
1341 

Transaaions on Power Systems, Vol. 7, No. 3, August 1992 

Interval Arithmetic in Power Flow Analysis 

Zian Wang Fernando L. Alvarado 

Student Member Senior Member 

Department of Electrical and Computer Engineering 

T h e  University of Wisconsin-Madison 

Abstract 

The power flow is the fundamental tool for the study of 

power systems. The data for this problem are subject to un- 

certainty. This paper uses interval withmetic to solve the 

power flow problem. Interval arithmetic takes into consider- 

ation the uncertainty of the nodal information, and is able 

to provide strict bounds for the solutions to the problem: 

all possible solutions are included within the bounds given 

by interval arithmetic. Results are compared with those 

obtainable by Monte Carlo simulations and by the use of 

stochastic power flows. Object oriented programming tech- 

niques make it possible to use interval arithmetic with min- 

imal modifications to existing software. However, to reduce 

the conservatism inherent in all interval arithmetic compu- 

tations, the paper describes an iterative method used to 

obtain the “hull” of the solution set. Keywords: Interval 

Arithmetic, Power Flow, Non-linear Systems. 

1 Introduction 

Power Flow analysis has been one of the most funda- 

mental tools used by power engineers over the decades. The 

power flow problem is formulated as a set of precisely known 

nonlinear algebraic equations that must be solved simulta- 

neously. After the solution to these equations is obtained, 

any system voltage or flow can be determined precisely. 

Reality is, of course, different. The models used in power 

flow analysis are only approximations. The parameter val- 

ues used in these models are also uncertain. Two types of 

uncertainty are: 

1. Errors in the calculated or measured parameters of the 

various lines and transformers in the system. 

2. Errors in the magnitude of the demand assumed for 

the system load buses. 

Even if parameter uncertainties were not an issue, the 

power flow problem would be nothing more than a “snap 

shot” of the system at a given instant. Solutions obtained 
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would be valid only for a single specific system configura- 

tion and operating condition. However, the system evolves 

through time. It appears that it would be more reasonable 

to ask not what the system looks like at a given instant, but 

rather to ask for the range of all plausible system conditions 

that might be encountered as a result of expected uncertain- 

ties in demand and other system parameters. Thus, loads 

and other parameters can be characterized not by a single 

number but by a range of values, an interval. 

Study of a system with interval parameters can be a p  

proached by repeated simulations or by interval methods. 

The repeated simulations approach considers many possi- 

ble combinations of the parameter values and uses a Monte 

Carlo approach to the problem, rather than an exhaustive 

search of extreme values, that would require 2K solutions. 

The approach is similar to the approach often used for pro- 

duction costing studies. Nevertheless, Monte Carlo tech- 

niques usually require a large number of cases to attain a 

reasonable estimate of the variables of interest and their 

variance. 

A practical way to reduce the number of simulations re- 

quired is to select a limited number of independent load 

variations. This is often justifiable because loads are often 

correlated. Selection of load correlations is arbitrary and 

depends on the experience of engineers [5]. 

A different approach to the same problem is the use of 

stochastic techniques for the characterization of uncertainty. 

Here, rather than assuming that a parameter can be any- 

where within a precisely restricted interval, it is assumed 

that the parameter varies according to some probability 

distribution. Quite often, the normal distribution is used. 

Since the early 1970s, many papers have been published on 

the subject [1,2,5,6,11,12,13]. The main advantages of the 

stochastic power flow model are: 

1. All power inputs are probabilistic values. 

2. Conventional power flow computations are useable. 

3. Branch flows are obtained as probability distribution 

functions. 

Stochastic power flow models have some shortcomings: 

1. It is hard to deal with the non-linear relation between 

the node loads and branch flows. 

0 

2. The computational requirements are greater than for 

conventional power flows. 
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This paper describes a new method for taking uncertainty 

into account during power flow solutions with uncertain in- 

put data. The method is based on interval arithmetic. Inter- 

val arithmetic is a powerful tool to determine the effects of 

uncertain data. It can deal with numbers that vary within a 

range. Interval arithmetic can also consider, in an automatic 

manner, roundoff error accumulation during numerical com- 

putations. The main objective of this paper is to character- 

ize parameter uncertainty in power flow computations by 

coming up with simple bounds on the solutions that are, in 

some sense, as small as possible. This paper introduces the 

basic concepts of interval arithmetic, and then gives a power 

flow example. Results are compared with those obtainable 

by Monte Carlo simulations and by the use of stochastic 

power flows. 

