
Computer Graphics, 26,2, July 1992

Interval Arithmetic and Recursive Subdivision for

Implicit Functions and Constructive Solid Geometry

Tom Duff+

AT& T Bell Luboru!orie.s

600 Mountuin A l,enue

Murray Hill, Ne~ .lersey 07974

Abstract

Recursive subdivision using interval arithmetic allows us

to render CSG combinations of implicit function surfaces with or

without anti -aliasing, Related algorithms will solve the collision

detection problem for dynamic simulation, and allow us to

compute mass. center of gravity, angular moments and other

integral properties required for Newtonian dynamics.

Our hidden surface algorithms run in ‘constant time.’

Their running times are nearly independent of the number of

primitives in a scene, for scenes in which the visible details are

not much smaller than the pixels. The collision detection and

integration algorithms are utterly robust — collisions are never

missed due 10 numerical error and we can provide guaranteed

bounds on the values of integrals.

CR Categories and Subject Descriptors: G. 1.0 [Numerical

Analysis] Numerical Algorithms 1.3.3 [Picture and Image

Generation] Display algorithms, Viewing algorithms, 1.3.5

[Computational Geometry and Object Modeling] Curve, surface,

solid and object representations, 1.3,5 [Computational Geometry

and Object Modeling] Hierarchy and geometric transformations.

1.3.7 [Three-Dimensional Graphics and Realism] Visible

line/surface algorithms, Animation

General Terms: Algorithms

Additional Keywords and Phrases: anti-aliasing, compositing,

computer-aided animation, recursive subdivision, image

synthesis, dynamic simulation, collision detection

1. Introduction

The most commonly-used geometric representations in

computer graphics are local. Polygonal models, for example,

specify which points are on an object’s surface, and tell us

nothing substantial about the rest of tbe space in which the object

is embedded. except by omission. It requires substantial mental

effort to formulate answers tp questions like ‘‘Do these objects

intersect’?’”, or “What parts of this object are visible?”’ or even

something as simple as ‘+What is the volume of this object?”.

More elaborate surface representations. like Bezier patches or

NURBS don’t make these questions any easier—since they only

describe tbe objects locally, they make it difficult to answer

global questions about them.

Likewise, the computational methods we normally use are

mostly local. The ray-tracing algorithm, for example. tries to

*Phone (908) 582-6485, email td@research. att .com

Permission to copy wllhout fee fill or pwt of this materml n gmmeci

provded thw the coptes me not made nr distributed for direc(

commercial advantage. the ACM copyright notice and the title of the

publication and It. date appear. and notice is given that copying IS by

~rmiwion nf the Association for Computing Machinery. To copy

ntherwise. or to republisb, requmesa fee and/or specific Permission.

compute an image one pixel at a time by testing every primitive in

the scene for intersection with a ray from the eye-point through

the pixel’s center. Of course any decent ray-tracer goes to a lot of

trouble to avoid most of this work. But an algorithm that had

decent access to global information about the scene wouldn’t need

go to the trouble—it would know immediately what parts of the

scene were relevant to what parts of the screen,

A good example of a global representation is the BSP tree

[11]. Each node of a BSP tree gives useful information about the

object’s relationship to the whole of the space it’s embedded in.

The nodes effectively say about their subtrees, “in this half of

space, you need only think about this half of the model. ” BSP

trees naturally engender simple algorithms for all sorts of

geometric tasks, from hidden surface removal to object

intersection [231 to shadow generation [6], Ihat make natural,

effective use of the global information stored in the model.

This paper will examine in detail another global object

representation and its algorithms, based on implicit functions,

Constructive Solid Geometry and interval arithmetic.

Briefly, implicit functions are test functions for classifying

points in space as inside, on or outside an object. Interval

arithmetic allows us to extend those tests to whole chunks of

space at once. Constructive Solid Geometry allows us to combine

simpler objects, keep unwieldy primitives (like infinite cylinders)

under control and model many important industrial and natural

processes that go into creating geometric forms.

2. Implicit Functions

Implicit functions are an indirect representation of solid

objects. Given a function of three variables F(.x,y,:), we can use

the equation F(.t, y,T) =0 to specify the points on a surface. The

representable surfaces range from the mundane to the exotic: from

planes (at + by + t: + d = ()) and quadrics—the spheres, cones

cylinders and paraboloids of elementary geomett—-to more

exotic polynomial surfaces like those of Kummer and Dupin [1()]

to Barr’s downright weird twisted, bent and tapered super-

ellipsoids 141.

If F is continuous, we can classify points as inside, on or

outside the object depending on whether F’<O, F = O or F > ().

