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INTERVAL-ANALYSIS 
TECHNIQUES IN LINEAR 
SYSTEMS: AN APPLICATION 
IN POWER SYSTEMS* 
A. N. Michel, 1 M. A. Pai, 2 H. F. Sun, 1 and 
C Kuli9 2 

Abstract. In this paper we apply the technique of interval analysis to get bounds on 
the initial value response of a linearized single machine infinite bus problem when a 
parameter is varied. It is generally believed that responses for parameter variations 
in an interval should lie within the responses for the extremums of the parameter 
variations. This is not generally true and our example demonstrates this. The 
interval-analysis technique permits getting the overall bound on the response. Further 
experimentation also revealed that the method has some limitations particularly 
involving lightly damped long-term dynamics. 

The technique is useful in finding the robustness of a particular design such as 
the power system stabilizer for parameter variations. 

1. Introduction 

In terva l -ana lys is  techniques have been shown to give sat isfactory bounds  for 
the set of  init ial  value responses  of  l inear  systems that  l inear ly  depend  on a 
p a r a m e t e r  be longing  to an interval .  These include interest ing examples  such 
as the to lerance  p r o b l e m  in electric circuits, op t imal  cont ro l  p rob lems  with 
large to lerances  on a parameter ,  and  the like, where somet imes  sensit ivity 
me thods  fail [ 1 ] - [ 4 ] .  

We  specifically cons ider  here the s tab i l iza t ion  of a power -sys tem p rob l e m 
where one of  the design pa rame te r s  can be chosen over  a wide interval.  Thus  
pa r ame t r i z a t i on  can be done  in the form 

= (G1 + OG2)x, x(0) = Xo, 0 e [ -  1.0, 1.0], (1) 
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where G1, G2 are real n x n matrices. Using partitioning 

0i = [ ( - - M  + 2(i -- 1))/M, ( - - M  + 20/M], i = 1 . . . . .  M, 

we generate, for the above initial value problem, M subproblems. We develop 
an algorithm to generate bounds at any desired point in time t for the interval 
solutions for the above M subproblems. The interval solution for the (entire) 
initial value problem is then obtained by taking the union over the sub- 
problem interval solutions, producing envelopes for the set of all solutions 
associated with the interval vector initial condition x o and the perturbation 
parameter  0. 

It is generally believed that responses are monotone with respect to the 
parameter  0 so that only the boundary responses corresponding to 0 -- - 1 
and 0 = + 1 are sufficient to produce the envelope. However, this is not 
always true, as shown in the example, and the interval-analysis technique 
captures the variations. 

2. Theory 

In this section we provide a brief summary of some of the interval-analysis 
results developed in [11-[3] and we show how these results can be applied 
to the initial-value problem (1) endowed with a parameter  belonging to an 
interval (see Section 1). 

We let J denote the set of intervals [a, b], a, b E R, a _< b. When a = b, 
we call I = [a, a] a degenerate interval. On J we define the interval arithmetic 
operations +, - ,  ", / by 

[a ,b]  + [c,d] = [a + c, b + d], 

[a, b] - [c, d] = [a - d, b - c], 

[a, b]'[c,  d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)], 

[a, b]/[c, d] = [a, b]" [1/d, 1/c] provided that 0 ~ [c, d]. 

For  each I = [a, b], J = [c, d] in J ,  we define p: J x J ~ R + by 

p(I, J) -- max(la - cl, Ib - dl). 

It  is easily shown that ( J ,  p) is a complete metric space [11. 
Next, let I = [a, b] be fixed and let J i  = {J e j :  J c I}. It  can readily 

be shown that the space ( J i ,  P) is a complete and compact metric subspace 
of ( J ,  p) [1]. 

We can define interval functions of an interval variable f :  J ~ J .  (For 
example, if f (x )  = x 2, then f (J )  = J 'J . )  Properties of such functions (e.g., 
continuity) are defined on ( f ,  p), or on ( f i ,  P) in an obvious way [11. 

Now let 

= { f ] f :  J l - *  J ,  f is continuous on J i } .  
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For f ,  g ~ ~ ,  define 

p(f, g) = sup {p(f(J), g(J))}. 
Je j t  

It is an easy matter to show that (Y, #) is a complete metric space. 
The space ( ~ ,  #) includes the C([a, b]) real function space and the united 

extension of its member functions, f ,  defined by 

f([a, b]) = ~ f ( [x ,  x]). 
xe[a,b] 

In [1] we show that the rational interval functions belong to (~ ,  #) and 
exhibit the inclusion property f ( [a ,  b]) ~ f([a, b]). Defining a partition of 
the interval I = [ a , b ]  by 17 & [ a ( n - i + l ) + b ( i - 1 ) ,  ( n - i ) a + i b ] / n ,  
i = 1 , . . . ,  n, we establish in [1] the convergence result 

lim 0 f (I)  ~ n ~  oo f(IT) = f(I). 
i=x 

This result states that by using a sufficiently fine partition of I and by 
computing the union of the interval functions over the partition subintervals, 
it is possible to approximate the exact range of the interval function for x e I, 
f(I), as closely as desired. In [1] we also extend the above convergence result 
to rational interval matrix functions of an interval variable. 

