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INTERTWINING OPERATORS ASSOCIATED TO THE GROUP S3

CHARLES F. DUNKL

Abstract. For any finite reflection group G on an Euclidean space there is a
parametrized commutative algebra of differential-difference operators with as
many parameters as there are conjugacy classes of reflections in G . There ex-
ists a linear isomorphism on polynomials which intertwines this algebra with
the algebra of partial differential operators with constant coefficients, for all
but a singular set of parameter values (containing only certain negative rational
numbers). This paper constructs an integral transform implementing the inter-
twining operator for the group S3 , the symmetric group on three objects, for
parameter value > j . The transform is realized as an absolutely continuous
measure on a compact subset of Af2(R), which contains the group as a subset
of its boundary. The construction of the integral formula involves integration
over the unitary group 1/(3) .

Associated to any finite reflection group G on an Euclidean space there is
a parametrized commutative algebra of differential-difference operators with as
many parameters as there are conjugacy classes of reflections in G. It has been
shown that there exists a linear isomorphism on polynomials which intertwines
this algebra with the algebra of partial differential operators with constant coeffi-
cients, for all but a "singular set" of parameter values. This singular set contains
only negative values and is closely linked to the zero-set of the Poincaré series
of G. This paper constructs an integral transform implementing the intertwin-
ing map for the group S3, the symmetric group on three objects, for positive
parameter values. Previously this had been done only for the group Z2 (acting
by sign-change on R) where the transform is a classical fractional integral. The
transform in this paper has its origin in the adjoint action of the unitary group
i/(3) on the linear space of real diagonal 3x3 matrices (the complexification
of the maximal torus). This will lead to a transform realized as an absolutely
continuous measure on a certain compact subset of M2(R).

Here is a concise statement of the main result (rephrased from formulas
(5.1), (5.6)): the operator  V intertwines the differential-difference operators
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3348 C. F. DUNKL

with parameter a for the symmetry group G of the triangle

{(1,o,,(4f),(-i,-f)),nK,
For w = (wu)}J=1 6M2(R),let

1J(w.. V27 l-35>?--3(det(ii;)) 2

, ¿.
+ 2W\\ \w\\ - 3l//22 - 3w/fi + ^W22j + X.2w2\Wi2'W22

The region of integration is

fiu,, the closure of < w c Af2(R) : -- < wu < 1,<^  II!, ,   ^   1
2

|u/2i| < (1 -wu)l\ß, and J(w)>0\

(a compact subset of A/2(R) that has an elliptical cross-section for fixed w\\,
ii/21 and contains G in its boundary).

The transform is

Vf(x) — (ha/9)       f(xw)<p(w)J(w)a  2dw\\dw2idwl2dw
Jsi„,

22

(for smooth functions / and x c R2), where c/>(w) =1+2 Tr(tu) + det(w)
and a > \ . The normalization constant ha (from Proposition 3.2) equals

ya~i (a - ^ T (a + I) r (a + |) /(;rr(a))2.

If (¡>(w) is replaced by 1, the formula implements the operator V for G-
invariant functions. Note that this is a positive operator. It is possible (indeed,
conjectured) that V is always positive (see the discussion in Section 5 where
V is exhibited as an integral over a subset of R2), but -| < cj>(w) < 6 with
4>(w0) = -| for w0 = (-3) I and w0 is in the boundary of Q.w .

The major part in proving the validity of the formula is contained in Theorem
4.4.

In related work, Beerends [Be] found a transmutation operator also associated
to S3 which maps the ordinary Laplacian to a second-order invariant differential
operator on a Riemannian symmetric space. This operator is of "global" type,
in the terminology of Heckman [Hec2] while ours are "infinitesimal" type. We
choose to call our transform "intertwining" rather than "transmutation" (the
terminology of Carroll [C]) because the latter emphasizes the linking of two
specific differential operators to each other, while we are concerned with algebras
of operators.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTERTWINING OPERATORS ASSOCIATED TO THE GROUP  53 3349

This paper begins with some general facts about how an integral transform
can be proven to coincide with the algebraically defined intertwining opera-
tor, then proceeds to motivate the study of £/(3) by interpreting a formula of
Harish-Chandra (see Helgason [Hel]). The research for this work involved some
experimentation ("educated guesses") and testing of conjectures on low-degree
polynomials with computer symbolic algebra (specifically, "Maple V" on a 486-
type machine). Along the way, a number of different approaches, coordinate
systems, etc. were tried and discarded. Also, Maple made it possible to quickly
(and accurately) evaluate formulas (in several variables and a parameter) to test
cases. In this presentation the reader may find it easier to carry out the change-
of-variables calculations with computer algebra, but otherwise the approach is
conceptual; certainly a motivation for the various coordinate changes was to
shorten the intermediate expressions.

1. General results

The following material is valid for any finite reflection group. The results will
be subsequently used for the S3-case. We recall the definitions from [Du 1-3].

Let S6» be the space of polynomials homogeneous of degree n onR", n =
0, 1, 2, .... Let

{oo oo ^

f=Yifn:fnZ&n each n,   \\f\\A := J2 sup \fn(x)\ < 00 \,

the algebra of "absolutely convergent homogeneous series."
Let {v¡■ : i — I, ... , m} c RN be the set of positive roots of a finite

Coxeter group G. Thus the reflections in G are o¡, \ < i < m with xa¡ :=
x - 2((x, Vi)/\Vi\2)Vj, x c RN , and they generate G, which is a finite subgroup
of the orthogonal group O(N) (the inner product (x,y) := Y!i=\xiy¡ and
|x|2 = (x, x)). The multiplicity function (parameter) a is an w-tuple of real
numbers a,■, 1 < i < m, such that a, = a¡ whenever a, is conjugate to a¡ in
G. The differential-difference operators associated to G and a are defined by

1 < / < N. The set {T,} generates a commutative algebra (Theorem 1.9
in [Dul]). It was shown in [Du2] that when a, > 0 there exists a unique
linear operator V such that VI = 1, V&>„ =3Pn (a linear isomorphism) each
n = 0, 1, ... ,  and

TlVf(x) = v(^j(x), each/,

for all polynomials (for another proof of the existence, and a thorough dis-
cussion of the values of a for which V fails to exist, see [DJO]). Further, if
/ c A(RN), then Vf c A(RN) and \\Vf\\A < \\f\\A (Theorem 2.7 in [Du3]).

This proves the existence of the analogue of the exponential function (the
symmetrization of this function is a type of Bessel function, see formula (1.6)
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in the sequel), K(x, y),  (x, y c RN), which is real-entire and satisfies

(i) TfK(x, y) = y,K(x, y) ;

(ii) K(xw , yw) = K(x, y) for all w c G ;

(iii) K(x,y) = "£vx((x,y)»/n\);
n=0

(iv) K(x,y) = K(y,x)

(the " x" appearing in the superscript of T¡ and subscript of V indicates the
action of the respective operators).

Let (/i, ... , fn) be an "a-exact" 1-form, that is, T¡fj — Tjfi for 1 <
i, j < N and each f c A(YLN). It was shown in [Du2] that there exists a
unique F c ^(R^) such that T¡F = f and F(0) = 0. This allows a simplified
condition equivalent to the defining properties of V .

