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Abstract

This paper considers identification and estimation of a fixed-effects model with an interval-

censored dependent variable. In each time period, the researcher observes the interval (with

known endpoints) in which the dependent variable lies but not the value of the dependent

variable itself. Two versions of the model are considered, a parametric model with logistic

errors and a semiparametric model with errors having an unspecified distribution. In both

cases, the error disturbances can be heteroskedastic over cross-sectional units as long as they

are stationary within a cross-sectional unit; the semiparametric model also allows for serial

correlation of the error disturbances. A conditional-logit-type composite likelihood estima-

tor is proposed for the logistic fixed-effects model, and a composite maximum-score-type

estimator is proposed for the semiparametric model. In general, the scale of the coefficient

parameters is identified by these estimators, meaning that the causal effects of interest are es-

timated directly in cases where the latent dependent variable is of primary interest (e.g., pure

data-coding situations). Monte Carlo simulations and an empirical application to birthweight

outcomes illustrate the performance of the parametric estimator.
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1 Introduction

This paper considers estimation of a fixed-effects model (large n, small T ) with an interval-censored

dependent variable. In each time period, the researcher observes the interval (with known end-

points) in which the dependent variable lies but not the value of the dependent variable itself. This

type of interval-censored variable is commonly encountered in data used by economists, includ-

ing several well-known longitudinal datasets. For instance, the public-use version of the Medical

Expenditure Panel Survey (MEPS) has interval censoring of the annual health-care expenditure

variable; in 2014, the intervals for the health-care expenditure variable were as follows: equal

to $0, between $1 and $322, between $323 and $1,050, between $1,051 and $3,877, and above

$3,877. Other longitudinal datasets with interval-censored variables include the British Household

Panel Survey (interval-censored investment income), the British Cohort Survey (interval-censored

parental income), the General Social Survey (interval-censored earnings variable), and the Health

and Retirement Survey (interval-censored earnings variable for some respondents).

Since the actual value of the interval-censored dependent variable is unobserved, the use of

standard linear fixed-effects estimators is inappropriate. Instead, we propose a latent-variable

fixed-effects model that allows for heteroskedasticity of the error disturbances and, due to the

known interval cutoff points, permits identification of the scale of the slope parameters. Both of

these features distinguish the model from the ordered-choice fixed-effects model, with unknown

interval cutoff points, that has previously been considered in the literature (e.g., Baetschmann,

Staub, and Winkelmann, 2015; Das and van Soest, 1999; Muris, 2017). We consider two alternative

assumptions on the error disturbances in the latent-variable model. The first is a parametric

specification in which the disturbances are assumed to be logistic, with heteroskedasticity over

cross-sectional units but stationarity and lack of serial correlation within a cross-sectional unit. The

second is a semiparametric specification in which the disturbances have an unspecified distribution.

Like the logistic model, the error disturbances in the semiparametric model are permitted to be

heteroskedastic over cross-sectional units as long as they are stationary within cross-sectional

units; unlike the logistic model, the error disturbances may also exhibit serial correlation within

cross-sectional units.
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For the parametric (logistic) fixed-effects model with interval-censored outcomes, we propose

a conditional-logit-type composite likelihood estimator. The idea of conditional likelihood estima-

tion, as a way of eliminating fixed effects, is now familiar in the literature on non-linear fixed-effects

models. This approach was initially proposed for the binary-choice fixed-effects logit model (An-

dersen, 1970; Chamberlain, 1980) and has been extended to the ordered-choice fixed-effects logit

model. Unlike these models, where lack of scale identification necessitates an error-disturbance

variance normalization, our model does not require a variance normalization and moreover allows

for heteroskastic error disturbances. In this sense, the error-disturbance assumptions that we make

are similar to those used in Honoré (1992) for the censored regression fixed-effects model. The

estimators proposed in Honoré (1992) allow for heteroskedastic (and stationary) error disturbances

but do not allow for serial correlation. In contrast to our parametric estimator, the estimators in

Honoré (1992) do not require a parametric assumption to achieve
√

n-consistency since the actual

value of the dependent variable is observed for uncensored observations.1 Finally, we note that

conditional likelihood estimators have also been proposed for other non-linear fixed-effects mod-

els with underlying exponential likelihoods. Examples of such models include the Poisson model

(Hausman, Hall, and Griliches, 1984), the binomial regression model with logistic link function

(Machado, 2004), and certain duration models (Chamberlain, 1985).

For the semiparametric fixed-effects model with interval-censored outcomes, we propose a com-

posite maximum-score-type estimator to consistently estimate the slope parameters. Manski (1987)

proposed the maximum score estimator for a binary-choice fixed-effects model in which the error

disturbances have an unspecified and possibly heteroskedastic (but stationary) distribution. The

semiparametric maximum-score approach was extended to the ordered-choice fixed-effects model

and other non-linear fixed-effects models by Abrevaya (2000). In the models considered by Manski

(1987) and Abrevaya (2000), the scale of the slope parameters in the latent-variable model is not

identified. In contrast, our proposed semiparametric maximum-score-type estimator identifies the

scale of the slope parameters.

1Some other recent work on panel models with fixed effects that accommodate censored outcomes include Alan
et al. (2013), Galvao et al. (2013), and Khan et al. (2016). The methods proposed in this paper use continuous
support of the outcome variable on a subset of the real line, which rules out their application to the case of
interval-censored outcomes.
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The outline of the paper is as follows. Section 2 introduces the interval-censored fixed-effects

model with logistic error disturbances. Identification of the model’s parameters is shown to hold

when there are at least three intervals in each time period. We propose a composite maximum

likelihood estimator (CMLE), based upon the conditional-logit approach for the binary-choice

fixed-effects model, and we show consistency and asymptotic normality of the CMLE. In a version

of the logistic model that allows for heteroskedasticity, we suggest using an exponential specification

for the heteroskedasticity function and propose an appropriately modified version of the CMLE.

Section 3 considers the semiparametric version of the model, where the distribution of the error

disturbances is left unspecified. As in the logit model, we allow for heteroskedasticity and require

stationarity of the error disturbances, but we relax the assumption of no serial correlation. For

this semiparametric model, we propose a composite maximum-score-type estimator that can be

used to consistently estimate the slope parameters from the latent-variable equation. Section 4

provides Monte Carlo evidence on the finite-sample performance of the CMLE estimator. Section 5

considers an empirical application to birthweight outcomes using a very large two-period panel

dataset. To compare the estimator’s performance to the baseline of the first-difference estimator

(under complete observability), we start from a dataset with fully observed birthweight outcomes

and then artificially interval-censor the outcome variable. Section 6 concludes.

2 Interval-censored fixed-effects logit model

We consider an interval-censored fixed-effects model, with the researcher observing the interval

in which the dependent variable lies but not the value of the dependent variable itself. The

endpoints of the intervals are assumed to be known. For simplicity, the theoretical treatment

focuses upon the case of two time periods.2 In addition, a homoskedastic version of the logistic

model is considered initially, with the extension to heteroskedasticity considered in Section 2.2.