2 Interval Arithmetic 

An interval number k,Z] is the set of real numbers x 
such that g 5 x 5 p .  Let R denote the set of real numbers. 

Then: 

where E, 5 are elements of R with 2 5 f, and Z is a generic 

element 2 E x.  
Addition, subtraction, multiplication, and division of in- 

tervals are defined as 

Division is not defined if 0 E [g, $1. 
Only some of the algebraic laws valid for real numbers 

remain valid for intervals; other laws only hold in a weaker 

form. Interval addition and multiplication are associative 

and commutative: 

Commutativity: 

a + b  = b + a  

Associativity: 

( a + b ) f c  = a + ( b f c )  

ab = ba 

(ab)c = a(bc) 

Neutral element: 

a + O  = O + a  = a l * a  = a * l = a  

However, the distributive law does not always hold for 

interval arithmetic. For instance, a + 2 = b does not imply 

z = b - a.  As an example, 

An important property, referred to as subdistributivity, 

does hold. It is given by the set inclusion relationship: 

ab It ac _> a * (b f c) ,  ac f bc 2 ( a  f b) * c 

and a subcancellation law also holds 

( a  + c)  - ( b  + c )  2 a - b,  (ablbc) 2 alb  

O c a - a ,  1 E a l a  

Let IR denote the set of real intervals. Define an interval 

as %if 2 = 5. All real numbers z E R can be represented 

as thin intervals. 

The failure of the distributive law often causes overes- 

timation. Nevertheless, the subdistributive law in IR, the 

weak substitute for the distributive law in R, is a useful 
tool, In some special cases, the distributive law remains 

valid. Let a ,  b ,  c,  E IR, then 
a * ( b  f c )  = ab f ac if a is thin 

a * ( b + c )  = a b + a c  if b , c r O  or b , c < O  

a * ( b - c )  = a b - a c  if b > O > c  or b < O < c  
Power flow problems require non-linear equations. Three 

popular iteration operators for the solution of interval non- 

linear equations are the Newton operator [14], the Krawczyk 

operator [IO], and the Hansen-Sengupta operator [8]. The 

most popular one is the Newton operator: 

(1) N(x,  5) := i: - F’(x)-lF(*) 

where i is the midpoint of the interval k, 51, defined as: 

i. := (5 + g)/2 
F’(z)  is the interval Jacobian matrix. For each iteration, 

we need to solve interval linear equations: 

F’(x)Ax = F ( Z )  for A z  

Thus, solution of interval non-linear equations reduces 

(like in the ordinary case) to the solutions of linear equa- 

tion, but using interval arithmetic. However, the solution of 

interval linear equations (which is a t  the heart of the non- 

linear iterative solution) is a very different proposition from 

the solution of ordinary linear equations. For one, the ex- 

act solution set of these equations cannot be characterized 

by an interval vector. The solution set has a very complex 

non-convex structure. Figure 1 illustrates the solution set 

for a two dimensional interval equations. The black region 

in figure 1 is the exact solution set. The solution set cannot 

be characterized as an interval. It is possible, however, to 

find the hull of the solution set, where the hull is defined as 

the smallest interval vector that contains the solution set. 

The hull of the solution is also illustrated in figure 1, where 

[-4,4] * 

the hull of the solution set is: x = 

The hull is indicated by the shaded region. It contains, in 

addition to the entire solution set, many non-solutions. 

The second major difference is that LDU decomposition 

to solve interval linear equations does not usually give the 

hull of the solution set. The hull can be found by either 

explicit inverse of matrices or by iterative methods. 

Solving interval linear equations means to obtain the hull 

of the solution set. There are several methods to solve in- 

terval linear equations. These include: 

(E;) = ([-4,41) 

1. Krawczyk’s method [lo]. 

2. Interval Gauss-Seidel iteration [15]. 

3. LDU Decomposition. 
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(-314) tx2 

N ~1=[ -4 ,4 ]  

Fig. 1: Solution of 2 by 2 interval equations 

LDU decomposition is not the best method to solve lin- 
ear equations because of excessive interval growth. How- 

ever, implementation of interval arithmetic using LDU de- 

composition, if this is desired, can be accomplished with 

little modification to current software for ordinary power 

flows, which in most cases uses ordered LDU factorization. 