1.1 Lemma. Let \\  be a linear operator such that V\\ = 1,   V^n c &n for
each n = 0, 1,2,... ,  and which satisfies

(1.2)

¿ZajWAx) - VJlxOj)) = ^Xt^Vi i^—fj (x) - —(Vlf)(x)j ,

for each polynomial f, then V\f = Vf for all polynomials f.
Proof. We use induction on the degree. Assume V\g = Vg for all g c ¿Pn , 0 <
n < k and let / 6 3sk+i. By Proposition 2.5 in [Dul],

N Af b m

(1.3)     JZxiTKAx) = E^^i/W + 5>;(K,./i» - Vj(xoj)).
/=! <=1 ' 7 = 1

By the hypothesis on V¡ ,
N

JTxiTiVyAx) = ¿2x'Vx (qy/) W'

and by the inductive hypothesis

v'{hf){x)'v{hf){x)'T'vnx)-
and so

N N

Y^XiTtViAxy^JZxtWAx).
i=\ 1=1

Corollary 3.9 of [Du2] shows T¡Vif(x) m T¡Vf(x), 1 < i < N. Both
(TiVxf)f=x and (r,F/)^, are a-exact 1-forms. By Theorem 3.10 of [Du2],
V\f - vf is a constant, which must be 0 since V{f - Vf e 3ök+\ . This shows
V\f — vf for each polynomial /.   D
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1.2 Corollary. It suffices to prove the validity of (1.4) for each polynomial x y-+
(x, y)"/n\ (y cRN, «=1,2,3,...). Further, if V\ is a bounded operator on
A(RN), then (1.3) follows for all f c A(RN) if it holds for fy(x) = exp((x, y)),
each y cRN.
Proof. The span of {x h^ {x, y)n : y c RN} is 3Bn . The homogeneous
components of the formula for fy are the required identities (and, of course,
fycA(RN) with \\fy\\A=e\y\).   D

An obvious way of constructing endomorphisms on each iPn is to use a
measure on Mn(R) (the space of real N x N matrices). We postulate the
formula

(1.4) Vf(x)= ( f(xx)cp(x)dp(x),
Ja

where Q is a closed subset of the unit ball Mn(R) (for the natural norm),
p is a positive Baire measure on Q, and <p is a polynomial in the entries of
T. Some G-invariance properties will be imposed on Q, p , and 4> ; they are
derived from the commutation relationship V(R(w)f) — R(w)Vf (all w c G,
where the right translation is R(w)f(x) := f(xw), x c RN).

1.3 Proposition. The operator V is given by the formula (1.5) if each of the
following hold:

(i)   / dp(x) = 1 ;
(ii)  wQ = Çlw = Q, and dp(wx) = dp(xw) = dp(x) for w c G, x c Q;

(iii)  <p(wxw~x) = 4>(x), for w c G,  x c Q and Y,weG<í>(wr) = 1^1
(the cardinality of G) ;

(iv)   / ((x, y) - (xx, y)) exo((xx, y))cp(x)dp(x)

L lm \e\p((xx,y)) I J2^j((f>(x) -cb(cTjX)) I dp(x)

for all x, y c RN.
Proof. Let   Vxf(x)  := Jaf(xx)(p(x)dp(x).  Clearly,   Vx3°n  c &>n   each  n
1, 2, .... Let /G A(RN) and w cG, then

R(w)(Vlf)(x) = VxAxw)

= / f(xwx)4>(x)dp(x)
Jo.

I f(xx\w)<j>(w  xx\w)dp(w  xx\w)

= / f(xxlw)<P(x1)dp(xi)
Jci
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3352 C. F. DUNKL

(by (ii) and (iii), where x — w  xx\w), which equals V\(R(w)f)(x). Further,
if / is G-invariant, then V\f(x) — Jsif(xx)dp(x) because

Vxf'ix) = (ll\G\) ¿2 Vt(R(w)f)(x)
weG

= (1/10=1) ¿2 [ f(xx)cp(xw-x)dp(xw-

= / f(xx)dp(x)
Ja

(by (ii) and (iii)). In particular, Kil = 1.
By Corollary 1.2, it remains to establish (1.4) for fy(x) = exp((¿x, y)), each
E R^ . Using (iv) we haveR'v . Using (

m

¿2aAv\fy{.x) - v\fy(X(Jj))
7=1

■

= ¿2aJ (I fy(xx)cp(x)dp(x) - I fy(xOjX)<l>(x)dp(x)j
/=i

r m

= / e\p((xx,y))YjaJ((i)(x)-(p(ajX))dp(x),

while

Y,x'(vi(ê:fy)w
;=1

d (VJy)(x
dXijyjK"'   dxiy'

= /     \/2x<y>' ) exp«*T, y» - Vx,—-exp((jcr,y))
M\£i    / ,=i   dx<

=     ((x,y)-(xx, y))exp((xx, y))<p(x)dp(x),
Jo.

(p(x)dp(x)

and thus V\ satisfies (1.4). Note that

N       ao¿2Xid¿:exp^xx'y^ = ¿2XißYexp^x,yx*^
1=1 1=1 '

= (x , yx*) exp((x, yx*))

= (xx, y) exp((xx, y)),

where x* is the transpose of x.    □

The last general ingredient is a formula linking K(x, y) to the same function
for a contiguous multiplicity function.   Opdam [O] has characterized (in his
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notation Jq , the generalized Bessel function)

(1.5) KG(x,y):= — Y,K(xw,y)
'   ' weG

as the real-entire solution to the system of differential equations

(1-6) q(Tx)f(x,y) = q(y)f(x,y),

and f(x, y) — f(xw , y) = f(x, yw) all w e G; for each G-invariant poly-
nomial q and x,y c RN (where q(Tx) denotes the operator polynomial
q(T{, T2, ... ,TN) acting on x).

Heckman [Heel] showed that q(Tx) is a purely differential operator when
restricted to G-invariant functions. We state the formula in the general case
where G may have two or more conjugacy classes of reflections. Suppose that
{cjj : j c E} is such a class (thus E c {1,2,3,... , m}). Let Pe(x) =
YljeE(x, Vj) (a relative G-invariant) and for a given multiplicity function a,
let a' :— a+ \e (that is, a'j = a¡ + 1 if j c E and a'j — ctj otherwise). Let
K'G(x,y) and V- denote the corresponding objects for a'.

1.4 Proposition. K'G(x, y) = yaCZw€G XE(w)K(xw,y))/(pE(x)pE(y)) for some
constant ya, where Xe is the linear character of G associated to pE ■
Proof. Let f(x, y) = T,weG Xe(w)K(xw , y)/(PE(x)PE(y)) ■ First we show /
is real-entire in x, y and satisfies f(xwo,}') — f(x, y) = f(x, ywo) — f(y, x)
all wq C G. The symmetry f(x, y) — f(y, x) is obvious. For wq c G,

f(xw0,y) = ¿2 Xe(w)K(xw0w , y)l(PE(xwo)pE(y))
weG

_
= ¿2 Xe(wöxw)K(xw , y)/(XE(wo)pE(x)pE(y))

weG

= f(x,y).
For fixed y , each homogeneous component of 52weG Xe(w)K(xw , y) is di-
visible by Pe(x) , thus f(x, y) has no singularities on R" x RÄ .

Let q be a G-invariant polynomial. It remains to show that q(T'x)f(x, y) =
Q(y)f(x, y), for all y cRN . By a result of Heckman (Corollary 3.5 in [Heel]),

= ¥IiA^Ur)^Xc{wMrw~')Kix-ru'~']

= q(y)f(x,y)
(because q is G-invariant).   D
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This formula and proof are due to Eric Opdam (private communication) and
the author gratefully acknowledges this key insight. It is this formula with a = 0
which appears in a theorem of Harish-Chandra in the context of Weyl groups
of compact Lie groups (Theorem 5.35 in Helgason's treatise [Hel], p. 328), thus
giving us a starting point for the investigation of V for Weyl groups.

2. The integral associated to the unitary group

Henceforth G = ¿S3 and the multiplicity function is a constant a. The
group S3 is the Weyl group of C/(3) and is realized as the group of permuta-
tions of coordinates on R3, usually restricted to {x : x\ + x2 + x-¡ = 0} , the
alternating polynomial is p(x) = FIk,■<.,•< 3 C*/ ~ xj) , and the positive roots are
(1,-1,0), (0,1,-1), (1,0, -1)7 By means of Harish-Chandra's formula
we will construct the set Q c M2(R) and the measure p (of Proposition 1.3)
for a = 1 .

