation range of this 
zone is -0.1-1.7 m AHD. 

Zone SC n a  is dominated by calcareous species, and con- 
sists of two samples from the lower end of the transect, 

in the tidal creek. Species diversity is low (approximately 
10 species per sample), and the dominant species is Anz- 
monia aoteana, with a maximum relative abundance of 

68%. The elevation range of this zone is -0.5-0.1 m 
AHD (vertical range of 0.4 m). 

DISCUSSION 

The four transects from Cleveland Bay and Halifax Bay 
each show different foraminiferal assemblages across a trop- 

ical mangrove environment (Fig. 7). Sandlly Creek Transect 
1 had very high and very low counts, in excess of 200 tests 

per 10 cm3 in the mudflat environment, but in the fringing 

Rhizophora stylosa and sparsely vegetatetl Avicerznia nta- 
rina zones, counts were as low as 8 test!; per 10 cni3. All 
of the other sites had abundant foraminifera within them. 

There are many controlling factors on foraminiferal abun- 

dance and type, including nutrition, dissolved oxygen con- . . - - 
ditions, pH, salinity, substrate and temperature (e.g., Mur- 
ray, 1968; Alve and Nagy, 1986; Boltovskoy and others, 

1991; de Rijk, 1995; Barbosa and Suguio, 1999; Debenay 

and others, 2002; Horton and others, 2003). Barbosa and 
Suguio (1999) and Horton and others (2003) show that the 

foraminiferal assemblages in the coastal m:lngroves of Bra- 

zil and the GBR coastline, respectively, are controlled by 
the elevation with respect to the tidal frame. However, 
ground temperature, sparse vegetation cover and low organ- 

ic content are particularly important considel.ations in trop- 
ical locations, where ponded water in the intertidal zone can 
reach temperahires of over 40°C between tidal inundations 
and there is less organic food available (Murray, 1968; Dub- 
lin-Green, 1992; de Rijk, 1995). 

Sandfly Creek Transect 1 was relatively acidic. The pH 
variations within intertidal environments are generally great- 
er than in any other marine environment (~hieger  and Brad- 

SAUNDERS CREEK 
shaw, 1966), and pH has an effect on both the protoplasmic 

In the tidal creek, the assemblage is dominated by Am- cell and the calcareous test of foraminifera. Experiments us- 
monia aoteana (up to 80% of the total count), with low but ing live Ammonia in normal salinity waters of different pH 
persistent occurrences of agglutinated species Miliammina show that decalcification begins at values below 7.5 (Le 
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PLATE 1 

Fig. l a  Acul~eirt~r friperforatu (Millett) side view, X 120. Fig. l b  Acupeirra triperfortrtu (Millett) oblique apertoral view, X 120. Fig: 2a Haplo- 
phrtrgmoitlcs sp. (U'Orbigny) side view, X 120 Fig. 3a An~rnoastuta salsa (Cushman & Bronniman) oblique apertural view, X 150. I'ig. 3b Am- 
mocrstutu strl.scr (Cushman & Bronniman) side view, X 150. Fig. 4a Arnnzotiurn direcfunl (Cushn~an & Bronnirnan) side view, X 150. Fig. 4b 
Anzrnotiunr directrrm (Cushman & Bronniman) oblique apertural view, X 160. Fig. 5a Milianunina fusca (Brady) apertural view, X 176. Fig. 5b 
Miliarnmirzu ,frrsca (Brady) side view, X 136. Fig. 5c Milianzmirzn fusca (Brady) side view, X 136. Fig. 6a Trochammina inJata (Montagu) spiral 
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FIGURE 2. (a) Unconstrained incremental sum-of-squares cluster analysis based on unweighted Euclidean distance of foraminifera1 death assem- 
blages from Cocoa Creek. Only samples with counts > 160 individuals and species that reach 5% of the total sum are included. (b) DCA biplot 
showing the 3 main foraminiferal assen~blages. (c) Box plots showing maximum and minimum elevations (m, Australian Height Datum) for the 
faunal zones of Cocoa Creek. 

Cadre and others, 2003), and Alve and Nagy (1986) report 
dissolution of tests under a pH range of 6.5-7.2. Low pH 
is unfavorable for calcareous foraminifera, and individuals 

must spend considerable energy recalcifying their tests. 
The low intertidal mudflat at Sandfly Creek Transect 1 

had an average pH of 7, whereas the pH in the vegetated 
Rhizophora stylosa and Avicennia marina zones ranges 
from 6.2-6.6, withili and below the reported pH range 
which may cause dissolution of tests. This may explain the 
total absence of calcareous foraminifera in Sandfly Creek 
Transect 1 through the vegetated zones, which are below the 
elevation range where agglutinated foraminifera are found. 

