
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

October 1990

Interval-Based Techniques for Sensor Data Fusion Interval-Based Techniques for Sensor Data Fusion

Greg Hager
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Greg Hager, "Interval-Based Techniques for Sensor Data Fusion", . October 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-80.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/749
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F749&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/749
mailto:repository@pobox.upenn.edu

Interval-Based Techniques for Sensor Data Fusion Interval-Based Techniques for Sensor Data Fusion

Abstract Abstract
We view the problem of sensor-based decision-making in terms of two components: a sensor fusion
component that isolates a set of models consistent with observed data, and an evaluation component
that uses this information and task-related information to make model-based decisions. This paper
describes a procedure for computing the solution set of parametric equations describing a sensor-object
imaging relationship. Given a parametric form with s parameters, we show that this procedure can be

implemented using a parallel array of 6s2 processors. We then describe an application of these
techniques which demonstrates the use of task-related information and set-based decision-making
methods.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-80.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/749

https://repository.upenn.edu/cis_reports/749

Interval-Based Techniques for
Sensor Data Fusion

MS-CIS-90-80
GRASP LAB 241

Greg Hager

Department of Computer and Informat ion Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

October 1990

Interval-Based Techniques for Sensor Data Fusion

Greg Hager University of Pennsylvania
GRASP Lab - Room 301C

3401 Walnut St.
Phila., PA 19104/6228

September 14, 1990

Abstract
We view the problem of sensor-based decision-making in terms of two components: a

sensor fusion component that isolates a set of models consistent with observed data, and
an evaluation component that uses this information and task-related information to make
model-based decisions. This paper describes a procedure for computing the solution set of
parametric equations describing a sensor-object imaging relationship. Given a parametric
form with s parameters, we show that this procedure can be implemented using a parallel
array of 6s' processors. We then describe an application of these techniques which demon-
strates the use of task-related information and set-based decision-making methods.

1 Introduction

A central problem in sensor data fusion is the description of observed data in a canonical form
useful for decision making. One approach to describing sensor data is to choose a restricted
class of parametric primitives, and fit the data to one or more of these primitive elements. The
basic notion of line or curve fitting has been used for many years and pervades many scientific
disciplines. Within the vision and robotics community there has been much recent work on
fitting relatively complex parametric forms such as generalized cylinders or superquadrics to
range, tactile, and visual data.

While fitting is a powerful notion, many of the techniques currently employed have severe
shortcomings. In particular, methods such as least squares tend to have very primitive notions
of fit accuracy, and consequently it is difficult to determine the extent to which the observed
data determines the model parameters or how well the model matches the data. Given the usual
inaccuracies of sensor data as well, it is quite possible that the point estimate delivered by least
squares or similar techniques is a poor representation of the observed data.

An alternative approach is to directly compute the set of all model points consistent with
observed data, and to use task-related information to make model-based decisions. For example,
when grasping an object with a gripper, the location of the object must be known to an accuracy
sufficient to place the gripper on the object without a collision. Given the set of all object
locations and sizes, we can determine when the uncertainty in size and location has been reduced
to a level where the operation is guaranteed of succeeding (if it is indeed possible). For small
objects and large grippers, the set can be very large and the operation will still succeed, while
for objects which are nearly the size of the gripper opening, a very precise estimate is required
and therefore the solution set must be small.

In our past work, we have examined decision-theoretic techniques [Hager, 1990; Hager &
Mintz, 19891 for describing task-related constraints, and developed grid-based approximation
techniques for implementing decision-theoretic sensor information fusion and sensor planning.
Those techniques, while very general, suffered from severe complexity limitations when fusing
large volumes of data into complex models. Examination of their behavior led to the observation
that important factor in system performance was not its use of a statistical description of
observation error, but rather the fact that we assumed observation error was bounded. We can
improve grid-based method performance by considering two separate sub-problems: the problem
of determining the set of models consistent with observations up to a known, bounded error,
and the problem of building a probability description on the resulting set.

This article addresses the problem of making effective use of tolerances to support set-bused
estimation and decision-making. We describe a technique for computing set-based estimates that
is able to solve problems of much higher parametric complexity using larger volumes of data
than our previous grid-based methods. This method uses generalized bisection based on interval
projections. The process can be thought of as incrementally building a search tree describing
a partioning of the solution space, and pruning portions of the tree that are incompatible with
observation. One of the major results in developing this technique is that we can show upper
bounds on the amount of data needed at each node of the tree, and consequently we can construct
a sensor information processor consisting of a data selection component pipelined with a parallel
processor array with size that is a quadratic function of the problem dimensionality.

In the next section, westate the class of sensor data fusion problems we are considering, and
define the precise problem we are attempting to solve. In section 3, we introduce interval analysis
and describe our g e n d i z e d bisection procedure. In Section 4 we describe a data selection
algorithm that allows us to reduce the complexity of our basic computational operation to a
quadratic function of model dimensionality. In Section 5 we describe an application using set-
based decision criteria. We conclude with a discussion of future enhancements and applications
of this work. We note that a more extended version of the results in this article can be found in
[Hager, 19901.

2 The Problem

In its most general form, the relationship between an observation, z of dimension m, and model
parameters, p of dimension s, can be written

where the implicit function g describes model geometry, and the explicit function H describes
sensing geometry. The vector d denotes additional kinematic or physical degrees of freedom
of the sensor system (calibration or control parameters), and the additional parameter v is a
nuisance parameter denoting non-deterministic disturbances of the sensor output. The vector x
is an observable quantity which bears a known relationship to both the sensor outputs and to
the underlying model parameters.