We identify R3 with (a subspace of) the complexification of the Lie algebra of
a maximal torus in U(3) by x^ 5(x) = diag(xi, x2, x3) (diagonal matrix).
Then the adjoint action of f/(3) is Ad(u)ô(x) — uô(x)wx . The formula (5.35)
(Helgason [Hel]) specializes to

/     exp(Tr(uô(x)u-xô(y)))dm3(u)
JU(3)

= 2  Y,  ^n(w)exp((xw,y))/(p(x)p(y))
wTs,

(where m3 is the normalized Haar measure on U(3)). Gross and Richards [GR]
used this formula for U(N) to prove a total positivity result. By Proposition
1.4 the left side is an integral formula for K~c(x, y) for a = 1 . We now
interpret this integral as one over a subset of M3(R). Indeed,

3    3
Tr(uô(x)u~xô(y)) = JZ^TlwylW./-

;=1 j=\

We see that the set of (\Uij\2)] -=1, u c C/(3), is a four-dimensional subset of
M3(R). Introduce a parametrization b = (b\, b2, ¿3, b4) c R4 and let

x(b)
b] b3 l-bi- b3
è2 bí, 1 — &2 - bo,

1 - b\ - b2    1 - ¿3 - ¿4   b\ + b2 + h + b4 - 1
The important set Q (supporting the integral transform for V) is defined to be
{b c R4 : x(b)ij = \u¡j\2 for some u c U(3), (i, j = 1,2,3)}. There are
obvious bounds such as b, > 0, b\ + è2 < 1, etc., b\ + ¿>2 + ¿»3 + è4 > 1, but
these alone do not define Q. We now establish the formula for the integral of
functions of (I«,;!2)3 J=1 over U(3). Let

(2.1)        J(b) := Abxb2hb4 - (bx + b2 + b3 + bA - 1 - bxb4 - b2b3)2,

and define Q to be the closure of the connected component of Q,|, 5, 5) in
{bcR4: J(b) > 0} (also Q = {bcR4: h > 0, b2 > 0, è, + b2 < 1, J(b) >
0}).
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2.1 Theorem. Let f be a continuous function on [0, lfcR4, then

(2.2) /     /(l«iiÍ2,JU(3)
"2i|2, I«i2|2, \u22\2)dm3(u)

= -I f(h ,b2,b3, h)J(b)-Ubldb2db3dh.
71 Jn

Proof. The integral over U(3) will be the result of integrating over a subgroup
U(2) and then over the homogeneous space U(3)/U(2) ( = unit sphere in C2).
We use the subgroup [ut/°2)] and write A2 g(u0) - Ju,2)g(uou)dm2(u) for the
first step (w2 is the Haar measure on U(2), and g is continuous on c7(3)).
In this calculation assume 0 < b\ < 1  (the exceptions have measure zero). Let
/ be a function of \u¡j\2,   1 < i, j < 2, then

en    tn
(2.3)    A2f=^J  J  f(bi,b2,(l-bi)(l+cos8)/2,

(1 - ¿>2)/2 + hi cos 8 + h2 sin 6 cos cb) sin 0 dcßdd ,

where
A, :=(*!+Ô2 + ôié2-l)/(2(l-*i)),

and
Ä2:=(M*(l-^-*2))i/(l-äi).

The Haar measure on 17(2) is
1

in terms of

dm2(u')
2?r3

d^ d£,\d^2 sin dcosd dd

1 0 0

0   £>'< <"+£'> cos 0    -e^-ii) sin 0

0   e'^+Í2> sin 0     e'^-^'coso
the typical element of ¡7(2), with -ft < ¿ji, ¿;2 < 7r, 0 < (¿/ < 7r, 0 < 0 < 7r/2.
For arbitrary u c U(3),   / = 1 or 2

\(uu')j2^ = |w,'2|2cos2 8 + |w7'3|2 sin2 8

+ sindcos8(uj2üj3ei{il-Í2) + Uj2Uj3e'{Í2~i,)) .

The integral over y/ is trivial and £i - ¿;2 can be replaced by one variable co
with -n < co < n. Also, let 8 = c¡>/2 and write Ukj in polar form Uk¡ =
rkj^'8kJ > fc = 1, 2 ; 7 = 1,2,3 (so that r22 = b3, r\2 = ¿>4). Then

Alf = ¿ /I /" /("'' ' * ' (^2(1 " COS0)/2 + ^3(1 + COS</,)/2

+ ^2^3 cos(0fc2 - öfc3 + w))^=1) sin <f> dd) dco.

But this is the surface measure ms for the unit sphere S in R3 in terms
of spherical polar coordinates  (^i, v2, v3) := (cose/), sin <p cos co, sin 0 sin co)
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(with O < <f> < n, -n < co < n). We use the rotation-invariance to simplify the
integral and to remove the apparent dependence on 0/t2 - 6ky,  k — 1, 2.

Define two points Ci,  C2 £ R3 by

Cj := ((1 - bj)/2 - bj+2 , rj2rj3 cos(8j2 - 8ß), -rJ2rß sin(8j2 - 8j3)).

Then

Aif = j f [bi, b2, \(\ - bi) + (v , ft), i(l - h) + (v , C2)) dms(v),

(note r\2 + r23 = 1 - b\   and r\2 + r2} = 1 - ¿>2).   The integral depends on
|C,|2,  IÍ2I2 and (Ç,,Î2>,and

\^\2 = ((\-bx)l2-b3)2A-r2nr2n

= ((1 - ¿0/2 - ¿>3)2 + 63(1 - bt - b3) = ((1 - Z>,)/2)2 ;

IC2|2 = ((l-è2)/2)2,

and
(Ci, Í2> = ((1 - bi)/2 - b3)((l - b2)/2 - Ô4)

+ ',12'"22',13',23 COS(012 - 0;3 - 022 + 023).

By the adjoint formula for the matrix inverse and the fact that u* = u • 1

we have mi2m23 - w22«i3 = u3\ (det u). Multiply this identity by its complex
conjugate to get

r\2r\3 + r\2r\3 - 2r[2r23r22ri3 cos(012 + 023 - Ö13 - 022) = lw3i |2 = 1 - bx - b2.

This leads to (Ci, C2) = (¿1*2 + ¿i + ¿2 _ l)/4. Rotate the coordinates so
that Ç2 = ((1 - bi)/2, 0, 0) and C2 = (A,, A2, 0) with A2 + A2 = |Ç2|2 =
((l-62)/2)2, A,(l-¿»i)/2= (Ci,C2) = (¿i¿2 + b,+b2- l)/4. This proves
formula (2.3), since it suffices to integrate over 0 < cj> < n because the integrand
(cos cj)) is even in 0.

The integration over U(3)/U(2) is done with the formula

/     £(|wn|2, |"2i|2, \u3l\2)dm3(u) = 2 / j g(b{, b2, 1 - h - b2)dbx db2,
JU(3) J   JR

where R := {(bi, A2) e R2 : b\ > 0, 62 > 0, ¿1 + ¿2 < 1} (for example, see
[DR, Chapter 10]).

The last step is to change the variables of integration to (b\ ,b2,b3, 64).
The Jacobian

d(b\, b2, by, h) A2O-A1)   • 2a-=~—-sin 0 sined(bx,h,0,<t>)
and sin20 = 63(l - b\ -b3)/(l - b¡)2. Further

; i] (\-bx)2J(b)
sin 9 ~ m. u u ,i—z-rm—z-TT '4A1A2A3O-A1-A2KI-A1-A3)
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where J(b) was defined in (2.1). The result is formula (2.2) in the theorem.
The region Q of integration is unambiguously defined by the constraints b\ >
0,  A2>0, b]+b2<l,  J(b) >0.   D

We have motivated the definition of the weight function J and its domain
Q by means of integration over U(3).