With i indexing cross-sectional units and t indexing time periods, the following linear fixed-effects

specification is assumed for the underlying latent dependent variables:

2Muris (2017) treats the case of general T for the closely related ordered-choice fixed-effects model. Another way
to deal with multiple time periods is to apply the procedure below to each combination of distinct time periods.
The results can then be combined using minimum distance, and inference can be done using the bootstrap.
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y∗

it = αi + Xitβ0 − σ0uit (i = 1, . . . , n; t = 1, 2), (1)

with a vector of regressors Xit ∈ R1×K , an associated vector of regression coefficients β0 ∈ RK×1,

and a positive scaling parameter σ0 on the error terms. The error terms (ui1, ui2) are assumed to be

serially independent, conditional on the regressors Xi ≡ (Xi1, Xi2) and the fixed effect (unobserved

heterogeneity) αi ∈ R, with each following a standard logistic distribution:

(ui1, ui2)| (αi, Xi) ∼ iid logistic. (2)

The cdf function associated with the logistic distribution is denoted Λ(v), where Λ(v) = exp(v)/(1+

exp(v)).

The latent-variable y∗

it is not observed. For each t = 1, 2, the observed interval-censored

dependent variable yit ∈ {1, · · · , J} is linked to the latent variable y∗

it through known cutoff

points −∞ < c1,t < · · · < cJ−1,t < ∞ in the following way:3

yit =





1 if y∗

it < c1,t,

2 if c1,t ≤ y∗

it < c2,t,

...
...

J if cJ−1,t ≤ y∗

it.

(3)

Consistent with the notation for the regressors, yi ≡ (yi1, yi2) will denote the collection of outcome

variables. Taken together, the model in equations (1)-(3) will be called the interval-censored fixed-

effects logit model in the discussion below.

Conditional on the covariates Xi and the fixed effect αi, the probability that the censored

variable yit assumes a particular value j ∈ {1, . . . , J} is

Pr (yit = j| Xi, αi) = Λ
(

1

σ0

(cj,t − αi − Xitβ0)
)

− Λ
(

1

σ0

(cj−1,t − αi − Xitβ0)
)

,

3The number of cutoffs J could also be time-varying (Jt), but the paper focuses on time-invariant J for notational
simplicity.
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where c0,t = −∞ and cJ,t = +∞ for all t.

We introduce a collection of indicator variables to indicate whether the latent variable is above

a given cutoff point. Let π ≡ (π (1) , π (2)) index a pair of cutoff points, one for each time period,

with π(t) ∈ {1, . . . , J − 1}. There are (J − 1)2 possible pairs. Then, define the following quantities:

ditπ ≡ 1 {yit ≥ π (t)} (4)

= 1
{
y∗

it ≥ cπ(t),t

}
, t = 1, 2,

diπ ≡ (di1π, di2π) . (5)

Note that the indicator variable ditπ is determined as follows:

ditπ = 1
[
αi + Xitβ0 − σ0uit ≥ cπ(t),t

]
(6)

= 1
[
uit ≤ 1

σ0

(
αi + Xitβ0 − cπ(t),t

)]
. (7)

The number of outcomes above their respective cutoff values is denoted by

d̄iπ ≡ di1π + di2π.

The following theorem formalizes that d̄iπ is a sufficient statistic for αi in the transformed model.

Theorem 1. If (yi, Xi) follows the interval-censored fixed effects logit model, then for any π,

piπ2 (β0, σ0) ≡ Pr
(

di,π = (0, 1)| d̄iπ = 1, Xi, αi

)
(8)

= Λ

(
(Xi2 − Xi1)

β0

σ0

−
(
cπ(2),2 − cπ(1),1

) 1

σ0

)
. (9)

Proof. See Appendix A.1.

Theorem 1 establishes a conditional probability that, for switchers, does not depend on the

fixed effect. It resembles the result for the binary choice case, see e.g. Chamberlain (1980, p.

229). The two main differences with the binary choice case are that: (i) in the interval-censored

fixed effects logit model, a switcher is defined relative to cutoff points chosen by the researcher,
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i.e. yi1 < π (1) and yi2 ≥ π (2), while in binary choice case π (t) = 1 for all t; (ii) the resulting

expression (9) features parameters that are absent from its binary choice analog, namely the

variance parameter σ0 and the difference in latent cutpoints cπ(2),2 − cπ(1),1. In the binary choice

model, normalizations on those parameters are required for identification, and they therefore do

not feature in the conditional probability.

2.1 Identification and estimation

The parameters of the interval-censored fixed-effects model with logistic errors show up as re-

gression coefficients in the conditional probability of the transformed binary choice model in (7).

As such, the identification and estimation of β0 and σ0 can proceed using existing tools for the

binary-choice fixed-effects model with logistic errors.

With ∆Xi ≡ Xi2 − Xi1, it is convenient to use the notation

θ0 ≡
(

β0

σ0

,
1

σ0

)

Wiπ ≡
(
∆Xi, −

(
cπ(2),2 − cπ(1),1

))

so that we can write

piπ2 (θ0) ≡ piπ2 (β0, σ0)

= Λ (Wiπθ0)

based on Theorem 1.

Before the main identification result can be stated, the following full-rank assumption is re-

quired:

Assumption 1. E
(
∆X

′

i∆Xi

)
is invertible.

Assumption 1 guarantees that E
(
W

′

iπWiπ

)
is invertible whenever cπ(2),2 6= cπ(1),1. This assumption

is standard for fixed-effects estimators, requiring some variation in the regressors over time (i.e.,
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lack of perfect colinearity in the differenced regressors).4

The main identification result is given by the following theorem:

Theorem 2. If (yi, Xi) follows the fixed effects interval-censored logit model with J ≥ 3 and

Assumption 1 holds, then (β0, σ0) is identified.

Proof. See Appendix A.2.

