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Abstract 
We view the problem of sensor-based decision-making in terms of two components: a 

sensor fusion component that isolates a set of models consistent with observed data, and 
an evaluation component that uses this information and task-related information to make 
model-based decisions. This paper describes a procedure for computing the solution set of 
parametric equations describing a sensor-object imaging relationship. Given a parametric 
form with s parameters, we show that this procedure can be implemented using a parallel 
array of 6s' processors. We then describe an application of these techniques which demon- 
strates the use of task-related information and set-based decision-making methods. 

1 Introduction 

A central problem in sensor data fusion is the description of observed data in a canonical form 
useful for decision making. One approach to describing sensor data is to choose a restricted 
class of parametric primitives, and fit the data to one or more of these primitive elements. The 
basic notion of line or curve fitting has been used for many years and pervades many scientific 
disciplines. Within the vision and robotics community there has been much recent work on 
fitting relatively complex parametric forms such as generalized cylinders or superquadrics to 
range, tactile, and visual data. 

While fitting is a powerful notion, many of the techniques currently employed have severe 
shortcomings. In particular, methods such as least squares tend to have very primitive notions 
of fit accuracy, and consequently it is difficult to determine the extent to which the observed 
data determines the model parameters or how well the model matches the data. Given the usual 
inaccuracies of sensor data as well, it is quite possible that the point estimate delivered by least 
squares or similar techniques is a poor representation of the observed data. 

An alternative approach is to directly compute the set of all model points consistent with 
observed data, and to use task-related information to make model-based decisions. For example, 
when grasping an object with a gripper, the location of the object must be known to an accuracy 
sufficient to  place the gripper on the object without a collision. Given the set of all object 
locations and sizes, we can determine when the uncertainty in size and location has been reduced 
to a level where the operation is guaranteed of succeeding (if it is indeed possible). For small 
objects and large grippers, the set can be very large and the operation will still succeed, while 
for objects which are nearly the size of the gripper opening, a very precise estimate is required 
and therefore the solution set must be small. 



In our past work, we have examined decision-theoretic techniques [Hager, 1990; Hager & 
Mintz, 19891 for describing task-related constraints, and developed grid-based approximation 
techniques for implementing decision-theoretic sensor information fusion and sensor planning. 
Those techniques, while very general, suffered from severe complexity limitations when fusing 
large volumes of data into complex models. Examination of their behavior led to the observation 
that important factor in system performance was not its use of a statistical description of 
observation error, but rather the fact that we assumed observation error was bounded. We can 
improve grid-based method performance by considering two separate sub-problems: the problem 
of determining the set of models consistent with observations up to a known, bounded error, 
and the problem of building a probability description on the resulting set. 

This article addresses the problem of making effective use of tolerances to support set-bused 
estimation and decision-making. We describe a technique for computing set-based estimates that 
is able to solve problems of much higher parametric complexity using larger volumes of data 
than our previous grid-based methods. This method uses generalized bisection based on interval 
projections. The process can be thought of as incrementally building a search tree describing 
a partioning of the solution space, and pruning portions of the tree that are incompatible with 
observation. One of the major results in developing this technique is that we can show upper 
bounds on the amount of data needed at each node of the tree, and consequently we can construct 
a sensor information processor consisting of a data selection component pipelined with a parallel 
processor array with size that is a quadratic function of the problem dimensionality. 

In the next section, westate the class of sensor data fusion problems we are considering, and 
define the precise problem we are attempting to solve. In section 3, we introduce interval analysis 
and describe our g e n d i z e d  bisection procedure. In Section 4 we describe a data selection 
algorithm that allows us to reduce the complexity of our basic computational operation to a 
quadratic function of model dimensionality. In Section 5 we describe an application using set- 
based decision criteria. We conclude with a discussion of future enhancements and applications 
of this work. We note that a more extended version of the results in this article can be found in 
[Hager, 19901. 

2 The Problem 

In its most general form, the relationship between an observation, z of dimension m, and model 
parameters, p of dimension s,  can be written 

where the implicit function g describes model geometry, and the explicit function H describes 
sensing geometry. The vector d denotes additional kinematic or physical degrees of freedom 
of the sensor system (calibration or control parameters), and the additional parameter v is a 
nuisance parameter denoting non-deterministic disturbances of the sensor output. The vector x 
is an observable quantity which bears a known relationship to both the sensor outputs and to 
the underlying model parameters. 

There are several specializations of these forms which occur in practice: 

For convenience sake, for fixed V we can write a single form 



g8(p7z ,d)=  [z-$:)d,v)] = 0 ,  fo r some i  t X a n d v E Y .  

If H is bijective for fixed d and v, then we could write (1) as 

g(p, H-'(z,d,v)) = 0, for some v E V .  

a If g can be written explicitly, we can compose the two functions and write 

a If, in addition, the error vector v affects the system additively, we may write 

In the rest of this article, we will use the form (2) except in some special cases where the 
special structure of (3) or (4) is crucial to the discussion. Problems expressed in the form of 
(1) tend to  be more complex to solve, both mathematically and computationally than problems 
which can be described using explicit equations. It is usually preferable to reduce problems to 
explicit form (3) or explicit additive form (4) whenever possible. 