There are several specializations of these forms which occur in practice:

For convenience sake, for fixed V we can write a single form

g8(p7z ,d)= [z-$:)d,v)] = 0 , fo r some i t X a n d v E Y .

If H is bijective for fixed d and v, then we could write (1) as

g(p, H-'(z,d,v)) = 0, for some v E V .

a If g can be written explicitly, we can compose the two functions and write

a If, in addition, the error vector v affects the system additively, we may write

In the rest of this article, we will use the form (2) except in some special cases where the
special structure of (3) or (4) is crucial to the discussion. Problems expressed in the form of
(1) tend to be more complex to solve, both mathematically and computationally than problems
which can be described using explicit equations. It is usually preferable to reduce problems to
explicit form (3) or explicit additive form (4) whenever possible.

This method of problem description is both general and practical for a wide variety of sensing
applications. Moreover, it separates the description of the sensing apparatus from the data
representation. Consequently, information from several different sensors can be integrated into
the same representational format and, conversely, information from one sensor can be integrated
into several different representational formats merely by changing the coupling between sensor
description and geometric model. The following is a simple example that is also used later in
this article:

Example 2.1 Pentland [I9861 introduced superquadrics as a modeling primitive,
and Solina [I9871 developed a least-squares algorithm for recovering superellipsoids
(convex superquadrics) from range data. Superellipsoids are described by an implicit
parametric equation of the form:

The vector [a] = [al,az,a3] can be interpreted as the size of the superellipsoid, the
vector [y] = [y1,y2] governs the shape of the superellipsoid, and 1 = [x, y, z] is a
location in space. This form also be augmented with a rotation transformation to
describe superquadrics in arbitrary orientation in space as well as other parametric
deformations [Solina & Bajcsy, 19901, but we will not use these generalizations in
this article.

We can also describe a superellipsoid situated at the origin with explicit form

where C, = cos(x) and S, = sin(x). This form describes the other seven octants by
appropriate introduction of plus and minus signs. The angles q and w are additional
parameters required t o convert the implicit form to an explicit form. The explicit
description of an arbitrary superellipsoid located in space can be expressed as

The information observed by a laser scanning device located at the origin of the
world coordinate system is simply

z = u + v , VEV.

The variable v E V describes quantization error in x and y due to finite resolution
of the scanner cells, and errors in z due to inaccuracies in computed range. The
conjunction or composition of this expression with either the implicit or explicit form
of the superellipsoid yields a well-formed description of the sensor-object observation
relationship.

The sensor data fusion problem is to recover model geometry as expressed by the parameter
vector p from a series of data pairs (z;,d;), i = 1,. . . n to the accuracy required for the specific
task being performed. As it turns out, in many applications the error in sensor data is relatively
small and it is often reasonable to assume that v comes from a bounded set, V. In this case,
given sensor data pairs we can define the solution set consistent with a set of observations. We
now state the version of the sensor data fusion problem we consider in the remainder of this
article:

Given a data set 0 consisting of pairs of vectors (z ; , d;), i = 1. . . n and a sensor-
object description g", compute an approximation to

Generally speaking, solution sets will be of such complexity that, except for trivial cases, even
closed form approximations to this set are difficult to develop. Hence, our interest in compu-
tational techniques for approximating this set. To compute an approximation, we define an
operator, F, yielding a sequence of sets Po, P I , . . . such that

The grid-based technique mentioned above can be thought of as a member of this class of
approximation algorithms. However, as indicated in the introduction, the complexity of this
method makes its application prohibitive for a number of problems of practical interest. In
particular, when isolating the solution set it make sense to develop the grid incrementally based
on the structure of the sensing equations. We now describe the generalized bisection algorithm
we have developed for this purpose.

3 A Brief Review of Interval Analysis

Our solution to the problem of isolating solution sets makes heavy use of concepts from interval
analysis. Interval analysis originated in the attempt to build rigorously correct numerical proce-
dures for processes such as root bracketing, differential equation solving, numerical integration,
or function minimization. The heart of the approach is represent a real number by a bracketing
interval, each endpoint corresponding to a number having an exact representation within the
machine, and to ensure that all mathematical operations on numbers preserve this property.
The seminal work on the subject is Moore [1966]. More modern expositions include [Alefeld &
Herzberger, 19831 and the proceedings of a quintennial conference[Nickel, 1980; Nickel, 19851.
Specific papers we have found most relevant to the problems we will be discussing include
[Adams, 1980; Sikorski, 1982; Eiger et al., 1984; Kearfott, 1987; Kearfott, 1987; Kearfott, 19901.

Nota t ion a n d Terminology In the following, let sR denote the real line and 92" denote
Euclidean s-space. We denote the open interval from a to b in R1 by (a, b) and the closed interval
by [a, b]. If a and b are points in R3, then we regard the set (a, b) = (a l , bl) x . . . x (a,, b,) as a
generalized open interval in sRs, and [a, b] = [al, bl] x . . . x [a,, b,] a generalized closed interval
in RS. Given a set S in Rs, we define the bounding interval of S as the smallest generalized
closed interval containing S. Henceforth we drop the term "generalized" when it is apparent
from context that the interval is in Rn, n > 1.

We distinguish between point-valued and interval-valued variables by writing the latter in
bold-face type, and we denote the space of intervals in RS by ([sR]3. So, if x E sRS is some real
number, we may write x E x = [~ , 5 7] E [R]', indicating that a real value x falls within some real
interval value x with lower vector x and upper vector F. We often take the liberty of mixing
point values with interval values within expressions in which case a point value, x, should be
thought of as the degenerate interval x = [x, XI.