In [2] we show that the sequence of partial sums obtained from the infinite 
series representation of the interval exponential function is a Cauchy sequence 
which converges to a member function of the space (~ ,  #). We devise a 
technique to compute an approximation 0 of the interval exponential 
function g([a, b]) ~- exp[(a, b]) which, for ~ > 0, provides the error inclusion 
property 

[1 - -  e, 1 + e]'g(Ea, b])  ~ 0 ( [a ,  b] )  = g(Ea, b])  = 0 ( [a ,  b]) ,  

where ~ is an augmented kth-order partial sum for the exponential function 
g and e depends on the size of k. Finally, we apply the convergence result 
derived in [1], and described above, to reduce the conservativeness when 
obtaining estimates for ~ by the above results. Also, we extend the above 
results in [2] to interval matrix exponential functions of an interval variable. 

In order to obtain true estimates from our algorithmic results, we employ 
in [2] and [3] machine bounding arithmetic in computing partial sums for 
the interval matrix exponential. 

In [3] we consider the initial-value problem (1). As indicated in Section 1, 
we generate for (1) M subproblems and we use the results of [1] and [2] to 
establish in [3] an algorithm which enables us to obtain bounds at any 
desired point in time, t, for the interval solution for the above M sub- 
problems. The interval solution for the (entire) initial-value problem (1) (given 
in Section 1) is then obtained by taking the union over the subproblem 
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interval solutions, producing interval bounds or envelopes for the set of all 
solutions associated with the interval vector initial condition Xo and the 
perturbation parameter 0, including the effects of algorithmic computer 
truncation or rounding errors. 

In [4] we extend the results of [1,]-[3] to situations involving more than 
one parameter. 

3. Application to power system 

We consider the single machine 
nonlinear model is of the form [5] 

M a c h i n e  E q u a t i o n s  

1 

T~o 

= C O - - C O s ,  

COs [ T  m __ ( E ' q l q  d- (xq --  x ' q ) l a [  q - -  D(CO - COs)]. 
& = 2---H 

S t a t o r  A l o e b r a i e  E q u a t i o n s  

xqlq  - Va = O, 

E', - V, - x'dla = O. 

L o a d  F l o w  E q u a t i o n s  

infinite bus problem (Figure 1) whose 

(2) 

(3) 

(4) 

(5) 

(6) 

R e I  a - xe lq  = Va - V~ sin 3, (7) 

xe la  + R , I q  = Vq --  V| cos 3. (8) 

The following change of variable is now made 

E'q = Xm~I ya - (xa - x'~)Ia. (9) 

r 2 Assume R e & 0 and let xa = xa - Xma/X,d and T'do ~ xya/(cosRya). Lengthy 

L 
v 

Figure 1. Single machine infinite bus system. 
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computation yields the following equations: 

~ = CO ~ COs, 

& = al - -  a 2 ( c o  - -  c o s )  - -  aalfd sin 6 -- a,~ sin 26, 

l:a = asE:a + a6(co - c03) sin 6 -- aft.ca, 

V, -- [(c2 sin b)2 + (ca cos b + c1I:a)2] 1/2, 

where 

Tm D x,,,Voo 
a, = - ~ ,  a2 = -~ ,  a3 - (x a + x~)M" 

Xmd Voo cos R f d ( X d  @ Xe) 
a 6 = a 7 = 

X fd(Xd  _.1_ Xe ) 2 ' 2 ' - -  Xmd Xfd(Xd  "[- Xe) - -  Xmd 

C 1 ~ - -  
XeX.,a Kox~ X~ Ko 

C2 ~ C3 - -  _ _ .  
X d -Jr" X e (Xq "]- Xe) (X d "]- Xe) 

(10) 

(11) 

(12) 

(13) 

Linearization of (10)-(13) leads to 

where 

:c = A lx  + B1AE:a + B1ATm, 

A V  t = CxA6 + D1AIfd, 
(14) 

x = (A6, Atr, AI:d) T and Aa -- co - co t. 

