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Abstract

We present an algorithm with runtime O(k2kn3m) for the following NP-complete problem
[9, problem GT35]: Given an arbitrary graph G on n vertices and m edges, can we obtain
an interval graph by adding at most k new edges to G? This resolves the long-standing open
question [17, 7, 25, 14], first posed by Kaplan, Shamir and Tarjan, of whether this problem
was fixed parameter tractable. The problem has applications in Profile Minimization for
Sparse Matrix Computations [10, 26], and our results show tractability for the case of a
small number k of zero elements in the envelope. Our algorithm performs bounded search
among possible ways of adding edges to a graph to obtain an interval graph, and combines
this with a greedy algorithm when graphs of a certain structure are reached by the search.
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1 Introduction and motivation

Interval graphs are the intersection graphs of intervals of the real line and have a wide range of
applications [13]. Connected with interval graphs is the following problem: Given an arbitrary
graph G, what is the minimum number of edges that must be added to G in order to obtain
an interval graph? This problem is NP-hard [18, 9]. The problem arises in Sparse Matrix
Computations, where one of the standard methods for reordering a matrix to get as few non-
zero elements as possible during Gaussian elimination, is to permute the rows and columns of
the matrix so that non-zero elements are gathered close to the main diagonal [10]. The profile
of a matrix is the smallest number of entries that can be enveloped within off-diagonal non-zero
elements of the matrix. Translated to graphs, the profile of a graph G is exactly the minimum
number of edges in an interval supergraph of G [26]. Originally, Physical Mapping of DNA was
another motivation for this problem [12].

In this paper, we present an algorithm with runtime O(k2kn3m) for the k-Interval Completion
problem of deciding whether a graph on n vertices and m edges can be made into an interval
graph by adding at most k edges. A parameterized problem with parameter k and input size
x that can be solved by an algorithm having runtime f(k) · xO(1) is called fixed parameter
tractable (FPT) (see [7] for an introduction to fixed parameter tractability and bounded search
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tree algorithms). The k-Interval Completion problem is thus FPT, which settles a long-standing
open problem [17, 7, 25, 14]. An early paper (first appearance FOCS ’94 [16]) in this line of
research by Kaplan, Shamir and Tarjan [17] gives FPT algorithms for k-Chordal Completion,
k-Strongly Chordal Completion, and k-Proper Interval Completion. In all these cases a bounded
search tree algorithm suffices, that identifies a subgraph which is a witness of non-membership in
the desired class of graphs, and branches recursively on all possible ways of adding an inclusion-
minimal set of edges that gets rid of the witness. For example, since a graph is chordal iff it
has no induced cycle on more than 3 vertices, the k-Chordal completion algorithm [17, 2] takes
as witness a subset C of vertices inducing a d-cycle, 4 ≤ d ≤ k + 3, and branches on all ways
of adding the d − 3 edges needed to make the subgraph induced by C chordal. The existence
of an FPT algorithm for solving k-Interval Completion was left as an open problem by [17],
with the following explanation for why a bounded search tree algorithm seemed unlikely: “An
arbitrarily large obstruction X could exist in a graph that is not interval but could be made
interval with the addition of any one out of O(|X|) edges”. Our FPT algorithm for this problem
is nevertheless based heavily on applying the bounded search tree technique, supplemented with
a greedy algorithm to circumvent the obstructions mentioned in the quote.

Let us mention some related work. Ravi, Agrawal and Klein gave an O(log2 n)-approximation
algorithm for Minimum Interval Completion, subsequently improved to an O(log n log log n)-
approximation by Even, Naor, Rao and Schieber [8] and finally to an O(log n)-approximation
by Rao and Richa [23]. Heggernes, Suchan, Todinca and Villanger showed that an inclusion-
minimal interval completion can be found in polynomial time [15]. Kuo and Wang [20] gave an
O(n1.722) algorithm for Minimum Interval Completion of a tree, subsequently improved to an
O(n) algorithm by D́ıaz, Gibbons, Paterson and Torán [5]. Cai [2] proved that k-completion into
any hereditary graph class having a finite set of forbidden subgraphs is FPT. Some researchers
have been misled to think that this settled the complexity of k-Interval Completion, however,
interval graphs do not have a finite set of forbidden subgraphs [21]. Gutin, Szeider and Yeo [14]
gave an FPT algorithm for deciding if a graph G has profile at most k + |V (G)|, but the more
natural parameterization of the profile problem is to ask if G has profile at most k + |E(G)|,
which is equivalent to the k-Interval Completion problem on G. Similar questions, asking if we
can add/remove at most k vertices/edges to a graph such that a certain property is satisfied,
have been investigated in the litterature for various graph properties, see e.g. [3].

Our algorithm for k-Interval Completion circumvents the problem of large obstructions (wit-
nesses) by first getting rid of all small witnesses, in particular witnesses for the existence of an
asteroidal triple (AT) of vertices. Three non-adjacent vertices a, b, c form an AT if there exists a
path from any two of them avoiding the neighborhood of the third. Since a graph is an interval
graph if and only if it is both chordal and AT- free [21], to complete into an interval graph
we must destroy witnesses for non-chordality and witnesses for existence of an AT. Witnesses
for non-chordality (chordless cycles of length > 3) must have size O(k) and do not present a
problem. Likewise, if an AT is witnessed by an induced subgraph S of size O(k) it does not
present a problem, as shown in Section 3 of the paper. In Section 4, we show that in every
induced subgraph S witnessing the existence of an AT, one of the vertices of the AT is shallow,
meaning that there is a short path from it to each of the other two vertices of the AT. We give a
branching rule for the case when G has no AT witnessed by a small subgraph, but it has at least
k + 1 shallow vertices. The most difficult case is when we have a chordal non-interval graph G
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with no AT having a small witness, and with at most k shallow vertices. For this case we intro-
duce thick AT-witnesses in Section 5, consisting of an AT and all vertices on any chordless path
between any two vertices of the AT avoiding the neighborhood of the third vertex of the AT. We
define minimality for thick AT-witnesses, and show that also in every minimal thick AT-witness
one of the vertices of the AT is shallow. In Section 6 we show how to carefully compute the
set C of shallow vertices so that removing C from the graph gives an interval graph. Based on
the cardinality of C, we show how to further continue branching in a bounded way. When no
bounded branching is possible we show that the instance has enough structure that the best
solution is a completion computed in a greedy manner. The presented algorithm consists of 4
branching rules in addition to the greedy completion.