3. Tools for integration with respect to powers of /

In this section we determine the integrals of monomials in b = (b\, ¿?2, b3, b4)
with respect to powers of / over Q, preparatory to establishing a formula for
V, for general a > j . To help in the visualization of Q, we point out that
the cross-section for fixed (b\, è2) with b\ > 0, ¿>2 > 0, b\ + è2 < 1 is an
ellipse which is tangent to the six lines b3 = 0, b4 = 0, by + b4 = 1, by + b4 =
1 - b\ - è2, by = 1 - b\,  b4 = 1 - ¿>2 with contact points

(0, (1 - A, - A2)/(l -k)), ((1 -hi- A2)/(l - A2), 0),
(A2/(Ai+A2),!'Ai(A1 + Aa.)))

(A,(l - A, - A2)/(A, + b2) ,bz(l-bi- b2)/(bl + b2)),
(l-*i,AiAz/(Í-Ai)),  (A,A2/(1-A2), 1-A2)!

respectively. The points b corresponding to elements of Sy are on the bound-
ary of J ; in fact, the boundary is the image of the real group 0(3) embedded
in U(3).

We make a change of variables motivated by the formulas in §6. Essentially
we keep the variable cos ¡j> (now " r") and directly exhibit the constraints 0 <
¿>2 < 1 - Ai and 0 < by < 1 - b\ for fixed b\ .
(3.1) A2 = s(l-Ai)       (0<5<1),

by = t(\-bx) (0<t<\),
b4 = b4(b\, s, t, r) := (1 - s)(\ - t) + b\st

+2(bist(l-s)(l-t)pr,        -l<r<l.

Now J = 4bi(l - bi)2s(l -s)t(l - 0(1 - r2) and the Jacobian

d(b{, b2,by, b4)
d(bi,s,t,r) = 2(l-bl)z(blst(l-s)(l-t))i.

(This shows that the maximum value of / is jj at b =Xj > Î.» j > j) corre-
sponding to s = t = j,  r = 0.) We will write db for db\db2dbydb4 .

3.1 Proposition. For q > 5, and any continuous function for Q,

[ f(b)J(b)a~Ub= Í   iff  /(A,,5(l-Á¡y, r(l-Ai);A4(A1,5,í,r))
Ja Jo Ja Jo 7-1

•Af-1<l - bx)2a~x (4st(\ -s)(\ -t))a~x(\ -r2y-\drdsdtdbx.

3.2 Proposition. The normalization constant ha := (jQJ(b)a~idb)      has the

value 33q"ï (a - x2) T (a + %) T (a + I) /(nr(a))2 (for a > \).
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Proof. The integral equals

4a-1r(q)4r(i)r(a-i) =_^r(a)2_
r(3a)r(2a) = 33°"i (a - ±) T (a + \) T (a + f )

by use of the duplication and triplication formulas for Y.   o

The linear functional on polynomials in b given by integration with haJa~2
over Q involves a balanced terminating 4/73-series.

3.3 Proposition. Let n\, «2 , «3, n4 = 0, 1,2,... ,   í/¡e«

Aa [' bWbPbfJW-ldb
Ja

_ (Q)m(Q)n2(a)"3(a)"4(2Q;)^+«3(2Q)>îi+^+^4

(3a)„l+n2+„3+„4(2a)„2+„4(2a)„l+„2(2Q)„3

^ /-«i, -rc2, -«4, a + ny . A
3 \a, 2a + «3, 1 — 2a - n\ - «2 — «4 '   )

• 4^3

(a«úf the integral is invariant under the transpositions (n\, n4) >-► (n4, n\) and
(n2,ny)^(ny,n2)).
Proof. Change variables as in Proposition 3.1 and expand b4(b\, s, t, r)ni as
a trinomial.   Then the integral of each term in the sum is a product of beta
functions. The result is

^p       /      «4      \  (j)j22j(a)nl+i2+j(a)n2+i2+j(a)n3+i2+j  (2a)„1+^(a))+h

,.u.-4^_«   v'1' ¿2' 1}' (a)j(^)nl+n2+ni+i2+j(2a)n2+n4 (2a)„3+„4
• 1 ~r'2'¿J — "4

Note that the term " 2j" comes from /_, r2'(\ - r2)a~idr. In the sum change
variables, letting i\ = n4 - k - j, i2 = k - j, so that 0 < k < n4 and
0 < j < min(k, n4 - k) and obtain

(2a)n2+ni(a)nl(a)n2(Q-)ni

(3a)„i+n2+„}(2a)n2+n4(2a)n}+n4

_ A min^-fc)        n4\(a + nl)k(a + n2)k(a)l_k(<* + ni)ic

ho      M>       ("4-^-7')!(^-;)!(a)7;!(3a + «1+«2 + «3)/t'

The sum of the terms involving j equals

1 _   F (k - «4, ~k . . \      _(a)n4
W 2   l\        « '■)      (a)k(a)n^kkl((n4-k)\k\¿   'V « '7      (aMa),,,.**!^-/:)!

and so the desired integral equals

(Q)^i(Q)n2(a)>13(a)^4(2Q:)„2+n3     _ /-«4, a + ni, 0+'»2» « + "3 .j

(2a)„2+„4(2a)„3+„4(3a)n,+„2+„3 4  3 ^a, 1 - a - n4 , 3a + nx + n2 + «3 '

(note that (a)„4_k = (a)„4(-l)k/(I -a- n4)k).
The series is balanced ((sum of the numerator parameters)-!-1 = (sum of the

denominator parameters)). The transformation 7.2(i) in Bailey's treatise ([B],
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p.   56) leads to the formula of the proposition.   Another application of this
transformation exhibits the symmetry under («2, n3) >-» («3, «2) •   □

The linear functional is defined for any a > 0. The limit as a —y 0 is the
uniform discrete distribution on ¿53 c £7(3). In the ¿-coordinates, the identity
corresponds to (1,0,0,1), the transpositions to (0,1,1,0), (0,0,0,1), (1,0,0,0) and
the rotations to (0,1,0,0), (0,0,1,0). The sum of b?b?b?b? over this set,
divided by 6 is (write n = (n\, «2, n3, n4))

1 for« = (0, 0, 0, 0),
1/3 for(m,0, 0,0), (0, m,0,0), (0,0, m,0), (0,0,0, m)    (m > 1),
1/6 for (fc, 0,0, m), (0,k, m, 0) for (k > 1 and m > 1),

0 else.

For the case a = A , note that the measure _,, &   , s ( 1 - r2)a~\dr tends2 r(i)r(a-i)v

(weak-*) to \(6\ + a(_ij)  (the point masses at r = 1  and r = — 1), and the
integral of continuous functions over Q becomes

1 '•   '»   '>
2^2r51/o L I f(bi, j(l - A0, r(l - A,), A4(Ai, s, t, r))

•A. ~2(4st(\ -s)(l -t))-îdsdtdbi.

(It is not hard to show that this is in fact /0(3) f(u2n , u2l, u\2, u22)dm(u) for
the Haar measure m on the real orthogonal group 0(3).)