We define two special operators, the width function ul : ([$I]" -, Rs by w(n) = Ti - a; and
the center function c : ([%?IS -+ sRs by c(n) = (ii + IJ)/~. A simple sectioning of an interval n in
dimension i will be a division of n into nonempty components a and b such that: n = a U b,
and Z = - b;. A sectioning is the above generalized to more than two intervals. An m-sectioning,
m 2 2 is a sectioning into m components of the same size.

3.1 Approximating the Range of a Function

Suppose we are given a function h : R3 i R. For any vector x, we can calculate, y, the image
of x under h by y = h(x). Now, suppose that instead of a value x, we are given an interval of
values, [g,Z] describing an s-rectangle and wish to compute its projection. For a given continuous
function h : RS + 8, we can define an interval function, h : ([%]IS -+ [RfZD by

h(x) = {y 1 y = h(x),x E x).

Note that a continuous function h maps a compact set to a compact set, hence y = h(x)
is a closed interval, and therefore a point in l[R]. For the interested reader, we note that it
is relatively straightforward to define a topology on the space of closed intervals so that the
continuity of a function h defined on Rs carries over to its interval extension h defined on [RBS
[Moore, 1966; Alefeld & Herzberger, 19831.

Example 3.1 Given two intervals x and u in [R]S, we can define the functions
binary + and unary - as

-
x i - u : = [z+g ,T+Ti] and - x : = [-x,-XI.

Binary - can be defined by x - u = x + (-u). Moreover, these operations always
form the minimal bounding interval of the range of the underlying operator applied
to the intervals x and u.

Given such interval extensions for the basic algebraic and trigonometric operators, the most
straightforward approach to computing the extreme values of a function is to take the algebraic
description of the function, and replace all of the operators with the corresponding interval
operators.

The major disadvantage of the direct use of interval computations is that they often con~pute
supersets of the exact range sets. This happens because each occurrence of a variable in an
expression is treated as a different occurrence of an interval variable. Consider the following
simple case:

Example 3.2 Defining the multiplication operation between two intervals is some-
what more complicated than + or -. Perhaps the most straightforward definition
is - -

x * u := [min&*g,S?*g,x* u,xtG) ,n1ax(x*g ,X*~ ,x*E,S7*Z)] .

If x and u are independent interval variables, then this operation again forms the
minimal intervalxovering the product of the two expressions. However, suppose
x = [-I, 11 and we compute x * x. The above operation yields the interval [-I, 11.
But, if the interval variable x corresponds to a bracketing of a single fixed quantity,
the minimal interval is [0, 11.

This inaccuracy can be reduced by suitable rewriting of expressions and by implementing
the interval computations of more complex expressions containing multiple occurrences of the
same variables. For instance, in the example above it is quite simple to implement a "squaring"
operator which computes the minimal range interval. Although this can become a difficult
process, in most cases it is possible to use the initial interval implementation to prototype a
solution, and then to incrementally refine the interval computation to provide better performance
and use of information. In subsequent sections, we will assume that all interval computations
produce the minimal correct interval.

We now define the interval extension of a function H : RS + grn with component functions
hi : Rs -. $2 i = 1, ..., m as

We note that, in addition to the possibility of overly conservative scalar intervals, if we consider
functions with non-scalar range it is often the case that there is no exact interval describing the
range. The best we can hope for is the minimal bracketing interval. We note without proof that
if m C n, then H(m) C H(n).

3.2 Interval Trees

An interval tree node will consist of a closed interval n = In,iil and a set of two or more children,
D,. For the sake of convenience, we will identify a tree node with its associated interval and
write, for example, n 4 m to indicate that the node n is higher in the tree than the node m.

An interval tree node, n, is consistent if n is nonempty and n is a leaf, or n is an inner
node and m C_ n for all m E Dn. The node is minimal if no smaller interval satisfies the latter
criterion. In short, a minimal, consistent node has a non-empty interval which encloses the
intervals of all of its children, and no smaller interval could enclose those children. As a direct
consequence, if m -(n, then n 5 m.

An interval tree is consistent if all of its nodes are consistent, and minimal if all of its nodes
are minimal. Furthermore, we will refer to the tree as reduced if all non-leaf nodes have at least
two children. In particular, for binary interval trees, a reduced tree corresponds to a full binary
tree.
For an interval tree in I[%]" with leaf node n, we define the operator bisect(n, d), d < s as:

1. Bisect n creating two new intervals n l and nz.

For a node n which is not the root of the tree, we define an operator remove(n) by

1. Let p = parent(n).

2. D p := Dp - {n).

3. If IDp] = 0, execute remove(p).

(a) If p is the root of the tree, mark the remaining child in Dp as the root, otherwise

(b) Let g = parent(p).

(4 Dg := (Dg - {PI) u Dp

Note this operation preserves consistency. It does not preserve minimality for nodes m such
that m < u. Step 4 preserves the property of being a reduced tree.

3.3 Interval Reduction

With this, the interval reduction operation used in the rest of this report can be described as:

reduce(n, g*, 0)

1. For each dimension i, i = 1 , . . . , s , trisection n in dimension i, yielding sets
n1,1, n1,2,. . . , ns,2, ns,3.

2. For all n;,j, if 0 4 g*(n; , j ,~; ,di) for some (~ , , d ;) E 0, then n i j := 0.

If each system output depended on a single model parameter, then each interval component
could be subdivided and reduced independent of other interval components and the procedure
outlined above is nearly optimal. Conversely, its performance will clearly degrade for systems
with high degrees of coupling.