This is the global property we are after: F classifies every point

in space in its relationship to the surface. In regions of space not

crossed by the surface, the fact that F’s sign does not change is a

source of coherence useful in hidden-surface and other geometric

algorithms that can be exploited by using interval arithmetic m

quickly obtain bounds on F(i ,Y,U) for whole ranges of t, y and :.

3. Interval Arithmetic

Interval arithmetic [16) generalizes ordinary arithmetic to

closed, bounded ranges of real numbm. If X and ~ arc real

numbers with XS~, then X is an interval—

x=[~,x]= {.[rl~<.r<i}

ACM-O-89791-479- tW2KM)7K)l31 $0150 131

SIGGRAPH ’92 Chicago, July 26-31, 1992

The natural interval extensions of the elementary operations of

arithmetic are

x+ Y=[g+~,x+i]

x–Y=[~-i,I-~]

XxY = [min(XY,~7,i~,I~) ,max(XY,X7,1~,XF)]
-(1)

—— ——.

X/Y=[11~,11~], but undefined if ~SO<~

These definitions give tight bounds on the range of the

corresponding real functions with arguments chosen in the given

intervals. In particular, for degenerate intervals like [a,a],

interval arithmetic reproduces ordinary arithmetic. We can use

these rules to compute bounds on the value of a rational

expression F(.r,y,z) inside any box (X, Y,Z).

Unfortunately, the achievable bounds on general arithmetic

expressions are not as tight as on the arithmetic operators. For

example, .r~~ [0,1] when .r= [– 1,1], but, by (l), XXX=[- 1,1].

Generally, for intervals X, Y,Z,

[F(.,”,y,:)l.rG x, J’GY,zEztcF(x,Y,z)

but we cannot replace ~ by = except in special circumstances.

A second source of looseness is that when using finite

precision floating-point arithmetic, we must be sure to round the

upper and lower bounds in the appropriate directions. Doing this
is not the practical problem that it used to be — machines

claiming to do IEEE arithmetic [12] are required to provide

control of the rounding direction of floating-point calculations. If

instead you use improperly-rounded interval arithmetic, the errors

introduced will not often be noticeable. Of course, such an

implementation voids the warranty of robustness.

Any F(X, Y,Z) composed using the rules (1) above is an

inren’al e.rterrsiorr of the corresponding real function. That is,

~([.r,-~1 ,[.Y,.vI ,[u, T])= [F(.~,.v, =) ,F(.\-,y, z)]. Furthermore, F is
inclusion monotonic, That is, if X’ =X, Y’GY and Z’ ~Z, then

F(X’, Y’,Z’)GF(X, Y,Z). Moore [16] is a good general

introduction to interval methods, and discusses these properties

and their implications in detail. For purposes of this paper, it is

sufficient that if .r~ X, y= Y and c= Z that F(x,y, z) E F’(X, Y,Z).

This is true for every inclusion monotonic interval extension of

F(.r,y,:).

We can easily construct interval extensions of most

standard transcendental functions. For monotonic functions like

e’, In x, L, we have F(X)= [F(~), F’(~)], or if F(x) is

monotone decreasing, F(X) = [F(i) ,F(X)]. Continuous func-

tions that have maxima and minima in krr~wn places, like sin and

COS, can be handled by taking the union of their values over

monotonic pieces. For example

1

[~’’, i”] n odd or X>O—

x“ = [x’’, ~”] n even and ~SO

[O,max(-~,~)”] n even and ~<0<~

These interval extensions all give tight bounds on the underlying

transcendental functions, and expressions involving them yield

inclusion monotonic interval extensions of the underlying real

expressions.

If ~(X, Y,Z) <0, we know that all points (.v,Y,z) with

X= X, -vE Y and ze Z are located inside the implicit function

surface F’, and if F(X, Y,Z) >0 they are all outside. If

F(X, Y,Z) sOS~(X, Y,~), we can guess that the surface might

~ntersect the cell (we cannot be sure unless we know that the

bounds we’ve computed are tight) and that it deserves closer

examination.

132

4. Constructive Solid Geometry

A powerful and natural tool for taming implicit functions

and building useful geometric models from them is Constructive

Solid Geometry (CSG). Since implicit functions describe

volumes as point-sets, we can use them as primitives and build

more complicated models using set-theoretic union, intersection,

complement and difference operators. The union and set-

difference operators can model the most important ways that

people build real objects. Milling machines, saws, drills, routers

and chisels are all (restricted) set-difference engines. Glue, nails,

soldering irons and Velcro are set-union agents—in the world of

real solids, all unions are of disjoint sets. Set intersection allows

us to focus attention on interesting or useful local features of

implicit functions that may extend to infinity or otherwise behave

wildly at a distance.

