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Abstract  Traditionally, in science and engineering, measurement uncertainty is
characterized by a probability distribution; however, often, we don’t
know this probability distribution exactly, so we must consider classes
of possible probability distributions. Interval computations deal with a
very specific type of such classes: classes of all distributions which are
located on a given interval. We show that in general, we need all closed
convex classes of probability distributions.

1. INTRODUCTION

Even after the most accurate measurement, there is still some uncer-
tainty about the actual value of the measured quantity. Traditionally,
this uncertainty is characterized by a probability distribution P on the
set X of possible values of the measured quantity. However, often, we
do not know P exactly — because several different probability measures
are consistent with all the measurements. We must therefore consider
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the class P of all probability measures which are consistent with mea-
surements. So, the general uncertainty can be described by a class of
probability distributions. For example, an interval uncertainty (when
z € [a,b] is the only available information) corresponds to the class
Fla,p) of all probability distributions P located on a given interval [a, b].

In many real-life situations, it is difficult or even impossible to directly
measure the value of the quantity y in which we are interested. In such
situations, we can often determine the value of this quantity indirectly:
namely,

m we measure the quantities z1,...,z, which are related to y and
which can be measured directly, and then,

= we use the known relationship y = f(z1,...,z,) between z; and y
to estimate the value of yy based on the measured values z; of z;:

y=Ff(Z1,...,Tn).

This is called data processing, or indirect measurement. We know the un-
certainty class F; describing the uncertainty of each direct measurement
(i.e., measurement of z;). We want to describe the resulting uncertainty
class F for y = f(x1,...,2,). Two situations are possible:

»  when measurement errors corresponding to different x; are inde-
pendent random variables; the resulting class will be denoted by
findep(F1,- .., Fpn) and

»  when measurement errors may be correlated; the resulting class will
be denoted by fgeneral(Fi; - - - Fn)-

In this paper, we show that in some of these situations, for y, we can
get an arbitrary closed convex class of probability distributions.

2. TOWARDS A PRECISE FORMULATION
OF THE PROBLEM

2.1. A CLASS P MUST BE CONVEX

Indeed, let P,P, € P. Since P; € P, there exists a situation s;
which is consistent with the measurements and in which probabilities are
described by F;. If we combine NV situations of type s; and N situations
of type so, then we get a new situation which is also consistent with
measurements and for which P =0.5- P, + 0.5 P,. Thus, P € P, and
P is convex.
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2.2, A CLASS P MUST BE CLOSED

Indeed, if P, — P (in some reasonable sense), and P, € P, this means
that all measurements are consistent with all F,,. Intuitively, the fact
that P is a limit of P,, means that for an arbitrary accuracy, sufficiently
large P, are, within this accuracy, indistinguishable from P. Since P, is
consistent with all the measurements, it thus follows that P should also
be consistent with them.

2.3. A NATURAL METRIC

To complete our formalization, we must select an appropriate topol-
ogy. Each measuring instrument has a range and an accuracy within this
range. Thus, a natural topology means that the corresponding probabil-
ity distributions are close within a given range. This can be formalized
as follows (see, e.g., [7] for more detailed motivations): We say that
a point (z,p) is in the extended graph of the probability distribution
F(z) if F(z —0) < p < F(z). Let ¢ > 0. We say that the probability
distributions F(z) and G(z) are e-close if the following two properties
hold:

m For every point (z,p) from the extended graph of F' for which
|z| < 1/e, there exists a point (y,q) on the extended graph of G
for which
|z —y| <eand |p—gq| <e, and

®  vice versa.

For every two probability distributions F' and G, the distance p(F, Q) is
defined as the smallest € > 0 for which F' and G are e-close.

When we consider only probability measures which are located on a
given interval, the metric p(F, G) becomes a Hausdorff distance between
the (extended) graphs of the functions F' and G with respect to sup-norm
on the plane

1(z1,p1) = (22, p2) || = max(|z1 — 2], [p1 — pal)-

(In probability theory, this distance between probability measures is also
known as Levy distance). Convergence in this metric is equivalent to so-
called weak convergence of the distributions.