2 Preliminaries

We work with simple and undirected graphs G = (V,E), with vertex set V (G) = V and edge
set E(G) = E, and n = |V |, m = |E|. For X ⊂ V , G[X] denotes the subgraph of G induced
by the vertices in X. We will use G − x to denote G[V \ {x}] for x ∈ V , and G − S to denote
G[V \ S] for S ⊆ V .

For neighborhoods, we use NG(x) = {y | xy ∈ E}, and NG[x] = NG(x) ∪ {x}. For X ⊆ V ,
NG[X] =

⋃
x∈X NG[x] and NG(X) = NG[X] \ X. We will omit the subscript when the graph is

clear from the context. A vertex set X is a clique if G[X] is complete, and a maximal clique if
no superset of X is a clique. A vertex x is simplicial if N(x) is a clique.

We will say that a path P = v1, v2, ..., vp is between v1 and vp, and we call it a v1, vp-path.
The length of P is p. We will use P − vp and P + vp+1 to denote the paths v1, v2, ..., vp−1 and
v1, v2, ..., vp, vp+1, respectively. We say that a path P avoids a vertex set S if P contains no
vertex of S. A chord of a cycle (path) is an edge connecting two non-consecutive vertices of
the cycle (path). A chordless cycle (path) is an induced subgraph that is isomorphic to a cycle
(path). A graph is chordal if it contains no chordless cycle of length at least 4.

A graph is an interval graph if intervals can be associated to its vertices such that two vertices
are adjacent if and only if their corresponding intervals overlap. Three non-adjacent vertices
form an asteroidal triple (AT) if there is a path between every two of them that does not contain
a neighbor of the third. A graph is AT-free if it contains no AT. A graph is an interval graph
if and only if it is chordal and AT-free [21]. A vertex set S ⊆ V is called dominating if every
vertex not contained in S is adjacent to some vertex in S. A pair of vertices {u, v} is called a
dominating pair if every u, v-path is dominating. Every interval graph has a dominating pair
[4], and thus also a dominating chordless path.

A clique tree of a graph G is a tree T whose nodes (also called bags) are maximal cliques
of G such that for every vertex v in G, the subtree Tv of T that is induced by the bags that
contain v is connected. A graph is chordal if and only if it has a clique tree [1]. A clique path Q
of a graph G is a clique tree that is a path. A graph G is an interval graph if and only if has a
clique-path [11]. An interval graph has at most n maximal cliques.

Given two vertices u and v in G, a vertex set S is a u, v-separator if u and v belong to
different connected components of G − S. A u, v-separator S is minimal if no proper subset of
S is a u, v-separator. S is a minimal separator of G if there exist two vertices u and v in G with
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S a minimal u, v-separator. For a chordal graph G, a set of vertices S is a minimal separator of
G if and only if S is the intersection of two neighboring bags in any clique tree of G [1].

An interval supergraph H = (V,E ∪ F ) of a given graph G = (V,E), with E ∩ F = ∅, is
called an interval completion of G. H is called a k-interval completion of G if |F | ≤ k. The set
F is called the set of fill edges of H. On input G and k, the k-Interval Completion problem asks
whether there is an interval completion of G with at most k fill edges.

3 Non-chordality and small simple AT-witnesses: Rules 1, 2

Branching Rule 1:

If G not chordal, find a chordless cycle C of length at least 4. If |C| > k+3 answer no, otherwise:

• Branch on the at most 4|C| different ways to add an inclusion minimal set of edges (of
cardinality |C| − 3) between the vertices of C to make C chordal.

It is shown in [17, 2] that there are at most 4|C| minimal set of edges for making C chordal.
If Rule 1 applies we branch by creating at most 4|C| recursive calls, each with new parameter
value k − (|C| − 3). The correctness of Rule 1 is well understood [17, 2]. Let us remark that
each invocation of the recursive search tree subroutine will apply only one of four branching
rules. Thus, if Rule 1 applies we apply it and branch, else if Rule 2 applies we apply it and
branch, else if Rule 3 applies we apply it and branch, else apply Rule 4. Rules 2, 3 and 4 will
branch on single fill edges, dropping the parameter by one. Also Rule 1 could have branched
on single fill edges, simply by taking the set of non-edges of the induced cycle and branching on
each non-edge separately. We continue with Rule 2.

Observation 3.1 Given a graph G, let {a, b, c} be an AT in G. Let P ′
ab be the set of vertices

on a path between a and b in G − N [c], let P ′
ac be the set of vertices on a path between a and c

in G−N [b], and let P ′
bc be the set of vertices on a path between b and c in G−N [a]. Then any

interval completion of G contains at least one fill edge from the set {cx | x ∈ P ′
ab} ∪ {ax | x ∈

P ′
bc} ∪ {bx | x ∈ P ′

ac}.

Proof. Otherwise {a, b, c} would still be an independent set of vertices with a path between
any two avoiding the neighborhood of the third, in other words it would be an AT.

We introduce simple AT-witnesses and give a branching rule for small such witnesses.

Definition 3.2 Let {a, b, c} be an AT in a graph G. There are three paths Pab, Pbc, Pbc, where
Pab is the set of vertices on a shortest path between a and b in G−N [c], Pac is the set of vertices
on a shortest path between a and c in G−N [b], and Pbc is the set of vertices on a shortest path
between b and c in G − N [a]. The induced subgraph Gabc = G[Pab ∪ Pbc ∪ Pac] of G is called a
simple AT-witness of this AT. We call {Pab, Pbc, Pbc} the core of Gabc.