In general, we will represent an object or scene as a tree

with implicit functions at its leaves and CSG operators at its

interior nodes. We will assume that the only oper?tors in the tree

are union (SUT) and intersection (.Sn T). Set difference (.$– T)

and complement (-S) operators can be eliminated by repeatedly

applying the rules

S–T~Sn~T

~(SUT)+-ISn-T

-fsn~)+=su=~

-F+ – F, where F is a leaf function

The first rule converts set differences into intersections. The

second two (deMorgan’s laws) push complement operators

toward the leaves. The third absorbs complement operators into

the leaf functions.

5. Rendering

Suppose we wish to make shaded images of a scene

described as a CSG combination of implicit-function primitives.

For simplicity, we will make an image by parallel projection in

the z direction into the A-Yplane. (Perspective is a simple

extension — we can either incorporate the viewing transfomnation

directly into the CSG tree’s leaf functions or decorate the CSG

tree with transformation matrices and transform coordinates as we

walk the tree.)

We are given a CSG tree and a rectangular viewing

volume described by three intervals (X, Y,Z). For each leaf of the

tree, we can do an interval computation to bound the value of the

leaf’s function in the viewing cell. If the upper bound is negative

or the lower bound is positive, we can replace the leaf by the

empty set @ or its complement U and simplify the tree by

repeatedly applying the rules

Ons+O, uns+s

Ous+s, iws+u

Now we can divide the viewing cell into 8 pieces by dividing X, Y

and Z at their midpoints and repeat this procedure recursively. At

each level of subdivision, replacement of primitives by constants

will further reduce the CSG tree—if we are lucky, the whole tree

will reduce to a constant, in which case we need consider the cell

no further, since it contains no surface. (We should always keep

in mind that the reduced CSG trees are valid only within the

corresponding cells.) Subdivision terminates when the bases of

the cells are pixel-sized, at which point the reduced CSG tree

should be very small—t ypically only the one or two primitives

contributing to the image at the pixel.

At each level of subdivision we should first examine the

sub-cells closest to the viewpoint and use a quad-tree or some

equivalent data structure to keep track of which pixels are

computer Gratshics, 26, 2, JUIV1992

completely covered, allowing us easily to avoid examining more

distant cells that will contribute nothing to the image. (This

algorithm follows directly from the ~vde algorithm, described by

Woodwark and Quinlan [25]. They use a similar subdivision

scheme, but for CSG models whose only primitives are planar

half-spaces. for which they need not resort to interval arithmetic

to classify cells.)

The total expenditure required to sample the surface is

nearly independent of the number of primitives in the model.

This obviously cannot be true in the limit. Let us call a model

‘‘realistic” if by-and-large no more than a few primitive surfaces

cross each pixel. (On a 1000x 1000 screen, a modeI can have

several million (small) primitives and still satisfy this

requirement.) For realistic models, small cells will by-and-large

contain reduced CSG trees with only a few nodes. Large cells,

containing more complex trees, are much fewer in number —

depending on how many cells are culled by the coverage quad-

tree, there are between three and seven times as many pixel-sized

cells as there are cells of all other sizes combined. The great

majority of the computation occurs in small cells, in which the

size of the reduced CSG trees does not strongly depend on the

complexity of the original model,

When we have subdivided to the pixel level, we can

sample the image using ordinary ray-casting methods, We

substitute the ray’s parametric equation (.r,y,:) = A + a(B – A),

where A and B are appropriate points on the near and far planes of

the subdivided cell. into each primitive of the reduced CSG tree

and find all values of a where the primitives go to zero. We

discard values of ct for which the corresponding point is outside

the object. as determined by substituting point coordinates into

the leaves and evaluating the CSG operators. The smallest

remaining a, if any, denotes the visible point on the surface,

Papers by Amanatides and Mitchell ([14], [15], [I]) answer in

much more detail questions that may arise in implementing this

sort of ray-casting procedure.

6. Anti-aliasing

If point-sampling dissatisfies you (as it ought to!) then

interval arithmetic can help do better. If we ignore for now the

problems of highlight and texture aliasing (see [7], among

numerous others, for apposite approaches to these aspects of the

problem), then the anti-aliasing question hinges on identifying

silhouette edges of primitives and intersection edges of CSG

combinations,

Ideally, we would compute in their entirety the visible

portions of all significant edges and use an exact convolution

method like that of [9] to compute an anti-aliased image. As this

appears to be too much to hope for, we must satisfy ourselves

with a careful treatment of the simple cases that affect most

pixels, approximating the rest as well as we can afford. (For

simplicity, we will assume that we are using a box filter to sample

the image although that is by no means a limitation of the

method-see [9] for more relevant discussion. That is, we

compute pixel values by integrating the scene’s intensity across

pixel-sized squares.)