This method of problem description is both general and practical for a wide variety of sensing 
applications. Moreover, it separates the description of the sensing apparatus from the data 
representation. Consequently, information from several different sensors can be integrated into 
the same representational format and, conversely, information from one sensor can be integrated 
into several different representational formats merely by changing the coupling between sensor 
description and geometric model. The following is a simple example that is also used later in 
this article: 

Example 2.1 Pentland [I9861 introduced superquadrics as a modeling primitive, 
and Solina [I9871 developed a least-squares algorithm for recovering superellipsoids 
(convex superquadrics) from range data. Superellipsoids are described by an implicit 
parametric equation of the form: 

The vector [a] = [al,az,a3] can be interpreted as the size of the superellipsoid, the 
vector [y] = [y1,y2] governs the shape of the superellipsoid, and 1 = [x, y, z] is a 
location in space. This form also be augmented with a rotation transformation to 
describe superquadrics in arbitrary orientation in space as well as other parametric 
deformations [Solina & Bajcsy, 19901, but we will not use these generalizations in 
this article. 

We can also describe a superellipsoid situated at the origin with explicit form 



where C, = cos(x) and S, = sin(x). This form describes the other seven octants by 
appropriate introduction of plus and minus signs. The angles q and w are additional 
parameters required t o  convert the implicit form to an explicit form. The explicit 
description of an arbitrary superellipsoid located in space can be expressed as 

The information observed by a laser scanning device located at  the origin of the 
world coordinate system is simply 

z = u + v ,  VEV. 

The variable v E V describes quantization error in x and y due to finite resolution 
of the scanner cells, and errors in z due to  inaccuracies in computed range. The 
conjunction or composition of this expression with either the implicit or explicit form 
of the superellipsoid yields a well-formed description of the sensor-object observation 
relationship. 

The sensor data fusion problem is to recover model geometry as expressed by the parameter 
vector p from a series of data pairs (z;,d;), i = 1,. . . n to the accuracy required for the specific 
task being performed. As it turns out, in many applications the error in sensor data is relatively 
small and it is often reasonable to assume that v comes from a bounded set, V. In this case, 
given sensor data pairs we can define the solution set consistent with a set of observations. We 
now state the version of the sensor data fusion problem we consider in the remainder of this 
article: 

Given a data set 0 consisting of pairs of vectors (z ; ,  d;), i = 1. .  . n and a sensor- 
object description g", compute an approximation to 

Generally speaking, solution sets will be of such complexity that, except for trivial cases, even 
closed form approximations to  this set are difficult to develop. Hence, our interest in compu- 
tational techniques for approximating this set. To compute an approximation, we define an 
operator, F, yielding a sequence of sets Po, P I , .  . . such that 

The grid-based technique mentioned above can be thought of as a member of this class of 
approximation algorithms. However, as indicated in the introduction, the complexity of this 
method makes its application prohibitive for a number of problems of practical interest. In 
particular, when isolating the solution set it make sense to develop the grid incrementally based 
on the structure of the sensing equations. We now describe the generalized bisection algorithm 
we have developed for this purpose. 



3 A Brief Review of Interval Analysis 

Our solution to the problem of isolating solution sets makes heavy use of concepts from interval 
analysis. Interval analysis originated in the attempt to build rigorously correct numerical proce- 
dures for processes such as root bracketing, differential equation solving, numerical integration, 
or function minimization. The heart of the approach is represent a real number by a bracketing 
interval, each endpoint corresponding to a number having an exact representation within the 
machine, and to ensure that all mathematical operations on numbers preserve this property. 
The seminal work on the subject is Moore [1966]. More modern expositions include [Alefeld & 
Herzberger, 19831 and the proceedings of a quintennial conference[Nickel, 1980; Nickel, 19851. 
Specific papers we have found most relevant to  the problems we will be discussing include 
[Adams, 1980; Sikorski, 1982; Eiger et al., 1984; Kearfott, 1987; Kearfott, 1987; Kearfott, 19901. 

Nota t ion  a n d  Terminology In the following, let sR denote the real line and 92" denote 
Euclidean s-space. We denote the open interval from a to b in R1 by (a, b) and the closed interval 
by [a, b]. If a and b are points in R3, then we regard the set (a, b) = (a l ,  bl) x . . . x (a,, b,) as a 
generalized open interval in sRs, and [a, b] = [al, bl] x . . . x [a,, b,] a generalized closed interval 
in RS. Given a set S in Rs, we define the bounding interval of S as the smallest generalized 
closed interval containing S. Henceforth we drop the term "generalized" when it is apparent 
from context that the interval is in Rn, n > 1. 

We distinguish between point-valued and interval-valued variables by writing the latter in 
bold-face type, and we denote the space of intervals in RS by ([sR]3. So, if x E sRS is some real 
number, we may write x E x = [ ~ , 5 7 ]  E [R]', indicating that a real value x falls within some real 
interval value x with lower vector x and upper vector F. We often take the liberty of mixing 
point values with interval values within expressions in which case a point value, x, should be 
thought of as the degenerate interval x = [x, XI. 