Observe that a simple AT-witness for {a, b, c} and the mentioned shortest paths of its core
exist if and only if {a, b, c} is an AT. Furthermore, from the definition of an AT-witness Gabc for
{a, b, c}, a, b, and c are vertices of Gabc.
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Branching Rule 2:

If G is chordal: For each triple {a, b, c} check if {a, b, c} is an AT. For each AT {a, b, c}, find a
simple AT-witness Gabc for it with core {Pab, Pbc, Pbc}. If there exists an AT {a, b, c}, such that
|{cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}| ≤ k + 15 for the simple AT-witness Gabc, then:

• Branch on each of the fill edges in the set {cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}.

By Observation 3.1, any interval completion contains at least one edge from the set branched
on by Rule 2.

Lemma 3.3 Let G be a graph to which Rule 1 cannot be applied (i.e. G is chordal). There
exists a polynomial time algorithm that finds a simple AT-witness Gabc with core {Pab, Pbc, Pbc},
where |{cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}| ≤ k + 15, if such an AT-witness exists.

Proof. A simple AT-witness can be found in polynomial time: for a triple of vertices, check
if there exists a shortest path between any two of them that avoids the neighborhood of the
third vertex. Since shortest paths are used to define simple AT-witnesses and all shortest paths
between a pair of vertices have the same length, then |{cx | x ∈ Pab} ∪ {ax | x ∈ Pbc} ∪ {bx |
x ∈ Pac}| will be the same for all cores {Pab, Pbc, Pbc} defining simple AT-witnesses for an AT
{a, b, c}.

4 Minimal simple AT-witnesses and shallow vertices: Rule 3

In this section we consider chordal graphs to which Rule 2 cannot be applied, which means
chordal graphs containing no AT of small enough size. We introduce minimal simple AT-
witnesses and show that they each have a shallow vertex.

Definition 4.1 A simple AT-witness Gabc for an AT {a, b, c} is minimal if Gabc − x is AT-free
for any x ∈ {a, b, c}.

Since the vertices of an AT belong to any AT-witness for that AT, it follows that not every
AT has a minimal simple AT-witness. However, clearly, for each AT {a′, b′, c′}, we can find
an AT {a, b, c} that has a minimal simple AT-witness. Hence, as long as there is an AT in
a chordal graph, there is also an AT that has a minimal simple AT-witness. Interestingly, by
the following result of Lekkerkerker and Boland [21] and since minimal simple AT-witnesses are
induced subgraphs, a minimal simple AT-witness of a chordal graph is either of constant size or
it is a member of one of the two families of graphs shown in Figure 1.

Theorem 4.2 ([21]) Let G be a chordal graph with more than 7 vertices. Then G contains an
AT, and no induced subgraph of G contains an AT, if and only if G belongs to the family of
graphs shown in Figure 1.

Since the chordal graphs that we study in this section contain no AT of size less than 15, the
minimal simple AT-witnesses that we encounter from now on will always be one of the two types
given in Figure 1. (The reader might be interested to know that, by the results of Lekkerkerker
and Boland [21], any other possible minimal AT-witness in a chordal graph is of size exactly 7
and is one of two different graphs.)
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Figure 1: These two families of graphs (r ≥ 1) are the only minimal simple AT-witnesses of
non-constant size that survive Rules 1 and 2.

Definition 4.3 Let {a, b, c} be an AT in a chordal graph G. Vertex c is called shallow if shortest
a, c-paths and shortest b, c-paths are of length at most 4.

Observation 4.4 Let G be a graph to which neither Rule 1 (i.e., G is chordal) nor Rule 2
can be applied. Let Gabc be a minimal simple AT-witness for an AT {a, b, c} in G. Then the
following statements are true.

• Each of a, b, c is a simplicial vertex in Gabc.

• For any x ∈ {a, b, c}, Gabc−x is an interval graph, and in this interval graph, {a, b, c}\{x}
is a dominating pair.

• Let {Pab, Pbc, Pac} be the core of Gabc, where |Pab| ≥ |Pbc| ≥ |Pac|. If |Pab| ≥ 6 then c is
shallow.

Proof. Since neither Rule 1 nor Rule 2 apply to G and Gabc is minimal then by Theorem 4.2
we know that Gabc belongs to one of the families in Figure 1. Each of a, b, c is either the end
vertex of the long path or the vertex at the bottom for each of the graphs in Figure 1. Hence
the observation follows. The vertex at the bottom is the shallow vertex.

We are ready to give Branching Rule 3.

Branching Rule 3:

Let C(G) be the set of vertices of G each of which is shallow in some AT of G. This rule applies
if Rules 1 and 2 do not apply and |C(G)| > k, in which case we let B be a subset of C(G) with
|B| = k + 1. For each c ∈ B find a simple AT-witness Gabc with core {Pab, Pbc, Pac}, where c is
shallow.

• For each c ∈ B, branch on the at most 8 fill edges {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac}.

• Branch on the at most |B|(|B| − 1)/2 possible fill edges {uv | u, v ∈ B and uv 6∈ E}.

Observe that Rule 3 only needs a subset of C of size k + 1, and thus an algorithm can stop
the computation of C when this size is reached.

Lemma 4.5 If Rule 3 applies to G then any k-interval completion of G contains a fill edge
which is branched on by Rule 3.
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Proof. In a k-interval completion we cannot add more than k fill edges. Thus, since |B| = k+1
any k-interval completion H of G either contains a fill edge between two vertices in B (and all
these are branched on by Rule 3), or there exists a vertex c ∈ B with no fill edge incident to it
(since the opposite would require k + 1 fill edges). If c ∈ B does not have a fill edge incident
to it, then by Observation 3.1 one of the edges in {ax | x ∈ Pbc} ∪ {bx | x ∈ Pac} must be a fill
edge (and all these are branched on for each c ∈ B by Rule 3).