The implementation is simple: every operation performed 

by the computer is replaced by an interval operation. This 

can be accomplished in a global manner if object-oriented 

techniques are used: data is defined as an object, then a 

new type of object (an “interval” object) is defined, and 

new arithmetic rules are substituted. While implementa- 

tion following these ideas becomes quite simple, the results 

obtained are normally far too conservative to be of practi- 

cal value. The use of better ordering techniques can reduce 

interval growth, but a basic problem remains. The best 

solution to  the problem of excessive conservatism in linear 

equation solving is to abandon direct methods and use either 

Krawczyk’s method or interval Gauss Seidel iterations. 

The most widely used method to solve interval linear 

equations is Gauss-Seidel iteration. While this may seem 

like a bad idea, the purpose of Gauss-Seidel iterations here 

is not to solve the power flow problem, but to solve the lin- 

ear equations that result from Newton’s method, and to do 

so with as little conservatism as possible. In order to con- 

verge to a solution, this method requires that the matrix be 

an M-matrix. M-matrices are defined as: 

Definition 1 A matrix A i s  an M-matrix if A i k  5 0 for all 

i # k, and Au > 0 for some positive oector U E IR”. 

If the matrix is an M-matrix, the hull of the solution set 

can be guaranteed by the Gauss-Seidel method; if the ma- 

trix is not an M-matrix, the solution may become infinite. 

For general matrices which are not M-matrices, precondi- 

tioning has to be used. Preconditioning [9] means multi- 

plication of both sides of the equation by a preconditioning 

matrix. Using preconditioning, some matrices which are not 

M-matrices may become M-matrices. 

’ *  

2 

3 

Fig. 2: A 5-bus power system 

To summarize, solving the power flow problem using in- 

terval arithmetic can be done by first linearizing the problem 

(as in the ordinary arithmetic power flow case). However, 

the resulting linear equations must be solved by a Gauss- 

Seidel iterative process instead of by direct LDU factoriza- 

tion. The solution obtained is conservative in that it con- 

tains all solution points, but may contain non-solutions as 

well. This limitation is not an algorithmic. limitation, but 

rather a fundamental limitations of attempting to express 

solutions as simple intervals when in reality they are not. 

3 Power Flow Application: An Example 

The standard interval power flow equations can be ex- 

pressed as: 

Y = f(x) 

z =  g(x) 

where f and g are functions and y, x and z are interval 

vectors: 

y = real and reactive power injections (inputs) 

x = voltage magnitudes and angles (states) 

z = line power flows (outputs) 

A 5-bus example from [3] is shown in figure 2. The system 

is assumed to operate a t  normal conditions but all power 

demands may vary within certain ranges rather than have 

precise values. The problem is to find the interval values of 

the power flow. 

This section compares three different approaches to the 

characterization of uncertainty in power systems: stochastic 

power flows, interval arithmetic methods and Monte Carlo 

simulation. The objective is to characterize the uncertainty 

in line flows. 

Each method requires slightly different assumptions. The 

basic assumption is that demands at buses are uncertain 

over a given interval. In the interval power flow, these in- 

tervals can be used directly. The line flows obtained will, 
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however, be conservative. In the stochastic power flow ap- 

proach, the intervals must be characterized as a probability 

distribution. If the intervals are treated as a uniform ptoba- 

bility distribution, the mean and variance of the distribution 

can be calculated, and the uniform distribution can be re- 

placed by a normal distribution of the same mean and vari- 

ance. This means that the results will be slightly different, 

in that it is possible for the solution to have some values out- 

side those predicted by the more strict bounds from inter- 

val arithmetic. Finally, the Monte Carlo approach requires 

an assumption as to the probability distribution of demand 

values within the interval. A uniform probability density 

function over the entire interval is assumed. Thus, Monte 

Carlo simulations should always be within the predictions 

of interval methods. 