The linear functional fails to be positive when 0 < a < 5 because the value
at the polynomial J2 is

A„ a2(a+ l)2 (2a- 1)
AQ+2      9(2a + 3)(3a+ l)(3a + 2)(3a + 4)(3a + 5)'

4. The intertwining operator

The adjoint action of U(3) described in §2 is realized on R3 leaving the
subspace R(l, 1, 1) invariant. The linear transformation t(A) corresponding
to A = (Ai, A2, A3, A4) is given by

¿XT(A) = (¿X, , X2 , Xy)
A, A3 1 - bx - by
b2 A4 1 - A2 - A4

1 - Ai - A2    1 - A3 - A4   b{ + b2 + by + b4 - I

We use the non-orthogonal coordinate system enabling GL2(Z) representations
of £3 ; indeed, let U\ = x\ - xy, «2 = xy - x2, uy = X\ + x2 + xy. In these
coordinates, "2Ai + A3 - 1    1 - 2A3 - A,    0"

ux(b) = u   1 - 2b2 - A4   A2 + 2A4 - 1    0
0 0 1
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Further the inner product (xx(b), y) transforms to

bx-\    i-A3   0;i - 3  3i-A2   A4-
3       "2      C4       3

0 0        i

where v = (y{ - yy, yy - y2, y\ + yi + yy).
Write fJi2, a23, o¡y  for the transpositions (12), (23), (13) (acting on the

coordinates of x), then in the (u\, w2) basis

<T12
0 1
1     0 023

1     0
1   -1 <7l3

-1      1
0     1

The left and right actions of ¿S3 on t(A) are homogenized by a change of origin,
namely, let c,■ :— b,■ - -j,   1 < / < 4. Write

Xy(c) =
C\ Cy -Ci - Cy
C2        C4        -C2 - C4

-C\  - C2 -Cy - C4     C\ + C2 + Cy + C4

and

x(c) = 2C\ + Cy       -C\ - 2Cy
-2c2 - c4     c2 + 2c4

(the restriction of 13(c) to the subspace {x : xx + ¿x2 + xy — 0}. Our concern is
with functions of c which are invariant under w 1-» wxy(c)w~x ortun wxy(c)
for w c Sy. For each transposition a we write the result as oca or ac so
that axy(c)o = xy(aca) or axy(c) = xy(ac) respectively:

CTl2C(712 = (C4, Cy, C2, Cl),

a2yca2y = (Ci , -Cj - C2 , -Ci - Cy , C{ + C2 + Cy + c4),

Ci3Ccr13 = (C[ + c2 + c3 + c4, -c2 - c4, -c3 - c4, c4),

<T\2C= (C2, C\ , C4, C3),

&23C = (C\ , -C\ -C2,Cy, -Cy - C4) ,

G\yC = (~C\ -C2,C2, -C3 - C4 , C4).

It turns out that the two needed wx3(c)w  ' invariants are

and

\\(c) := trace (x(c)) = 2c\ + c2 + c3 + 2c4

92(c) := - det(r(c)) = cxc4 - cicy.

The discovery of the transform was somewhat experimental, in a sense similar
to a proof by induction, where one first has to make a good guess. In the present
situation we first calculated Kn(x,y) and KG%n(x,y) = \ Y,w€S^Kn(xw, y)
for n < 6.  By a special case of the formula in (Proposition 3.2(v) [Du3] or
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(1.4) in [Du4], p. 126),

Kn+l(x,y) = (x,y)Kn(x,y)/(3a + n+ 1)
E3a2

--r-y^-T-72-tt(xw , y)Kn(xw , y)(n + l)(3a + n + l)(6a + n + l)x      '"
U?Go3

det(u;)=l

det(w)=-l

« = 0,1,2,3,..., and £n = 1, this can be done (with computer algebra
assistance). The first step was to try to produce the Bessel function components
(KGn , see §1) by integration of ((xx(b), y)n/n\) with powers of J , and Ja~$
gave the right result for n < 6 .

To illustrate the dependence on a and the invariant structure of ¿S3 we
list Ko%n for n < 6. The invariants ||w||2 = \(u\ + U\U2 + u\) and p3(u) =■
(u\ - U2)(2u\ + U2)(u\ + 2ui) will appear. Of course, Kg,o = 1 and Kq^ =
0 (restricted to the two-dimensional subspace on which ¿S3 acts irreducibly).
Further

j
^G'2(M'") = 4(>Ti)ll"l|2||v|12'

^■3(M^)=162(3a+l)(3a + 2)P3(^3(")'

^■4("'")=32(3a+l1)(3a + 2)l|M|1411"114'

Kg'í{U>V) = 648(3a+l)(3l + 2)(3Q + 4);?3(M)ll"l|2p3(í;)l|t;|12'

Kg Au, v) (3a + l)(3a + 2)(3a + 4)(3a + 5)

-(uiu2(ul + u2)vlv2(vi + v2))2

1

72(2a+ 1)

P}(u)2p3(v)2 + ^\\u\\6\\v\\6}52488

The next step was to evaluate the integrals

ha (((ux(b),v)nln\)<j>(b)J(b)a-Ub,
Ja

where cp is a linear combination of spanning u/T3(c)u>-1-type invariants of
degree < 4 and matching them to the known Kn(u,v), n < 6. (This used the
integrals of monomials in b, from Proposition 3.3.) This led to the formula
cj>(c) = 1 + 2(2ci + C2 + c3 + 2c4) + 3(c\c4 - C2C3). This function satisfies -1 <

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3362 C. F. DUNKL

<j)(c) < 6, with the minimum at c = (-5,5,5,-5)  and the maximum at
c = (|, -4, -5 , |) , both on the boundary of Q .

It remains to show that this satisfies the necessary conditions for realizing
the operator V stated in Proposition 1.2. Thus we need to show

and

ha i cj>(c)J(c)a'idc = 1
7f2n

(4.1)

/  ((u, v)- (ux(c), v))exp((ux(c), v))cp(c)J(c)a  id
JOo

= haa      exp((ux(c), v))    V]   (cj>(c) - ç(ac))J(c)a~^dc,
Jan ~ri'n° <T6S3

det<7=-l

for arbitrary u, v c R2 (where we use J(c) to denote J(b) with b¡ = c¡ +
j, 1 < i < 4, and Q0 is the translate Q - ( 3, 3 , 3 , 3) ; further (u,v) —
(3) (2u\V\ + u\V2 + U2V\ + 2U2V2), because of the present non-orthogonal coor-
dinate system). The transformation properties "52a4>\(cjc) = 0 and $2(00) =
-02(c) ( a denotes the transpositions) show that Jn cj>\(c)J(c)a~îdc — 0 =
¡a (p2(c)J(c)a-32dc, and thus ha Ja (1 + 201 + 3(p2)Ja~idc = 1 . Further

yt(c) := £>(c) - <t>(oc)) = 60, (c) + 1802(c).
a

The identity (4.1) as a function of («, v) is invariant under (w, v) >->
(uw, vw) for each w c Sy (because cp(wcw~x) = (f>(c)), thus it suffices to
prove (4.1) for the case u\ > 0, w2 > 0 (the fundamental chamber) or
u 1 t¿ 0, m2 = 0, and arbitrary w e R2 ; since for any u ^ 0 there exists
u/ € ¿S3 so that uw satisfies one of these conditions (depending on whether
Uiu2(ui + u2) = 0).

For future convenience we note that (4.1 ) is equivalent to

(4.2)

a /   exp((ux(c), v))y/(c)J(c)a  T-dc

- /  ((u, v) - (ux(c), v))exp((ux(c), v))cj)(c)J(c)a~^dc = 0.
7n„

4.1 Lemma. The identity (4.2)   is valid for w2 = 0, arbitrary v c R2, and
a > \

Proof. Recall the coordinate system (3.1) and let £, — (b\St(\ - s)(\ - t))ï .
Then

\d(b\ ,b2,b3, A4)
d(Ai, s, t, r) = 2c;(l-A1)2!

1 /      1 \     \(ux(b), v) = u\ ( b\(v\ +tv2) - 3U1 - y - ï) v2
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while

(u, v)-(ux(b), v) = (1 - b\)u\(vx + tv2) = (1 -bi)-^-(ux(b),v).

Further
01 = ^(3A1-l) + ^(2s-l)(2i-l)(l+A1) + 4c;r,

and
02 = i(2A, - l)(2s - l)(2t - 1) + \wbv - 1).