Lemma 4.6 Let G be a graph to which Rule 1 and Rule 2 cannot be applied. There exists a
polynomial time algorithm that finds the unique maximal set C(G) of shallow vertices in G, and
applies Rule 3 if |C(G)| ≥ k + 1.

Proof. A minimal simple AT-witness can be found in polynomial time: for a triple of vertices,
check if there exists a shortest path between any two of them that avoids the neighborhood of
the third vertex. If these three paths exist and induces a minimal simple AT-witness for the
triple add the shallow vertex to the set C(G). Notice that every vertex that is shallow in some
minimal simple AT-witness will be added to the set C(G). Rule 3 is used on the set C(G), when
vertex number k + 1 is added.

5 Thick AT-witnesses

In this section we introduce thick AT-witnesses and show that minimal thick AT-witnesses have
a shallow vertex. These shallow vertices will be important for the fourth and final rule given in
the next section.

We now consider graphs G to which none of the Rules 1, 2, or 3 can be applied. This means
that G is chordal (Rule 1), the set C(G) of shallow vertices in G has cardinality at most k (Rule
3), implying that (the connected components of) G[C(G)] is an interval graph (Rule 2).

Definition 5.1 Let {a, b, c} be an AT in a chordal graph G, and let W = {w | w is a vertex
of a chordless a, b-path, a, c-path, or b, c-path in G}. The graph GTabc = G[W ] is the (unique)
thick AT-witness for the AT {a, b, c}.

We denote the neighborhoods of a, b, and c in GTabc by respectively Sa, Sb, and Sc, since
these are minimal separators in GTabc and also in G by the following two observations.

Observation 5.2 Let GTabc be a thick AT-witness in a chordal graph G. For any x ∈ {a, b, c},
x is a simplicial vertex and Sx = NGTabc

(x) is a minimal separator in GTabc.

Proof. We prove the observation for x = a; the other possibilities are symmetric. Because of
the existence of a shortest b, c-path avoiding Sa, it follows that b and c are contained in the
same connected component of GTabc \ Sa. Every neighbor of a in GTabc appears in a chordless
path from a to either b or c or both. By the fact that b and c appears in the same connected
component of GTabc \ Sa and that neighbor of a in GTabc appears in a chordless path from a
to either b or c, we can conclude that Sa is both a minimal a, b-separator and a minimal a, c-
separator. In a chordal graph, every minimal separator is a clique [6]. Hence a is simplicial in
GTabc.
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Observation 5.3 Let GTabc be a thick AT-witness in a chordal graph G. Then the set of
minimal separators of GTabc are exactly the set of minimal a, b-separators, a, c-separators, and
b, c-separators of G.

Proof. Let S be a minimal a, b-separator in G. Note that S ⊆ GTabc. There exist two connected
components Ca and Cb of G−S, containing respectively a and b, such that NG(Ca) = NG(Cb) =
S. For any vertex z ∈ S we can now find a chordless shortest path in G from z to each of a
and b, where every intermediate vertex is contained in respectively Ca and Cb. By joining these
two paths, we get a chordless path from a to b that contains z. Since this holds for any vertex
in S, it follows by the way we defined GTabc that any minimal a, b-separator of G is a minimal
a, b-separator of GTabc. The argument can be repeated with a, c and b, c to show that every
minimal a, c-separator or b, c-separator of G is also a minimal separator of GTabc.

Every minimal separator of GTabc separates two simplicial vertices appearing in two different
leaf bags of any clique tree of GTabc. Since a, b, c are the only simplicial vertices in GTabc (every
other vertex being an internal vertex of a chordless path), every minimal separator of GTabc

is a minimal a, b-separator, b, c-separator, or a, c-separator. Let S be a minimal a, b-separator
in GTabc. Vertex set S is a subset of a minimal a, b-separator of G, since the same chordless
paths exist in G. But S cannot be a proper subset of a minimal a, b-separator of G, since every
minimal a, b-separator of G is a minimal a, b-separator in GTabc, and thus S would not be a
minimal separator in GTabc otherwise. The argument can be repeated with a, c and b, c.

Definition 5.4 A thick AT-witness GTabc is minimal if GTabc − x is AT-free for every x ∈
{a, b, c}.

Observation 5.5 Let GTabc be a minimal thick AT-witness in a chordal graph G. Then GTabc−c
is an interval graph, and in this interval graph {a, b} is a dominating pair.

Proof. The graph G′ = GTabc − c is by definition an interval graph, since GTabc is a minimal
thick AT-witness. For a contradiction assume that {a, b} is not a dominating pair, and thus
there exists a path P ′

ab from a to b in G′ − N [y] for some vertex y ∈ V (G′) \ {a, b}. Let Q be a
clique path of G′. Vertex y does not appear in any bag of Q that contains a or b, and it does
not appear in any bags between the subpaths Qa and Qb of Q. Let us without loss of generality
assume that Qa appears between Qy and Qb in Q. We show that y is then not in any chordless
path between any pair of a, b, c, giving the contradiction. Due to the above assumptions, y is
not contained in the component Cb of G′ − N [a] that contains b. Furthermore, a is a simplicial
vertex by Observation 5.2, and P ′

ab contains vertices from NG′(a), thus y 6∈ NG′(a) since P ′
ab

would not avoid the neighborhood of y otherwise. The path Pbc − c is contained in Cb since it
contains no vertex of N [a], and thus y is not adjacent to any vertex in Pbc − c. We know that
cy 6∈ E(GTabc), since by Observation 5.2, NGTabc

(c) is a clique, and thus y would be adjacent to
the neighbor of c in Pbc if cy were an edge in E(GTabc). Now we have a contradiction since y is
not in any chordless path between any pair of a, b, c.