load [1.15,1.2] [0.6,0.65] 

load [0.8,0.85] [0.3,0.35] 

gen [1.15,1.2] 1.020 

load ~1.0.1.051 r0.4.0.451 

3.1 Stochastic Power Flows 

There are several stochastic power flow methods: Sim- 

ple Algorithms [I, 5, 61, Multilinearization Algorithms [2], 
Correlation between Inputs [ll, 131. This paper compares 

results using the algorithm of [6], but similar results are ex- 

pected from any of the others. Table 1 gives the input vec- 

tor y, the injected real and reactive power interval for all 

the buses. In order to use stochastic power flows, a normal 

probability distribution is needed. First, assume that the 

intervals in Table 1 characterize uniform probability den- 

sity fuhctions. The mean value and the variance for these 

can be computed from [7]: 

1 
U', = i#ij - yI2 

Using the mean values of y (i.e. real and reactive power 

injection), the mean values of the state variables can be 

computed using conventional power flow methods. After 

this is done, the variances of state variables and branch load 

flows can be calculated using the formulas from [6]: 

0: = diag(J'V-'J)-' 

a: = diag(K(J'V-'J)"K') 

where J is the Jacobian of the load flow equations, V is a 

diagonal matrix of variances of injected power, and K is the 

first order matrix from the Taylor series expansion of g(x). 

To perform a meaningful comparison against interval 

methods, the solution results are characterized as an interval 

of f 3 a  around the mean. That is: 

- I = i - 3a2, i = i + 3a, 
Numerical results are shown in the Table 2 for all vari- 

ables. Figure 3 illustrates the resulting assumed normal 

probability distribution computed for one of the lines, line 

2-1. Figure 4 illustrates the same results as Table 2. This 
figure shows that the conservatism introduced by interval 

methods on the state variables is modest. However, the 

conservatism on derived variables (flows, which depend on 

differences of state variables) is much greater. 

Fig. 3: Comparison of P21 flow. Bell-shaped curve is from 

stochastic power flows, stepwise distribution is obtained 

from 1000 Monte-Carlo simulations, and shaded area is the 

hull of the solution using interval methods. 

Table I: Base Values of the 5-bus Power System 

BuslTypel P I Q I V  
I I ref I 11.040 

3.2 Interval Method 

This subsection uses interval arithmetic to solve this same 

power flow problem with interval input data. To solve in- 

terval non-linear equations, the Newton operator is used. 

For each iteration, the Gauss-Seidel Method is used to solve 

the interval linear equations. Experience using a variety of 

iteration schemes with several linear solvers suggests that 

the ideal combination of methods is the Newton operator 

for the non-linear interactions and the Gauss-Seidel itera- 

tion procedure for the required interval linear solver. Table 

2 shows the results of interval state variables and interval 

power values. If the range of interval values is too large (for 

example, P3 = [1.0,2.0]), the results do not converge. The 

interval Jacobian matrix cannot be converted into an M- 
matrix even after preconditioning. The Appendix contains 

details of the interval iterative process for two simple well 

behaved examples. 

3.3 M o n t e  Carlo 

The third method used to validate the power flow results 

with uncertain data is Monte Carlo simulation. For this 

simulation, 1000 different values of power injections within 

the intervals given in Table 1 were selected and conventional 

power flow simulations were performed. Interval solutions 

were obtained by monitoring the largest and the smallest 

values of line flows obtained during all 1000 simulations. 

Table 2 shows that all the values are within the range pre- 

dicted by the interval method. 
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Table 2: Comparison of Solutions using Interval Methods, 

Monte Carlo Simulations, and Stochastic Power Flows 
M interval 

=_Monte carlo 

I I 

f a )  State Variables. 

= Monte carlo 

s tochast lc  

(b) Active Power Flows. 

interval 

Monte carlo 

s tochast ic  

(c) Reactive Power Flows. 

Fig. 4: Illustration of relative uncertainty intervals. All 

intervals within each figure use the same vertical scale. The 

centers of all intervals have been aligned. 

3.4 Comparison of Methods 

Since the methods differ in some fundamental ways, an 

exact direct comparison of computational requirements is 

not possible. Each method has some strengths and some 

limitations. In our own experiments, the implementations 

were rather different in nature. The interval arithmetic 

implementation was done using an object oriented version 

of the Sparse Matrix Manipulation System [4], the Monte 

Carlo approach used a conventional power flow, and the 

Stochastic Power Flow was done with some help from Mat- 

Lab. However, some features did emerge. We were able 

to collect statistics on numbers of multiplications. Based on 

these, the Monte Carlo approach is hundreds of times slower 

than the other two methods. The stochastic power flow was 

I I  Interval I Monte Carlo I Stochastic I 

comparable to the interval arithmetic method. The inter- 

val arithmetic method did not take particular advantage of 

many known computational shortcuts available to interval 

computations. Convergence to the hull was extremely rapid 

(one or two iterations). 