We define two special operators, the width function ul : ([$I]" -, Rs by w(n) = Ti - a; and 
the center function c : ([%?IS -+ sRs by c(n) = (ii + IJ)/~. A simple sectioning of an interval n in 
dimension i will be a division of n into nonempty components a and b such that: n = a U b, 
and Z = - b;. A sectioning is the above generalized to more than two intervals. An m-sectioning, 
m 2 2 is a sectioning into m components of the same size. 

3.1 Approximating the Range of a Function 

Suppose we are given a function h : R3 i R. For any vector x, we can calculate, y,  the image 
of x under h by y = h(x). Now, suppose that instead of a value x, we are given an interval of 
values, [g,Z] describing an s-rectangle and wish to  compute its projection. For a given continuous 
function h : RS + 8, we can define an interval function, h : ([%]IS -+ [RfZD by 

h(x) = {y 1 y = h(x),x E x). 

Note that a continuous function h maps a compact set to a compact set, hence y = h(x) 
is a closed interval, and therefore a point in l[R]. For the interested reader, we note that it 
is relatively straightforward to define a topology on the space of closed intervals so that the 
continuity of a function h defined on Rs carries over to its interval extension h defined on [RBS 
[Moore, 1966; Alefeld & Herzberger, 19831. 



Example  3.1 Given two intervals x and u in [R]S, we can define the functions 
binary + and unary - as 

- 
x i - u : =  [ z+g ,T+Ti ]  and - x : =  [-x,-XI. 

Binary - can be defined by x - u = x + (-u). Moreover, these operations always 
form the minimal bounding interval of the range of the underlying operator applied 
to the intervals x and u. 

Given such interval extensions for the basic algebraic and trigonometric operators, the most 
straightforward approach to computing the extreme values of a function is to  take the algebraic 
description of the function, and replace all of the operators with the corresponding interval 
operators. 

The major disadvantage of the direct use of interval computations is that they often con~pute 
supersets of the exact range sets. This happens because each occurrence of a variable in an 
expression is treated as a different occurrence of an interval variable. Consider the following 
simple case: 

Example  3.2 Defining the multiplication operation between two intervals is some- 
what more complicated than + or -. Perhaps the most straightforward definition 
is - - 

x *  u := [min&*g,S?*g,x* u,xtG) ,n1ax(x*g ,X*~ ,x*E,S7*Z)] .  

If x and u are independent interval variables, then this operation again forms the 
minimal intervalxovering the product of the two expressions. However, suppose 
x = [-I, 11 and we compute x * x. The above operation yields the interval [-I, 11. 
But, if the interval variable x corresponds to  a bracketing of a single fixed quantity, 
the minimal interval is [0, 11. 

This inaccuracy can be reduced by suitable rewriting of expressions and by implementing 
the interval computations of more complex expressions containing multiple occurrences of the 
same variables. For instance, in the example above it is quite simple to  implement a "squaring" 
operator which computes the minimal range interval. Although this can become a difficult 
process, in most cases it is possible to  use the initial interval implementation to prototype a 
solution, and then to incrementally refine the interval computation to provide better performance 
and use of information. In subsequent sections, we will assume that all interval computations 
produce the minimal correct interval. 

We now define the interval extension of a function H : RS + grn with component functions 
hi : Rs -. $2 i = 1, ..., m as 

We note that, in addition to the possibility of overly conservative scalar intervals, if we consider 
functions with non-scalar range it is often the case that there is no exact interval describing the 
range. The best we can hope for is the minimal bracketing interval. We note without proof that 
if m C n, then H(m) C H(n). 



3.2 Interval Trees 

An interval tree node will consist of a closed interval n = In,iil and a set of two or more children, 
D,. For the sake of convenience, we will identify a tree node with its associated interval and 
write, for example, n 4 m to indicate that the node n is higher in the tree than the node m. 

An interval tree node, n, is consistent if n is nonempty and n is a leaf, or n is an inner 
node and m C_ n for all m E Dn. The node is minimal if no smaller interval satisfies the latter 
criterion. In short, a minimal, consistent node has a non-empty interval which encloses the 
intervals of all of its children, and no smaller interval could enclose those children. As a direct 
consequence, if m -( n, then n 5 m. 

An interval tree is consistent if all of its nodes are consistent, and minimal if all of its nodes 
are minimal. Furthermore, we will refer to the tree as reduced if all non-leaf nodes have at least 
two children. In particular, for binary interval trees, a reduced tree corresponds to a full binary 
tree. 
For an interval tree in I[%]" with leaf node n, we define the operator bisect(n, d), d < s as: 

1. Bisect n creating two new intervals n l  and nz. 

For a node n which is not the root of the tree, we define an operator remove(n) by 

1. Let p = parent(n). 

2.  D p  := Dp - {n). 

3. If IDp] = 0, execute remove(p). 

(a) If p is the root of the tree, mark the remaining child in Dp as the root, otherwise 

(b) Let g = parent(p). 