To understand why we have used trisection rather than bisection in reduce(), consider the
system z = xly k t where t is small. If x is zero and y is some positive value, a bisection of
a parameter space symmetric about 0 in the x coordinate will not lead to a reduction. The t
interval surrounding x ly = 0 intersects both interval projections though the actual solution set
may occupy a very small area in the parameter space. By employing trisection we avoid this
problem by making it much less likely that an observation can be contained in all three interval
projections. Trisection also increases the rate of convergence at the expense of more processing
per reduce() call.

We note that this operation can be executed almost entirely in parallel by computing each
element of the interval projection of each section independently. This requires 3sm processors
(recall s is the size of the parameter vector and m is the size of the observation vector). The
rate of speedup over serial execution depends on the number of common subexpressions in the
interval function.

As an additional optimization, we can dismiss constraints as having been fully exploited.
For sensor descriptions in explicit additive form (4)) we see that if

then further bisection will not lead to any reduction based on this test. Thus, this component
can be marked inactive. If all components become inactive, then p is completely contained in
the solution space. Consequently, we may add a step to reduce() that checks to see if the interval
projection is contained in the tolerance envelope:

4. If the sensor description can be written explicitly and additively, H(n , d) C z - V, mark
n as contained.

3.4 Modified Bisection

Historically, generalized bisection has been used to bracket the roots of nonlinear equations. We
make two major modifications to the standard procedure. First, the algorithm constructs an
explicit solution tree and, given a solution tree and additional data, the algorithm combines
information starting at the root of the solution tree. This allows elimination of portions of
the solution set high in the tree and saves unneeded work. Second, the algorithm checks for
containment of an interval in the solution set, and terminates the search along that branch.
In the following g*(.) is the interval extension of g* (.) , n is a tree node corresponding to a
bracketing interval for the solution set, and 0 is a series of dataldescription vector pairs.

Algori thm 3.1

generalized- bisection(n, geofn*, 0)

1. (Initialization)

(a) Set a vector of coordinate tolerances, E;, 1 5 i 5 S.

(b) & := {n).

2. (Reduction)

(a) If Q = 0, stop.
(b) Remove an interval x from &.
(c) Compute x := reduce(x, geofn*, 0).
(d) If x = 0, execute rernove(x) and go to 2.
(e) If w(x) < E or x is marked as contained, then C := C U {x) and go to step

2.
(f) If Dx = 0, go to step 4, otherwise go to step 3.

3. (Following Tree)

(a) For each c E D x ,
i. compute c := c fl x.

ii. If c = 8, execute remove(c).

(b) If Dx = 8, execute remove(x), otherwise & := & U D,.
(c) Go to step 2.

4. (Bisection)

(a) Choose a dimension 1 5 d 5 s such that w (x) ~ 2 ~ d .

(b) Execute bisect(x, d)

(c) Q : = Q U Dx.
(d) Go to step 2.

Let 5 be the natural partial ordering of nodes defined by the tree. We note the following
few facts about the algorithm:

r If n and m are both on the queue, then n $ m and m $ n.

a From the use of bisect(), reduce(), and remove(), it is easy to show that if n $ m and
m $ n, then n and m are disjoint. Consequently, all operations on individual queue
elements are independent of one another.

a A node with children is no longer downward consistent after an application of reduce() at
step 2c. Hence, consistency must be enforced before the children are added to the queue.
This is the reason for step 3a.

a The tree generated by this algorithm is not minimal since we are using remove(). Conse-
quently, a sweeping operation is needed to restore minimality after the algorithm runs.

a A node enters the final partition if i t either reaches a minimal size, or it can be shown to
be fully contained in the solution set.

r If we drop step 4 from remove(), the algorithm continues to perform correctly, though the
trees generated are not in reduced from. When following a tree this may result in wasted
computation since a parent and a single child must be identical in a minimal consistent
tree.

4 Data Selection

In this section, we introduce some ideas based on systems of linear inequalities, and use these
ideas to summarize some results that lead to a method for choosing a subset of the available
data to be used in reduce(). The extended version of this report [Hager, 19901 proves that the
set chosen by this procedure is optimal for the reduce() operation presented the previous section
when applied to linear systems. We describe how these results extend to the nonlinear case,
and present simulation trials the indicate the procedure is very close to optimal in the nonlinear
case.

For notational convenience, we extend the usual comparison operators, < and >_ to vectors
in componentwise fashion. Then for linear, explicit , additive systems, the consistency test used
in reduce() can be written

which can be rewritten as

H p + x < z < H p + 7 . -
The original expression can also be written as

which in turn can b_e written using vector comparison as the conjunction of two constraints:

H p < z - v . -
These tests are a conjunction of individual scalar linear constraints. If we let h; denote the

ith row of H, then (6) on an interval p becomes

4.1 Some Facts About Systems of Linear Constraints

An affine constraint z 5 hp+v, p E Rs can be thought of as a tuple of the form (h, z - v) E W1.
An affine constraint z >_ hp- v, p E Rs becomes (-h, -(z + v)) and an equality can be expressed
as the conjunction of two inequality constraints. Consequently, a tuple (h, a) = c E defines
a half space in SS, -c defines the dual halfspace, and the intersection of these two spaces is the
hyperplane {p 1 a = hp) C_ W. Henceforth, C will denote a set of affine inequality constraints
ci E RS+l, i = 1,2,. . . , k. Furthermore, let ad be the unit vector in coordinate direction d. Then
the constraint ud = (ad, a) describes a halfspace defined by a plane perpendicular to coordinate
axis d. Consequently, an interval, n, can be represented by the 2s linear constraints

In the sequel, Cn will denote the linear constraints corresponding to the interval n.