Another relevant point of comparison is how the methods 

behave as the size of the intervals increase. Figure 5 illus- 

trates the behavior of the ratio in the uncertainty interval 

for the methods. It illustrates that, as the uncertainty inter- 

vals grow, the behavior of both stochastic power flows and 

Monte-Carlo methods stays constant. However, the degree 

of conservatism introduced by interval methods worsens as 

the interval sizes increase. 

O S ]  

3 3  I wid. of input 

Fig. 5: Ratio of interval widths as a function of uncertainty 

in the input. The conservatism introduced by interval meth- 

ods worsens as data uncertainty increases. 

3 0 0  002 004 006 008 013  

We have not yet performed extensive tests of specific com- 

parative power flow studies in these larger systems. The 

computational requirements per iteration for interval meth- 

ods scale with system size in the same manner as ordinary 

%rst neighbor” sparse matrix methods do, with the advan- 
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Size 118 352 707 1084 

Interval multiplications 7616 19168 42320 66384 

Table 3: Multiplications vs. system size for the solution 

of linear equations. Top row is number of multiplications 

required for interval solution, assuming 4 iterations to refine 

the hull. Bottom row are multiplications using ordinary 

LDU factorization (scheme 2 ordering). 

1993 

138384 

Ordinary LDU solution 1178 2788 

tage that fill-in does not play a role. Extra arithmetic is 

required for every interval elementary operation, but this 

represents a constant factor. Also, an added burden is due 

to the preconditioning of the matrix, particularly as the in- 

tervals become larger. The number of iterations is more a 

function of how wide the intervals are, which is related to 

whether the matrix is an M-matrix. For small intervals (the 

usual case), convergence is not an issue even in large sys- 

tems. As the intervals become large, the Jacobian ceases 

to be an M-matrix and convergence suffers. Further exper- 

imentation is needed to determine the exact properties of 

these matrices in large systems. 

In place of tests on larger power flow cases, we offer com- 

parative tests on the growth in the number of multiplications 

per iteration when solving well conditioned large interval lin- 

ear problems. Table 3 illustrates the number of multiplica- 

tions required to perform a single linear solve using interval 

arithmetic assuming that four iterations are sufficient. The 

interval solution multiplications are compared with the solu- 

tion of linear equations with the same topology using LDU 

factorization and ordinary arithmetic. The assumption of 

four iterations to solve a linear interval problem may not 

always be valid. At this time we lack sufficent experience to 

generalize this result. However, preliminary indications are 

that in many cases it is sufficient. Because these linear cases 

are assumed to be well behaved, pre-conditioning overhead 

has not been considered. 

8351 11626 26293 

Conclusions 

Interval method can deal with uncertain input data in 

power flow problems. If input data vary within relatively 

small ranges, good results that contain all possible solu- 

tions are obtained. The proposed method has been validated 

against Monte Carlo simulations and stochastic power flow 

results. Interval methods have proven computationally su- 

perior to Monte Carlo simulations and in some cases compa- 

rable to Stochastic Power Flows, although somewhat more 

conservative. The ability of interval methods to automati- 

cally consider numerical roundoff is a welcome side benefit 

of interval methods. Interval methods are compatible with 

sparsity preservation provided algorithms are chosen with 

care. Although interval methods cannot be recommended 

for general use at this time, they offer enough intriguing 

features to warrant further consideration. 

Acknowledgement 

This work was supported by NSF under contracts ECS- 
8822654 and ECS-8907391. 

REFERENCES 

Allan, R. N., A. M. Leite da Silva, and R. C. Burchett, 
“Evaluation Methods and Accuracy in Probabilistic Load 
Flow Solutions,” IEEE Trans. on PAS, Vol. PAS-100, No. 
5, pp. 2539-2546, May 1981. 

Allan, R. N., and A. M. Leite da Silva, I‘ Probabilistic Load 
Flow Using Multilinearizations,” IEE PTOC., Vol. 128, Pt. C, 
No. 5, pp. 280-287, Sept. 1981. 