Lemma 5.6 Let G be a graph to which neither Rule 1 nor Rule 2 can be applied, and let GTabc

be a minimal thick AT-witness in G where c is shallow. Then for every vertex u ∈ Sc we have
Sa ∪ Sb ⊆ N [u].
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Proof. Let E′ = E(GTabc), and let us on the contrary and without loss of generality assume
that c′a′ 6∈ E′ for c′ ∈ Sc and a′ ∈ Sa. Let Pab = (a = v1, v2, ..., vr = b), Pbc, and Pac be the
shortest paths used to define a simple AT-witness for {a, b, c}. We will show that either {a′, b, c}
or {a, vr−1, c} is an AT in a subgraph of GTabc, contradicting its minimality.

Vertex set {a′, b, c} is an independent set since cb 6∈ E′, a′b 6∈ E′ due to |Pab| > 15 − 8 (Rule
2), and a′c 6∈ E′ because c is simplicial in GTabc, and thus c′a′ ∈ E′ if a′c ∈ E′. Either v2 = a′,
or a′v2 ∈ E′ since a is simplicial in GTabc. Pab − a + a′ is a path from a′ to b that avoids the
neighborhood of c. In the same way Pac−a+a′ is a path from a′ to c, and since we have already
seen that a′b 6∈ E′ this path avoids the neighborhood of b. By Observation 5.5, c′ is adjacent
to some vertex on the path Pab = (a = v1, v2, ..., vr = b). If c′ is adjacent to some vertex vi

where i > 3, then there is a path c, c′, vi, ..., vr = b that avoids the neighborhood of a′, and we
have a contradiction since a′, b, c would be an AT in GTabc − a. We can therefore assume that
there is a j ∈ {2, 3} such that vjc

′ ∈ E′, and that there exists no vic
′ ∈ E′ for any i > 3. The

set {a, vr−1, c} is an independent set, since cvr−1, avr−1 6∈ E′. The path a, v2, ..., vr−1 avoids the
neighborhood of c, the path c, c′, vj , ..., a avoids the neighborhood of vr−1, and Pbc − b + vr−1 is
a path from c to vr−1 that avoids the neighborhood of a, since b is simplicial in GTabc. This is
a contradiction since GTabc − b contains the AT {a, vr−1, c}.

Lemma 5.7 Let G = (V,E) be a graph to which neither Rule 1 nor Rule 2 can be applied. Let
GTabc be a minimal thick AT-witness in G where c is shallow. Let Cc be the connected component
of G−Sc that contains c. Then every vertex of Cc has in G the same set of neighbors Sc outside
Cc, in other words ∀u ∈ Cc : NG(u) \ Cc = Sc.

Proof. By definition NG(u) \Cc ⊆ Sc. Let us assume for a contradiction that ux 6∈ E for some
x ∈ Sc and u ∈ Cc. Since Cc is a connected component there exists a path from u to c inside
Cc. Let u′, c′ be two consecutive vertices on this path, such that Sc ⊆ NG(c′) and u′x′ 6∈ E for
some x′ ∈ Sc. By Lemma 5.6 x′ creates a short path from a to b that avoids the neighborhood
of u′, and by using Pac − c and Pbc − c and the vertices c′ and u′ we can create short paths from
a to u′ and from b to u′ that avoid the neighborhoods of b and a, respectively. This is now a
contradiction, since {a, b, u′} is an AT with a simple AT-witness where the number of branching
fill edges are 5 for the path a, a′, x′, b′, b, 5 for Pac − c and c′, u′, and 5 for Pbc − c and c′, u′,
giving a total of 15 branching edges.

The following simple observations are needed for the proof of Lemma 5.10.

Observation 5.8 A vertex v is simplicial only if v is an end vertex of every chordless path that
contains v.

Proof. Any vertex that appears as a non end vertex in a chordless path, has two neighbors
that are not adjacent.

Observation 5.9 Let GTabc be a minimal thick AT-witness in a graph G to which neither Rule
1 nor Rule 2 can be applied. Then at least one of the vertices in the AT {a, b, c} is shallow, and
there exists a minimal simple AT-witness Gabc for {a, b, c}, where V (Gabc) ⊆ V (GTabc).
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Proof. Let Pab, Pac, Pbc be shortest chordless paths contained in GTabc, and let Gabc be defined
by Pab, Pac, Pbc. It is clear that GTabc is minimal only if Gabc is minimal. By Observation 4.4,
Rule 2, and the fact that Gabc is a minimal AT-witness for {a, b, c}, we know that at least one
of the vertices in {a, b, c} is shallow.

Lemma 5.10 Let G be a graph to which neither Rule 1 nor Rule 2 can be applied, and let GTabc

be a thick AT-witness in G. Then there exists a minimal thick AT-witness GTxyz in G, where
V (GTxyz) ⊆ V (GTabc) and z is shallow, such that z ∈ {a, b, c}.

Proof. GTxyz will be obtained from GTabc by deleting one of the simplicial vertices in the AT
that defines GTabc, and repeat this until a minimal thick AT-witness GTxyz is obtained. Note that
only neighbors of the deleted vertex can become simplicial after each deletion, by Observation
5.8. As a result, the deleted vertices induce at most three connected components. Actually
the number of components will be exactly three, since otherwise the connected components
contains a chordless path between two of the vertices in {x, y, z} which is a contradiction to the
definition of a minimal thick AT-witness. Thus, each connected component is adjacent to one of
the vertices x, y, z. By Observation 5.9 one of the vertices x, y, z is shallow. Let us without loss
of generality assume that z is the shallow vertex in GTxyz. By Lemma 5.3, minimal separators
of GTxyz are also minimal separators of GTabc, so let us assume without loss of generality that
z and c are contained in the same connected component of GTabc − NGTxyz

(z). Notice that z
and c might be the same vertex. By Lemma 5.7, c is shallow in the minimal thick AT-witness
GTxyc.