Levels of pH through the vegetated zones at Sandfly Creek 
Transect 2 remain above 7.5, so total dissolution of calcar- 
eous tests does not occur. Debenay and others (2002) argue 
that decomposition of leaf litter in mangrove zones by bac- 

terial activity lowers pH and contributes to the disappear- 
ance of calcareous foraminifera. These local-scale variations 
in pH levels impact greatly on foraminiferal presence and 
abundance. 

Multivariate analysis of samples f ro~n Sandfly Creel< 
Transect 2, Cocoa Creek and Saunders C~.t:ek shows a series 
of foraminiferal assemblages which cluster in relation to el- 
evation. However, none of the transects cover the whole 
intertidal zone from LAT to HAT because of morphological 
constraints such as chenier ridges (Fig. 7). This is reflected 
in the foraminiferal assemblage zones found at each loca- 
tion. 

Agglutinated species Miliammina fusu~r-a. Trocha~t~mina 
inflata, Arnmotium directum and Haplophrcrgrnoides sp. 
dominate zones CC I and SC I, along with persistent oc- 
currences of Ammonia aoteana at Saunders Creek only. 

view, X 176. Fig. 6b Trochammina inflata (Montagu) edge view. X 176. Fig. 7a Haynesina rlepressula (Walker & Jacob) spiral view. X 150. Fig. 
7b Haynesina rlepressula (Walker & Jacob) edge view, X 150. Fig. 8a Rosalirza sp. side view, X200. Fig. 8b Rosnlina sp. side view, X200. Fig. 
9a Ammonia aoteana (Finlay) umbilical view, X220. Fig. 9b Ammonia aoteana (Finlay) edge view, X250. Fig. 9c Amrnorritr aotennn (Finlay) 
spiral view, X220. Fig. 9d Ammonia aoreana (Finlay) spiral view, X250. Fig. 10a Ammonia tepida (Cushman) apertural view, X200. Fig. 10b 
Ammonia repirla (Cushman) spiral view. X200. Fig. l l a  Pararotalia venusta (Brady) side view. X200. Fig. l l b  Pararotcllin venrrsttr (Brady) 

apertural view, X200. Fig. 12a Triloculina tricarinata (d'orbigny) apertural view, X200. Fig. 12b Triloclrlina tricorinnta (d'orbigny) side view, 
X200. Fig. 13a Quinqueloculina poeyana (tl'orbigny) apertural view, X200. Fig. 13h Quinquelocrrlina poe)lana (d'orbigny) side view, X200. 
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FIGURE 5. Relative abundance of dead foraminifera of four main 
foraminiferal species and populations from Sandfly Creek Tcansect 2. 
The elevation (m, Australian Height Datum), tidal heights, floral zo- 
nation and sampling stations are indicated. 

These zones are found towards the landward edge of the - 
mangrove study site:; at Cocoa Creek and Saunders Creek, 
in the elevation range -0.1-1.7 m AHD (range 1.8 In, just 
above MLWNT to I-lose to HAT). Similar faunal assem- 
blages have been found in other tropical locations. Horton 
and others (2003) identify two faunal zones dominated by 
agglutinated fora~ninifera at the landward edge of a separate 
transect at Cocoa Creek, Cleveland Bay, Australia. In In- 
donesia, Horton and others (2005) also identify an aggluti- 
nated upper mangrove assemblage with Trochammirta irzj?a- 

ta and Milian~miaa~sca on islands off southeastern Sula- 

Mal RhizophweAvMnia Aegiceres Saltpan 
channel slylosa nrarina corniculafum I 

dm, Miliarnrnina fusca 
I 
I 

~ 1 0 o J  I ! I I 
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FIGURE 6.  Relative abundance of dead foraminifera of four main 

foraminiferal species and populations from Saunders Creek. The ele- 
vation (m, Australian H,:ight Datum), tidal heights, floral zonation and 
sampling stations are indicated. 
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No clear link between foraminiferal assemblages and flo- - 
ral zones can be established from our new field sites. The 