In the left side of the identity the part involving (ux(c), v) is independent of 5
and r. Integrate over these variables and observe that products of odd powers
of (2s - 1) and r vanish. The left side of (4.2) is a constant (in a) times

/    /   {exp((ux(b) ,v)3a(3b\ - \) - ((u,v) - (ux(b),v))exp((ux(b),v))3b\}
Jo Jo

•Af'O - ¿i)2a_I(i(l - t))a-xdbidt.
The inner integral equals

( exp({ux(b), v))3a(3bi - l)Ar'(l -A1;J«'

-3(1 - A,) A- exp«MT(A), u»Af (1 - A,)2*"1 J dbx

= -3 j  ^-(exp((MT(e),V))ef(l-A1)2a)^A1=0

(integration by parts).   D

This was the easy case: the ¿S3 orbit of (u\, 0) consists of three points
(namely (u\, 0), (0, -u\), {—U\, U\)). It does foreshadow the technique for
the other case: find a change of variables which allows two steps of integration
not involving (ux(c), v), and then do some integration by parts.

We introduce a linear change of variables designed to change / to a quadratic
in one of the variables (which is independent of (ux(c), v)). Henceforth, fix
«i > 0 and w2 > 0.

The new variables z,,   1 < / < 4, are

(4.3) Z\ = U\C\ - W2C2 - U\Cy + U2C4 ,

Z2 = U\C\ - U2C2 + U\Cy - U2C4 + -(U\ - U2) ,

Zy = U\C\ + U2C2 + U\Cy + M2C4 ,

Z4 = U\C\ + U2C2 — U\Cy — U2C4.

(The shift-of-origin in z2 simplifies some later expressions.) The Jacobian is

d(C\ , C2, Cy, C4)
d(Z\, Z2, Zy, Z4)

1
16w2w2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3364 C. F. DUNKL

Further

(ux(c), v) = (-(zi +z2)- ^(Ui -u2))vl + i-(z, -z2) + -(w, - u2))v2.

The task is to integrate over Z3 and Z4 in the proposed identity (4.2), and to
describe the region of integration for (z\, z2) (for given u). Performing the
change of variable in / leads to J(c) = Jz(z\, z2, Z3, z4)ju\u\ where Jz is
quadratic in z4 , with leading coefficient

1   / 4 ,
(4.4) -a2 = -jg \2zy(ui + u2) + ^(u{ + u2Y - (2ux - z2)(2u2 + z2)

The inner quantity must be positive (the value at c — 0 is \(u\ + uxu2 + u2))
and to simplify Jz the change

(4.5) zy = (3r2 + 3(2«! - z2)(2w2 + z2) - 4(w, + w2)2)/(6(w, + u2))

is made. With this change the coefficient of z4 in Jz is

ax--=J^hT){r2 + {2Ul-Zl){2U2 + Z2))-

Completing the square we let z'A = z4 - ^- (where a2 = jg'"2), then

Jz = - tt'-2z42 + T^^r,-¿t ,  where
16     4      M r2(ux + U2)2

(4.6)

ôo :=(r2 - z\)(r2 - z\)((2ux - z2)2 - r2)((2M2 + z2)2 - r2).

In the region of integration it is required that So > 0 which by the factorization
is equivalent to max(|zi|, |z2|) < r < min(2wi - z2, 2w2 + z2) (this includes
the restriction regarding the connected component of c — 0, that is, the point
z\ = zy = z4 = 0, z2 = |(wi - w2), and r2 — |(w2 + u¡u2 + u2), in the
set {(zi, z2, r) : ¿0 > 0}). Denote by ilu the transform of Qo into the z-
coordinates.

4.2 Proposition. For fixed u (with u\ > 0,   w2 > 0) the region Q'„, the pro-
jection of Q.u  onto  {(z\, z2) : zi, z2  e R}   consists of the convex hull of
{(UX , Ml), (-Ml , Ml), (U2, -U2), (-U2, -U2), (Ui + U2,Ui  - U2) , (-UX  - U2 ,
u\ - U2)} and is defined by the inequalities

—w2 < z2 < U\,  -2w2 < z\ + z2 < 2«i,  -2w2 < z2 - Z\ < 2u\.
Proof. The  collection   of inequalities   is  equivalent  to   max(|zi|, |z2|)    <
min(2w1 - z2, 2w2 + z2).    For any  (zx, z2) € il'u  the variable  r has the

previously described range, and    z4 - ^   <  2r2(ul+u1) •   *n tne sPecial case
zi = 0 = z2 (and so ö! = 0)

2/_J_2     (4a2 - r2)(4M2 - r2)s
16Z4+       64(«,+w2)2
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and

2(«i + u2)
((4u2 - r2)(4u2 - r2))L2

0< r < min(2«1 , 2u2);     \z4\ < -—'-       /v—\-—.   D

Note that ux(c) = (\(z\ + 3z2) + u2 - U\, \(zx - 3z2) + U\ - u2), and the
vertices of Q'u correspond to the ¿S3-orbit of u. We perform integration of
1, z'4, z'42 in a lemma. The formulas can be made more concise by writing
Jz = -a2z4'2 + á/4a2, so that ô denotes the discriminant of Jz as a quadratic
in z4 and ô = Ôq/(256(u\ + u2)2) (see (4.6)).

4.3 Lemma. For (zx, z2) e Í2„,

max(|zi|, |z2|) < r < min(2wi - z2, 2u2 + z2),        ß > --,

/y
(A0 + Aiz'4+A2z4'2)Jzß~^dz'4

-y

1     1\    1    / à 2,

/or arbitrary A0, A\, A2 6 R anrf y = ¿J/(2a2) (5 denotes the beta function).
Proof. Let Z4 = y s, then -1 < 5 < 1, and the terms of the integral are of the
form /Í¿-í"(l -j2)'-í¿j.    d

4.4 Theorem. The identity (4.2)

ai exp((ux(c),v))y/(c)J(c)a~idc
JOf,

- [ ((u,v)- (ux(c), v))exp((ux(c), v))cj>(c)J(c)a-Uc = 0
7n0

is valid for U\ > 0,  w2 > 0, arbitrary v cR2, and a > 5 .
Proof. Write

A)(u, w, z) = (wt(c), v)

=  Í-(Z, + Z2) - -(W, - W2)J Î/! + ( j(*i - ¿2) + 3(^1 - "2)J î>2,

and

Pi(u, v, z) = (u, v)-(ux(c), v)

U\ - ^(Z\ + z2)j vx + (u2 - j(2l - z2)J v2.
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Let I6(u2u2)~a+ îF(u, v) denote the left-hand side of the proposed identity.
Change variables from c to z, and factor out (l6u2u2)~x(u2u2)~a+$ to obtain

F(u,v) = a /   exp(p0(u, v , z))gi(z)Jz(z)a-idz
7q0

/   p\(u, v, z)exp(p0(u, v, z))g0(z)Jz(z)a-idz,
JOr,

.

where g0(z) = 0(c) =1+20,(c) + 3cj>2(c) and g\(z) = y/(c) = 60,(c) + 1802(c)
(we postpone the explicit statement of the result of the substitutions).

We get rid of p\(u, v , z) by means of integration by parts. Indeed,

Pi(u, v, z) = ((ui + u2 - zi)qJ- + ("i -U2 -z2) —Jpo(", v, z)-

Observe that

d
+ Bizi) — (Fl(z))F2(z)dz

OZj

= - f  Fl(z)"£^-((Al + Bizi)F2(z))dz
Jau ^àz,

= -/ ((eb) Fx(z)^z)+*»(*)i><+BiZ^w¡¡F2ÍZ)¡dz

for constants A¡, B¡, 1 < i < 4, and smooth functions Fx, F2 such that F2
vanishes on the boundary of Qu ; by integrating with respect to z, first in the
corresponding summand.