Turning to estimation, for a given choice of π, the conditional maximum likelihood estimator

for the transformed binary choice model (Andersen, 1970; Chamberlain, 1980) is given by

θ̂π = arg max
θ∈RK+1

1

n

n∑

i=1

1
{
d̄iπ = 1

}
(di2π ln Λ (Wiπθ) + (1 − di2π) ln (1 − Λ (Wiπθ))) (10)

= arg max
θ∈RK+1

1

n

n∑

i=1

1
{
d̄iπ = 1

}
liπ (Wiπθ) ,

where liπ (Wiπθ) ≡ di2π ln Λ (Wiπθ) + (1 − di2π) ln (1 − Λ (Wiπθ)) and θ denotes a generic element

of the parameter space. Well-definedness of the estimator in (10) requires that cπ(2),2 6= cπ(1),1.
5

We propose to estimate (β0, σ0) using all possible transformations jointly, using a composite

maximum likelihood estimator (CMLE) as in Baetschmann et al. (2015) and Muris (2017):

θ̂ = arg max
θ∈RK+1

1

n

∑

π

n∑

i=1

1
{
d̄iπ = 1

}
liπ (Wiπθ) . (11)

Theorem 3. Let ({yi, Xi} , i = 1, · · · , n) be a random sample from the interval-censored fixed-

effects logit model with J ≥ 3 and with true parameter values θ0 =
(

β0

σ0
, 1

σ0

)
, and let θ̂ be the

estimator defined in (11). If Assumption 1 holds, then

θ̂
p→ θ0 as n → ∞;

4Assumption 1 allows for bounded regressors. In the binary choice version of our model (J = 2), the logistic
assumption is then necessary and sufficient for identification of the regression coefficient; see Chamberlain (2010).
In what follows, we will show that the logistic assumption is sufficient for identification in our model when regressors
are bounded. Whether the logistic assumption is necessary for identification in the interval-censored fixed effects
model with bounded regressors is an interesting question that is left for future research. Note that, as the number
of support points increases, the econometrician obtains more information about the value of y∗

it. In a certain limit,
the model becomes a fixed effects linear regression model where logistic errors are no longer necessary. It is unclear
whether the logistic assumption can be relaxed for finite J .

5If cπ(2),2 − cπ(1),1 = 0 and Wiπθ0 = ∆Xi
β0

σ0

+ 0, so that one can only identify β0/σ0.
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and
√

n
(
θ̂ − θ0

)
d→ N

(
0, H−1

)
as n → ∞, (12)

where

H = −E

[
∑

π

1
{
d̄iπ = 1

}
Λ (Wiπθ0) (1 − Λ (Wiπθ0)) W

′

iπWiπ

]
. (13)

Proof. In Appendix A.3, we show that the limiting objective function is strictly concave, and derive

the variance matrix and Hessian. In Appendix A.4, we obtain the stated result by verifying the

conditions for consistency and asymptotic normality for maximizers of concave objective functions

(Newey and McFadden, 1994, Theorems 2.7 and 3.1).

Remark 1. That the variance of this estimator is decreasing in the number of thresholds J can be

seen from the expression in (13). An increase in J means that the sum is taken over additional

transformations. Each transformation adds a positive definite term

1
{
d̄iπ = 1

}
Λ (Wiπθ0) (1 − Λ (Wiπθ0)) W

′

iπWiπ

to the expression.

Remark 2. Jointly, the transformed binary choice models overidentify the parameters in the orig-

inal interval-censored model. This suggests that we can (1) test the model specification and (2)

obtain more efficient estimators by optimal weighting. To do so, consider an alternative to the

composite maximum likelihood estimator that starts from the set of scores associated with each

of the transformed models. Stack the scores, and view them as overidentifying moment conditions

in a GMM setting (see Muris, 2017, Section V, for a similar perspective). One can then use a

standard J-test for the validity of the moment conditions. For efficiency, one can use an optimal

two-step version of this GMM procedure or use a weighted version of (11). However, Muris (2017)

found that setting the weighting matrix to the identity matrix works well across a wide range of

simulation designs.
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The parameters of interest are (β0, σ0), and they can be estimated by partitioning

θ̂ ≡


(̂

β0

σ0

)
,
(̂

1

σ0

)
 ≡

(
θ̂1, θ̂2

)

and setting

β̂ = θ̂1/θ̂2,

σ̂ = 1/θ̂2.

Consistency and asymptotic normality of the parameters of interest follows by the delta method

and Theorem 3.

Corollary 1. Under the conditions of Theorem 3,

√
n




β̂ − β0

σ̂ − σ0




d→ N
(
0, MH−1M

′
)

as n → ∞, where

M =



σ0ιK −σ0β0

0 −σ2
0




and ιk is a K × 1 vector of ones.

Proof. The result follows immediately from Theorem 3 and a delta method for vector-valued

statistics, e.g. van der Vaart (1998, Theorem 3.1).

2.2 Heteroskedasticity

To incorporate heteroskedasticity, the latent-variable model in (1) can be modified as follows:

y∗

it = αi + Xitβ0 − σ0(Zi)uit (i = 1, . . . , n; t = 1, 2), (14)

with the error scaling function σ0(Zi) > 0 of an L-dimensional vector Zi replacing the constant

scaling parameter σ0. We will call the model with the homoskedastic outcome equation (1) replaced
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by (14) the heteroskedastic fixed effects interval-censored logit model. It is implicit in (14) that we

require the heteroskedasticity to be time-invariant, which is restrictive.

Theorem 2 can be extended in order to show identification of β0 and the σ0(·) function.

Theorem 4. Assume that (yi, Xi, Zi) follows the heteroskedastic fixed effects interval-censored logit

model with J ≥ 3. If E
(

∆X
′

i∆Xi

∣∣∣Zi = z
)

is invertible, then (β0, σ0 (z)) is identified.

Proof. The proof resembles that of Theorem 2, after conditioning on Zi. It is provided in Appendix

A.5.

If E
(

∆X
′

i∆Xi

∣∣∣Zi = z
)

is invertible for all z in the support of Z, it follows that the het-

eroskedasticity function σ0(·) is nonparametrically identified within the model (14).

Remark 3. Remember that Xit is the K-vector of regressors in period t. Denote by Xit,k the k-th

regressor in period t. The assumption that E
(

∆X
′

i∆Xi

∣∣∣Zi = z
)

is invertible rules out that Zi =

(Xi1, Xi2), or that Zi contains (Xi1,k, Xi2,k) for any k. One possibility is to use Zi =1
2

(Xi1 + Xi2).

While this invertibility condition is necessary for nonparametric identification, it can be relaxed

with a parametric specification, as below.

For estimation purposes, we recommend a parametric specification for the σ0(·) function. In

particular, we will focus on the exponential specification given by

σ0(Zi) = exp(Ziγ0). (15)

The exponential specification is commonly used in practice (see, e.g., Wooldridge, 2010, Chap-

ter 16). Under exponential heteroskedasticity, the true parameter vector θ0 of interest is now

(β0, γ0) rather than (β0, σ0). For a given choice π of the cutoff-value pair, the conditional proba-

bility piπ2(θ0) is

piπ2(θ0) = Pr
(

di,π = (0, 1)| d̄i,π = 1, Xi, Zi, αi

)
= Λ




(Xi2 − Xi1) β0 +
(
cπ(2),2 − cπ(1),1

)

exp(Ziγ0)


 .

This suggests the composite-likelihood estimator

11



θ̂het = arg max
θ∈RK+L

1

n

∑

π

n∑

i=1

1
{
d̄iπ = 1

}
(di2π ln piπ2(θ) + (1 − di2π) ln (1 − piπ2(θ))) . (16)

Denoting Γi =



∆Xi/ exp (Ziγ0)

−viZi


, the following theorem establishes consistency and asymptotic

normality in the heteroskedastic case.