MHWST 
Ammonia aoteana-dominated zone is correlated with an up- 

per mangrove, Avicennia rnariiia-domini~ted floral assem- 

2 blage at Sandfly Creek, a fringing Rhizophora stylosa zone 
MHWNT , at Cocoa Creek, and with a vegetation-free creek bed at 
MSL 5 Saunders Creek. Sandfly Creek TI-ansect 2 shows a transition 
MLWNT $ from mudflat to Rhizophora sfylosa-dominated floral assem- 

blage at a lower elevation than at the other two sites. This 

MLWST may explain why the Ammonia aoteanu zone at Sandfly 

Creek is higher in the mangrove sequence: than at the other 
LAT two sites, despite being at a similar elevation. Localized 

differences in mangrove zonation may be determined on a 

small scale by factors such as sediment transport and nutri- 

ent availability, as well as by tidal inundation frequency 

(Bunt and Bunt, 1999). Floral zones appear to respond to 

the local environment, while foraminiferid zonation occurs 

~ at similar elevations at different types of sites. 

FIGURE 7. ' Summary of  foraminiferal death assemblages at each 
field location, with tidal levels for Halifax and Cleveland bays. 

wesi, and furthermore, Debenay ant1 others (2000) have 

identified agglutinated foraminifera (Jadammina nzacres- 

cens and Trochammina infita) in upper marshes in New 

Caledonia and Cairns, northeastern Queensland, Australia. 

Zones CC IIa, TI  11, T2 IIa and SC IIa at Cocoa, Sandfly 

and Saunders creeks have assemblages with low species di- 

versity and dominated by Ammonia aoteana, accounting for 

20-68% of the total count at each sample station in each 

zone. The elevation range is -0.5-0.3 rn AHD (range 0.8 

m, just below MLWNT to just below MHWNT). Other stud- 

ies from tropical and subtropical locations have shown an 

Ammonia-dominated assemblage in the mid-intertidal zone 

(e.g., Haslett, 2001, in the upper part of the tidal flat at the 

Barron River estuary, Cairns, northeastern Queensland, 

Australia; Hayward and others, 1999, in tidal flats and man- 

grove forests in New Zealand; and Horton and others, 2005, 

in Indonesia). It is also found in a lower estuarine environ- 

ment in.Brazil (Barbosa and Suguio, 1999). 

Faunal zones CC IIb and T2 IIb arc: found at the seaward 

edge of transects at Cocoa and Sandlly Creeks. They have 

diverse calcareous assemblages dominated by Pararotalia 

venusta, Ammonia tepida and Parrellina hispidula, and an 

elevation range of -4.58-0.20 m AHD (range 4.78 m, 
-2.72 m LAT to just above MTL). Haslett (2001) found a 

diverse foraminiferal assemblage, dominated by A. beccarii 

but with many other shallow marine benthic and planktonic 
species, in the lowe; intertidal zone of the Barron River 

estuary, and Horton and others (2003) observe a similar 
calcareous dominated assemblage at Clocoa Creek in the in- 

tertidal mudflats. This study is one of the first in tropical 
Australia to extend the sampling of intertidal mudflats to 
below the limit of LAX into the shallow subtidal area. It 
shows the extension of this diverse calcareous zone beneath 
the intertidal zone and implies that for this low intertidal1 

shallow subtidal assemblage, the duration and frequency of 
tidal inundation map not be the most important limiting fac- 

tor. 

Past foraminiferal studies in temperate environments 

(e.g., Scott and Medioli, 1978; Jennings and Nelson, 1992; 

Horton, 1999; Gehrels and others, 2001) have indicated that 
a vertical zonation of foraminifera occurs in the intertidal 

zone, where the distribution of foraminifera is a direct func- 
tion of elevation, with the duration and fi.equency of inter- 

tidal exposure as the most important environmental faclors. 

Scott and others (2001) state that a vertical zonation of 
marsh foraminiferal assemblages exists on a worldwide 

scale, and suggest that the same 8-10 species of marsh fo- 

raminifera are ubiquitous worldwide in the upper part of the 

intertidal zone. Information on vertical zonation trends in 

tropical environments are more limited, and the evidence 

which exists points to a range of environmental factors be- 

ing important. In New Zealand, salinity and elevation are 

shown as jointly the most important factors governing fo- 

raminiferal distribution (Hayward, 19992, 1999b; 2004b), 

and Debenay and others (2000) show that in mangroves a 

range of environmental factors are impoilant, including sa- 

linity and the presence or absence of vegetation. 