Augment the system (10)-(12) by the equation 

= AV,. (15) 

In [6] a two-step procedure is used to design the feedback control. The first 
step is to compute state feedback of the type 

AE:d = kA6 + k2Aa + k3AIya + k4z 

to minimize a quadratic performance index. The parameters in (14) pertain 
to the prefault system. Since the power system undergoes a structural change 
due to switching action when there is a fault, this is taken into account by 
a feedback for the postfault system of the type 

AE:d = h lA6 + h2Atr + haAl:d + h4Az + h5AVt. (16) 

If h s is considered as a free parameter, the two control laws are equal if 

h: + Clh 5 = k 1, h 2 = k 2, 
(17) 

h 3 + Dlh s = hs, h,, = k4. 
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h5 is chosen so as to have satisfactory closed-loop operation of the postfault 
system given by 

A(r = - a3I~ cos 6 ~ 
Alya a 5 k 1 

kAeJ c2 

+ Au, 

1 0 

--  a 2 - -  a 3 s in  6 ~ 0 A a  

a s k  2 + a 6 s in  6 ~ ask3 - a7 ask4 Alfa 

o D2 o JkAzJ 

Au = h 5 Ay, 

A y = [ a s ( C 2 - C 1 )  0 ( D 2 - D , ) a s  

Symbolically (18)-(20) are of the form 

A 2  = A A x  + bAu, 

Au  = h s Ay,  

A y = c r  Ax ,  

(18) 

O] Aa 
/Alfa/" 

LAzJ 

(19) 

(20) 

(21) 

which simplifies to 

A2  = (A + h s b c r ) A x  (22) 

= A 2 Ax. ( 2 3 )  

Notice that except for h 5 all other parameters are fixed. We now apply 
interval analysis to this model to see the effect on the response due to wide 
variations in h 5. The initial conditions are those at t = ta since (21) pertains 
to the postfault system. 

With the numerical values' given in [6], the A 2 matrix works out to be 

[ 0 1 0 0 1 
- 5.011 - O. 3044 - 18.96 0 

A2 =/6.095 -- 0.0723h5 4.445 -13.45 + 0.0742h5 -22.80 " 
L -0.4421 0 0.3698 0 

�9 From the root locus for the eigenvalues of this matrix as hs varies from - 80 
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8 ~ l l l ' ' ~ ' l ' l l l | ' ' ' l l ' * t ' l ' ' l ' | ' J U l l l ' t t l e t l ' ~ l ' " l l ' = ' ' l l e l l  

0 

- 2  

- 4  

qz- - 6  

- 8  

-10 

-12 

- 1 4  

- 1 6  

- 1 8  

- 2 0  

o ~ ~ = - 8 0  
/--§ 

i h5 = - 1 0  

T 

:T 

~t  

1 

-4 
* i t  i ~ i l l ~ | l l t t i t l l t l l t l l l t l l L | t ' l t | ' t l l | l l t  t | t t l t  I ~ t l ~ l l l  

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4,0 4.5 5.0 5.5 6.0 

Time (seconds) 

Parameter h5 = [ -80 .0 ,  - 10.0] 

F i g u r e  2. The bounds on the response of xz(t ) by the interval-analysis technique. 

to - 1 0 ,  we choose a nominal operating point for h s = - 5 0  which gives 
satisfactory damping, xr(0) = [0.5, -20 .0 ,  0, - 0 . 1 ]  is chosen as the initial 
condition for the postfault system to illustrate the interval-analysis technique. 
The response bounds on the variables using the theory of Section 2 is shown 
in Figures 2 and 3 for subintervals of 100 points for x2(t) -- Ar and x,( t )  = Az. 
The response although monotonic between the bounds of the interval for 
the most part  however showed a violation for x 2 around t = 1.93 s and for 
x 4 around t = 5.25 s. An expanded version of the actual response near these 
two instants is shown in Figures 4 and 5. The response for h5 = - 4 0  and 
h5 = - 3 0  for x2(t) and x4(t) respectively do not lie between the responses 
for h 5 = [ - 8 0 , - 1 0 ] .  Hence the need to find the bounds. The bounds 
obtained by the interval analysis (Figures 2 and 3) were verified to be good. 
We observed that with subintervals of 25 the response bounds were some- 
what conservative. 
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Figure 3. The response bounds of X2(t ) by interval analysis. 

We applied the technique on another power system representing interarea 
response with very low damping. The technique works up to a certain time 
instant to give the bound but later gives conservative estimates. More 
research is needed to look into such problems. 

4. Conclusion 

In robust control of systems when a parameter varies over a wide range it 
is nice to get bounds on responses for the parameter variations. The 
applicability of interval-analysis techniques is illustrated through a power- 
system example. For  systems with low damping, some kind of time-window- 
ing technique may be helpful. 
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Figure  4. Ac tua l  r e s p o n s e  o f  x2(t ) nea r  t = 1.92 s. 
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