As above, we will subdivide the viewing volume, reducing

CSG trees as we go. When we reach pixel resolution, we will

concentrate our best attention on cells that are completely covered

by one primitive (figure 1a) or are crossed by a single visible

edge. This edge will be either the silhouette edge of a tree with a

single leaf (figure Ib) or an intersection edge in a two-leaf tree

(figure It). We will treat more complicated situations (figure ld)

by subdividing the pixel, hoping to find a simpler situation in the

subpixels and giving up when their contribution to the image is

tiny.

Suppose that each implicit function F at the leaves of our

CSG tree has continuous partial derivatives. The silhouette of the

surface F = O is precisely those points at which dF/dz = O. So, let

us use interval arithmetic 10 evaluate dF/dz in our pixel-sized

cell, calling the result S. If 0< S, the surface has no edge inside

the cell. It may, however, protrude through the cell’s front or

back surface (figure Ie), giving a spurious edge crossing the pixel

where the surface is clipped. An interval computation can alert us

to this possibility, If O= F(X, Y,[~,~]) then F may pass through

the far surface of the cell (X, Y,Z). Whenever we come to process

a cell that contains such a surface, we save the CSG tree and the

cell coordinates and defer processing the cell. When later we

return to the cell behind it, we can merge the two cells and their

trees before processing them, (Of course, if the CSG tree in [he

cell behind has been reduced to 0 or U, we will not return to it.

When later we return to the pixel for farther cells, we should first

dispose of the saved tree by treating it as one of the more

complicated cases mentioned above, You might, as 1 did initially,

naively believe that this circumstance cannot occur — after all, if

there is nothing in the cell behind, how could a surface cross the

cell boundary? However, if one surface of an intersection passes

through the back of a cell and the other does not. the cell behind

may easily reduce to 0.)

Now we are ready to handle the simple cases:

If the reduced CSG tree has only one leaf and 0< S, the

primitive has no edges inside the cell (figure 1a) and may trivially

be rendered by casting a ray through the pixel’s center.

If the CSG tree has two leaves and 04 S for each, then we

have two possibly intersecting primitives F and G, neither with an

edge in the cell (figure 1c). We will approximate their

intersection curve by a straight line that runs from edge to edge of

the pixel, We can cast four rays to find the Z coordinates at

which the surfaces pass through the pixel comers. Then,

following [8], we compare the : values at each comer. Along

each pixel edge where the z’s compare differently we linearly

interpolate the z’s to find a point at which they are equal. In any

cell there will be zero, two or four such points. We join them up

as in figure 2 (taken from [8]) and compute the quantity ~, the

total fraction of the pixel in which F is in front of G, according to

our approximation. Now we need only determine which surface,

if any, is visible in each part of the cell and compute their

contributions, weighted by ~, to the color of the cell. We can

determine visibility by considering the CSG operator connecting

the two surfaces, and whether the two surfaces face the viewer.

For example, if F faces the viewer and G faces away, and the

CSG operator is n, then we can see F inside the part of the pixel

where it is in front, and nothing in the other part, The following

table summarizes the contributions in all cases:

F toward F toward F away F away

G toward G away G toward G away

u 13F+(I-p)G (1-@)G pG+(I-~)F’

n ~G+(I-~)F f3F (l~~)G ~F+(l-~)G

If the reduced CSG tree has only one leaf and Oc S, then

there may be a silhouette edge in the cell, as in figure 1b. As

before, we wish to approximate the edge by a segment running

from edge to edge of the pixel. Again, we can cast rays through

the pixel comers, but now we are interested only in identifying

cell faces through which the edge must pass because the surface

intersects one edge of the face but not the other. Having

identified these faces (again there must be zero, two or four of

them), we can find the silhouette’s endpints by solving systems

133

SIGGRAPH ’92 Chica!ao, JUIY26-31, 1992

/./,0,0/

-,0, Z .

.,,XX, /--vb

‘/ ”,”,/ /0, /

,. /,/ /,
. . .
<., ’/0 Z.

Figure i – Simple and non-simple cells

Figure la illustrates a cell completely covered by a single surface. lb has a cell containing a single surface with a

1c has a cell covered by a pair of intersecting surfaces. 1d is too complicated to be handled without subdivision.

cell with a surface passing through its back face. Its processing will be deferred for merging with the cell behind it.

of three simultaneous equations: F(,r,y, z) = O, i)~/& = O and t~e

plane equation of the cell face, one of x =3, x =X, y = Y or y = Y.