We will say a point p E RS sata'sfies a constraint c = (h ,a) if and only if a 5 hp. A point
p satisfies a set of constraints, C, written p + C, if and only if p satisfies every c E C. Given
two sets of constraints C1 and C2, we say C1 is a consequence of C2, written Cz * C1 if and only
if for all p such that p C2, it is also the case that p C1. Note that any subset of a given
set of constraints is a consequence of the original set, that is C =+ C' C C. We will call a set of
constraints, C, minimal if and only if there is no c E C such that C - {c) =+ C.

From the form of our constraint systems, we see that each pair of constraints representing
an interval test defines a closed convex strip of space between two hyperplanes in 92' and a set
of constraints C defines an s-dimensional convez polytope Sc = { p l p + C). The goal of the
bisection method is to represent this polytope to a given degree of accuracy using intervals.

We define the minimal interval, n, enclosing a polytope C as an interval set of constraints
Cn such that

Cn is minimal.

r For any other interval Cm such that C + Cm, Cn * Cm.

We note that it follows directly from the above definitions that if Cn and Ck are the minimal
intervals enclosing C and C' respectively, and C + C', then Cn =+ Ch.

If C describes a closed, bounded, polytope, the minimal interval bounding C is clearly unique
and contains 2s constraints. Furthermore, we can place bounds on the maximal size of a set
C' S C such that the minimal interval surrounding C' is identical to that surrounding C. Using
basic results in convexity [Rockafellar, 1970, pg. 1601 we can obtain the following result:

Result 4.1 If Cn is the minimal enclosing interval of a set of constraints C, there is
a C' C C such that

r (C'l 5 2s2, and

C' + Cn.

In other words, the minimal enclosing interval can be defined based on no more than 2s2 con-
straints from C.

2s2 constraints are needed in the "worst case" where each face of the minimal enclosing
interval is determined by a disjoint set of s constraints. This number is larger than needed for
the version of reduce() we have described. The following statements formalize this idea:

Definition 4.1 A constraint c E C dominates a constraint d E C on an interval Cn
(written cl domn c2) if and only if

Geometrically speaking, dominance on an interval means that the polytope defined by the
dominating constraint and the base interval is contained within the polytope formed by the
dominated constraint and the base interval (constraint b of Figure 1). The set subtraction is
included so that we can talk of constraints dominating a side of the enclosing interval in a natural

Interval

Constraint

Figure 1. The constraint b dominates u on the interval n. reduce() would be able to move the face u to
the right until it touched point PI. However, the ninimal interval would require moving the face u until
it touched point P2 at the intersection of a and c.

fashion. We note that by this definition there is always a dominator of a coordinate hyperplane
u, though it may be that hyperplane itself.

The crucial property of dominators is expressed in the following:

Result 4.2 The procedure reduce() applied to a set of constraints C on an interval
Cn is only effective if there are constraints ci E C which dominate faces uj E Cn on
n.

Effectively, we can choose a constraint for each "face" of the interval n, that is, only 2s
constraints, and use this subset in reduce(). Based on our previous analysis, this means that
reduce performs 6s2 interval projections and tests. This simplicity comes at a cost, however. As
shown in Figure 1, reduce() does not always compute the minimal interval, in this case formed
by the conjunction of constraints a and c. For a proof that generalized bisection using reduce()
converges, we refer to [Hager, 19901.

4.2 Choosing Constraints

We first note that, given a constraint c and an interval Cn it is possible to determine the
intersection of the hyperplane defined by the constraint interpreted as an equality and the
"walls" of the surrounding interval. If we choose a particular dimension, then we can look at
the minimal and maximal values assumed by the parameter in that dimension on the plane
within the interval. Depending on the "direction" of the halfspace, the minimal or maximal
value determines the minimal or maximal value of that hyperplane of the minimal enclosing
interval, respectively. Using this information, we can determine the strongest set of constraints.

We now proceed to formulate this mathematically and algorithmically. Given the equation
of a hyperplane, z - hip - v = 0, we can solve for the parameter pj in terms of the rest of the
parameter vector as

Then on an interval p, the extreme values of p d are given by

z - V; - hip + h i j p j
ri,j =

hi,,
7

We adopt the convention that when hi j = 0 the interval ranges from -oo and oo.
We now note the following facts without proof for constraints of the form (a, h):

1. If c; dominates c j in a direction ad, then T;,d 5 r j , d .

2. If c; dominates ud and c j does not dominate ud, then FiVd < F j , d .

For constraints of the form (-a, -h) , replacing 5 with 2 and F;,j by results in the dual
statements of these facts.

Our choice procedure, choose(n), uses the above to choose a set of 2s linear constraints as
follows:

Algorithm 4.1

1. Compute the interval matrix r ; j , i = 1.. . k, j = 1 . . . s.

2. Set C = 0.
3. For each i = 1, ..., s

(a) c1 = argmaxjrij .

(b) C" = arg minj Ti,j.

(c) C := C U {cl,cU).

We insert this step between 2b and 2c of the bisection algorithm, and modify reduce() to use
the set C.