Theorem 5. Let ({yi, Xi, Zi} , i = 1, · · · , n) be a random sample from the heteroskedastic fixed

effects interval-censored logit model with J ≥ 3 and with true parameter values θ0 = (β0, γ0), and

let θ̂het be the estimator defined in (16). If heteroskedasticity is exponential, as in (15), and E[Γ
′

iΓi]

is invertible, then

θ̂het
p→ θ0 as n → ∞;

and
√

n
(
θ̂ − θ0

)
d→ N

(
0, H−1

het

)
as n → ∞, (17)

where

Hhet = −E

[
∑

π

1
{
d̄iπ = 1

}
Λ (vi) [1 − Λ (vi)] ΓiΓ

′

i

]
, (18)

where vi =
∆Xiβ0+(cπ(2),2−cπ(1),1)

exp(Ziγ0)
.

Proof. The proof is very similar to that of Theorem 3, and is therefore omitted. Details are

provided in Appendix A.6.

3 Semiparametric interval-censored fixed-effects model

In this section, we consider a semiparametric version of the interval-censored fixed-effects model,

where the distribution of the error disturbance is left unspecified. Using the same notation as

above, the latent-variable model is given by

y∗

it = αi + Xitβ0 − uit (i = 1, . . . , n; t = 1, 2), (19)
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where we assume only stationarity of uit for each cross-sectional unit i:

ui1|Xi, αi and ui2|Xi, αi are identically distributed. (20)

This assumption allows for heteroskedasticity across cross-sectional units and for serial correlation

within cross-sectional units. This assumption is also used in Manski (1987) for the binary-choice

fixed-effects model and Honoré (1992) for the censored fixed-effects model. The observed yit is

defined as in (3), the same as the parametric model.

For a given choice π of the cutoff-value pair, the indicator variable ditπ is still used to indicate

whether or not y∗

it is greater than the cutoff value cπ(t),t:

ditπ = 1 {yit ≥ π (t)} = 1
[
y∗

it ≥ cπ(t),t

]
= 1

[
uit ≤ αi + Xitβ0 − cπ(t),t

]
.

Since ui1 and ui2 have the same distribution, conditional on Xi and αi, it follows immediately that

(Xi2 − Xi1) β0 −
(
cπ(2),2 − cπ(1),1

)
≥ 0 ⇐⇒ Pr (di2π = 1|Xi, αi) ≥ Pr (di1π = 1|Xi, αi) . (21)

With J ≥ 3 and the technical assumptions of Manski (1987), identification of β0 can be estab-

lished based upon the relationship in (21). A more precise formulation now follows. Denote by

F (uit| Xi, αi) the conditional distribution of the error term in both periods. The following technical

assumptions, analogous to those made in Manski (1987), are made:

Assumption 2. Assume that the stationarity in (20) holds, and that the support of F ( ·| Xi, αi)

is R for all (Xi, αi).

Assumption 3. (i) The distribution of ∆Xi is such that at least one component of ∆Xi has

positive Lebesgue density on R conditional on all the other components of ∆Xi with probability

one. The corresponding component of β0 is non-zero; (ii) The support of (∆Xi, 1) is not contained

in any proper linear subspace of RK+1.

Condition (i) standard in the analysis of panel binary choice models with unbounded regressors

(see e.g. Manski (1987) and Magnac (2004)). The main identification result then follows:
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Theorem 6. If (yi, Xi) follows the fixed effects interval-censored model in (19)-(20) with J ≥ 3,

and Assumptions 2 and 3 hold, then β0 is identified.

Proof. See Appendix A.7.

Note that β0 is identified with scale here, in contrast to the binary-choice model of Manski (1987).

This result mirrors our identification of the variance σ in the logit case. Moreover, a composite

maximum-score-type estimator can be constructed as follows

β̂ = arg max
RK

1

n

∑

π

n∑

i=1

[
(di2π − di1π) · sgn

(
(Xi2 − Xi1) β −

(
cπ(2),2 − cπ(1),1

))]
, (22)

= arg max
RK

Sn (β) , (23)

where sgn(v) ≡ 1(v > 0) − 1(v < 0) and β is a generic element of RK×1. Again, with J ≥ 3 and

the technical assumptions of Manski (1987), it can be shown that the estimator β̂ defined by (22)

is a consistent estimator of β0.

Theorem 7. Let the conditions of Theorem 6 hold, and assume that a random sample (yi, Xi) , i =

1, · · · , n from the fixed effects interval-censored model in (19)-(20) with J ≥ 3 is available. Fur-

thermore, assume that the full-support regressor in Assumption 3(i) is the K-th regressor XiK, and

that there exists a η > 0 such that |β0K | ≥ η. Then the estimator β̂ defined in (22) is consistent,

β̂
p→ β0 as n → ∞.

Proof. This result follows from a modification of the results in Manski (1985) and Manski (1987).

First, by applying Lemma 4 in Manski (1985) for each transformation π, we obtain

Sn (β)
a.s.→ S (β)

:= E

[
∑

π

[
(di2π − di1π) · sgn

(
(Xi2 − Xi1) β −

(
cπ(2),2 − cπ(1),1

))]]

=:
∑

π

Sπ (β) .

Lemma 3 in Manski (1985) implies that for any π such that cπ(2),2 6= cπ(1),1, Sπ (β0) > Sπ (β) for
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any β 6= β0, and for any π with cπ(2),2 = cπ(1),1, that Sπ (β0) ≥ Sπ (β) for all β. Consistency of our

maximum score estimator then follows from Theorem 1 in Manski (1985). See also the results for

the binary choice panel model in Manski (1987, p. 361).

As with the binary-choice model, the tradeoff for the semiparametric approach involves less

restrictive assumptions on the error disturbances in exchange for a slower rate of convergence.

The convergence rate of the estimator defined by (22) is 3
√

n (Kim and Pollard, 1990), slower than

the parametric
√

n rate achieved by the composite conditional-likelihood estimator for the logit

model. Although it is well-documented that the standard bootstrap does not work (Abrevaya and

Huang (2005)), inference can be conducted using the bootstrap-based distributional approximation

recently proposed by Cattaneo, Jansson, and Nagasawa (2018).

4 Monte Carlo simulations

In this section, we present Monte Carlo results for the composite maximum likelihood estimator

(CMLE) introduced in Section 2. We focus on the parametric (logit) version of our model, with

homoskedastic errors (constant σ0), two time periods (t = 1, 2), interval-censoring into three

intervals (J = 3), and one covariate (K = 1). For the simulations, we consider the following

data-generating process. First, regressors are generated from a standard normal distribution,

Xit ∼ N (0, 1) iid.

Second, individual fixed effects are constructed as linear in the average regressor, plus a logistic

error, centered at 65:

αi ∼ LOG
(

65 +
1

2
(Xi1 + Xi2) , 1

)
.