We apply this to F\(z) = exp(p0(u, v , z)) with a trick of adding a term in
gj-. Define the differential operator

D := (a, +u2- Zi)-£—- + ("i - u2 - z2)-— + (-(a, + w2)/3 - 2z3)-— ;
oz\ az2 ÖZ3

thus

f (DFi(z))F2(z)dz = - [ (-4Fx(z)F2(z) + Fl(z)DF2(z))dz.
Jau Ja„

The purpose of the
Dr2 = -2r2 . Indeed,
The purpose of the  if-  term is to simplify subsequent calculations because

^ = Z,(223(„í+U2)+(Í)(„1+Urf-(2u,-z2)(2»¡ + z!:
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The result of integration by parts is

(4.7)      F(u,v)=       exp(p0(u, v , z))
Jau

■ (agx(z)Jrl -4g0(z)jri +D(g0(z)jri))dz.

It remains to show that the integral over Z3 and z4 vanishes, for each fixed
(z\, z2) c £l'u . For now we assume a > |.

We will integrate over z4 directly and then for the remaining step change the
variable Z3 to r and finish by another integration by parts. The substitutions
go(z) = 0(c) and g\(z) = y/(c) lead to linear dependence on z4 , and we let

go = £014 + £00,     g\ = g\\z'4 + 8w

(so that gij is independent of z\ = z4 - ax/2a2). Recall (from (4.6)) Jz =
-<z2z42 + 4^- where a2 = jzr2 and ö = ¿n/(256(wi + u2)2) the discriminant
of Jz as a quadratic in z4 . Discard the part of the integrand in (4.7) which is
odd in z'4 (and omit the (zx, z2) part exp(p0(u, v , z))) and obtain

(agio - 4goo + Dg00 + go\ (Dz'4)) (-a2z'42 + — j

+ (<*- |Vi0O (2a2z'42 + D(ô/4a2)) - 2a2golz'42D(z4)) -a2z'42 + —
4a2

S ^~f

because DJZ = -D(a2)z'42 - 2a2z'4D(z'4) + D(ô/4a2) and D(z'4) = D(-ax/2a2).
Further D(a2) = -2a2 . Performing trie integral over z'4 by Lemma 4.3 (with
ß = a - 2) gives the value

„(a-i.D-LfJ-Y-12' 2) y/a~i V4fl2

1   Ufla \4a~) ^a8l° ~ 480° + D8°° + 8oxDz'^

a - I) {gooD (¿) + (2a2g™ - 2a2^D(z'4)) *-.+

m=&M(a4.^ ' i5'
(a-I)    \      2' 2) Jä2 \4a2i

I ( ~4a  ) ^10 ~ 4g00 + Dg0° + 8oxDz'* + 8o° ~ 8oxDz'^

+ («-l)(g.o¿ + ^(¿
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a-\

-   1 I    Q,r,-V-   VmT)   I   -   1+ {a-l)\M2)       [8l0to2 +gooD\4a2 )

(We wrote agio = (a - i)g\o + g\o in the calculation.) It remains to integrate
this function over Z3 and show the result vanishes. This will be done by chang-
ing the variable of integration to r and showing the integrand is a constant

times 07 ( ( 475- )      A I for a function h satisfying

(4.8) —A = gio - 3goo + Dgoo,

and

By (4.5), dzy = rdr/(ux + u2) and this cancels the factor ,/a2 = r/4, to a
constant. The equation (4.9) is equivalent to

(because ^ = fa2 and Da2 = -2a2), which in turn is equivalent to

(4.10) ,10 + 2,00 + — = = ÍA— - gooDS J .

The right side is a logarithmic derivative and the factorization of ô allows a
simplification of the calculation.

Here are some useful new substitutions:

fr := 2wi - z2,    £2 := 2w2 + z2,
which yield  Ö  =   256(,;+M2)2(r2 - z2)(r2 - zj)(ç2 - r2)(H2 - r2)   and   ax   =

Z] z2(r2 + ^i6)/(8(^i +1*2)) • In the variables Z\, Z2, 4l7 £2> ' the operator

/)=2^+Í2-2z>W+2^-6K^ + 96-^J^97-
Further, let q2 := r2 + z,(£, +6) + Í1Í2 and ft := ({, +6 + zOr2 + £,£>z1 .

We can now state the result of the substitutions on ,0, ,10 (recall go(z) —
0(c) and y/(c) = glx(zx, z2, zy)z'4 + g]0(zx, z2, zy)):

1     f   3      ,     3 (r2 - ^
,0

1     f   3      ,     3   /-2-z2       1
= - 1 "TZ2Z4 + T-TTT-TTft ,"  ,M,W2 1   4      4     4r2(^+^2)^J

and

,10
1 3

4r2(£,+£2)W, W2

• {(f 1 - 6)22ft - (fi + ¿2)ft'-2 + 2r2ft + 2(r2 - z2)(ft + z^r2 + &&))}.
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We will show that
1      3   (r2-

uxu2    8 r
^jí.íd^

satisfies the equations (4.8) and (4.10). First,

dh l        3    '~,2„    \.tJl       JwiJ

_3_
4w,u2r2 (£,+&)

3
T|-ft(2r2 + z2(i,-^2))

+ (r2 - z\) (-ft + Uti + í2)(2r2 + ft)) }V 2 / J
By use of the relation -ft + i\ (r2 + ÇXÇ2) = -r2(£,\ + <jf2) this shows that ,i0
3,oo + ö,oo = fr-

Write S = ff2fyf4/(256(ux + u2)2) with

1 ,       72  f=r   ~-z2!f:=r2-z\,     f2:=r2-z2,
fy:=ex-r2,     f4:=Ç2-r2.

To prove (4.10) we need to show gXo + 2,oo + 2h/r - £(=] b/fi > where k¡ :=
(na?fi ~ SooP>f) ■ (In this formulation the divisions can actually be carried out
by hand, without computer algebra assistance.) Now

0/l=-2,2 + 2z2-zl(íl+6),     * = \%$£¡$>

Df2 = -2r2 - z2(Çl - 6)(2ft - (íi + 6)ft + (¿i + &j2*i>-;

The verification of (4.10) can now be carried out directly. During the latter part
of the proof we assumed a > \ . When the identity (4.2) is written as a sum
of homogeneous terms in v (expanding exp(wi(c), v))), the dependence on a
in each term is rational with no poles for a > ¿ . Thus the identity holds for
all a > |.    D

5. Expressions for the intertwining operator

Having established the validity of the transform we use the various coordi-
nate systems to produce several formulae. Here is a notation for the result of
the integration over z3 and z4 :  for real variables zx, z2, £1, £2  subject to
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max(|zi|, |z2|) < min(i^i, ¿;2) and a parameter a > ± , let

rmin(íi ,{2)■>    /-miinç, ,ç2j
Fa(zX,Z2,^,Í2) = Í  / (r2(íl+Í2 + Zl) + ílÍ2Zl)

8 7max(|z,|,|z2|)

• (^71^) ^2 -z^2-r2)^22-ñy-xdr.

This function is positively homogeneous of degree 6a - 2 . In the formula

(5.1) Vf(u) = ha[ f(ux(c))<t>(c)J(cr-Uc,
7n0

when ux > 0, w2 > 0, we use the change of variables (4.3), integrate over
z4 with Lemma 4.3, and again write 0(c) = ,o(z) = ,oi(zi, z2, z3)z4 +
,oo(zi, z2, zy). The part odd in z'4 vanishes, and ,oo has been incorporated
into Fa. Thus

V f(u) =-,-;-^crmaJK '    (uxu2(ux + u2))2a

(5.2) -. \    f i^zx +-z2 + u2-ux,-zx--Z2 + U1-U2J

• Fa(zx , z2 , 2ux - z2, 2u2 + z2)dzxdz2 ,

where the normalizing constant is

-27V (Jl^\ r(a+l)r(a+l)r(a+f)
647   \nV3n~J T(a)3

Let H(u) denote the closed convex hull of the ¿S3-orbit of u . It is described
by the inequalities (when ux > 0, u2 > 0): (Ci, £2) € H(u) if and only if
-2wi - u2 < Ci - £2,  Ci + 2C2,  -2Ci - C2 < ux + 2u2 .