An important issue when considering the applicability of 

foraminiferal zones in sea-level reconstnlctions is the pres- 

ervation of foraminifera in fossil deposits. Agglutinated fo- 

raminifera within high-marsh environments have been used 

to precisely reconstnlct former sea levels in temperate salt 

marshes (e.g., Gehrels, 2000; Gehrels and others, 2002; Hor- 
ton and others, 2005). Many fossil cores have been collected 

from tropical mangrove and estuarine environments on the 

Great Barrier Reef coastline. These deposits have many cal- 
careous benthic foraminifera preserved within silty clay ho- 

~ ~ 

rizons, but no foraminifera are preserved within organic-rich 
horizons (e.g., Fig. 8). The organic horizons have grain size 
characteristics and organic content similar to those of mod- 
em mangrove environments, and preserve abundant man- 
grove pollen. Taphonomic loss of foraminiferal tests due to 
post-mortem disaggregation is an important obstacle in the 
use of mangrove (mainly agglutinated) foraminifera in pa- 

leoenvironmental reconstructions in this location. The low 
pH environment of mangroves is not favorable for the pres- 

ervation of calcareous foraminifera; however, agglutinated 
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foraminifera are also not readily preserved in mangrove ho- 

rizons. Studies show that thin-shelled tests such as those of 

Miliarnnzina obliqua rapidly disaggregate on burial (Hay- 
ward and others. 2004) and even handling of materials in 
the field and laboratory may affect test preservation (Wang 

and Chappell, 2001). We do not find even the most robust 

agglutinated species (e.g., Trochanzmina injata) preserved 

in cores. Because of the absence of upper intertidal agglu- 

tinated foraminifera in fossil deposits from the Great Barrier 

Reef coastline, it is important for us to understand contem- 

porary vertical zt~nation trends within mid- to low-intertidal 

calcareous fauna:; which live in muddy environments. These 

may be used, albeit with potentially decreased precision, to 

allow quantitative sea-level reconstructions using foraminif- 

era1 assemblages from this area. 
An asseniblagc made up solely of calcareous species, but 

which exists only between MLWNT and MHWNT (range 

of -0.7 m) and is dominated by Ammonia aoteana may be 

a useful sea-level indicator in this environment because of 

the problems associated with removal of agglutinated fora- 

ininifera from fossil sediments. This assemblage often exists 

below the limit of fringing mangroves, and therefore is un- 
likely to be affected by large pH excursions experienced in 
vegetated zones. However, in some locations where man- 

groves extend lower into the intertidal zone (e.g., Sandfly 
Creek Transect I), low pH within the mangrove will likely 
cause the dissolulion of calcareous tests such as those of A. 
aotearza. 

Where aggli~tiilated foraminifera are preserved in fossil 
deposits, a 1node1.11 agglutinated assemblage which exists be- 

tween MLWNT and HAT (range 1.8 m), consisting primar- 

ily of Milianzrnirza fusca, Troclzarnmina injata, Amrnotium 
direcfum and Haplophragmoides sp. may be the most use- 
ful sea-level indicator, depending on the degree of preser- 
vation of calcareous foraminifera in the fossil cores. The 

usefulness of different modern foraminifera1 assemblages in 

reconstructing sea levels should, therefore, be assessed on a 
core by core basis. 

In the tropical mangrove environments studied, local 

scale factors affect l'oraminiferal distributions. Limitations 

to using foraminifera as precise indicators in sea-level re- 

constructions include low pH excursions causing dissolution 

of calcareous tests and the potential problem of taphonomic 

loss of agglutinated loraminifera in fossil deposits. 

CONCLUSIONS 

Statistical analysis of the foraminiferal death assemblages 

from all sites supports numerous studies from temperate and 

tropical regions that indicate a vertical zonation of forami- 
nifera exists within the intertidal zone. An upper mangrove 

foraminiferal zone dominated by agglutinated species, in- 
cluding Trochanzrnirvl inflata, Paratrochammina stoeni and 
Miliarnmirzafusca, exists in the higher tidal elevation range 
(-0.1-1.7 m AHD) i ~ t  Cocoa Creek and Saunders Creek. A 
mid-intertidal foraminiferal zone dominated by Arnmorzia 
aotearza (-0.5-0.3 ni AHD) exists at all sites. A low inter- 
tidal foraminiferal zone, dominated by A. aoteana, A. tepida 
and numerous other calcareous species (-4.55-0.2 m 

AHD), exists at Cocoa Creek and Sandfly Creek. The only 
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foraminiferal zone  present a t  all locations is a n  A. aoteana- 
dominated foraminiferal assemblage between -0.5-+0.3 m 
A H D  (just above M L W N T  to  MHWNT).  