(4 Dg := (Dg - {PI) u Dp 

Note this operation preserves consistency. It does not preserve minimality for nodes m such 
that m < u. Step 4 preserves the property of being a reduced tree. 

3.3 Interval Reduction 

With this, the interval reduction operation used in the rest of this report can be described as: 

reduce(n, g*,  0 )  

1. For each dimension i, i = 1 , .  . . , s ,  trisection n in dimension i, yielding sets 
n1,1, n1,2,. . . , ns,2, ns,3. 

2. For all n;,j, if 0 4 g*(n; , j ,~; ,di)  for some ( ~ , , d ; )  E 0, then n i j  := 0. 



If each system output depended on a single model parameter, then each interval component 
could be subdivided and reduced independent of other interval components and the procedure 
outlined above is nearly optimal. Conversely, its performance will clearly degrade for systems 
with high degrees of coupling. 

To understand why we have used trisection rather than bisection in reduce(), consider the 
system z = xly  k t where t is small. If x is zero and y is some positive value, a bisection of 
a parameter space symmetric about 0 in the x coordinate will not lead to a reduction. The t 
interval surrounding x ly  = 0 intersects both interval projections though the actual solution set 
may occupy a very small area in the parameter space. By employing trisection we avoid this 
problem by making it much less likely that an observation can be contained in all three interval 
projections. Trisection also increases the rate of convergence at the expense of more processing 
per reduce() call. 

We note that this operation can be executed almost entirely in parallel by computing each 
element of the interval projection of each section independently. This requires 3sm processors 
(recall s is the size of the parameter vector and m is the size of the observation vector). The 
rate of speedup over serial execution depends on the number of common subexpressions in the 
interval function. 

As an additional optimization, we can dismiss constraints as having been fully exploited. 
For sensor descriptions in explicit additive form (4)) we see that if 

then further bisection will not lead to any reduction based on this test. Thus, this component 
can be marked inactive. If all components become inactive, then p is completely contained in 
the solution space. Consequently, we may add a step to reduce() that checks to see if the interval 
projection is contained in the tolerance envelope: 

4. If the sensor description can be written explicitly and additively, H(n ,  d) C z - V, mark 
n as contained. 

3.4 Modified Bisection 

Historically, generalized bisection has been used to bracket the roots of nonlinear equations. We 
make two major modifications to the standard procedure. First, the algorithm constructs an 
explicit solution tree and, given a solution tree and additional data, the algorithm combines 
information starting at the root of the solution tree. This allows elimination of portions of 
the solution set high in the tree and saves unneeded work. Second, the algorithm checks for 
containment of an interval in the solution set, and terminates the search along that branch. 
In the following g*(.) is the interval extension of g* ( . ) ,  n is a tree node corresponding to a 
bracketing interval for the solution set, and 0 is a series of dataldescription vector pairs. 

Algori thm 3.1 

generalized- bisection(n, geofn*, 0) 

1. (Initialization) 

(a) Set a vector of coordinate tolerances, E;, 1 5 i 5 S.  



(b) & := {n). 

2. (Reduction) 

(a) If Q = 0, stop. 
(b) Remove an interval x from &. 
(c) Compute x := reduce(x, geofn*, 0). 
(d) If x = 0, execute rernove(x) and go to 2. 
(e) If w(x) < E or x is marked as contained, then C := C U {x) and go to step 

2. 
(f) If Dx = 0, go to step 4, otherwise go to step 3. 

3. (Following Tree) 

(a) For each c E D x ,  
i. compute c := c fl x. 

ii. If c = 8, execute remove(c). 

(b) If Dx = 8, execute remove(x), otherwise & := & U D,. 
(c) Go to step 2. 

4. (Bisection) 

(a) Choose a dimension 1 5 d 5 s such that w ( x ) ~  2 ~ d .  

(b) Execute bisect(x, d) 

(c) Q : =  Q U  Dx. 
(d) Go to step 2. 

Let 5 be the natural partial ordering of nodes defined by the tree. We note the following 
few facts about the algorithm: 

r If n and m are both on the queue, then n $ m and m $ n. 

a From the use of bisect(), reduce(), and remove(), it is easy to show that if n $ m and 
m $ n, then n and m are disjoint. Consequently, all operations on individual queue 
elements are independent of one another. 

a A node with children is no longer downward consistent after an application of reduce() at 
step 2c. Hence, consistency must be enforced before the children are added to the queue. 
This is the reason for step 3a. 

a The tree generated by this algorithm is not minimal since we are using remove(). Conse- 
quently, a sweeping operation is needed to restore minimality after the algorithm runs. 

a A node enters the final partition if i t  either reaches a minimal size, or it can be shown to 
be fully contained in the solution set. 

r If we drop step 4 from remove(), the algorithm continues to perform correctly, though the 
trees generated are not in reduced from. When following a tree this may result in wasted 
computation since a parent and a single child must be identical in a minimal consistent 
tree. 