With the linear change, C = ux(c), that is,

zi = Ci + C2,     z2 =-(Ci - i2 + 2«!-2w2)

the formula (5.2) is transformed to

(5.3)
1 2

Vf{u) = (uxu2(ux + u2))2a3ma

■ [     /(Ci, f2) • Fa ( C, + C2 , |(Ci - fc + 2«, - 2«2),
Jh(u) V J

-(2w,+4M2 + íi-Í2),3

j(4mi + 2m2 - Ci +.C2)) dÇidÇ2-

The values of Vf(u) for the other cases when Wiw2(wi + u2) / 0 can be
obtained from Vf(u) = R(w)Vf(uw~x) = F(.R(u;)/")(ku;-1), choosing u; e
S3 so that (uw~x)x > 0 and («u/_1)2 > 0.
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The formula (5.3) bears some resemblance to the transform in Beerends'
paper ((2.3) in [Be]), which is of noncompact type. No attempt has been made
to apply limiting arguments to Beerends' transform to get the G-invariant case
of the operator V.

For the case w2 = 0 we use the coordinate system from (3.1) and after a
chain of calculations similar to that of Lemma 4.1, we obtain

Vflu    OÏ-PV    2   r(a+j)r(a + 3)

(5.4) /' f f(ux(t-
Jo Jo

l + (2-t)bx),ux(l-2t)(l-bx))

3A,(A?"1(1 - A,)2a-')(4i(l - t))a~xdtdbx.

Again the coordinates could be changed so that this becomes an integral over
H(u), which in this case has the vertices (ux, 0), (0, -ux), (—ux, ux).

We return to an orthogonal coordinate system so that ¿S3  is embedded in
0(2):

(5.5) 1    ,- s 1y\ ■= -j=(2ux+u2),    y2:=-7=u2.

In this system (using x'(c) for the matrix corresponding to t(c))

yx'(c) =y
\c\ -^(cX+2cy)

-&(cx+2c2)    jCX + C2 + Cy + 2c4

The reflections are

fji2 =

1
2

2

2
CTl3 =

I
2

2

v3
2

,    0~2y

1        0

0      -1

The positive roots are ( -^ , 3 ) , ( ̂  , - j ) , (0,1). The fundamental cham-

ber («] > 0, u2 > 0) becomes {(yx , y2) e R2 : 0 < y2 < vT^Vi}. In for-
mula (5.3) perform the same change of variables on (Ci, Í2), namely cox :=
^(2d + C2), u/2 := 75C2 , so that

1 Í2
z\ = -j=(V3cox +co2),     z2 = -t=(«i -V3co2) + y -(yx - V3y2)
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The result is (for 0 < y2 < V3yx):

(5.6)
Vfiyi 'n) = (y^-y2))2^ LJf{a)l ' W2)

ÍV3    r 1 r- r~• Fa I ^-(v/3fc>1 + co2), -(cox - V3co2) + (yx - V3y2),

2y\ - ^(cox - vTkft), (yx +V3y2) + ^(cox - \Í3co2)\dcox dco2,

where H(y) has the vertices

(yi,±y2), (-^.-^2' ± {-^Tyx + V)) '

\2yx + ~Yyi '     1 Tyi + 2^ J J '
16   r(Q + i)r(a + 3)r(Q + f)

a     22°v^ T(q)3
(We see that the orthogonal coordinates do not make the formulas more attrac-
tive.)

Finally, we display a formula for Vf(yx, 0) (using (yx ,0) as a typical point
on a wall). In (5.4), let cox = ±(3A, - 1), co2 = (1 - 2i)(l - A,)(v/3/2). Then

3r(a+3-)r(a + §)
lH((\,0))

•(1 + 2cox)a(l - cox - V3co2)a~x(l -cox + V3co2)a~xdcox dco2.

The region H((\, 0)) has the vertices (1, 0), (-3,^), (-3 ,-^) . In this
degenerate case the formula is reminiscent of the one-variable integral for V ,
namely,

■1     /•!

K/fr.0)-|r<''+*>1>+Í)/' /(,1(0,„ „j,
^        1 (o¡r        ifl((i,o))

5(a'l)      /   f(xaj)(l-w)a~Hi+w)adco

(see Theorem 5.1 in [Du3]).
Observe that the normalizing constants ma and m'a indicate the poles a =

-\-n, — 5 — n, — § — n, « = 0,1,2,..., which were known to occur in the
algebraic form of V, from the general theory of singular polynomials (Dunkl,
De Jeu, Opdam [DJO]), and the Bessel function (Opdam [O]).

The limiting case a —> \+ for Vf (expressed by (5.1)) is also an integral
transform. The measure is supported by the boundary of Q (see the discussion
at the end of §3). For a = \ the transform V is related to the Cartan motion
group associated with the pair (¿SL(3, R), SO(3)), see Remark 6.12 in Opdam
[O] and Remark 4.27 in de Jeu [J]. The integral in Lemma 4.3 reduces to a
sum of values at the endpoints ( ß -^ -{+)• The function Fa, for a — 5 , has
infinite values if |Z]| = |z2| or z2 = ux - u2 (that is, £1 = £2).
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We already know the effect of V on the harmonic polynomials (yx + iy2)m
by the formulas in (Section 3, [Dul]). Indeed,

(5.7)

V U + iy2rn+lA = r?lViww+n)!     <* + &?<£'**(& + '>2)3)>V /      (2a + l)„(3a + \)yn+i

« = 0,1,2,3,...,  ¿ = 0,1,2; where Cna'a+X) is the Heisenberg polyno-
mial

CJT a+1)(C) := ¿ (Q)f" +_ 1){TJ CjCn-J,    (CeC).
j=0     * *       ■'''

These polynomials are annihilated by |(7j + /T2),  the analogue of ¡fe .
One problem remains: is Fa(zx, z2, £1, £2) > 0? If this is always true,

then F is a positive transform, and the function K(x, y) (see (1.3)) satisfies:
x i-> -ty(x , iy) is of positive type for each y e R2 , in particular, \K(x, iy)\ < 1,
for x, y c R2. This kernel is used in a generalized Fourier transform ([Du4]),
and de Jeu [J]). Our results do show that the Bessel function Kg (see (1.6)) has
this positivity property, for a > j . By direct computation Fa > 0 for a = 1
and a = 2. Also, Fa > 0 when zx > 0. The problem is that the integrand
has the factor r2(c;x + £2 + zx) + ¿i&zi which equals zx(Çx + zx)(Ç2 + zx) at
r = -zx > 0.

We can, however, bound the L'-norm of 0 by the L2-norm with respect to
the measure haJ(c)a~^dc on Q. Indeed,

A2 A2(a + 2)
\\A0 + AX9X + ^202||^ = A¿ + =—1-, +3a+ 2      9(2a+l)(3a+l)(3a + 2)

(for arbitrary /1q>  /li,  ^42, G R by Proposition 3.3).  In particular, let A0 =
1, Ai = 2, A2 = 3, then ||0||f = 1 + 3^ + (2a+i)3(3a+i) - which is decreasing in

a (for a > 0). Thus for a > 1 , ||0||i < ||0||2 < ^f% . This shows \K(x, iy)\ <
1.43 (De Jeu [J] has already proven the upper bound \/6).
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