Third, the latent variable is constructed according to our parametric model with standard logistic

errors,

y∗

it ∼ LOG
(
αi + β0Xit, σ2

0

)
,
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where β0 and σ0 are varied across designs. Finally, the interval-censored dependent variable is

generated through

yit =





1 if y∗

it < 60

2 if 60 ≤ y∗

it < 70

3 if y∗

it ≥ 70.

Note that y∗

it is symmetrically distributed around 65. Therefore, the design parameters (β0, σ0)

influence not only the relationship between Xit and yit, but also the amount of variation that

is observed in the interval-censored dependent variable. Furthermore, we vary the number of

observations n to be 250, 500, or 750.

Results are based on 1000 simulations for each design and are presented in Table 1. Both

bias and RMSE generally decrease when n increases. There does not seem to be an effect on the

relative efficiency of the CMLE versus the infeasible fixed-effects estimator that regresses y∗

i2 − y∗

i1

on Xi2 − Xi1. This can be seen from the column “Eff,” which reports the ratio of the RMSE of the

infeasible first-difference estimator versus the RMSE of the CMLE. Note that the CMLE achieves

a relative efficiency greater than 90% in all designs considered here.

The results from increasing the error term variance, from σ0 = 5 to σ0 = 10, are also clear

from Table 1. While the larger value for σ0 increases both bias and variance of β̂, it decreases

the bias for σ̂ and increases its RMSE. The effect of changing the slope parameter (β0 = 1 versus

β0 = 2) are hard to infer from Table 1. To get a clearer picture of the effect of changing the

slope parameter, Figure 1 presents results for n = 1000, σ0 = 5, and a range of slope-parameter

values (β0 ∈ {0, 1, 2, · · · , 10}). We plot the efficiency of the CMLE relative to the infeasible first-

difference estimator as a function of β0. Large values of β0 lead to very few observations in the

middle category (yit = 2), leading to an obvious reduction in the relative efficiency of the CMLE.

If the slope parameter were to grow even larger, the variation in yit would eventually be reduced

to that of a binary-choice model with outcomes {1, 3}.
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n β0 σ0 100xBias 100xRMSE Eff

β̂ σ̂ β̂ σ̂
250 1 5 0.33 -2.58 0.63 0.41 0.94

10 -2.99 1.69 1.23 0.98 0.94
2 5 0.11 -2.82 0.61 0.42 0.92

10 0.34 -1.34 1.23 1.04 0.96
500 1 5 -0.41 -1.06 0.43 0.29 0.94

10 -0.35 -2.20 0.85 0.70 0.96
2 5 1.62 -2.13 0.44 0.29 0.92

10 3.06 -0.53 0.89 0.73 0.93
750 1 5 0.28 -0.44 0.37 0.24 0.91

10 -0.65 -2.49 0.68 0.59 0.95
2 5 0.45 -1.06 0.36 0.24 0.92

10 1.59 1.85 0.71 0.58 0.93

Table 1: Monte Carlo simulation results. Eff (“Efficiency”) is the ratio of the root mean squared

error of β̂ relative to that of an infeasible fixed effects estimator that uses y∗

it.
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Figure 1: Efficiency of β̂ as a function of β0.
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γ1 CMLE CMLE-HET
β β γ0 γ1

Bias SD Bias SD Bias SD Bias SD
-2 0.17 0.35 0.02 0.37 0.03 0.16 0.12 0.35
0 0.00 0.16 0.00 0.16 0.08 0.06 0.00 0.06
1 0.04 0.27 0.03 0.28 0.07 0.12 0.03 0.15
2 0.17 0.33 0.02 0.37 0.04 0.16 0.10 0.34

Table 2: Monte Carlo simulation results in the presence of heteroskedasticity. Different rows in
the table correspond to results for different values of γ1 ∈ {−2, 0, 1, 2}.

4.1 Heteroskedasticity

In the presence of heteroskedasticity, the CMLE is no longer guaranteed to estimate β0 consistently.

In Section 2.2, we proposed an estimator that is consistent under the assumption of exponential

heteroskedasticity, call it CMLE-HET. We use the same DGP as above, except that

σ (Xi) = exp (log(2) + γ1 (Xi1 + Xi2)) .

We consider four designs, γ1 ∈ {−2, 0, 1, 2}, with n = 1000. The design γ1 = 0 corresponds to the

homoskedastic case. Results are presented in Table 2. We conclude that: (1) CMLE is biased in the

presence of heteroskedasticity, and the bias seems to increase in the amount of heteroskedasticity;

(2) CMLE-HET shows virtually no bias, even with strong heteroskedasticity; (3) CMLE-HET pays

a small price in terms of standard deviation. CMLE-HET estimates the skedasticity parameters

well, as can be seen from the low bias and standard deviations in Table 2.

5 Empirical application

In this section, we consider an empirical application of the parametric (CMLE) estimator intro-

duced in Section 2.6 Our goal is to compare the estimator’s performance to the baseline of complete

observability and the linear fixed-effects estimator. As such, we consider an application in which

the continuous outcome variable is fully observed in the original data, and then we artificially

interval-censor the outcome variable. Specifically, we consider the birth-outcome panel dataset

6Data and code for the empirical application are available from https://github.com/chrismuris/IntervalFixedEffects.
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from Abrevaya (2006), where the sample that we use has n = 78330 mothers and two children

(t = 1, 2) for each mother in the data.7 The outcome of interest is child birthweight (measured in

grams). The histogram of birthweights is shown in Figure 2.

We consider two artificially interval-censored versions of the birthweight outcome variable, one

with four intervals (J = 4 with c1 = 2500, c2 = 3500, c3 = 4500) and one with six intervals (J = 6

with c1 = 2500, c2 = 3000, c3 = 3500, c4 = 4000, c5 = 4500). In both cases, cj,t = cj for all (j, t).

The regressors that we consider are as follows: second-birth indicator (1(t = 2)), year of birth

(year), mother’s age (age), mother’s age squared (age2), indicator of smoking during pregnancy

(smoke), indicator of a male birth (male), and categorical indicators for prenatal care (novisit for

no prenatal care visit, pretri2 for first visit in the second trimester, pretri3 for first visit in the

third trimester; a first-trimester visit is the omitted category).

Table 3 shows the estimation results for the linear fixed-effects estimator (which is just the

first-difference estimator here) and the CMLE estimators for the two artificially interval-censored

samples (using J = 4 and J = 6, as specified above). For the CMLE estimators, homoskedas-

ticity is assumed. The CMLE standard errors were estimated using the bootstrap, with 1000

replications. The estimated slope parameters are fairly comparable for the three estimators, at

least within ranges that would be considered reasonable given their respective standard errors. In

terms of efficiency, the standard errors for the CMLE estimators are up to 50% higher than the

corresponding standard errors for the first-difference estimator. When six intervals are used, the

standard errors are much closer to those of the first difference estimator.