4 Data Selection 

In this section, we introduce some ideas based on systems of linear inequalities, and use these 
ideas to summarize some results that lead to a method for choosing a subset of the available 
data to be used in reduce(). The extended version of this report [Hager, 19901 proves that the 
set chosen by this procedure is optimal for the reduce() operation presented the previous section 
when applied to linear systems. We describe how these results extend to the nonlinear case, 
and present simulation trials the indicate the procedure is very close to optimal in the nonlinear 
case. 

For notational convenience, we extend the usual comparison operators, < and >_ to vectors 
in componentwise fashion. Then for linear, explicit , additive systems, the consistency test used 
in reduce() can be written 

which can be rewritten as 

H p + x < z < H p + 7 .  - 
The original expression can also be written as 

which in turn can b_e written using vector comparison as the conjunction of two constraints: 

H p  < z - v .  - 
These tests are a conjunction of individual scalar linear constraints. If we let h; denote the 

ith row of H, then (6) on an interval p becomes 

4.1 Some Facts About Systems of Linear Constraints 

An affine constraint z 5 hp+v, p E Rs can be thought of as a tuple of the form (h, z - v) E W1. 
An affine constraint z >_ hp- v, p E Rs becomes (-h, -(z + v)) and an equality can be expressed 
as the conjunction of two inequality constraints. Consequently, a tuple (h, a) = c E defines 
a half space in SS,  -c defines the dual halfspace, and the intersection of these two spaces is the 
hyperplane {p 1 a = hp) C_ W. Henceforth, C will denote a set of affine inequality constraints 
ci E RS+l, i = 1,2,. . . , k. Furthermore, let ad be the unit vector in coordinate direction d. Then 
the constraint ud = (ad, a) describes a halfspace defined by a plane perpendicular to  coordinate 
axis d. Consequently, an interval, n,  can be represented by the 2s linear constraints 

In the sequel, Cn will denote the linear constraints corresponding to the interval n. 



We will say a point p E RS sata'sfies a constraint c = (h ,a)  if and only if a 5 hp. A point 
p satisfies a set of constraints, C, written p + C, if and only if p satisfies every c E C. Given 
two sets of constraints C1 and C2, we say C1 is a consequence of C2, written Cz * C1 if and only 
if for all p such that p C2, it is also the case that p C1. Note that any subset of a given 
set of constraints is a consequence of the original set, that is C =+ C' C C. We will call a set of 
constraints, C, minimal if and only if there is no c E C such that C - {c)  =+ C. 

From the form of our constraint systems, we see that each pair of constraints representing 
an interval test defines a closed convex strip of space between two hyperplanes in 92' and a set 
of constraints C defines an s-dimensional convez polytope Sc = { p l  p + C). The goal of the 
bisection method is to  represent this polytope to a given degree of accuracy using intervals. 

We define the minimal interval, n, enclosing a polytope C as an interval set of constraints 
Cn such that 

Cn is minimal. 

r For any other interval Cm such that C + Cm, Cn * Cm. 

We note that it follows directly from the above definitions that if Cn and Ck are the minimal 
intervals enclosing C and C' respectively, and C + C', then Cn =+ Ch. 

If C describes a closed, bounded, polytope, the minimal interval bounding C is clearly unique 
and contains 2s constraints. Furthermore, we can place bounds on the maximal size of a set 
C' S C such that the minimal interval surrounding C' is identical to that surrounding C. Using 
basic results in convexity [Rockafellar, 1970, pg. 1601 we can obtain the following result: 

Result 4.1 If Cn is the minimal enclosing interval of a set of constraints C, there is 
a C' C C such that 

r (C'l 5 2s2,  and 

C' + Cn. 

In other words, the minimal enclosing interval can be defined based on no more than 2s2 con- 
straints from C. 

2s2 constraints are needed in the "worst case" where each face of the minimal enclosing 
interval is determined by a disjoint set of s constraints. This number is larger than needed for 
the version of reduce() we have described. The following statements formalize this idea: 

Definition 4.1 A constraint c E C dominates a constraint d E C on an interval Cn 
(written cl domn c2)  if and only if 

Geometrically speaking, dominance on an interval means that the polytope defined by the 
dominating constraint and the base interval is contained within the polytope formed by the 
dominated constraint and the base interval (constraint b of Figure 1). The set subtraction is 
included so that we can talk of constraints dominating a side of the enclosing interval in a natural 



Interval 

Constraint 

Figure 1. The constraint b dominates u on the interval n. reduce() would be able to move the face u to 
the right until it touched point PI. However, the ninimal interval would require moving the face u until 
it touched point P2 at the intersection of a and c. 

fashion. We note that by this definition there is always a dominator of a coordinate hyperplane 
u, though it may be that hyperplane itself. 

The crucial property of dominators is expressed in the following: 

Result 4.2 The procedure reduce() applied to a set of constraints C on an interval 
Cn is only effective if there are constraints ci E C which dominate faces uj  E Cn on 
n. 

Effectively, we can choose a constraint for each "face" of the interval n, that is, only 2s 
constraints, and use this subset in reduce(). Based on our previous analysis, this means that 
reduce performs 6s2 interval projections and tests. This simplicity comes at a cost, however. As 
shown in Figure 1, reduce() does not always compute the minimal interval, in this case formed 
by the conjunction of constraints a and c. For a proof that generalized bisection using reduce() 
converges, we refer to  [Hager, 19901. 