A C K N O W L E D G M E N T S  

The authors thank Scott  Smithers fo r  his assistance in  the 

field, and James  C o o k  University, 'Townsville, Australia, 

which hosted Woodroffe whilst  the fieldwork w a s  undertak- 

en.  We also  thank Dr. R. Watkins for  kindly supplying pol- 

len data from a studied cdre. We acl:nowledge and greatly 

appreciate funding b y  the Quaternary Researcl~ Association. 

Th i s  research w a s  c a m e d  out  whi le  in receipt o f  a Natural 

Env i ronmen t  Research Counc i l  aurarcl (NER/S/C/2002/ 

10581). Special  acknowledgments an: given to  Dave  Scott, 

Bruce  Hayward and an anonymous reviewer for  their valu- 

able comments  on the original version of  this paper. T h e  

authors thank the cartography department a t  the Department 

of  Geography, University o f  Durham,  for  producing the fig- 

ures, and to  all  members  o f  the Environmental Research 

Centre,  University o f  Durham,  for their help  and advice. 

This  paper is  a contribution to  IGCP project 495. 

REFERENCES 

ALBANI, A. D., 1968, Recent foraminifera from Port Hacking, New 
South Wales: Contributions from the Cushman Foundation for Fo- 
raminiferal Research, v. 19, p. 85-1 19. 

ALVE, E.. and NAGY, J., 1986, Estuarine fcraminiferal distribution in 
Sandebukta, a branch of the Oslo fjord: Journal of Foraminiferal 
Research, v. 16, p. 261-284. 

BARBOSA, C. E, and Sucuro, K., 1999, Biosedimentary facies of a 
subtiopical microtidal estuary-an example from southern Brazil: 
Journal of Sedimentary Research, v. 69, p. 576-587. 

BEAMAN, R., LARCOMBE, F!, and CARTER, R. M., 1994, New evidence 
for the holocene sea-level high from the inner shelf, central Great- 
Barrier-Reef, Australia: Journal of Sedimentary Research, Section 
~ L S e d i m e n t a r ~  Petrology and Process.es, v. 64, p. 881-885. 

BELPERIO, A. P., 1983, Terrigenous sedimer~tation in the central Great 
Barrier Reef lagoon: a model from the Burdekin region: Bureau 
of Mineral Resources Journal of Auslralian Geology and Geo- 
physics v. 8, p. 179-190. 

BOLTOVSKOY, E., SCOTF, D. B.,, and MEDIOLI, E S., 1991, Morpho- 
logical variations of benthic foraminiferal tests in response to 
changes in ecological parameters: Joun~al of Paleontology, v. 65, 
p. 175-185. 

,and WRIGHT, R., 1976, Recent Foraminifera: Junk, The 
Hague, 515 pp. 

BRONNIMAN, F?. and WHITTAKER, J. E., 1903, Taxonomic revision of 
some recent agglutinated foraminifera fiom the Malay archipelago 
in the Millett Collection, Natural History Museum, London: Bul- 
letin of the Natural History Museum, London (Zoology), v. 59, p. 
107-1 24. 

BUNT. J. S., and BUNT, E. D., 1999, Complexity and variety of zonal 
pattern in the mangroves of the Hinchinbrook area, Northeastern 
Australia: Mangroves and Saltmarshes, v. 3, p. 165-176. 

CARTER, R. M., JOHNSON, D. F!, and COOPER, K. G., 1993, Episodic 
post glacial sea-level rise and the sedimentary evolution of a trop- 
ical continental embayment (Cleveland Bay, Great Banier Reef 
Shelf, Australia): Australian Journal of Earth Sciences, v. 40, p. 
229-255. 

DEBENAT, J. -I?, GUILLOU, J., REDOIS, E, and GESLIN, E., 2000, Dis- 
tribution trends of foraminiferal assemblages in paralic environ- 
ments, in Martin, R. E. (ed.), Environmental micropaleontology, 
Topics in Geobiology, vol. 15: Kluwer Academic Publishers, New 
York, p. 39-67. 
: GUIRAL, D., and PARRA, M., 2002, Ecological factors acting 

on the microfauna in mangrove swamps. The case of foraminiferal 
assemblages in French Guiana: Estuarine, Coastal and Shelf Sci- 
ence, v. 55, p. 509-533. 