We also consider a heteroskedastic model with

σ (Zi) = exp
{
γ0 + γ1agei + γ2smokei + γ3malei

}
,

where a bar denotes the average across the two children of that variable. For the first difference

estimator, we obtain estimates for the parameters in this function based on linear regression of

log (e2
i ) /2 on the variables in the heteroskedasticity function. For the interval-censored estimator,

7The sample is constructed as a subsample from the “Panel #3” dataset in Abrevaya (2006). Black mothers are
dropped. Non-black mothers are retained in the sample if their first two births are observed. Any additional births
are dropped from the sample so that we have a balanced (two-period) panel.
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Linear FE 6 intervals 4 intervals

1{t=2} 98.74 (4.77) 98.52 (5.72) 100.70 (6.21)
year -7.77 (3.57) -6.70 (4.20) -6.45 (4.77)
age -23.51 (5.54) -26.76 (6.52) -27.80 (7.75)
age2 0.54 (0.08) 0.57 (0.09) 0.59 (0.11)
smoke -129.93 (6.83) -137.73 (8.64) -130.84 (10.08)
male 134.97 (2.92) 130.41 (3.30) 136.43 (3.97)
novisit -205.40 (28.47) -180.53 (35.54) -188.80 (41.32)
pretri2 -6.64 (5.80) 1.16 (7.14) -4.81 (7.96)
pretri3 -21.00 (13.99) -30.86 (18.04) -35.40 (18.91)

log(σ) 6.01 5.49 5.31

Table 3: Estimation results. Standard errors in parentheses. Standard errors for the CMLE are
based on 1000 bootstrap replications.

we use the procedure outlined in Section 2.2. We present the results in Table 4. The CMLE

results for the slope estimates are similar to those found for the homoskedastic case. The standard

errors for the heteroskedastic CMLE are slightly higher than those for the homoskedastic CMLE,

as would be expected given the joint estimation of the heteroskedasticity-function parameters. For

the heteroskedasticity function, the CMLE estimates are also close to those from the first-difference

estimator, with the exception of the coefficient on smokei, which is off by more than a standard

error.

The results in this section assume that the error terms are logistic. An inspection of the

empirical distribution of the differenced residuals for the heteroskedastic case, not reported here,

does not yield evidence against that assumption.

Overall, in this application, CMLE provides estimates similar to those from the first-difference

estimator, even using a relatively coarse version of the birthweight variable as compared to the

fully-observed data.

6 Extensions and conclusion

This paper has considered estimation of the interval-censored fixed-effects regression model. The

parametric (logit) and semiparametric models considered both allow for heteroskedastic error dis-
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Linear FE 6 intervals 4 intervals

Regression function
1{t=2} 98.74 (4.77) 104.25 (6.56) 102.16 (6.45)
year -7.77 (3.57) -7.73 (4.92) -6.65 (4.97)
age -23.51 (5.54) -28.61 (7.52) -26.04 (7.70)
age2 0.54 (0.08) 0.63 (0.10) 0.55 (0.11)
smoke -129.93 (6.83) -131.17 (8.89) -131.77 (9.93)
male 134.97 (2.92) 120.75 (3.82) 136.21 (3.88)
novisit -205.40 (28.47) -198.84 (39.66) -188.37 (41.62)
pretri2 -6.64 (5.80) -4.60 (7.81) -4.79 (7.54)
pretri3 -21.00 (13.99) -34.22 (17.41) -35.19 (19.68)
Heteroskedasticity function

constant 5.7118 (0.0242) 5.5284 (0.0303) 5.4905 (0.0318)
age -0.0060 (0.0008) -0.0058 (0.0010) -0.0050 (0.0011)
smoke 0.0793 (0.0117) 0.1085 (0.0150) 0.1030 (0.0154)
male 0.0807 (0.0156) 0.0357 (0.0174) 0.0495 (0.0189)

Table 4: Estimation results for heteroskedastic model. Standard errors in parentheses. Standard
errors for the CMLE are based on 1000 bootstrap replications.

turbances, with the semiparametric model also allowing for serially correlation in the error distur-

bances. While we have considered the two-period case for simplicity of exposition, the proposed

estimators can easily be generalized to more than two periods, as in Muris (2017) for the logit

model and Abrevaya (2000) for the semiparametric model.

Future research could proceed in various directions. The use of appropriate weights in the

composite likelihood estimator could increase its efficiency relative to the proposed unweighted

estimator. It would also be interesting to consider estimation of β and σ0(·) within the logit model

for a fully nonparametric specification for σ0(·) . Furthermore, it may be possible to formulate

a specification test based on estimators that use differing levels of coarseness. For example, one

estimator could be based on the observed outcome with, say, J = 8 support points; and another

could be based on a collapsed version of the outcome variable with J ′ = 4 support points. Under

the assumptions of the model above, the probability limit of the two estimators should coincide.8

Finally, while we focus on estimation of the slope parameters (and heteroskedasticity function)

in this paper, it is worth mentioning that the ability to estimate partial effects will depend upon

8We are grateful to an anonymous referee for pointing this out.
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the form of censoring in the data. A well-known drawback associated with estimation of non-

linear fixed-effects models is the difficulty in estimating partial effects, even after consistently

estimating slope parameters. For instance, in the binary-choice fixed-effects model, the partial

effects are themselves functions of the fixed effect; since the fixed effects can not be estimated

consistently, the partial effects can not be estimated consistently. Such a problem does not arise in

the linear fixed-effects model since the partial effect is not a function of the fixed effect. Likewise,

in the censored fixed-effects model of Honoré (1992) or the fixed-effects model considered in this

paper, the partial effects of interest do not depend upon the fixed effect when the censoring arises

purely due to data-coding issues. Censoring, however, may arise due to a corner-solution outcome

(e.g., health-care expenditures of $0 in MEPS), in which case the partial effects of interest would

depend upon the fixed effect. Of course, even for fixed-effects models of corner-solution outcomes,

the relative partial effects of different variables upon the outcome can be consistently estimated as

in the binary-choice model and other models. Wooldridge (2010) provides an excellent discussion

of the difference between data-coding and corner-solution situations.