4.2 Choosing Constraints 

We first note that, given a constraint c and an interval Cn it is possible to  determine the 
intersection of the hyperplane defined by the constraint interpreted as an equality and the 
"walls" of the surrounding interval. If we choose a particular dimension, then we can look at 
the minimal and maximal values assumed by the parameter in that dimension on the plane 
within the interval. Depending on the "direction" of the halfspace, the minimal or maximal 
value determines the minimal or maximal value of that hyperplane of the minimal enclosing 
interval, respectively. Using this information, we can determine the strongest set of constraints. 

We now proceed to  formulate this mathematically and algorithmically. Given the equation 
of a hyperplane, z - hip - v = 0, we can solve for the parameter pj in terms of the rest of the 
parameter vector as 



Then on an interval p, the extreme values of p d  are given by 

z - V; - hip + h i j p j  
ri,j = 

hi,, 
7 

We adopt the convention that when hi j  = 0 the interval ranges from -oo and oo. 
We now note the following facts without proof for constraints of the form (a, h): 

1. If c; dominates c j  in a direction ad, then T;,d 5 r j , d .  

2. If c; dominates ud and c j  does not dominate ud, then FiVd < F j , d .  

For constraints of the form (-a, -h) ,  replacing 5 with 2 and F;,j by results in the dual 
statements of these facts. 

Our choice procedure, choose(n), uses the above to choose a set of 2s linear constraints as 
follows: 

Algorithm 4.1 

1. Compute the interval matrix r ; j ,  i = 1..  . k, j = 1 . . . s.  

2. Set C = 0. 
3. For each i = 1, ..., s 

(a) c1 = argmaxjrij .  

(b) C" = arg minj Ti,j. 

(c) C := C U {cl,cU). 

We insert this step between 2b and 2c of the bisection algorithm, and modify reduce() to use 
the set C. 

This algorithm has order O(s c m). Thus, it has a running time that grows as a linear 
function (with a low constant, in practice) of the number of constraints present in the system, 
and similarly scales linearly with the size of the observation vector. 

For parallel implementations of reduce, Algorithm 4.1 finds the optimal set of constraints. 
For serial implementations of reduce it would be possible to design an algorithm which, after 
choosing a constraint, projects the bounding interval after applying constraint, recomputes r;,j 
based on the new bounding interval, and makes the next choice based on these updated matrices. 
However, this procedure requires somewhat more computation and also relies heavily on the 
linear structure of the system description. If the linear constraints are the result of linearizing 
a nonlinear description, this heavy reliance on linearity may make the procedure more unstable 
than that given above. 



4.3 The Nonlinear Case 

We note that Definition 4.1 and Result 4.2 are independent of linearity. Thus, the notions of 
dominance, and the characterization of when 2s constraints can be chosen all follow exactly as 
presented above using nonlinear constraints resulting from a nonlinear sensor-model description. 

To implement data selection, we linearize the nonlinear form gl ( . )  by taking the first two terms 
of a Taylor series expansion about the center point of an interval, and use the resulting affine form 
as an approximate linear description of the system of equations. We must point out, however, 
that the correct functioning of the selection algorithm for an implicit form g8(p, z, d) = 0 requires 
viewing the function as f (u)  = g8(p, z,  d) = c and carrying out the expansion with respect to u. 
That is, the expansion is with respect to both p and z as well as components of d which have 
any uncertainty associated with them. 

4.4 Some Test Cases 

We have experimented with a number of test problems of varying complexity (ranging from 
2 to 26 parameter dimensions). In these trials we choose the node on the queue with the 
largest volume as the node to expand, and bisect the dimension for which the Jacobian value 
multiplied by the interval width is the largest. This results in a fair cycling of nodes and bisection 
dimensions. We compute the volume of the solution space and compare the rate of decline of 
volume between the bisection algorithm with data selection and without data selection. 

For problems which can be described with explicit equations, the data selection software is 
fully tested and seems to perform very well. We have tested it on highly overconstrained linear 
systems and the system performance with and without data selection is identical in every way 
except that slightly more constraints are marked inactive when no data selection is used. This 
is to be expected since constraints which would be marked inactive but are dominated by other 
constraints never enter the bisection procedure when using data selection, and hence are never 
marked inactive. We have also tested several simple (three or four parameter) nonlinear systems 
with exactly the same results. 

To examine the behavior of data selection in a slightly more complex domain, we have tested 
its performance on recovery of superellipsoids described using an implicit equation. Our current 
software does not accommodate Jacobians over parameters other than the model parameters, 
so in order to test data selection, we have reduced the error of observation to near zero. Data 
was generated artificially by sampling the superellipsoid in explicit form using a matrix of 64 
angles. In this case, there is no point in multiple samples (the data are identical), through we 
allow two iterations to test the effects of reinitializing at the root of tree. We varied the number 
of iterations in each case, but by looking at the location of the spike (indicating the return to 
the root of the tree), it is possible to determine the number used in each trial. 