Alvarado, F. L., and T. H. J u g ,  “Direct Detection of Volt- 
age Collapse Conditions,” EPRI Report EL-6183, pp. 5.23- 
5.38, Jan. 1989. 

Alvarado, F. L., “Manipulation and Visualization of Sparse 
Matrices,” ORSA Journal on Computing, Vol. 2, No. 2, pp. 
186-207, Spring 1990. 

Borkowska, B., “Probabilistic Load Flow,” IEEE Trans. on 
PAS, Vol. PAS-93, No. 3, pp. 752-755, MayJJune 1974. 

Dopazo, J. F., 0. A. Klitin, and A. M. Sasson, “Stochastic 
Load Flow,” IEEE Trans. on PAS, Vol. PAS-94, No. 2, pp. 
299-309, MarchJApr. 1975. 

[7] Cooper, G. R., and C. D. McGillem, Probabilistic Methods 
of Signal and System Analysis, Holt, Rinehart and Winston, 
Inc. 1971. 

[8] Hansen, E. and S. Sengupta, “Bounding Solutions of Sys- 
tems of Equations Using Interval Analysis,” BIT Vol. 21, 
pp. 203-211 1981. 

[9] Hansen, E. and R. Smith, “Interval Arithmetic in Matrix 
Computations, Part 11,” SIAM Journal of Numerical Anal- 
ysis, 4, 1967, pp. 1-9. 

[lo] Krawczyk, R., “Newton-Algorithmen zur Bestimmung von 
Nullstellen mit Fehlerschranken,” Computing Vol. 4, 1969, 

[ll) Leite da Silva, A. M., V. L. Arienti, and R. N. Allan, “Prob- 
abilistic Load Flow Considering Dependence Between Input 
Nodal Powers,” ZEEE Trans. on PAS, Vol. PAS-103, No. 6, 
pp. 1524-1530, June 1984. 

[12] Leite da Silva, A. M., “Probabilistic Techniques in Load 
Flow Problems,” IEEE International Symposium on Cir- 
cuits and Systems, Vol. 1, pp. 381-384,1984. 

(131 Meliopoulos, S., G. J. Cokkjnides and X. Y. Chao, “A New 
Probabilistic Power Flow Analysis Method,” IEEE Trans- 
actions on Power Systems, Vol. 5, No. 1, pp. 182-190, Feb. 
1990. 

[14] Moore, R. E., “Interval Analysis.” PTentice-Hall, Engle 
wood Cliffs, N. J. 1966. 

[15] Ris, F. N., “Interval Analysis and Applications to Linear 
Algebra,” D. Phil. Thesis, Oxford, 1972. 

pp. 187-201. 

Appendix: Simple Interval Equations 

This appendix describes by means of two simple examples 

some of the details of interval solutions. Consider first the 

solution of the equation illustrated in figure 6: 

We seek a solution in the interval xo = [ 0 , 6 ] .  This inter- 

The symbolic interval Jacobian (a scalar, in this case) is: 

val is illustrated as interval a. 

J =  %2++[1,3]  
dx 

Select a specific point Z E z within the interval: 

i: = mid(x) = [3,3] (A.3) 
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k ig. 6: A scalar noiihiiear interval eqiiatrori 

Evaluate the function y at this point 2:  

y(5) = ([3, 3D2 + [I, 31 * [3,31 - [7,91 

= [3,11] 

Evaluate the Jacobian: 

J ( Z )  = [7,9] 

Solve the interval linear equation: 

[7,9] AX = [3,11] 

Because we are dealing with a single equation, simple 

interval division yields the hull of the solution (which in 

this case it is the entire solution set): 

Az = [0.333,1.571] 

Interval subtraction of Az from i and intersection with 

the initial guess interval x yields the new guess: 

z1 = ( i - A z ) n z O  

= [1.429,2.667] 

This interval is illustrated as b in figure 6. 