A useful optimization is to eliminate the cell face e@ation by

substituting into the other two. Moore ([16] pp 62-68) outlines

robust interval methods for producing these solutions.

As in the previous case, we can join these points by line

segments (see figure 3) to find the fraction of the pixel covered by

;I:lzl:;l++a+—-
:!;lxl::i-’m’
;EI:EE;:5!3%!I’
;B;:ljzl’’zl’———

Figure 2- Joining endpoints of edges

Each square represents a pixel. The comers are marked

with the sign of F – G. The label in each pixel fragment

indicates which surface is in front in it. ~ is the total area

of the fragments labeled F.

silhouette edge.

le illustrates a

the surface. Note that this computation is not particularly robust
— it is entirely possible for an edge to protrude a pixel without

the surface passing through any vertex. Indeed, the whole surface

may be contained within a single cell. But, we stated up front that

we intended to approximate the silhouette by a sequence of line

segments passing from pixel edge to pixel edge, and neither of

these situations admits a reasonable approximation in those terms.

A more robust computation that could identify these situations

Figure 3 – silhouette edge approximation

The squares are pixels. The closed curve is the a silhou-

ette edge of a surface that intersects each pixel as in figure

1a. The dashed lines are our piecewise linear approxima-

tion to the silhouette.

134

Computer Graphics, 26,2, July 1992

and allow us to subdivide would be stmightforward, if tedious, to

implement.

Any situation not handled above we manage by further

subpixel subdivision. We subdivide only in .[and y, not z, further

reducing the CSG tree as we go, stopping when we find a

subpixel satisfying one of the above cases or in any case at some

fixed depth. The contributions of the subpixel cells, weighted by

subpixel area, are added to determine the color of their pixel-sized

ancestor.

Since cells that partly cover pixels must allow the color of

cells behind them to show through the uncovered parts, we store

colors in the rgba representation of Porter and Duff [19], using

et-blending to composite each cell’s color with the accumulated

color of the cells in front of it. This can make mistakes in pixels

that contain multiple visible edges, If this worries you, you can

use a more elaborate compositing scheme, saving a list of

previously-encountered edges against which to clip tbe newly-

computed regions or keeping at each pixel a sub-pixel bit-mask

(as in Carpenter’s A-buffer [S], but simpler because we know

depth order u priori) against which to clip the newly-computed

regions.

7. Collision detection

Let us now turn our attention to motion computations for

animation purposes. Suppose we have a scene composed of a

number of CSG objects, and that we wish to compute their

motion, At any point in time, we need to decide whether objects

in the scene have collided, in order to prevent interpenetration and

to compute the forces resulting from any collision,

Let the objects in the scene (considered as point-sets) be

0,, ()< i <11. Then to compute an image we would run one of the

above algorithms on the CSG tree for

,,–1

Uo, (2)
,=()

To decide whether there has been a collision, we must decide

whether there are points occupied by more than one object. To do

this, we first build a CSG tree in which each of the top-level

union operators (see equation 2) is specially marked. Now, we

recursively subdivide a cell surrounding the entire scene, reducing

the CSG tree at each subcell as before, except that for specially-

marked top-level union opemtors we rewrite the tree using only

the rule

au.$+s

We do not reduce top-level instances of U using the rule
UUS-) U because we wisfl to count tfrern.If at any level of

subdivision the reduced CSG tree contains two or more top-level

U’s, we have detected a collision, Likewise, if the tree has no

marked top-level union operator, there can be no collision in this

cell and we need subdivide no further,

If we subdivide down to cells smaller than some tolerance

without reaching a decision, we can declare the question

unanswerable to within the given tolerance. This may strike you

as unsatisfactory. and in fact we can make a much stronger

statement. For all functions computed by sequences of arithmetic

operations and transcendental functions, their natural interval

extensions satisfy an in(erl,al Lipschirc cmrdirion (under certain

mild assumptions.) That is, there is an easy-to-compute constant

c, depending only on F and the domain of interest (say a viewing

volume (X(), Y(,,Z,))), such that if (X, Y,Z) G(X,,, Y{,,Z()) then

~(X, y, Z)-~(X, Y,Z)<cmax(~-X, ~-~,~-~). (Again, we

refer you to [16] pp 33-35 for further details, including a proof.)