This algorithm has order O(s c m). Thus, it has a running time that grows as a linear
function (with a low constant, in practice) of the number of constraints present in the system,
and similarly scales linearly with the size of the observation vector.

For parallel implementations of reduce, Algorithm 4.1 finds the optimal set of constraints.
For serial implementations of reduce it would be possible to design an algorithm which, after
choosing a constraint, projects the bounding interval after applying constraint, recomputes r;,j
based on the new bounding interval, and makes the next choice based on these updated matrices.
However, this procedure requires somewhat more computation and also relies heavily on the
linear structure of the system description. If the linear constraints are the result of linearizing
a nonlinear description, this heavy reliance on linearity may make the procedure more unstable
than that given above.

4.3 The Nonlinear Case

We note that Definition 4.1 and Result 4.2 are independent of linearity. Thus, the notions of
dominance, and the characterization of when 2s constraints can be chosen all follow exactly as
presented above using nonlinear constraints resulting from a nonlinear sensor-model description.

To implement data selection, we linearize the nonlinear form gl (.) by taking the first two terms
of a Taylor series expansion about the center point of an interval, and use the resulting affine form
as an approximate linear description of the system of equations. We must point out, however,
that the correct functioning of the selection algorithm for an implicit form g8(p, z, d) = 0 requires
viewing the function as f (u) = g8(p, z, d) = c and carrying out the expansion with respect to u.
That is, the expansion is with respect to both p and z as well as components of d which have
any uncertainty associated with them.

4.4 Some Test Cases

We have experimented with a number of test problems of varying complexity (ranging from
2 to 26 parameter dimensions). In these trials we choose the node on the queue with the
largest volume as the node to expand, and bisect the dimension for which the Jacobian value
multiplied by the interval width is the largest. This results in a fair cycling of nodes and bisection
dimensions. We compute the volume of the solution space and compare the rate of decline of
volume between the bisection algorithm with data selection and without data selection.

For problems which can be described with explicit equations, the data selection software is
fully tested and seems to perform very well. We have tested it on highly overconstrained linear
systems and the system performance with and without data selection is identical in every way
except that slightly more constraints are marked inactive when no data selection is used. This
is to be expected since constraints which would be marked inactive but are dominated by other
constraints never enter the bisection procedure when using data selection, and hence are never
marked inactive. We have also tested several simple (three or four parameter) nonlinear systems
with exactly the same results.

To examine the behavior of data selection in a slightly more complex domain, we have tested
its performance on recovery of superellipsoids described using an implicit equation. Our current
software does not accommodate Jacobians over parameters other than the model parameters,
so in order to test data selection, we have reduced the error of observation to near zero. Data
was generated artificially by sampling the superellipsoid in explicit form using a matrix of 64
angles. In this case, there is no point in multiple samples (the data are identical), through we
allow two iterations to test the effects of reinitializing at the root of tree. We varied the number
of iterations in each case, but by looking at the location of the spike (indicating the return to
the root of the tree), it is possible to determine the number used in each trial.

Figure 2 shows the results of several trials. In each, we isolated different parameter groups
and compared rates of convergence. Each is a log plot, and the lower (dotted) curves represent
convergence when using no data selection while the upper (solid) curves represent convergence
using data selection. Again, these are curves of the volume of the solution space. In this
case, we see that when recovering position and size parameters there is virtually no difference
between using all available data and using selected data. Only when determining shape do we
see some slight divergence between the two curves. These parameters are highly nonlinear, and
the Jacobian is therefore very unstable. Consequently, the data selection algorithm makes an
occasional wrong choice, and a node is bisected rather than reduced. This increases the number

Position and Size Shape

0.00 0.50 1.00
Iterations (1000)

-

-

-

-

le-03 -

le-04 -

le-05 -

0.00 500.00
Iterations

All Parameters Multiple Iterations

0.00 1.00 2.00
Iterations (1000)

I I I
,

0.00 1.00 2.00
Iterations (1000)

Figure 2. Convergence curves when determining superellipsoid parameters for various parameters subsets.
The plot show the volume as a function of reduce() applications. The dotted line is when no data selection
used, and the dotted line is for an algorithm using data selection.

Table 1. Timing figures for two versions of the bisection algorithm. Note that the final row includes some
overhead for operations not listed in the table.

of leaves in the tree and reduces the number of times an individual node is processed.
These errors are clearly seen in the final graph where we show convergence when recovering all

8 parameters. In this case, the difference in solution set volume is approximately one half order
of magnitude. By choosing more than the minimal number of constraints for these dimensions,
the difference between these curves could be reduced.

The simulations described above were carried out using a modified form of reduce() that
allowed only one interval reduction per application. Reductions of an interval change the optimal
set of constraints, so this modification ensures that the selection algorithm gets a "fair chance"
to reselect data every time the interval size changes. In this sense, the trials are slightly biased
toward the da ta selection algorithm. The final graph (lower right) shows the effect of allowing
reduce() to iterate through all dimensions. We see that the difference between using all of the
available data and using selected data is still small, and convergence is much more rapid.

When comparing execution time, there is a clear savings in computation by doing data
selection. Table Table 1 shows the time to choose data, the time to perform reduce() and the
total time to expand a node. We see that in the average case, using data selection halves the
amount of time needed to expand a node. This performance gain increases with increasing data
set size. Our feeling is that in most cases, any loss in rate of convergence is more than made up
by this increase in execution speed.