Figure 2 shows the results of several trials. In each, we isolated different parameter groups 
and compared rates of convergence. Each is a log plot, and the lower (dotted) curves represent 
convergence when using no data selection while the upper (solid) curves represent convergence 
using data selection. Again, these are curves of the volume of the solution space. In this 
case, we see that when recovering position and size parameters there is virtually no difference 
between using all available data and using selected data. Only when determining shape do we 
see some slight divergence between the two curves. These parameters are highly nonlinear, and 
the Jacobian is therefore very unstable. Consequently, the data selection algorithm makes an 
occasional wrong choice, and a node is bisected rather than reduced. This increases the number 
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Figure 2. Convergence curves when determining superellipsoid parameters for various parameters subsets. 
The plot show the volume as a function of reduce() applications. The dotted line is when no data selection 
used, and the dotted line is for an algorithm using data selection. 



Table 1. Timing figures for two versions of the bisection algorithm. Note that the final row includes some 
overhead for operations not listed in the table. 

of leaves in the tree and reduces the number of times an individual node is processed. 
These errors are clearly seen in the final graph where we show convergence when recovering all 

8 parameters. In this case, the difference in solution set volume is approximately one half order 
of magnitude. By choosing more than the minimal number of constraints for these dimensions, 
the difference between these curves could be reduced. 

The simulations described above were carried out using a modified form of reduce() that 
allowed only one interval reduction per application. Reductions of an interval change the optimal 
set of constraints, so this modification ensures that the selection algorithm gets a "fair chance" 
to reselect data every time the interval size changes. In this sense, the trials are slightly biased 
toward the da ta  selection algorithm. The final graph (lower right) shows the effect of allowing 
reduce() to iterate through all dimensions. We see that the difference between using all of the 
available data and using selected data is still small, and convergence is much more rapid. 

When comparing execution time, there is a clear savings in computation by doing data 
selection. Table Table 1 shows the time to choose data, the time to perform reduce() and the 
total time to expand a node. We see that in the average case, using data selection halves the 
amount of time needed to expand a node. This performance gain increases with increasing data 
set size. Our feeling is that in most cases, any loss in rate of convergence is more than made up 
by this increase in execution speed. 

5 An Application of Set-Based Estimation 

In this section we describe an application of set-based estimation. The task is to estimate the 
location of an object described as a superellipsoid to the precision required to place a gripper 
on the object without collision. This is a member of a collection of tasks which correspond to 
the well-known "peg-in-hole" problem. Abstractly, the problem is to estimate the location of an 
object, fitting, hole, or other geometric entity to the precision required to mate with the object 
within a given tolerance. 

We show the results of applying the generalized bisection algorithm to this problem in sim- 
ulation, and describe an implementation that uses range data from two different range sources. 

5.1 Task Formulation 

Abstractly, we can pose the problem of capturing an object using configuration space. That is, 
we shrink the size of the gripper opening by the size of the object and consider the problem of 
capturing a point in the reduced opening. In one dimension we define a capture predicate u for 



an object of size 2s0 and location lo, and a gripper of size 2sg with location 1, as 

1 if 1, E [I, - sg + so,lg + s, - so] 
u(lo,so, Zg,sg) = 

0 otherwise 

with the convention that the interval is empty if the lower bound exceeds the upper bound. The 
function u returns 1 if and only if the location of the object and the location of the gripper 
would allow capture without collision. In particular, if so > s,, the functions returns 0 for all 
object and gripper locations indicating the object is not graspable. 

We now assume that lo and so are independent random variables with known distributions 
nl and n, respectively, and that we have an estimate I* for object location. The gripper will be 
placed so that I, = l * .  For fixed so, taking expectations of the above yields 

R(s0) = En' [u(lo, SO, I*, ~ g )  I so, I*, sg ] = P(lo E [I* - sg + SO, I* + sg - so]). 

That is, for fixed size and random object location, the expected value of u is the probability of 
capturing the object without collision based on the estimated location I * .  If the capture interval 
is nonempty, this is simply R(so) = nl(l* + s, - so) - xl(l* - sg + so). If we now consider size 
to be a random variable, the payoff u* can be calculated as 

u* = E"" [ R(so) ] . 

u* can be thought of as the probability that the proposition "object will be captured" is true 
given what is currently known. 

We now view each interval of the partition generated by bisection as having some probabil- 
ity X of capturing the model parameters, and assume this probability is distributed uniformly 
within the interval (we refer the reader to [Hager, 19901 for an extended discussion of how these 
probability values are calculated). Hence, we can calculate u* locally on an interval by taking 
xl and n, to be uniform distributions. The results is a value ranging from 0 to 1 indicating the 
probability of capture for parameters in this interval. To compute a global payoff we compute 
a local payoff value for each interval and take the sum these values weighted by their associated 
probability. 

Since grasping could be done along coordinate x or coordinate y, we take the or  of the two 
propositions "object will be captured along dimension x" and "object will be captured along 
dimension y." In terms of probability, this means that we compute u; using location and size 
parameters in x,  and and u*, using location and size parameters in y, and then take the maximum 
of these values. 