We determine a new mid-point ([2.048,2.048]) and repeat 

the computation. Our next interval is: 

z2 = [1.428,2.589] 

which is illustrated in as interval c in figure 6. 

the interval equations be: 

The second example illustrates a set of equations. Let 

€1 = 2' + y2 - [3,5] = 0 

€2 = z2 + [8, lO]y' - 9 = 0 

These equations are illustrated in figure 7. The symbolic 

interval jacobian for these equations is: 

J = [  [2,21z [2,21Y ] 
[2,21 c [16,201 Y 

Assume an initial guess zo = [[0.5,3], [0.4,2]]', illustrated 

as region a in figure 7. Using the mid-point [?,$I for this 

region, we obtain the linear equations: 

. . e -  

i'ig. 7: Solution of two interval nonlinear equations by New- 

ton's method. The linear equations are solved by interval 

Gauss-Seidel. 

These linear interval equations are solved by interval 

Gauss-Seidel iteration. The result converges to a solution. 

When this solution is subtracted from the initial mid-point 

vector [Z, 51, the result is: 

1 [0.247,2.247] [::I=[ [-0.44,1.136] 

This vector is illustrated as region b in figure 7. A por- 

tion of this region is outside the assumed region. Intersect 

this region with the original one and proceed. The Gauss- 

Seidel iterations to solve the linear equations continue until 

convergence (3 iterations). Convergence yields: 

1 [0.787,2.247] 

[0.400,1.095] 

This region is illustrated as c in figure 7. The process 

is repeated by re-linearizing the equations and resolving. 

After 3 additional Newton steps: 

I [1.500,2.128] [::I=[ [0.701,0.866] 

This region is illustrated as d, and corresponds to the hull 

of the solution. 
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Discussion 

A. P. Sakis Meliopoulos and F. Xia: The authors should be com- 
mended for introducing interval arithmetic in power flow analysis 
which can take into consideration the uncertainty of the bus injections 
and provide the range of the solution vector. The concept of the 
proposed method is excellent. Many times there is uncertainty in the 
input data which can not be quantified with a specific distribution 
function. In these cases representing the uncertainty with an interval 
is a practical approach. The results of this approach can be character- 
ized as ‘negative’ in the sense that interval arithmetic exaggerates the 
uncertainty. However the value of the paper is high because it delin- 
eates the limitations of interval arithmetic. 

The application of interval arithmetic to the power flow problem as 
proposed in the paper assumes total independence among the power 
injections. This is not true in real life. We believe that a better model 
will be to assume some kind of correlation among the power injec- 
tions. One suggested approach is to model the power injections with a 
small number of variables as follows: 

P = Po + P I U l  + P2uz + . . . + P,., ( 1 )  

where 

P is the vector of uncertainty in power injections 
U are a set of variables 
m is the number of variables U (small) 

This model will be a variation of the model proposed in [l]. The 
variables U can be assumed to be independent variables representing 
the uncertainty interval. The gained advantage of this model is that 
now only a small number of variables are to be dealt with. 

In dealing with uncertainty in power flow solutions one seek to 
compute the distribution of some output quantities (i.e. circuit flow, 
bus voltage magnitude, etc). It appears to us that the authors in their 
application of interval arithmetic, first compute the ‘hull’ of the 
solution set (state vector) and then proceed to compute the uncer- 
tainty of output quantities. What will be the computational ramifica- 
tions and the quality of the results if first a linearized expression of 
output quantities is developed and subsequently interval arithmetic is 
applied to this expression? We would expect that this approach will 
provide better results because the uncertainty will not be exaggerated 
as much as in the proposed approach. Coupled with an efficient 
linearization procedure the approach may be also practical. 

Another question is as follows. Assume that the uncertainty is 
represented with a uniform distribution over an interval. Then the 
computational procedure may be identical to the one proposed in the 
paper with the exception that the interval arithmetic is replaced with 
convolutions. One can argue that the results of this approach will be 
realistic but the computational requirements may be higher than those 
of interval arithmetic. Can the authors comment on the comparative 
merits of these two approaches? 
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Vladimiro Miranda (Inesc, Portugal): The authors describe a new 
method for taking uncertainty into account during power flow solu- 
tions with uncertain input data, based on interval arithmetic. 

However, interval operations can be seen as only a special case of 
fuzzy set operations, each interval being represented by a membership 
function of constant value 1 between its bounds and 0 outside. 