5 An Application of Set-Based Estimation

In this section we describe an application of set-based estimation. The task is to estimate the
location of an object described as a superellipsoid to the precision required to place a gripper
on the object without collision. This is a member of a collection of tasks which correspond to
the well-known "peg-in-hole" problem. Abstractly, the problem is to estimate the location of an
object, fitting, hole, or other geometric entity to the precision required to mate with the object
within a given tolerance.

We show the results of applying the generalized bisection algorithm to this problem in sim-
ulation, and describe an implementation that uses range data from two different range sources.

5.1 Task Formulation

Abstractly, we can pose the problem of capturing an object using configuration space. That is,
we shrink the size of the gripper opening by the size of the object and consider the problem of
capturing a point in the reduced opening. In one dimension we define a capture predicate u for

an object of size 2s0 and location lo, and a gripper of size 2sg with location 1, as

1 if 1, E [I, - sg + so,lg + s, - so]
u(lo,so, Zg,sg) =

0 otherwise

with the convention that the interval is empty if the lower bound exceeds the upper bound. The
function u returns 1 if and only if the location of the object and the location of the gripper
would allow capture without collision. In particular, if so > s,, the functions returns 0 for all
object and gripper locations indicating the object is not graspable.

We now assume that lo and so are independent random variables with known distributions
nl and n, respectively, and that we have an estimate I* for object location. The gripper will be
placed so that I, = l * . For fixed so, taking expectations of the above yields

R(s0) = En' [u(lo, SO, I*, ~ g) I so, I*, sg] = P(lo E [I* - sg + SO, I* + sg - so]).

That is, for fixed size and random object location, the expected value of u is the probability of
capturing the object without collision based on the estimated location I * . If the capture interval
is nonempty, this is simply R(so) = nl(l* + s, - so) - xl(l* - sg + so). If we now consider size
to be a random variable, the payoff u* can be calculated as

u* = E"" [R(so)] .

u* can be thought of as the probability that the proposition "object will be captured" is true
given what is currently known.

We now view each interval of the partition generated by bisection as having some probabil-
ity X of capturing the model parameters, and assume this probability is distributed uniformly
within the interval (we refer the reader to [Hager, 19901 for an extended discussion of how these
probability values are calculated). Hence, we can calculate u* locally on an interval by taking
xl and n, to be uniform distributions. The results is a value ranging from 0 to 1 indicating the
probability of capture for parameters in this interval. To compute a global payoff we compute
a local payoff value for each interval and take the sum these values weighted by their associated
probability.

Since grasping could be done along coordinate x or coordinate y, we take the or of the two
propositions "object will be captured along dimension x" and "object will be captured along
dimension y." In terms of probability, this means that we compute u; using location and size
parameters in x, and and u*, using location and size parameters in y, and then take the maximum
of these values.

5.2 Simulation Analysis

We have implemented and tested this particular task on superellipsoids with the s, = 50mm
corresponding approximately to the opening of a hand in our lab. The initial range of values
for superellipsoid location parameters was f 50mm, for size 20 to 140mm, and for shape 0.1 to
1.0. We allowed the estimator to run until the payoff value reached one, indicating a probability
one solution for successfully acquiring the object, or zero indicating that the object was to large
to be grasped. Estimates of object location were made by taking the centroid of the solution
set. The following table shows the results of simulated runs for several different sized spherical
objects.

Table 2. Number of iterations to decide graspability of an object as a function of object size.

- - -

Object Size

Iterations (W Shape)
I terat ionsfWOSha~e)

The main points to notice are that, as one would expect, objects far larger than what is
graspable are decided very quickly without exploiting the supplied information to any great
extent. What is perhaps surprising is that the same statement is not true for objects smaller
than the given 5 centimeter bound. This is so for two reasons: the effect of sensor observation
error is larger on small objects, and the parameter sensitivities lead the method to spend a
greater amount of effort recovering shape parameters. In the final row of Table 2, we show the
results if we hold the superellipsoid shape parameters fixed. Here we see that the number of
iterations is far smaller. One of our future research projects is to make the bisection search
process task sensitive so that these differences can be reduced.

5.3 Experimental Apparatus

90
2
2

The application described above has been also been implemented for real laser scanner data.
We use a different model description since, as we know the spatial location of the laser scanner
cells, it is possible to solve the explicit form of the superellipsoid for the two angles 7 and w as a
function of scanner cell location, and consequently we can write an explicit expression describing
the object sensor relationship that only depends on location size and shape parameters. Details
of this formulation can be found in [Hager, 19901.

We use two different laser scanner systems. The first is a linear stage which returns a frame
buffer of depth information [Tsikos, 19871, and the second is a scanner mounted on a robot arm
which returns a single scanner stripe. In the first case we cannot process all of the data in one
step, so we choose a large search window and select 100 points from the data in that window.
Using the formulation developed above, we decide to resample when the superellipsoid has been
localized so that is can be captured in a window one half the area of the previous window. This
continues until a decision about the original task can be reached.

The mobile scanner allows us to process a higher density of data locally, but it must often
actively sample to acquire enough data to reach a decision. We use the middle of the tolerance
interval on model position to choose a sampling point, and vary rotations from 0 to 90 degrees
to get a complete "picture" of the object. Of course, it sometimes happens that the first scan
line provides enough information to decide whether the object is graspable, and from where.
Two are often enough to decide that it is not graspable.

We have only begun testing this version of the program on real data. In particular, the mobile
scanner still suffers from calibration inaccuracies. In the next months we expect to improve the
system performance and increase its reliability.