Like Rules 2 and 3, Rule 4 will branch on single fill edges, but it will also consider minimal
separators, based on the following two basic observations.

Observation 5.11 If G has a minimal thick AT-witness GTabc in which Pac and Pbc are short-
est a, c and b, c-paths avoiding N(b) and N(a) respectively, then any interval completion of G
either contains a fill edge from the set {bx | x ∈ Pac} ∪ {ax | x ∈ Pbc} or contains one of the
edge sets {{cx | x ∈ S} | S is a minimal a, b-separator in GTabc}.

Proof. By Observation 3.1, we know that at least one of the edges in {ax | x ∈ Pbc} ∪ {bx |
x ∈ Pac} ∪ {cx | x ∈ Pab} for the paths Pab, Pac, Pbc defined in the proof of Observation 5.9, is a
fill edge of any interval completion of G. If an interval completion H does not contain any fill
edge from the set {bx | x ∈ Pac}∪ {ax | x ∈ Pbc}, then H contains at least one fill edge from the
set {cx | x ∈ P ′

ab}, where P ′
ab is any chordless a, b-path in G that avoids the neighborhood of c.

Thus, NH(c) contains a minimal a, b-separator in G (which by Observation 5.3 is also a minimal
a, b-separator in GTabc) since every chordless and thus every a, b-path in G − N [c] contains a
vertex of NH(c).

Observation 5.12 Let G be a graph to which neither Rule 1 nor 2 can be applied, and let
GTabc be a minimal thick AT-witness in G where c is shallow. Then Sc ⊂ S for every minimal
a, b-separator S different from Sa and Sb.
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Proof. Let S be a minimal a, b-separator different from Sa and Sb. No minimal a, b-separator
contains another minimal a, b-separator as a subset, thus there exists a vertex a′ ∈ Sa \S and a
vertex b′ ∈ Sb \ S. S is then also a minimal a′, b′-separator because of the edges aa′ and bb′. It
then follows from Lemma 5.6 that Sc ⊂ N(a′) ∩ N(b′), and thus Sc ⊂ S.

6 Partitioning the shallow vertices: Rule 4

In this section we present the fourth and final rule and prove correctness of the resulting search
tree algorithm. We start by detailing the computation of the set C(G) of shallow vertices which
will give us a partition of C(G) that we will use in our branching rule 4.

Definition 6.1 Given a graph G to which Rules 1 and 2 do not apply, we compute a set C(G) =
C1∪C2∪...∪Cr of vertices that are shallow in some minimal thick AT-witness, with G\C(G) = Rr

an interval graph, as follows:

R0 := G; i := 0; C(G) := ∅;
while Ri is not an interval graph do

i := i + 1;
Find GTaibici

a minimal thick AT-witness in Ri−1 with ci shallow;
Let Ci be the connected component of Ri−1 − NGTaibici

(ci) that contains ci;

for each c ∈ Ci do GTaibic := GTaibici
− ci + c;

Ri := Ri−1 − Ci;
C(G) := C(G) ∪ Ci;

end-while

r := i

The minimal thick AT-witness GTaibici
is found by first finding an AT {a, b, c}, then removing

simplicial vertices different from a, b, c according to Observation 5.8 to get a thick AT-witness,
and then applying the procedure in the proof of Lemma 5.10.

A priori we have no guarantee that there are no edges between a vertex in Ci and a vertex
in Cj , for some i 6= j, but when |C(G)| ≤ k (which is ensured by Rule 3) this indeed holds, as
shown in the following lemma.

Lemma 6.2 Let G = (V,E) be a graph to which none of Rules 1, 2, 3 can be applied, and let
C(G) = C1 ∪ C2 ∪ ... ∪ Cr from Definition 6.1. Then Ci induces an interval graph that is a
connected component of G[C(G)], for each 1 ≤ i ≤ r.

Proof. Firstly, |Ci| ≤ k since Rule 3 does not apply and since and Rules 1, 2 do not apply, it
must induce an interval graph. To argue that it is a connected component, note first that by
definition G[Ci] is connected and Ci ∩Cj = ∅ for any i 6= j. For a contradiction we assume that
cz ∈ E for some c ∈ Ci and z ∈ Cj with i < j. Notice that cz ∈ E implies that z ∈ Sc. Let GTabc

be the minimal thick AT-witness in Ri−1 with c the shallow vertex and Sc = NGTabc
(c), and let

likewise GTxyz be the minimal thick AT-witness in Rj−1 with z shallow and Sz = NGTxyz
(z).

Let Pab be a path from a to b in GTabc \ N(c). There are now two cases:
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Case I: There is a vertex w ∈ Pab ∩ Sz. Note that Sc and Sz are minimal separators in the
chordal graphs Ri−1 and Rj−1 respectively, and thus by Observation 5.3 Sc and Sz are cliques
[6]. Thus, since cw 6∈ E we must have c 6∈ Sz. But then we have c and z in the same component
Dz of G \ Sz. By Lemma 5.7 c and z must therefore have the same neighbors outside Dz. But
this contradicts the fact that zw ∈ E while cw 6∈ E.

Case II: Pab ∩ Sz = ∅. Let Dz be the connected component of G \ Sz that contains z. By
Observation 5.5 GTabc \ {c} is an interval graph where a, b is a dominating pair, thus zw ∈ E
for some w ∈ Pab since z ∈ Sc and therefore V (Pab) ⊆ Dz.