Informally, the size of the intervals F(X, Y,Z) decreases at worst

\

Figure 4 — collision

F and G are two colliding surfaces. VF is the normal to F

at the point of collision. VI and V(J are their velocities at

the point of collision. Since the angle between VF and

V(; – Vf is larger than 90 degrees, surfaces are separating

and the collision will be rejected.

linearly with the size of (X, Y,Z). Thus, when we abandon

subdivision at a tolerance E, we know that the surfaces touch to

within some easily-computable tolerance c~.

8. Dynamic Collision Detection

If we can describe tbe motion of O, as a function of time,

we can extend the abrrve algorithm to find the earliest time in an

animation at which a collision occurs. We need only subdivide in

s, y, : and I, looking at subcells earlier in time before later cells

and stopping when we first find a cell smaller than a collision

tolerance &that still contains parts of two intersecting objects.

At this point we will presumably do a momentum-transfer

calculation and restart the colllslon detector with ~ = (<,,11,,,,,,,. But

this will just re-detect the previous collision. We must reject

collisions at which the objects are not approaching one another.

Let the two objects be F and G, and let their velocities at tbe point

of collision by l’~ and P’{, — see figure 4. G is moving towards

F if the angle between its velocity (relative to F) and F’s normal

at the point of collision is larger than 90 degrees, that is if

VF. (\’cJ - t“~)<0, [n an edge-to-edge or other complicated

collision. F’s gradient may be undefined. In that case, we must

use the normal to the collision tangent plane as described by

Baraff [3].

The sorts of motion that this scheme can accommodate are

fairly general. Any time-varying coordinate mapping will do, as

long as its inverse can be expressed in a closed form that admits

an inclusion monotonic interval extension. For example, points

on a rigid body tumbling and moving under gravity are

transformed by

II
o

P=rot(co/,A)R(P’-C)+C+P(, +Vot+ -112gIz (3)

o

where

P = (x.y,z)r is the transformed point,

rot ((), uxis) is a rotation matrix,

w is the object’s rate of rotation,

A is the axis about which it rotates,

I35

SIGGRAPH ’92 Chicago, July 26-31, 1992

R is a rotation matrix describing its orientation at t = O,

P’ is a coordinate in model-definition space,

C is the object’s center of mass,

PO is its position at time r = O,

VO is its velocity at time f = O, and

g is the acceleration due to gravity.

The inverse of (3) is just

[1

o
P’=R~rot(– cOt,u)(P-C-PO-Vol - -1/2gt2)+C

o

So, the implicit function F(P’) is just F as transformed by its

motion.

More complex motions. like the modal deformations of

Pentland and Williams [18] can be handled similarly.

Constrained motions like those described by Barzel and Barr [2]

and Baraff [3] for which the associated ODES are generally

insoluble in closed form are beyond the scope of the work

reported here. Interval methods for ODES are an interesting

research problem and would be extremely helpful here. In their

absence, we must use conventional ODE methods and accept the

loss of robustness that they entail.

Pentland and Williams [18] claim to do collision detection

of implicit functions (but not their CSG combinations) by

converting one of a pair of objects to be tested into polygons. The

objects intersect if any of the vertices gives a negative value when

substituted into the other function. Sclaroff and Pentland [20]

repeat this claim. But, their scheme does not work—it is easy for

an object to pass through a polygonal face without meeting any of

its edges. Even testing the polygonal representation of each

object against the other will not work, as they can easily meet

edge-to-edge with no vertex of either polygonization penetrating

the other object. The methods presented here are utterly

robust—interval arithmetic always provides guaranteed bounds

on the functions we compute.

When we discover that two objects meet, we need to

calculate the collision forces and their effects on the bodies’

motions. To do this, we need to know in what direction the force

is applied and some physical properties of the colliding bodies—

particularly their masses and moments of inertia.

The information needed to calculate the direction of

applied force is readily available when the collision is detected.

Inside the cell in which the collision occurs the reduced CSG

trees will include one or more surfaces from each of the colliding

objects. If a single surface from one object or the other is

involved, we need only compute its normal direction. If each

object has two surfaces active, we have an edge-to-edge collision.

We can find the edge directions by looking at intersections of

tangent planes, and transmit the force as in [3]. More

complicated situations represent indeterminate cases that can also

be linearized by working with the tangent planes and handled as

in [3].

9. Integral Properties

Mass and moments of inertia are infegral properdes of

solid objects. Computing them involves evaluating simple

definite integrals inside the objects’ volumes. For example, to

compute the mass of a body B, we need to evaluate

jjjP(.w,z)dxdy dz
B

where p is the density of the material. If p is easy to integrate

over rectangular prisms (often it will be constant), we can

recursively subdivide a cell surrounding B, reducing B’s CSG tree

136

as we go, and accumulate the integral’s value over those cells in

which the reduced CSG tree is U. Cells whose reduced CSG trees

are 0 contribute nothing, and partially occupied cells will contain

a vanishingly small fraction of B’s volume as the subdivision

limit decreases. (The fraction may not decrease as quickly as

you’d like if the Hausdorff dimension of B’s surface is larger than

2, but then you have worse problems since, for example, B‘s

partial derivatives will be undefined.)