A Appendix: Proofs and derivations

A.1 Proof of Theorem 1 (Sufficiency)

Proof. Consider a pair of cutoff-value indices given by π = (π(1), π(2)). Recall the transformed

variables di1π ≡ 1{y∗

i1 ≥ cπ(1),1} and di2π ≡ 1{y∗

i2 ≥ cπ(2),2}. The (conditional) probability of these

indicator variables being equal to one are given by

P (di1π = 1| Xi, αi) = P
(

y∗

i1 ≥ cπ(1),1

∣∣∣Xi, αi

)

= P
(

αi + Xi1β0 − σ0ui1 ≥ cπ(1),1

∣∣∣Xi, αi

)

= P
(

ui1 ≤ 1

σ0

(
αi + Xi1β0 − cπ(1),1

)∣∣∣∣Xi, αi

)

= Λ
(

1

σ0

(
αi + Xi1β0 − cπ(1),1

))
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and, similarly,

P (di2π = 1| Xi, αi) = Λ
(

1

σ0

(
αi + Xi2β0 − cπ(2),2

))
. (24)

Due to the (conditional) serial independence of ui1 and ui2, we have

p1π(Xi, αi) ≡ P (diπ = (1, 0)| Xi, αi)

= Λ
(

1

σ0

(
αi + Xi1β0 − cπ(1),1

)) [
1 − Λ

(
1

σ0

(
αi + Xi2β0 − cπ(2),2

))]
,

p2π(Xi, αi) ≡ P (diπ = (0, 1)| Xi, αi)

=
[
1 − Λ

(
1

σ0

(
αi + Xi1β0 − cπ(1),1

))]
Λ
(

1

σ0

(
αi + Xi2β0 − cπ(2),2

))
.

We use the sufficient statistic for the binary choice fixed-effects logit model (Andersen, 1970;

Chamberlain, 1980) to obtain a conditional probability that is free of αi. With d̄iπ ≡ di1π + di2π

and ∆Xi ≡ Xi2 − Xi1, we obtain the final result:

piπ1 (β0, σ0) ≡ P
(

diπ = (1, 0)| d̄iπ = 1, Xi, αi

)

= 1/(1 + p0π(Xi, αi)/p1π(Xi, αi))

=
1

1 + exp
{

1
σ0

(
∆Xiβ0 −

(
cπ(2),2 − cπ(1),1

))}

= 1 − Λ
(

1

σ0

(
∆Xiβ0 −

(
cπ(2),2 − cπ(1),1

)))
,

piπ2 (β0, σ0) ≡ P
(

diπ = (0, 1)| d̄iπ = 1, Xi, αi

)

= Λ
(

1

σ0

(
∆Xiβ0 −

(
cπ(2),2 − cπ(1),1

)))
.
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A.2 Proof of Theorem 2 (Identification)

Proof. Because (yi, Xi) follows the fixed effects interval censored regression model, Theorem 1

holds:

piπ2(β0, σ0) = Λ
(

1

σ0

(
∆Xiβ0 −

(
cπ(2),2 − cπ(1),1

)))

= Λ (Wiπθ0) .

Pick π (1) and π (2) such that cπ(1),1 6= cπ(2),2. For the purpose of this proof, change the notation

to:

pπ (Wiπ) ≡ piπ2 (β0, σ0) ,

which emphasizes the dependence of the conditional probability on the regressors, and the fact

that pπ (Wiπ) is identified from the distribution of (yi, Xi).

For any Wiπ, we have Λ−1 (pπ (Wiπ)) = Wiπθ0 and W
′

iπΛ−1 (pπ (Wiπ)) = W
′

iπWiπθ0. Taking

expectations yields

E
[
W

′

iπΛ−1 (pπ (Wiπ))
]

= E
(
W

′

iπWiπ

)
θ0. (25)

Assumption 1 implies that E
[
W

′

iπWiπ

]
is invertible for our case with cπ(1),1 6= cπ(2),2. We conclude

that

θ0 =
[
E
(
W

′

iπWiπ

)]
−1

E
[
W

′

iπΛ−1 (pπ (Wiπ))
]

.

Therefore, β0/σ0 and 1/σ0 are identified since all RHS quantities are identified from the data.

Since β0 = β0/σ0

1/σ0
and σ0 = 1

1/σ0
, the result follows.

A.3 Concavity, score, and Hessian calculations

Recall that

liπ (Ziπθ) = diπ2 ln Λ (Wiπθ) + (1 − diπ2) ln (1 − Λ (Wiπθ)) ,
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and that the sample objective function is

Qn (θ) =
1

n

∑

i

∑

π

1
{
d̄iπ = 1

}
liπ (Wiπθ) . (26)

Therefore, the population (limiting) objective function is

Q0 (θ) = plim Qn(θ)

= E

[
∑

π

1
{
d̄iπ = 1

}
liπ (Wiπθ)

]
. (27)

In this section, we establish concavity of the sample objective function, and derive the Jacobian

and Hessian for the population objective function.

Concavity. The likelihood contribution for a given transformation and a given i is concave in

the index Wiπθ:

∂liπ (v)

∂v
= diπ2

Λ (v) (1 − Λ (v))

Λ (v)
− (1 − diπ2)

Λ (v) (1 − Λ (v))

1 − Λ (v)

= diπ2 (1 − Λ (v)) − (1 − diπ2) Λ (v)

= diπ2 − Λ (v) . (28)

It follows that the second derivative is

∂2liπ (v)

(∂v)2 = −Λ (v) (1 − Λ (v)) < 0, (29)

i.e. liπ is strictly concave in Wiπθ. Therefore, it is concave in θ for any π, and strictly concave

in θ when π (2) 6= π (1) and d̄iπ = 1. Because the sum of concave and strictly concave functions

is strictly concave, and because the logit model implies that E
[
1
{
d̄iπ = 1

}]
> 0 for each π, the

sample objective function in (11) is strictly concave for large enough n. Therefore, Qo is also

concave (see e.g. Theorem 2.7 in Newey and McFadden, 1994).
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Hessian. Using the expression in (29) and the chain rule, we obtain

∂2E
[∑

π 1
{
d̄iπ = 1

}
liπ (Wiπθ)

]

∂θ∂θ′

∣∣∣∣∣∣
θ=θ0

= −E

[
∑

π

1
{
d̄iπ = 1

}
Λ (Wiπθ0) (1 − Λ (Wiπθ0)) W

′

iπWiπ

]

≡ H.

Jacobian. Using the expression in (28) we obtain for the variance of the score from liπ:

E
(
(diπ2 − Λ (Wiπθ0))

2 W
′

iπWiπ

)

so that

Σ = E

[
∑

π

1
{
d̄iπ = 1

}
(diπ2 − Λ (Wiπθ0))

2 W
′

iπWiπ

]
.

Finally, note that

E
[
(diπ2 − Λ (Wiπθ0))

2
∣∣∣Wiπ, d̄iπ = 1

]
= V ar

(
diπ2| Wiπ, d̄iπ = 1

)

= Λ (Wiπθ0) (1 − Λ (Wiπθ0))

where the first step follows because E
[
diπ2| Wiπ, d̄iπ = 1

]
= Λ (Wiπθ0), see (24); and the second

step follows because the variance of a Bernoulli random variable with probability p is p (1 − p). It

therefore follows that H = −Σ.

A.4 Proof of Theorem 3

Proof. The CMLE is an extremum estimator with sample criterion function

Qn (θ) =
1

n

∑

i

∑

π

1
{
d̄iπ = 1

}
(diπ2 ln Λ (Wiπθ) + (1 − diπ2) ln (1 − Λ (Wiπθ)))

It follows from the derivation in Appendix A.3 that Qn is concave.