Definition 1. By an uncertainty class F, we mean a convex closed
class of probability distributions (closed w.r.t. the metric p).

Ezxamples: For every probability distribution F', a one-element class
F = {F'} consisting of this distribution F' is an uncertainty class. For
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every interval [a, ], the class F,p located on [a,b], i.e., the class of all
distributions F' for which F(a —0) = 0 and F(b) = 1, also forms an
uncertainty class.

In view of this definition, we will define fingep(Fi, .- .,Fn) as a convex
closed hull of the set of all distributions which correspond to independent
F; € Fi, and fgeneral(Fi,- .-, Fn) as a conver closed hull of the set of all
distributions which correspond to possibly dependent F; € F;.

3. RESULTS

3.1. TRADITIONAL CASE: PROBABILITY
DISTRIBUTIONS

Traditionally, for each z;, it is assumed that we know the probability
distribution Fj, i.e., F; = {F;}. If we know that these distributions are
independent, then we have the complete description of the joint distribu-
tion for these n variables z1,...,z,. (Hence, F = {F} is a one-element
uncertainty class.)

The case of possible dependent probability distributions is described
by a special theory called copula theory (see, e.g., [9]).

3.2. INTERVAL CASE

If for every i, the uncertainty of each variable z;, 1 < ¢ < n, is de-
scribed by an interval [z;, T;], i.e., by a class Flz, z;)» then the uncertainty
class F is also an interval (irrespective on whether the inputs are inde-
pendent or not):

Proposition 1. Let f(z1,...,2,) be a continuous function of n real
variables, and let [z, T1],...,[z,,Tn] be n intervals. Then,

findep <«7:[Q1,§1], . ,F[ann}) =

fgeneral (‘7:[21@1], ... ’}—[zn,fn]) =

j:[g,y]’
where
[Qay] = f([ﬁlafl]’ ) [Qnafn]) =
{y = f(‘xla s axn) ‘xl € [ﬁlajl], <oy In € [&najn]}

Comment. In our definitions, we defined both fingep and fgeneral as
convex hulls of the corresponding class of distributions. One can show
that for fingep, it is necessary to do that, while for fgepneral, the class is
already convex, so taking a convex hull is not necessary.
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3.3. MIXED CASE: INDEPENDENT
PROBABILITY DISTRIBUTION AND
INTERVAL

Proposition 2. For every uncertainty class F, and for every € > 0,
there ezists a probability distribution F, an interval [a,b], and a continu-
ous function f(z1,z2) for which the uncertainty class findep({F'}, Flap)
1s e-close to F.

In other words, even in the simplest case when we only have two
independent variables, one of which has a precisely known distribution,
and the other is characterized by an interval of possible values, we can get
an arbitrary uncertainty class. Thus, arbitrarily complicated uncertainty
classes are not simply the result of a mathematical definition, they are
practically possible.

Of course, this result does not necessarily means that we have to use
arbitrarily complex uncertainty classes. We can restrict ourselves to a
collection of simpler uncertainty classes such as p-bounds (see definition
below; see also [1, 2, 4]). In this case, our result says that in some real-
life situations, the description by these simple uncertainty classes will
not be precise, it will only be an approzimation.

Definition 2.  An uncertainty class is called a p-bound if it consists
of all distribution functions F(z) for which F(z) < F(z) < F(x) for all
x, where F(x) and F(z) are given.

Comment. To better understand the difference between general un-
certainty classes and p-bounds, let us give an example of an uncer-
tainty class which is not a p-bound. Let F and F be two different
distributions for which F(z) < F(z) for all z. Then, the convex hull
of these two distributions consists only of distributions of the type
a-F(z) + (1 — a)- F(z). Elements of this set can be determined by
a single parameter «, and therefore, this set is 1-dimensional. In con-
trast, the corresponding p-bound contains an infinite-dimensional class
of possible distributions. For example, to describe a finite-dimensional
subclass of this class, with an arbitrary dimension k, we can select an
arbitrary sequence of values z(;) < ... < z() and the corresponding
values 0 < a1 < ag < ... < ai_1 < 1, and then define the distribution
F(z) from the p-bound as:

» F(r) = F(z) for x < z(1);

" F(z)=a; F(z)+ (1 — o) - F(z) for 2;y < & < £(;41), and
z)

167}
» F(z) = F(x) for z > z.
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3.4. PROOF OF PROPOSITION 1
(INDEPENDENT CASE)

To prove this result, let us first show that the desired uncertainty
class findep(]-"[z1 F1] - af[gn,in]) is contained in Fiy z7. Indeed, if P™) g
a possible joint distribution, this means that all marginal distributions
are located on the corresponding intervals [z;, T;], and thus, only those

combinations (z1,...,%,) are possible for which z; € [z;,Z;]. For these
combinations,
f(xla <. ,xn) € [Qa y] = f([il,il]a ) [Qn,fn]) =
{y = f(wla .. ,CL‘n) “Tl € [ElaflL sy Ty € [&najn]}’

and therefore, every possible distribution p{) is located on the interval
[y, ]-

Let us now show that the desired uncertainty class coincides with
the interval class Fj, 7. Since the desired uncertainty class is convex
and closed, it is sufficient to prove that all extreme points of the interval
class Fy 5 (i.e., all distributions which cannot be described as non-trivial
convex combinations of others) belong to the desired class; if we prove
this result, then our conclusion will follow from the fact that the interval
class coincides with the convex closed hull of all its extreme points.

Let us describe these extreme points. Any distribution which is not
located in a single point is not an extreme point, because it can rep-
resented as a convex combination of distributions located at different
points. Thus, the only extreme points are distributions which are lo-
cated in a single point. If we take, for each z; € [z;,7;], a distribution F;
which is located with probability 1 in a point z;, then the corresponding
possible joint distribution P(™) = P, x ... x P, is located, with proba-
bility 1, in a point y = f(x1,...,%,). Thus, for any point y which can
be represented as f(z1,...,zy) for some z; € [z;,T;], i.e., for any point
y from the interval [y, 7] of all such points, the distribution which is lo-
cated, with probability 1, in the point y, is possible, and thus, belongs
to the desired class.

An arbitrary distribution located on finitely many points from the
interval [y,7] can be represented as a convex combination of such one-
point distributions (with coefficients equal to the probabilities of the
corresponding points), and therefore, also belongs to the desired class.
Finally, an arbitrary distribution located on the interval [y, 7] can be rep-
resented as a limit of distributions located on finitely many points (when
these points grow denser); so, since the desired class is, by definition,
closed (i.e., contains the limits of its elements), an arbitrary distribution
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located on the interval also belongs to the desired class. The result is
proven.

3.5. PROOF OF PROPOSITION 1 (GENERAL

CASE)
In the beginning of the proof for the independent case, we have proven,
in effect, that the desired uncertainty class fgeneral (.7-"[&1@1], e ,f[zn,in})

is contained in F, 5.

In the second part of that proof, we have shown that every distribu-
tion from the interval class Fj, 71 belongs to the closed convex hull of all
distributions which are possible under independence. Since distributions
which are possible under independence form a subclass of possible dis-
tributions, we can this conclude that every distribution from the interval
class Fj, 7 belongs to the closed convex hull of all possible distributions.
Thus, every distribution from the interval class Flyzy belongs to the
desired class. -

These two results conclude the proof of Proposition 1.

3.6. PROOF OF THE COMMENT AFTER
PROPOSITION 1

Let wus first prove that if, in the definition of the class
findep (‘7:[21 EAIEE ’f[gn,in]) we do not take the convex hull, then Propo-
sition 1 will no longer hold. To be more precise, we will show an example
of a distribution P which is located on the interval [y,7] but which is
not possible (although, in accordance with Proposition 1, it is a convex
combination of possible distributions).

All we need is a single example, so let us consider a simple case when
n—= 27 f($17$2) =1 + T2, and [&1751] = [QQaEQ] = [07 1] In this case,
[v,9] = f([z1,T1], [Z2,T2]) = [0,2]. Let us show that the distribution P
which is located at 0 with probability 0.5 and at 2 with probability 0.5
is not possible under independence.