Other integral properties can be computed similarly. For

example, B’s moment of inertia about a particular axis is just

~jjr2P(.’,Y,’)d dy d.
B

where r is the distance from (.r,y, z) to the axis in question.

10. Examples

Figures 5-9 show a variety of objects as rendered by our

algorithms. Figure 5 is Kummer’s surface with 16 real double-

points (4 are at infinity) with malachite texture. This beautiful

surface extends to infinity in 8 directions and would be useless for

real applications without some sort of trimming. Figure 6 is the

intersection of Kummer’s surface and a sphere. Figure 7 is the

intersection of a Parabolic Spindle Cyclide and a sphere with

hideous orange marble texture. (Fischer [10] gives good detailed

descriptions of these surfaces.) Figure 8 is an image of a face

made using a 48x48 raster of intersecting marbles of varying

sizes, just to show that we can handle scenes with a larger number

of primitives. Figures 5-8 were all computed at 1024x 1024

resolution using the point-sampling renderer described in section

5. Figure 9 is an anti-aliased rendering of a compound of 3

spheres, done at 256x256 resolution using the algorithm of

section 6.

The videotape accompanying this paper shows two simple

animations made using our dynamic collision detection and

rendering algorithms. The first scene shows 9 balls falling onto a

sphere with a dish carved out of its top. You can see the balls

collide with the dish and, in one case, with each other. The

second scene is similar, but with 25 balls. There are 80 collisions

in this shot, mostly between pairs of balls.

11. Conclusion

We have presented a wide range of algorithms that use

intewal arithmetic and recursive subdivision of object space to

process geometric objects described as CSG combinations of

implicit function primitives.

The algorithms are all suited to manipulating extremely

complex objects because they discard parts of the objects that are

irrelevant to the subdivided cells. Their running times are only

mildly influenced by the size of their inputs because small cells

typically contain at most one or two surfaces. Presumably when

the number of primitives in the original model is a large fraction

of the number of pixels on the screen we will start to see greater

dependence, as this assumption will begin to break down.

The algorithms of sections 7, 8 and 9 are quite robust—it is

impossible to lose track of parts of objects due to rounding error

when using interval arithmetic. The bounds it provides are

absolutely guaranteed to enclose the exact function values. We

can only run into trouble when we terminate subdivision at some

a priori level, and even then the existence of interval Lipschitz

conditions can help us set that level to bound the unavoidable

error in our computations however we wish.

In retrospect, the work most closely related to ours is work

by Al Barr and his colleagues on rendering and collision detection

of functions with Lipschitz conditions [13], [24]. A Lipschitz

Computer Graphics, 26, 2, July 1992

condition (not to be confused with an interval Lipschitz condition)

is a bound on a function’s variation. Given an appropriate

Lipschitz constant, one can easily bound a function’s value on an

interval, a sort of “interval arithmetic without the intervals. ” In

fact, Lipschitz constants can be computed by interval evaluation

of a function’s derivatives, and those bounds converted into

bounds on the original function using the mean value theorem. In

this Iigh[it is perplexing that Kalra and Barr [13] put the question

of ‘identifying ... useful implicit functions and computing

Lipshitz constants’ for them first on their list of important

problems to attack.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Norman Chin and Steven Feiner, “Near Real-Time

Shadow Generation Using BSP Trees, ” Cornpufer

Gruphics 23(3), July 1989,99-106

Franklin C. Crow, “Summed Area Tables for Texture

Mapping,” Computer Graphics 18(3), July 1984,207-212

Tom Duff, ‘‘Compositing 3-D Rendered Images, ”

Computer Graphics 19(3), July 1985,270-275

Tom Duff, “Polygon Scan Conversion by Exact

Convolution,” Raster Imaging and Digital Typography

’89, Cambridge University Press, London, 1989

Gerd Fischer, Mathematische Modelle/Mathematical

Models, Friedr. Vieweg & Sohn,

Braunschweig/Wiesbaden, 1986

H. Fuchs, Z, M. Kedem and B. F. Naylor, “On Visible

Surface Generation by A Priori Tree Structures. ”

Compurer Graphics 14(3), July 1980, 124-133

IEEE Standard for Binary Floaring-Point Arithmetic.