Since c is shallow we know that |Pac|+ |Pbc| ≤ 8 and since Rule 2 cannot be applied we know
that |Pab| + |Pac| + |Pbc| ≥ k + 16. Thus we have at least k + 16 − 8 vertices in Pab and thus
|Dz| ≥ |Pab| > k. Assuming we can show the subset-property Dz ⊆ C1∪C2∪ ...∪Cj we are done
with the proof since this will lead to the contradiction k < |Dz| ≤ |C1∪C2∪...∪Cj | ≤ |C(G)| ≤ k.
Let us prove the subset-property. G has a perfect elimination ordering starting with the vertices
of C1, as these vertices are a component resulting from removing a minimal separator from G.
By induction, we have that G has a perfect elimination ordering α starting with the vertices in
C1∪C2∪ ...∪Cj−1. For a contradiction assume there exists a vertex t ∈ Dz \ (C1∪C2∪ ...∪Cj).
As t ∈ Dz there is a shortest chordless t, z-path Ptz in Dz. The edge tz 6∈ E since this would
make t a member of Cj (as t 6∈ Cj). Only vertices in C1 ∪ C2 ∪ ... ∪ Cj−1 are removed from the
graph, and these separate z from t in G[Dz ] (since t 6∈ Cj). Let s be the lowest numbered vertex
in the ordering α that belongs to the path Ptz. This is now a contradiction, since a non-end
vertex of a chordless path cannot be simplicial if two adjacent vertices eliminated later in the
perfect elimination ordering are non adjacent.

Rule 4 will branch on a bounded number of single fill edges and it will also compute a greedy
completion by choosing for each shallow vertex a minimal separator minimizing fill and making
the shallow vertex adjacent to all vertices of that separator. We will prove that if none of the
single fill edges branched on in Rule 4 are present in any k-interval completion, then the greedy
completion gives an interval completion with the minimum number of edges. The greedy choices
of separators are made as follows:

Definition 6.3 Let G be a graph to which none of Rules 1, 2, 3 can be applied. Let Definition 6.1
give C(G) = C1∪C2∪...∪Cr, representative vertices c1, c2, ..., cr and minimal thick AT-witnesses
GTaibici

and graphs G = R0 ⊃ R1 ⊃ ... ⊃ Rr, with Rr interval. Let Mi, for i = 1, 2, ..., r be a
minimal ai, bi-separator S in GTaibici

different from Sai
and Sbi

and N(Cj) for all 1 ≤ j ≤ r,
satisfying S ∩ C(G) = ∅, and minimizing |S \ N(Ci)|. If no such S exists, define Mi = null.

Lemma 6.4 If Mi 6= null then Mi is a minimal separator in Rr.

Proof. The vertex set Mi is a minimal separator in GTaibici
by construction and since GTaibici

is a subgraph of the chordal graph Ri it is by Observation 5.3 also a minimal separator of Ri.
We prove that Mi is also a minimal separator in Rj for any i + 1 ≤ j ≤ r by induction on j.
Recall that Rj is obtained by removing Cj from Rj−1, where Cj is a component of Rj−1 \ Sci

for a minimal separator Sci
of Rj−1, and Sci

= N(Cj) by Lemma 5.7. Consider a clique tree of
Rj−1 and observe that any minimal separator of Rj−1 that is not a minimal separator of Rj is
either equal to N(Cj) or it contains a vertex of Cj . Finally, note that the minimal separator Mi

has been chosen so that it is not of this type.
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Branching Rule 4:

Rule 4 applies if none of Rules 1, 2, 3 apply, in which case we compute, as in Definitions 6.1 and
6.3, C1, C2, ..., Cr (which are connected components of G[C(G)] by Lemma 6.2), the minimal
thick AT-witnesses GTaibic with c shallow for each c ∈ Ci, and M1, ...,Mr (which are minimal
separators of Rr by Lemma 6.4). For each 1 ≤ i ≤ r and each c ∈ Ci choose a′i ∈ Sai

\ Sc

and b′i ∈ Sbi
\ Sc and find Paic and Pbic (shortest paths in GTaibic avoiding N(bi) and N(ai),

respectively, of length at most 4 by Observation 5.9). For each pair 1 ≤ i 6= j ≤ r, choose a
vertex vi,j ∈ N(Cj) \ N(Ci) (if it exists).

• For 1 ≤ i ≤ r and c ∈ Ci, branch on the at most 8 fill edges {aix | x ∈ Pbic} ∪ {bix | x ∈
Paic} and also on the 2 fill edges {ca′i, cb

′
i}.

• Branch on the at most |C(G)|(|C(G)| − 1)/2 fill edges {uv | u, v ∈ C(G) and uv 6∈ E}.

• Branch on the at most |C(G)|r fill edges
⋃

1≤i6=j≤r{cvi,j | c ∈ Ci}.

• Finally, compute H = (V, E ∪
⋃

1≤i≤r{cx | c ∈ Ci and x ∈ Mi}) and check if it is a
k-interval completion of G (note that we do not branch on H.)

Lemma 6.5 If G has a k-interval completion, and Rules 1, 2, and 3 do not apply to G, and no
k-interval completion of G contains any single fill edge branched on by Rule 4, then the graph
H, which Rule 4 obtains by adding fill edges from every vertex in Ci to every vertex in Mi for
every 1 ≤ i ≤ r, is a k-interval completion of G.

Proof. By Observation 5.11, for each c ∈ Ci either one of the edges in {aix | x ∈ Pbic} ∪ {bix |
x ∈ Paic} is a fill edge (and all these are branched on by Rule 4) or else the k-interval completion
contains the edge set {cx | x ∈ S} for some minimal ai, bi-separator S in GTaibic. Such an edge
set in a k-interval completion is one of four types (listed below) depending on the separator S
used to define it. For each type and any c ∈ Ci we argue that Rule 4 considers it. Observe
that N(Ci) \ Ci = N(c) \ Ci by Lemma 5.7, and thus the fill edges from c will go to vertices
in S \ N(Ci), which is nonempty since there is an ai, bi-path avoiding N(c). We now give the
four types of minimal separators S, and show that the first three are branched on by a single
fill edge:

1. S ∩ C(G) 6= ∅. Since N(Ci) ∩ C(G) = ∅ by Lemma 6.2, we have in this case a fill edge
between two vertices in C(G) (between c ∈ Ci and a vertex in C(G) ∩ S \ N(Ci)) and all
these are branched on by Rule 4.