85
8
8

70
18
18

60
164
28

55
180
36

45

290
69

40
259
70

35
455
94

30
674
148

6 Conclusions

We have described an algorithm for approximating the set of parametric descriptions of an
object from sensor data with known, bounded error. One of the most important features of
this algorithm is that the reduce() operation applied to a problem with model dimension s can
be implemented in parallel using 6s2 interval processors. This suggests a pipelined architecture
consisting of a data selection processor and an interval reduction processor could yield very
fast performance (we estimate less than a millisecond to execute reduce() for the superellipsoid
problems we have described). For very large data sets, the data selection processor might become
a bottleneck, but we speculate that an additional coarse data selection algorithm could be used
to "sift" data into different branches of the solution tree.

We are currently working on the applications described in the find section to verify that
these methods can function reliably and effectively on real data. In the future, we foresee
several improvements to the methods we have described. Briefly:

1. We have begun to fold task constraints into the bisection process. First, the bisection pro-
cedure we have described builds the tree based solely on parameter sensitivities. However,
if a particular task framework is known, it is possible to direct the search so as to fulfill
the given task objectives as quickly as possible.

2. It is often possible to quickly detect that a high quality decision will require extensive
computational effort. This information can be used to either terminate the search, saving
time for other more easily decided tasks, or for deciding to gather more information that
allows the given question to be decided more easily.

3. The formulation we have described assumes that the only discrepancy between observed
data and the model is due to sensor error. However, it is often the case that the observed
object is only approximated by the supplied model, and extra geometric error must be
tolerated. We would like to reflect this additional "geometric uncertainty" back on the
model parameters in some principled fashion.

We have made initial steps on all three points, and refer the reader to [Hager, 19901 for their
current status.

We believe that set-based estimation or decision-making techniques have a large role to
play in the construction of intelligent systems that must make decisions based on sensor data.
The application we have described in the previous section is just one of a number of common
operations in robotics which could be conveniently cast using set-based techniques. Some of our
recent work supports this view in a very practical setting [Atiya & Hager, 19901. Consequently,
we believe that the analysis and understanding of methods such as the one we have presented
will have a substantial impact on sensor-based robotics.

Acknowledgements: The following funding agencies supported this work: DARPA Grant
N0014-88-K-0630 (administered by ONR), AFOSR Grants 88-0244, AFOSR 88-0296; ArmyIDAAL
03-89-C-0031PRI; NSF Grants CISEICDA 88-22719, IRI 89-06770; and Du Pont Corporation.
The author would like to thank Jerome Kodjabachian for reading earlier drafts of this paper.

References

Adams, E. 1980. Interval Mathematics, Academic Press: New York.

Alefeld, G. and Herzberger, J. 1983. Introduction to Interval Computations. Academic
Press: New York.

Atiya, S. and Hager, G . 1990. Experiments with a real-time vision-based robot navigation.
Submitted for publication in the 1991 IEEE conference on Robotics and Automation.

Eiger, A., Sikorski, K. and Stetnger, F. 1984. A bisection method for systems of nonlinear
equations. ACM Tmnsactions on Mathematical Software, 10(4):367-377.

Hager, G. 1990. Computational Methods for Sensor Data Fusion and Sensor Planning.
Kluwer: Boston.

Hager, G. and Mintz, M. 1989. Computational methods for task-directed sensor data fusion
and sensor planning. To appear in the International Journal of Robotics Research.

Hager, G. D. 1990. The use of interval-based bisection methods for sensor data fusion.
Technical report in preparation.

Kearfott, R. B. 1987. Abstract generalized bisection and a cost bound. Mathematics of
Computation, 49(179): 187-202.

Kearfott, R. B. 1990. Preconditioners for the interval Gauss-Seidel method. SIAM Journal
of Numerical Analysis, 27(3).

Kearfott, R. B. 1987. Some tests of generalized bisection. ACM Transactions on Mathe-
matical Software, 13(7):197-220.

Moore, R. E. 1966. Interval Analysis. Prentice-Hall: Englewood Cliffs, N.J.

Nickel, K., editor, 1980. Interval Mathematics 1980. Academic Press: New York.

Nickel, K., editor, 1985. Interval Mathematics 1985. Volume 212 of Lecture Notes in
Computer Science, Springer-Verlag: New York.

Pentland, A. 1986. Perceptual organization and the representation of natural form. Artifi-
cial Intelligence, 28(3):293-332.

Rockafellar , R. T. 1970. Convex Analysis. Princeton University Press: Princeton, N J .

Sikorski, K. 1982. Bisection is optimal. Numerische Mathematik, 40:lll-1117.

Solina, F. 1987. Shape Recovery and Segmentation with Deformable Part Models. PhD
thesis, University of Pennsylvania, Philadelphia. Available as Dept. of Computer Science
report MS-CIS-87-93.

Solina, F. and Bajcsy, R. 1990. Recovery of parametric models from range images: the
case for superquadrics with global deformations. IEEE Trans. Pattern Analysis Machine
Intelligence, 12(2):131-147.

Tsikos, C. I. 1987. Segmentation of 3-0 Scenes Using Multi-Modal Interaction Between Ma-
chine Vision and Programmable, Mechanical Scene Manipulation. PhD thesis, University
of Pennsylvania.

	Interval-Based Techniques for Sensor Data Fusion
	Recommended Citation

	Interval-Based Techniques for Sensor Data Fusion
	Abstract
	Comments

	tmp.1195441188.pdf.OSkkC