If one has complete knowledge on some piece of evidence, then the 
right numeric representation is a certain or deterministic number. If 
the knowledge is not complete, but one knows that there is a frame of 
repetition of events, with fixed laws (though not explicit) governing it, 
one can and should represent information by random members, which 
come associated with probability distributions. However, if these con- 
ditions are not met, but one still has qualitative (or other) information 
on the phenomena to be represented, fuzzy set representation should 

be used-or fuzzy numbers, which come associated with possibility 
distributions. 

Fuzzy set modelling of power system data where uncertainties are 
not of probabilistic type has been done and published since 1989. A 
list of references is included at the end of this discussion. Models vary 
from fuzzy load curve modelling to fuzzy power flow analysis, fuzzy 
dispatch, fuzzy risk analysis, fuzzy reliability studies and fuzzy opti- 
mization. 

Therefore, we feel that a different focus should have been given to 
the paper. Interval arithmetic is not the adequate way of modelling 
uncertainties, but certainly is a necessary tool to deal with fuzzy 
number operations, when parameterized with a-cut concepts. 

We disagree with comparisons of results to any stochastic model, for 
the following reasons: 

a) A new technique should be carefully explained to people that are 
not used to it. 

b) People used to probabilistic methods tend to think at first that 
someone is trying to replace their well known and faithful tool by 
another thing. 

c) Results are not comparable because the underlying assumptions on 
the information one has are v “ y  different-one is quantitative, 
though random, the other is qualitative. 

d) Probabilistic and possibilistic are not competing but cooperative 
approaches, and both should be used in Power System modelling. 

These are some of the reasons why we feel that this paper does not 
have its pedagogic value as high as it could have. In any case, the 
authors should be congratulated for addressing the problem of non 
probabilistic uncertainties representation, and encouraged in their 
interval arithmetic application research, in order to provide tools for 
the manipulation of power system models based on the fuzzy set 
theory. 
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F. ALVARADO and Z. WAIJG (The University of Wisconsin, 
Madison, WI): We thank the discussers for their valuable 
comments. In response to t,ie Dr. Meliopoulos and Mr. Xia, 
we agree that it. is indezd appropriate to assume that 
demand uncertainties are correlated variables, perhaps 
with as little as a single degree of freedom [Cl]. If this is 
done and if in addition only uncertainties associated with 
injections are considered, i t  becomes possible to “defer” the 
use of interval methods until after analytic expressions for 
desired quantities are obtainsd. This greatly reduces the 
conservatism introduccd by interval methods and may, in 
fact, be the “right” way to introduce interval uncertainty 
into the models of interest. 
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with stochastic models should not be made. We agree that 
there i s  a fundamental difference between possibilistic 
approaches and probabilistic ones. We also agree that both 
approaches are cooperative rather than competing, and 
that the type of information that one gets is very different. 
We do not agree, however, that a parallel should not be 
attempted. In fact, a properly done comparison of the two 
approaches can be very enlightening [C2]. In some cases 
the probabilistic point of view is more appropriate, while 

in others the interval and/or possibilistic (fuzzy) point of 
view leads to a more natural interpretation of results. 

[Cl] F. Alvarado. Y. Hu, D. Ray, R. Stevenson, E. Cashman 
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Arithmetic," Van Nosrand Reinhold Co., 1985. 
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As an alternative to interval methods, these discussers 
propose the use of uniforri probability distributions. We 
have explored the relationship of uniform distributions 
and intervals in [C2]: Problems associated with 
nonlinearities become difficult to  handle when using 
uniform distributions: distributions quickly become non- 
uniform. In fact, they often (but not always) become 
approximately gau'ssian. A better approach may be to 
either work with general distributions all along. or to 
come up with procedures for approximatcly converting 
intervals into distributions a-posteriori. All these topics 
required further exploration. 

In response to the comments by Dr. Miranda. one can say 
that either interval methods are a special case of fuzzy set 
methods, or that fuzzy set methods are a generalization of 
interval methods, depending on the perspective one 
wishes to have. As pointed out by the discusser and by 
most references on fuzzy a r i r h m e r i c ,  regardless of the 
point of view interval methods are usually an essential 
part of the fuzzy arithmetic computational process: at any 

desired a-cut level one deals with intervals [C2,C3]. And, in 
spite of the fuzzy nature J f  a problem characterization, 
one must assumc a specific possibilistic distribution before 
computations can proceed. 

The other point made by Dr. Miranda is that comparisons 
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