D u e ~ ~ ~ - G r e e n ,  C. O., 1992, Benthic foraminifera1 ecology and sedi- 
ment distribution in the Bonny River, Niger Delta: Unpublished 
Ph.D. Dissertation, University of London, United Kingdom. 

EDWARDS, R. J., and HORTON, B. P., 2000, High resolution records of 
relative sea-level change from UI< saltmarsh foraminifera: Marine 
Geology, v. 169, p. 41-56. 

GEHRELS, W.R., 2000, Using foraminiferal transfer functions to pro- 
duce high-resolution sea-level records fro111 salt-marsh tleposits. 
Maine, USA: The Holocene, v. 10, p. 367-376. 

, ROE, H. M., and CHARMAN, D. J., 2001. Foraminifera, testate 
amoebae and diatoms as sea-level indicators in U K  saltmarshes: 
A quantitative multiproxy approach: Journitl of Quaternary Sci- 
ence, v. 16, p. 201-220. 

, BELKNAP, D. E, BLACK, S., and NEWNHAM, R. M., 2002, 
Rapid sea-level rise in the Gulf of Maine, IISA, since AD 1800: 
The Holocene, v. 12, p. 383-389. 

H A S L ~ ,  S. I<., 2001, The Palaeoenvironment:~l i~nplications of the 
distribution of intertidal foraminifera in a trol~ical Australian es- 
tuary: a reconnaissance study: Australian Geographical Studies, v. 
39, p. 67-74. 

HAIG, D. W., 1988, Miliolid foraminifera from inner neritic sand and 
mud facies of the Papuan Lagoon, New C~~inea :  Journal of Fo- 
raminiferal Research, v. 18, p. 203-236. 

HAYWARD, B.W., GRENFELL, H. R., REID, C. M., and HAYWARD, K. 
A., 1999a. Recent New Zealand shallow-water benthic foraminif- 
era: taxonomy, ecological distribution, biogeography, and use in 
palaeoenvironmental assessment: Institute of Geolog~cal and Nu- 
clear Science Ltd.. Lower Hutt, New Zealand, 258 p. 

, GRENFELL, H. R., and SCOTT, D. B., 1999b, Titlal range of 
marsh foraminifera for determining formel sea-level heights in 
New Zealand: New Zealand Journal of Geology ant1 Geophysics, 
V. 42, p. 395-413. 

, HOLZMANN, M., GRENFELL, H. R., PAWOWSKI, J., and 
TRIGGS, C. M., 2004a. Morphological distinction of molec~~lar 
types in Ammonia-towards a taxonomic revision of the world's 
most commonly misidentified foraminifera: Marine Micropalaeon- 
tology, V. 50, p. 237-271. . SColr, G. H.. GRENFELL, H. R., C A R I E R ,  R., and LIPPS, J. 
H., 2004b. Techniques for estimation of titl,~l elevation and con- 
finement (-salinity) histories of sheltered harbours and estuaries 
using benthic foraminifera: examples from New Zealand: The Ho- 
locene. v. 14. p. 218-232. 

HORTON, B. P., 1999, The distribution of contelnporary intertidal fo- 

raminifera at Cowpen Marsh, Tees Estuary, ul<: Implications for 
studies of Holocene sea-level changes: Palaeogeography. Palaeo- 
climatology, Palaeoecology, v. 149, p. 127- 149. 

, EDWARDS, R. J., and LLOYD, J. M., 2000, Implications of a 
microfossil-based transfer function in Holocene sea-level studies, 
in Shennan. I., and Andrews, J. (eds.), Holocene Land-Ocean In- 
teraction and Environmental Change around the North Sea: Geo- 
logical Society, London, Special Publication v. 166, p. 41-54. 

, LARCOMBE. F!, WOODROFFE, S. A,. WHITTAKER, J. E., 
WRIGHT, M. R., and WYNN, C., 2003, Contemporary foraminif- 
era1 distributions of the GBR coastline, Australia: implications for 
sea-level reconstructions: Marine Geology. v. 198, p. 225-243. 