Consistency. Here, we verify conditions (i) (identification) and (iii) (pointwise convergence)

for Theorem 2.7 in Newey and McFadden (1994), which is a consistency theorem for extremum
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estimators with concave sample criterion functions. A mean-value expansion of liπ around θ = 0

yields

liπ (Wiπθ) − liπ (0) =
(
diπ2 − Λ

(
Wiπθ̃

))
Wiπθ,

using the score in (28) in Section A.3. Boundedness of the RHS follows from Jensen’s inequality

and Assumption 1, which guarantees that E (|Wiπ|) < ∞. A law of large numbers then implies

pointwise convergence of Qn to Q0. Therefore, condition (iii) in Newey and McFadden’s Theorem

2.7 is satisfied.

Identification was established in Theorem 2. To see that identification is not lost by using the

objective function Q0, note that we established in Section A.3 that the objective function is strictly

concave. Therefore, condition (i) in Theorem 2.7 is satisfied.

Asymptotic normality. This proof proceeds by verifying the conditions in Theorem 3.1 of

Newey and McFadden (1994). Consistency was established above. With concavity of the objective

function, there is no need to compactify the parameter space, so that condition (i) is trivially

satisfied. Twice continuous differentiability, condition (ii), is easily seen to be satisfied; see the

results in Section A.3. Condition (iii) requires that a central limit theorem applies to the score.

In Section A.3, we showed that the variance of the score is

Σ = E

[
∑

π

1
{
d̄iπ = 1

}
(diπ2 − Λ (Wiπθ0))

2 W
′

iπWiπ

]
.

Note that Σ is bounded because 1
{
d̄iπ = 1

}
∈ [0, 1], (diπ2 − Λ (Wiπθ0))

2 ∈ [0, 1], and the second

moment of Wiπ is bounded (Assumption 1). Because the score is mean-zero and sampling is

random, a Lindeberg-Levy CLT yields condition (iii). Conditions (iv) and (v) are related to the

Hessian H derived in Section A.3. There, we established strict concavity so that condition (v)

is satisfied (invertibility of H). It is also clear that the second derivative is continuous. What

remains is to establish uniform convergence of the estimated Hessian in a neighbourhood around

the true value of the parameters. Note that

H(θ) = −E

[
∑

π

1
{
d̄iπ = 1

}
Λ (Wiπθ) (1 − Λ (Wiπθ)) W

′

iπWiπ

]
,
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so that 1
{
d̄iπ = 1

}
∈ [0, 1], Λ (Wiπθ) (1 − Λ (Wiπθ)) ∈ [0, 0.25], and Assumption 1 imply that

the second moments of Wiπ are bounded. ‖∑π 1
{
d̄iπ = 1

}
Λ (Wiπθ) (1 − Λ (Wiπθ)) W

′

iπWiπ‖ ≤

‖W
′

iπWiπ‖, and E‖W
′

iπWiπ‖ < ∞. Therefore, a uniform law of large numbers applies on a suitably

chosen neighbourhood of θ0, see e.g. Lemma 2.4 in Newey and McFadden (1994).

A.5 Proof of Theorem 4 (Identification under heteroskedasticity)

Proof. This proof is very close to that in Section A.2. The only difference is that σ0 depends on

Z, and that the expectation in (25) is replaced by a conditional expectation. In other words, we

define

pπ (∆Xi, Zi) ≡ Λ

(
1

σ0 (Zi)

(
∆Xiβ0 −

(
cπ(2),2 − cπ(1),1

)))
≡ Λ (Wiπθ0 (Zi)) ,

where the parameter of interest is θ0 (Zi) = (β0/σ0 (Zi) , 1/σ0 (Zi)). Then, following the steps in

Appendix A.2, we obtain

θ0 (z) =
[
E(W

′

iπWiπ

∣∣∣Zi = z)
]

−1
E
[
WiπΛ−1 (pπ (∆Xi, Zi))

∣∣∣Zi = z
]

.

where the inverse is guaranteed to exist because of the condition in the statement of the result.

The conclusion then follows.

A.6 Proof of Theorem 5 (Asymptotics for heteroskedastic estimator)

For an individual with d̄iπ = 1, denote the contribution of individual i to the Jacobian for trans-

formation π by

Ji =
∂ (di2π ln piπ2(θ) + (1 − di2π) ln (1 − piπ2(θ)))

∂θ
,

and let

vi =
∆Xiβ0 +

(
cπ(2),2 − cπ(1),1

)

exp (Ziγ0)
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Differentiation with respect to vi yields (di2π − Λ (vi)), so that application of the chain rule yields

Jiπ = (di2π − Λ (vi))
1

exp (Ziγ0)




∆Xi

−
(
∆Xiβ0 +

(
cπ(2),2 − cπ(1),1

))
Zi


 .

By the information matrix equality, the contribution to the Hessian is

Hiπ = −E
[
(di2π − Λ (vi))

2 ΓiΓ
′

i

]

= −E
[
Λ (vi) [1 − Λ (vi)] ΓiΓ

′

i

]
,

where

Γi :=




∆Xi

exp(Ziγ0)

−viZi




The Hessian of the log-likelihood is therefore negative definite, so that the objective function is

again concave. A proof of consistency and asymptotic normality is therefore very similar to the

proof of 3, and is therefore omitted.

A.7 Proof of Theorem 6 (Identification, semiparametric case)

Proof. We first remark that, under the assumptions in the model.

(Xi2 − Xi1) β0 −
(
cπ(2),2 − cπ(1),1

)
≥ 0 ⇐⇒ Pr (di2π = 1|Xi, αi) ≥ Pr (di1π = 1|Xi, αi) .

Rewrite this as

Wiθ0 ≥ 0 ⇐⇒ Pr (di2π = 1|Xi, αi) ≥ Pr (di1π = 1|Xi, αi) ,

with θ0 ≡ (β0, 1) and Wi ≡
(
Xi2 − Xi1, −

(
cπ(2),2 − cπ(1),1

))
.

Then, for a given choice of cut points such that cπ(2),2−cπ(1),1 6= 0, this model maps directly into

the model of Manski (1987). To see this correspondence, here are the relevant model components,
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with those from Manski (1987) on the LHS and those from our model on the RHS:

yt = ditπ,

xt = [Xit, −cπ(t),t],

c = αi,

ut = uit.

Then, equation (20) and Assumption 2 imply Assumption 1 of Manski (1987); Assumption 3 and

the choice of cutoffs so that cπ(2),2 − cπ(1),1 6= 0 imply Assumption 2 of Manski (1987). Lemma 2

of Manski (1987) therefore applies to our case and guarantees identification of θ0 = (β0, 1) up to

scale. With the scale normalization that is implied by our model (i.e. the last element of θ0 equals

1), the result is obtained.
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