We will prove this impossibility by reduction to a contradiction. Let
us assume that P = F; x Fy for some possible distributions F; and
F,. Since we know that y = z1 + 2 and z; € [0, 1], the only way to
get y = 2 is to get 1 = 2o = 1. The fact that this value y = 2 has
a positive probability means that there is a positive probability that
21 = 1 and a positive probability that zo = 1. Similar, the only way
to get y = 1 + z9 = 0 is to have £1 = x5 = 0; the fact that this
value y = 0 has a positive probability means that there is a positive
probability that £1 = 0 and a positive probability that zo = 0. So,
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there is a positive probability that 1 = 0 and a positive probability
that zo = 1. Since z1 and z2 are independent, the probability that both
1 = 0 and z9 = 1 is also positive. So, with a positive probability, we
should get y = z1 + 2 = 1; however, in the original distribution P, the
probability of y = 1 is equal to 0. This contradiction shows that our
assumption was false, and P cannot be represented as F; x Fy (i.e., P
is not possible).

Let us now prove that in the definition of the class f(Fi,...,F,), we
do not need to require that we take a convex hull.

By definition of this class, it means that the class of all possible dis-
tributions F(1) is convex. Indeed, let F(I) and G(V) be possible distribu-
tions. Let us prove that their convex combination o - F) + (1 —a) -G
is also a possible distribution. Indeed, the fact that F(!) and GV are
possible distributions means that they correspond to possible joint dis-
tributions P(™ and Q™ accordingly. Therefore, the desired linear com-
bination a - F() 4 (1 — a) - GU) is also possible, because it corresponds
to the joint distribution o - P™ + (1 — @) - Q) which is easily proven
to be possible too. The comment is proven.

3.7. PROOF OF PROPOSITION 2

In this proof, we will provide a step-by-step approximation of an un-
certainty class F by an uncertainty class findep({#'}, Fa,p))-

1°. First, due to our definition of a metric p on the set of all probability
distributions, to guarantee that p(F,G) < ¢, we only need to consider
the values F(z) and G(z) for |z| < 1/6. Thus, if we pick, e.g., § = ¢/4,
we only need to consider values of F(z) for z € [-1/4,1/4].

2°. Due to the above restriction, the metric p(F,G) is equal to the
Hausdorff distance between the pieces of the (extended) graphs of the
functions F'(z) and G(z) which correspond to z € [—1/§,1/4].

These graph pieces are contained in the set S = [—1/4,1/4] x [0,1]
which is closed and bounded and therefore, compact: for every € > 0,
there is a finite set S(¢) C S which is its e-net, i.e., a set which has the
property that for every s € S, there is an s’ € S(e) for which ||s—s'|| < e.
If we recall the definition of a Hausdorff distance, we can conclude that
p(S,5(¢)) <e.

Moreover, one can show that for every closed subset T' C S, the set
T(e) formed by those points from S(g) which are e-close to some points
from T is also e-close to T'. Thus, sets of this type T'(¢) form an e-net
for the set of all closed subsets of S. Each set of this type is a subset of
a given finite set; therefore, this e-net is also finite.
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Hence, we can repeat the same construction and conclude that every
class of probability distributions can be approximated, within any given
accuracy, by a finite class.

4°. We have shown that every class of probability distributions can
be approximated, within any given accuracy, by a finite class. Let
{F1,...,F,} be such an approximation for the original class F.

Since the original class F is an uncertainty class and hence is con-
vex, we can therefore conclude that the convex hull of the finite class
{F1,...,F,} is also sufficiently close to this original class F. Moreover,
we can conclude that an arbitrary class which is intermediate between
the original finite class and its convex hull should be also d-close to F.
We will therefore proceed to construct a probability distribution F', an
interval [a,b], and a continuous function f(z1,z2) for which the uncer-
tainty class findep({F'}, Fla,)) is sufficiently close to such an intermediate
class.