ANSI/lEEE Std 754-1985, Institute of Electrical and

Electronics Engineers, New York, 1985

Devandra Kahd and Alan H. Barr, “Guaranteed Ray

Intersections with Implicit Surfaces, ” Computer Graphics

23(3), July 1989,297-306

Don P. Mitchell, “Robust Ray Intersection with Interval

Recursive subdivision using interval arithmetic is a natural

and versatile scheme to use for implicit function CSG models.

We have only begun to scratch the surface of its potential

applications. Our anti-aliased rendering method should l-weasily

convertible into a polygonization algorithm. (Indeed, Snyder [22]

gives an interval polygonization algorithm, along with many other

applications of interval arithmetic.) Interval function

minimization methods can provide global optima for many

problems and should be applicable to some of the control

problems in animation. and. as Don Mitchell has pointed out in

conversation, to a range of global illumination problems as well.
13]

141

Another problem that must be better addressed before we

can consider wider use of implicit function surfaces is the

problem of using them to model sculpted surfaces. a realm in

which Bezier surfaces and NURBS reign. There is some hope

that this situation will improve. [17] and [21] are two recent

papers describing ideas that show a great deal of promise.

Arithmetic,” Proc. Gruphics Interface ’90, 1990

[15] Don P. Mitchell, “Spectrally Optimal Sampling for

Distribution Ray Tracing,” Compu/er Graphics 25(3), July

1991, 157-164

[i6] Ramon E. Moore, Methods and Application.r af lruervul

Ana/ysis, Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, 1979

12. Acknowledgements

Don Mitchell is always a good friend and source of ideas

and criticism. His paper on interval root-finding [14] put this bee

in my bonnet. and his interval arithmetic routines made it possible

to get the first version of this stuff going in a couple of days.

[17] Shugeru Muraki, “Volumetric Shape Description of Range

Data using ‘‘Blobby Model” ,“ Computer Graphics 25(4),

July 1991,227-235

Alex Pentland and John Williams, “Good Vibrations:

Model Dynamics for Graphics and Animation,” Computer

Graphics 23(3). July 1989, 215-222

Andy Witkin suggested looking at collision detection. [18]

A detailed and insightful referee’s

greatly to the paper’s clarity and correctness,

13. References

report cmrtri buted

Mitchell. “Some

Thomas Porter and Tom Duff, “Compositing Digital

Images,” Compurer Graphics 18(3), July 1984, 253-259

[191

[201 Sclaroff and Alex Pentland, “Generalized Implicit

Functions for Computer Graph ics,” Cornpuler Graphics

25(4), Juiy 1991,247-250
John Amanatides and Don P.

Thomas W. Sederberg and Alan K. Zundel, ‘“Scan Line

Display of Algebraic Surfaces, ” Computer Graphics

23(3), July [989. 147-156

Regularization Problems in Ray Tracing, ” Proc, Graphics

interfit(’1’ ‘ 90, I990

Romm Barzcl and Alan H. Barr, “A Modeling System

Basmi on Dynamic Constraints,’” Computer Graphics
~~(~) July l%++. 179-188

David Baraff, ‘‘Analytical Methods for Dynamic

Sirnultition of Non-penetrating Rigid Bodies, ” Computer

Gr[lp/li[.! 23(3). July 1989.223-23 I

Alan H. Barr, “‘Global and Local Deformations of Solid

Prim itives,” (’{m~pu/cr Graphi~s 18(3). July 1984, 21-30

Lortm Cwpcntcr, “The A-Buffer, An Anti-Aliased Hidden

sUIf:lL’CMethod. ” ~onywrcj” G)”a/Jhics 18(3), July] 984,

103- Iox

[21]

[22]

[23]

John Snyder. Generurise Modeling: An Approach to Hi~h

Level Shape Design for Computer Graphi~.s and CAD.

Ph.D. Thesis. California Institute of Technology, 1991

W, Thibault and B. F. Naylor, “Set Operations on

Polyhedra Using Binary Space Partitioning Trees,”

Computer Graphits 2 1(4), July 1987, 153-162

[241 Brian von Herzen, Alan H. Barr and Harold R. Zatz,

“Geometric Collisions for Time-Dependent Parametric

Surfaces,” Compu/er Graphics 24(4). August 1990, 39-48

J. R. Woodwark and K. M. Quinlan, “Reducing tbe effect

of complexity on volume model evaluation. ” Compuler-

Aided Design 14(2), March 1982, 89-9S

[25

137

SIGGRAPH ‘92 Chicago, July 26-31, 1992

F~,qure 5 - Kummer wrface

L-
F&WY 9 - Combination of 3 spheres, anti-aliased