5.2 Simulation Analysis 

We have implemented and tested this particular task on superellipsoids with the s, = 50mm 
corresponding approximately to the opening of a hand in our lab. The initial range of values 
for superellipsoid location parameters was f 50mm, for size 20 to 140mm, and for shape 0.1 to  
1.0. We allowed the estimator to run until the payoff value reached one, indicating a probability 
one solution for successfully acquiring the object, or zero indicating that the object was to  large 
to be grasped. Estimates of object location were made by taking the centroid of the solution 
set. The following table shows the results of simulated runs for several different sized spherical 
objects. 



Table 2. Number of iterations to decide graspability of an object as a function of object size. 

- - -  

Object Size 

Iterations (W Shape) 
I terat ionsfWOSha~e)  

The main points to notice are that, as one would expect, objects far larger than what is 
graspable are decided very quickly without exploiting the supplied information to any great 
extent. What is perhaps surprising is that the same statement is not true for objects smaller 
than the given 5 centimeter bound. This is so for two reasons: the effect of sensor observation 
error is larger on small objects, and the parameter sensitivities lead the method to spend a 
greater amount of effort recovering shape parameters. In the final row of Table 2, we show the 
results if we hold the superellipsoid shape parameters fixed. Here we see that the number of 
iterations is far smaller. One of our future research projects is to make the bisection search 
process task sensitive so that these differences can be reduced. 

5.3 Experimental Apparatus 

90 
2 
2 

The application described above has been also been implemented for real laser scanner data. 
We use a different model description since, as we know the spatial location of the laser scanner 
cells, it is possible to solve the explicit form of the superellipsoid for the two angles 7 and w as a 
function of scanner cell location, and consequently we can write an explicit expression describing 
the object sensor relationship that only depends on location size and shape parameters. Details 
of this formulation can be found in [Hager, 19901. 

We use two different laser scanner systems. The first is a linear stage which returns a frame 
buffer of depth information [Tsikos, 19871, and the second is a scanner mounted on a robot arm 
which returns a single scanner stripe. In the first case we cannot process all of the data in one 
step, so we choose a large search window and select 100 points from the data in that window. 
Using the formulation developed above, we decide to resample when the superellipsoid has been 
localized so that is can be captured in a window one half the area of the previous window. This 
continues until a decision about the original task can be reached. 

The mobile scanner allows us to process a higher density of data locally, but it must often 
actively sample to acquire enough data to reach a decision. We use the middle of the tolerance 
interval on model position to choose a sampling point, and vary rotations from 0 to 90 degrees 
to get a complete "picture" of the object. Of course, it sometimes happens that the first scan 
line provides enough information to decide whether the object is graspable, and from where. 
Two are often enough to decide that it is not graspable. 

We have only begun testing this version of the program on real data. In particular, the mobile 
scanner still suffers from calibration inaccuracies. In the next months we expect to improve the 
system performance and increase its reliability. 
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6 Conclusions 

We have described an algorithm for approximating the set of parametric descriptions of an 
object from sensor data with known, bounded error. One of the most important features of 
this algorithm is that the reduce() operation applied to a problem with model dimension s can 
be implemented in parallel using 6s2 interval processors. This suggests a pipelined architecture 
consisting of a data selection processor and an interval reduction processor could yield very 
fast performance (we estimate less than a millisecond to execute reduce() for the superellipsoid 
problems we have described). For very large data sets, the data selection processor might become 
a bottleneck, but we speculate that an additional coarse data selection algorithm could be used 
to "sift" data into different branches of the solution tree. 

We are currently working on the applications described in the find section to verify that 
these methods can function reliably and effectively on real data. In the future, we foresee 
several improvements to the methods we have described. Briefly: 

1. We have begun to fold task constraints into the bisection process. First, the bisection pro- 
cedure we have described builds the tree based solely on parameter sensitivities. However, 
if a particular task framework is known, it is possible to direct the search so as to  fulfill 
the given task objectives as quickly as possible. 

2. It is often possible to quickly detect that a high quality decision will require extensive 
computational effort. This information can be used to either terminate the search, saving 
time for other more easily decided tasks, or for deciding to gather more information that 
allows the given question to be decided more easily. 

3. The formulation we have described assumes that the only discrepancy between observed 
data and the model is due to sensor error. However, it is often the case that the observed 
object is only approximated by the supplied model, and extra geometric error must be 
tolerated. We would like to reflect this additional "geometric uncertainty" back on the 
model parameters in some principled fashion. 

We have made initial steps on all three points, and refer the reader to [Hager, 19901 for their 
current status. 

We believe that set-based estimation or decision-making techniques have a large role to 
play in the construction of intelligent systems that must make decisions based on sensor data. 
The application we have described in the previous section is just one of a number of common 
operations in robotics which could be conveniently cast using set-based techniques. Some of our 
recent work supports this view in a very practical setting [Atiya & Hager, 19901. Consequently, 
we believe that the analysis and understanding of methods such as the one we have presented 
will have a substantial impact on sensor-based robotics. 
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