5°. The functions F;(z) are not necessarily strictly monotonic; however,
we can approximate them by strictly monotonic functions, e.g., by taking
(1 =90)- Fi(z) + 0 - z. In effect, what this transformation does is takes
every horizontal line on a graph and makes it slightly increasing.

Similarly, these functions are not necessarily continuous, but we can
make them continuous by an arbitrarily small (in the Hausdorff met-
ric) modification of the (extended) graph; we can do that by applying,
after the above-described modification of the function Fj(z), a similar
transformation to the corresponding “inverse” function ¢;(p). Thus, we
can approximate each function F; by a continuous strictly monotonic
function. Since an approximation to an approximation is also an ap-
proximation to the original class, we can, for simplicity (and without
losing generality), assume that the functions F; are already continuous
and strictly monotonic.

6°. We are now ready to describe the construction of the triple
(F,[a, 0], f).

We will take, as F', the distribution of this uniform random variable
(i.e., F(z) =0 for x < 0, F(z) = z for z € [0,1], and F(z) = 1 for
x > 1). As [a,b], we take the interval [0, 1].

To construct the function f, we take into consideration that since
we assume that each function Fj(z) is continuous and strictly mono-
tonic, each such function Fj(z) can be represented as ¢;(£), where £ is
uniformly distributed on the interval [0, 1].

Now, as f(x1,x2), we take a function which is defined as follows:
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» For zo =0, we take f(z1,22) = ¢1(z1).

m For z; = n—ip we take f(z1,72) = pa(z1).

s For z; = 7’3—:%, where k is an integer, we take f(z1,z2) = pg(z1)-

» For z; =1, we take f(z1,22) = on(z1)-
m For all intermediate values, when

k—1< < k
—_— x —_—
n—1 n—1’

we find the unique « for which

k k-1
=a- 1—a)-
T=ar +(1—a BT
and take, as f(zg,z2), the value f(z1,22) = @ka(z1), where

©k,a(p) is an inverse function to the convex combination
Fro(z) =a- Fipa(z) + (1 — a) - Fi(z).

One can see that this piece-wise definition indeed leads to a continuous
function f(z1,z2) of two variables. Due to this construction, for each
fixed z9 € [a,b] = [0, 1], the resulting random variable f(z1,z2) either
coincides with one of the probability measures F;, or with a convex
combination of these measures. All measures F; are representable as
f(x1,z2) under deterministic values z9 and are, therefore, possible under
independence.

Also, whenever the distribution of x5 is deterministic (i.e., located at
a single point), the corresponding distribution for y = f(z1,z2) belongs
to the convex hull of the distributions Fi, ..., Fj,.
7°. An arbitrary distribution on the interval [0, 1] which is located in

(1) (k)

finitely many points x5 ’,...,z5’, can be represented as a convex com-

bination of deterministic distributions located at these points xgj ) (with
coefficients equal to the probabilities of these points).

Since z1 and x5 are assumed to be independent, for such a distribution
on z9, the resulting distribution for y = f(z1,z2) is equal to the similar

convex combination of the distributions y() =f (:cl,argj )). We already
know that for each j, the distribution for y() belongs to the convex
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hull of F;; therefore, the distribution function for y (which is the convex
combination of these distribution functions) also belongs to the convex
hull of F;.

8°. An arbitrary distribution of the interval [0, 1] can be represented as
a limit of distributions located at finite-point sets.

Thus, the corresponding distribution for y = f(z1, z2) belongs to the
closure of the convex hull of the distributions F;. Since the convex hull
of finitely many distributions is finite-dimensional, it is therefore closed,
and so the distribution for y actually belongs to the convex hull itself.

9°. Let us summarize what we have proven:

m every distribution which is possible under independence belongs to
the convex hull of the finite class {F1,..., F,}, and

m all distributions F; are possible under independence.

Thus, the class findep({F'}, Fla,p)) Of all distributions which are possi-
ble under independence forms an intermediate class between the class
{F1,...,F,} and its convex hull.

We already know that every such intermediate class is sufficiently close
to this original class F. Thus, the class findep({F}, Flq,p) is sufficiently
close to F. The proposition is proven.
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