2. S = Sai
or S = Sbi

, where Sai
, Sbi

, Sc defined by GTaibic. We found in Rule 4 a pair of
vertices a′i ∈ Sai

\ Sc and b′i ∈ Sbi
\ Sc and branched on the fill edges ca′i and cb′i.

3. S = N(Cj) for some 1 ≤ j ≤ r. If S = N(Cj) then N(Cj) \ N(Ci) 6= ∅ and we found in
Rule 4 a vertex vi,j ∈ N(Cj) \ N(Ci) and branched on the fill edge cvi,j .

4. S is neither of the three types above. Note that Mi was chosen in Definition 6.3 by
looping over all minimal ai, bi-separators S in GTaibici

(which by Lemma 5.7 are exactly
the minimal ai, bi-separators of GTaibic) satisfying S ∩ C(G) = ∅, S 6= Sa, S 6= Sb, and
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S 6= N(Cj) for any j. Thus, of all separators of this fourth type, Mi is the one minimizing
the fill.

The assumption is that G has a k-interval completion but no single edge branched on by
Rule 4 is present in any k-interval completion. This means that only separators of the fourth
type are used in any k-interval completion. Since H added the minimum possible number of fill
edges while using only separators of the fourth type any interval completion of G must add at
least |E(H) \ E(G)| edges. It remains to show that H is an interval graph. H is constructed
from an interval graph Rr and the components G[C1], ..., G[Cr ] of G[C(G)], which are interval
graphs by Lemma 6.2, and M1, ...,Mr which are minimal separators of Rr by Lemma 6.4. Since
Mi 6= Sai

and Mi 6= Sbi
we have by Observation 5.12 that Sc = N(Ci) ⊂ Mi so that adding all

edges between Ci and Mi for 1 ≤ i ≤ r gives the graph H. We show that H is an interval graph
by induction on 0 ≤ i ≤ r. Let H0 = Rr and let Hi for i ≥ 1 be the graph we get from Hi−1

and Ci by making all vertices of Ci adjacent to all vertices of the minimal separator Mi of Rr.
H0 is an interval graph by induction, and its minimal separators include all minimal separators
of Rr. If (K1,K2, ...Kq) is a clique path of Hi−1 with Mi = Kj ∩Kj+1, and (K ′

1,K
′
2, ...,K

′
p) is a

clique path of G[Ci] then (K1,K2, ...,Kj ,K
′
1 ∪Mi,K

′
2 ∪Mi, ...,K

′
p ∪Mi,Kj+1, ...,Kq) is a clique

path of Hi, and hence Hi is an interval graph. Finally, observe that the minimal separators of
Hi−1 and hence of Rr are also minimal separators of Hi.

Theorem 6.6 The search tree algorithm applying Rules 1, 2, 3, 4 in that order decides in
O(k2kn3m) time whether an input graph G on n vertices and m edges can be completed into an
interval graph by adding at most k edges.

Proof. At least one of the rules will apply to any graph which is not interval. The correctness
of Rule 1 is well understood [17, 2], that of Rules 2 and 3 follow by Observations 3.1 and 5.11
and of Rule 4 by Lemma 6.5. Each branching of Rules 2, 3 and 4 add a single fill edge and drops
k by one. As already mentioned, also Rule 1 could have added a single fill edge in each of its
then at most k2 branchings. The height of the tree is thus no more than k, before k reaches 0
and we can answer “no”. If an interval graph is found we answer “yes”.

Let us argue for the runtime. The graph we are working on never has more than m+k edges.
In Rule 1 we decide in linear time if the graph has a large induced cycle. In Rule 2 we may have
to try all triples when searching for an AT with a small simple AT-witness, taking O(n3(m+k))
time. In Rule 3 and 4 we need to find a minimal thick AT-witness at most k + 1 times. As
observed earlier, the minimal thick AT-witness is found by first finding an AT {a, b, c}, which
can be done in time O(m + k) since G is a chordal graph [19], then remove simplicial vertices
different from a, b, c to find the thick AT-witness, and then make it minimal. Using a clique tree
we find in this way a single minimal thick AT-witness in time O(n3) and at most k of them in
time O(n3k). Hence each rule takes time at most O(n3(m + k)) and has branching factor at
most k2 (e.g. in Rule 1 and also in Rule 3 when branching on all fill edges between pairs of
shallow vertices). The height of the search tree is at most k and the number of nodes therefore
at most k2k. We can assume k ≤ n ≤ m since otherwise a brute-force algorithm easily solves
minimum interval completion in n2n steps. Thus each rule takes time O(n3m) for total runtime
O(k2kn3m).
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7 Concluding remarks

We have shown that k-Interval Completion is FPT. The runtime of our algorithm can probably
be improved somewhat, at the expense of much more complicated data structures. In an earlier
version of this paper, in STOC 2007 Proceedings, we asked if there was a hereditary graph class
recognizable in polynomial time for which the k-completion problem into this graph class was
not FPT. This question has been answered [22], since for the complements of wheel-free graphs
the k-completion problem is W [2]-complete. It is still an open problem whether the complexity
of k-completions into perfect graphs is FPT.

An alternative equivalent definition of the complexity class FPT relates to kernelization. In
this formulation a parameterized problem is FPT if there exists a polynomial-time algorithm
that for any instance outputs an equivalent ’kernelized’ instance whose size is a function of the
parameter only. The quest for the smallest possible kernel size is orthogonal to the quest for
the fastest possible FPT algorithm. The FPT algorithm given here for k-interval completion
implies that this problem has an exponential sized kernel. We leave it as an open problem if
k-interval completion has a polynomial-sized kernel.
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