, and EDWARDS, R. J., 2005, The applic;~tion of local and re- 
gional transfer functions to the reconstruction of Holocene sea 
levels, north Norfolk, England: The Holocene, v. 15, p. 143-155. 

, WHITTAKER, J. E., THOMSON, K. H., HARDBATTLE, M. 1. J . ,  
WOODROFFE, S. A., and WRIGHT, M. R., 2005. The development 
of a modem foraminiferal data set for sea-level reconstructions, 
Wakatobi Marine National Park, Southeast Sulawesi, Indonesia: 
Journal of Foraminiferal Research. vol. 35, p. 1-14. 

JAVAUX, E. J., 1999, Benthic Foraminifera from 111e Moclern Sediments 
of Bermuda: Implications for Holocene Seil-Level Studies: Dal- 
housie University, Nova Scotia, Canada, 625 p. 

, and SCOTT, D. B., 2003, Illustration of modern benthic fora- 
minifera from Bermuda and remarks on distribution in other sub- 
tropical/hopical areas: Palaeontologica  electronic;^, v. 6, 29 pp. 
2.1MB; http:Npalaeo-electronica.org/paleo/20031/benthic/iss~1eI- 
03.htm 

JENNINGS, A. E., and NELSON, A. R., 1992, Foraminiferal assemblage 
zones in Oregon tidal marshes-relation to marsh floral zones and 
sea-level: Journal of Foraminiferal Research, v. 22, p. 13-29. 



270 WOODROFFE AND OTHERS 

LARCOMRE, P., RIDD, P. V., PRYTZ, A., and WILSON, B., 1995, Factors 
controlling suspended sediment on inner-shelf coral reefs, Towns- 
ville, Australia: Coral Reefs, v. 14, 163-171. 

LAMBECK, K., YOKOYAMA. Y., and PURCELL, T., 2002, Into and out 
of the Last Glacial Maximum: Sea-level change during oxygen 
isotope stages 3 and 2: Quaternary Science Reviews, v. 21, p. 
343-360. 

LE CADRE, V., DEBENAY, J. -F?, and LESOURD, M., 2003, Low pH 
eFfects on Am~rronia beccarii test deformation: itnplications for 
using test deformations as a pollution indicator: Journal of Fora- 
miniferal Research, v. 33, p. 1-9. 

MICHIE, M. G., 1987, Distribution of foraminifera in a macrotidal trop- 
ical estuary: Port Darwin, Northern Territory of Australia: Aus- 
tralian Journl~l of Marine and Freshwater Research. v. 38, p. 249- 
259. 

MILNE, G. A., MITROVICA, J. X., and SCHRAG, D. F?, 2002. Estimating 
past continental ice volume from sea-level data: Quaternary Sci- 
ence Reviews, v. 21, p. 361-376. 

MITROVICA, J. X., and PELTIER, W. R., 1991, On postglacial geoid 
subsidence over the equatorial oceans: Journal of Geophysical Re- 
search, v. 96, p. 20,053-20,071. 

MURRAY, J. W., 1968, The living Foraminiferida of Christchurch Har- 
bour, England: Micropalaeontology, v. 14, p. 83-96. 

199 1 ,  Ecology and Palaeoecology of Benthic Foraminifera: 
Longman Scientific and Technical, Harlow, England, 297 p. 

2000. JFR comment: the enigma of the continued use of total 
assemblages in ecological studies of benthic foraminifera: Journal 
of Foraniinifer~ll Research, v. 30, p. 244-245. 

NAKADA, M.. and LAMBECK, K., 1989, Late Pleistocene and Holocene 
sea-level change in the Australian region and mantle rheology: 
Geophysical Journal, v. 96, p. 497-517. 

PATTERSON, R. T., and FISHBEIN, E., 1989, Re-examination of the 
statistical methods used to determine the number of point counts 
needed for mi~~~opaleontological quantitative research: Journal of 
Paleontology, v. 63, p. 245-248. 

PELTIER, W. R., 2002, On eustatic sea level history: Last Glacial Max- 
imum to Holocene: Quaternary Science Reviews, v. 21, p. 377- 
396. 

PHELGER, E B., ancl BRAUSHAW, J. S., 1966, Sedimentary environ- 
metlts in a maline marsh: Science, v.154, p. 1551-1553. 

REVETS, S. A,, 2000, Foraminifera of Leschenault Inlet: Journal of the 
Royal Society of Western Australia, v. 83, p. 365-375. 

DE RIJK, S., 1995, Agglutinated foraminifera as indicators of salt marsh 
development ill relation to late Holocene sea-level rise: Unpub- 
lished Ph.D. Dissertatio~i. Free University, Amsterdam. 

SAWAI, Y., HORTOI'I, B. F?, and NAGUMO, T., 2004, The development 
of a diatom-bascd transfer function along the Pacific coast of east- 
ern Hokkaido, northern Japan-an aid in paleoseismic studies of 

the Kuril subductiou zone: Quaternary Science Reviews, v. 23, p. 
2467-2483. 

Scorr ,  D. B., and MEDIOLI, E S., 1978, Vertical zonations of marsh 
foraminifera as accurate indicators of former sea-levels: Nature v. 
272, p. 528-531. 

, and MEDIOLI, El S., 1980a. Quantitative studies of marsh fo- 
raminiferal distributions in Nova Scotia: implications for sea level 
studies: Cushman Foundation for Foraminifera1 Research, Special 
Publication, no. 17, 58 p. 

, and MEDIOLI, E S., 1980b, Living .vs. total foraminifera1 pop- 
ulations: their relative usefulness in paleoecology: Journal of Pa- 
leontology v. 54, p. 814-831. 

, MEDIOLI, E S., and SCHAFER, C. T., 2001, Monitoring in 
coastal environments using foraminifera and thecamoebian indi- 
cators: Cambridge IJniversity Press, 177 p. 

, SCHNACK, E. S , FERRERO, L., ESPINOSA, M., and BARBOSA, 
C. E, 1990, Recent marsh foraminifera from the east coast of 
South America: coniparison to the northern hemisphere, in Hem- 
leben, C., Kaminsk~, M. A., Kuhnt, W., and Scott, D. B. (eds.), 
Paleoecology, Bioslratigraphy, Paleoceanography and Taxonomy 
of Agglutinated Foraminifera, NATO AS1 Series C, 327, Math 
and Physical Sciences, p. 717-738. 

SHENNAN. I.. and HORTON. B. P.. 2002. Holocene land and sea-level . . 
changes in Great ~ t i t a in :  ~ouinal of Quaternary Science, v. 17, p. ! 
5 11-526. 

, HORTON, B., PELTLER, W.R., and DRUMMOND, R., 2002, 
Global to local s c ~ l e  parameters determining relative sea-level 
changes and the port-glacial isostatic adjustment of Great Britain: 
Quaternary Science Reviews, v. 21, p. 397-408. I 

WANG, P., and CHAPPEI~L, 1.. 2001, Foraminifera as Holocene envi- 
ronmental indicaton; in the South Alligator River, Northern Aus- 
tralia: Quaternary International, v. 83-85, p. 47-62. 

I 
WYNN-JONES, R., 1994, The Challenger Foraminifera: Oxford Science 

I 
i 

Publications, Oxfonl, 149 p. i 
YASSINI, I., and JONES, B. G., 1995, Fora~niniferida and Ostracoda 

from Estuarine and Shelf Environments on the Southeastern Coast \ 

of Australia: Unive~.sity of Wollongong Press, Wollongong, Aus- 
tralia, 484 p. 

YOKOYAMA, Y., DE DECKKER, P., LAMBECK, K., JOHNSTON, F?, and I 

FIFIELD, L. K., 2001, Sea-level at the Last Glacial Maximum: 
evidence from northwestern Australia to constrain ice volumes for 
oxygen isotope stage 2: Palaeogeography, Palaeoclimatology, Pa- 
laeoecology, v. 165. p. 281-297. 

ZONG, Y., and HORTON, B. P., 1999, Diatom-based tidal-level transfer , 
functions as an aid in reconstructing Quaternary history of sea- 
level movements in the UK: Journal of Quaternary Science, v. 14, 
p. 153-167. 1 

I 

Received 12 August 2003 
Accepted 1 December 2004 


	Intertidal Mangrove Foraminifera From The Central Great Barrier Reef Shelf, Australia: Implications for Sea-Level Reconstruction
	Recommended Citation

	Intertidal Mangrove Foraminifera From The Central Great Barrier Reef Shelf, Australia: Implications for Sea-Level Reconstruction
	Abstract
	Comments

	Intertidal Mangrove Foraminifera From The Central Great Barrier Reef Shelf, Australia: Implications for Sea-Level Reconstruction

