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Abstract

Confidence intervals for the ratio of scale parameters are constructed in general
families of distributions with nuisance (location) parameters. Each of these intervals
has coverage probability at least as large as that of the standard minimum size (i.e.,
minimum ratio of endpoints) interval and, in addition, smaller size. Then analogous
improved confidence intervals for the scale parameters subject to order restriction
are derived. The method of construction is similar to that in Goutis and Casella [5],
[6]. Examples are given and include the normal and exponential distributions as
well as the inverse Gaussian distribution which is not a purely location–scale model.
Applications to interval estimation of the error variance in variance components
models are also discussed.

1 Introduction

There are many situations where data (measurements) are available from two sources for
the same objective. For example, an experiment may be conducted by two laboratories
using different methods or different measuring instruments. To effectively understand
whether there is a difference in variablility between the two sources, both point and
interval estimates of the ratio of the corresponding population variances are required.
Furthermore, if the two populations are assumed to be normal, a confidence interval
for the ratio of variances that contains one may indicate that a two sample t-test is
applicable for testing equality of the respective means.

Nagata [23] derived intervals for the ratio of the variances of two normal populations
that were better than the standard F-interval, by extending arguments of Stein [25]. In
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Section 2, under suitable monotone likelihood ratio conditions, confidence intervals for
the ratio σ1/σ2 of the scale parameters σ1 and σ2 of two independent populations with
nuisance (location) parameters are constructed, which dominate the standard minimum
ratio of endpoints interval in terms of both coverage probability and ratio of endpoints.
The construction is based on a modification of Goutis and Casella’s [5], [6] technique.
Interestingly, in some typical cases, the computation of the improved intervals involves
exactly the same algorithm that produces the standard interval (but with different input
variables), see Remark 2.1. Thus, the new intervals are easy to use in practice. Exam-
ples are given and include the normal, exponential, and inverse Gaussian distributions.
Numerical results are also presented to indicate the magnitude of the improvement over
the standard interval.

We mention that the companion problem of (decision theoretic) point estimation
of σ1/σ2 has been studied by several researchers, see Gelfand and Dey [3], Madi and
Tsui [20], Kubokawa [13], Madi [19], Ghosh and Kundu [4], Kubokawa and Srivas-
tava [16].

In Section 3, interval estimation of σ1 subject to the restriction that σ1 ≤ σ2 is
considered. This restriction arises very naturally in several problems of practical interest.
For instance, suppose that the lifetime of a component manufactured using an old method
follows the exponential distribution with hazard rate σ2 and the lifetime of the same
component manufactured using a new technology follows the exponential distribution
with hazard rate σ1. It is then reasonable to expect that σ1 ≤ σ2. Using the same
monotone likelihood ratio conditions and exploiting again Goutis and Casella’s [5], [6]
idea, confidence intervals for σ1 are constructed which improve on the standard intervals,
i.e., those that do not take into account the order restriction. As before, the improvement
is both in coverage probability and ratio of endpoints. It is noted that in typical cases
the computational difficulty of the improved intervals is essentially the same as that of
their standard counterparts, see Remark 3.1. Thus, the new intervals share practical
merit. The results apply, in particular, to the problem of interval estimation of the
error variance in a balanced one way random effects model, and (for this model) the
magnitude of the improvement over the standard interval is investigated numerically.
Interval estimation of σ2 subject to σ1 ≤ σ2 is also outlined.

We note that the book by Robertson, Wright, and Dykstra [24] contains a detailed
account on order restricted inference. Early work on this subject traces back to van
Eeden [26], [27], [28], [29], [30] and recent developments are contained in van Eeden [31].
Relevant work includes Kushary and Cohen [17], Kubokawa and Saleh [14], Hwang and
Peddada [7], and Cohen and Sackrowitz [2].

An appendix, Section 4, contains some technical results. We close this section by
mentioning that the technique of Goutis and Casella [5], [6] was also used by Iliopou-
los and Kourouklis [9] for the construction of an improved interval for the generalized
variance in a multivariate normal context.
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2 Improved intervals for the ratio σ1/σ2

Let S1, S2, T1, T2 be independent statistics such that Si/σi and Ti/σi have densities

gi(x)I(0,∞)(x) and hi(x;µi, σi)I(λi,∞)(x)

respectively, where µi, σi are unknown parameters, σi is positive and λi = λi(µi, σi) is
a real valued function of µi and σi, i = 1, 2. The problem is to construct a “good” con-
fidence interval for the ratio σ = σ1/σ2. For instance, if X1, . . . , Xn and Y1, . . . , Ym are
two independent random samples from exponential distributions E(µ1, σ1) and E(µ2, σ2)

then S1 =
n∑
i=1

(Xi−X(1)), S2 =
m∑
i=1

(Yi−Y(1)), T1 = X(1) = min{Xi : i = 1, . . . , n}, T2 =

Y(1) = min{Yi : i = 1, . . . ,m} and λi = µi/σi. See also Kubokawa [13] regarding the
above framework.

We require the following condition.

(A1)
gi(c1x)
gi(c2x)

is strictly increasing in x > 0 for 0 < c1 < c2, i = 1, 2.

We set S = S1/S2 and denote by g(x), x > 0, the density of S/σ. Because of (A1), it
follows from Lemmas 4.1 and 4.4 in the appendix that g(x) is continuous and xg(x) is
unimodal. The standard confidence intervals for σ have the form I = (S/b, S/a), 0 <
a < b, and among them the one with confidence coefficient 1− α and minimum ratio of
endpoints is given by

I0 = (S/b, S/a),

where a and b uniquely satisfy∫ b

a
g(x)dx = 1− α and ag(a) = bg(b) . (2.1)

We will need some further assumptions and a preliminary result. We suppose
that there is a value (µ10, σ10) of (µ1, σ1) with λ1(µ10, σ10) = 0 such that setting
h1(x) = h1(x;µ10, σ10), x > 0, the following two conditions hold.

(A2)
h1(x;µ1, σ1)I(λ1,∞)(x)

h1(x)
is nondecreasing in x > 0.

(A3)
h1(c1x)
h1(c2x)

is strictly increasing in x > 0 for 0 < c1 < c2.

Let W1 = T1/S1. Then, given W1 = w1 > 0, the conditional density of S/σ is

f1(x|w1;µ1, σ1) ∝
∫ ∞

0
xv2g1(xv)h1(xvw1;µ1, σ1)g2(v)I(max(0,λ1),∞)(xvw1)dv . (2.2)

For the sake of simplicity, when µ1 = µ10 and σ1 = σ10 in (2.2) we write f1(x|w1),
that is

f1(x|w1) ∝
∫ ∞

0
xv2g1(xv)h1(xvw1)g2(v)dv . (2.3)

The following result is an application of Lemmas 4.1, 4.3, and 4.4.
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Lemma 2.1 (i) For w1 > 0, under (A1) and (A3), we have that f1(x|w1) is a continu-
ous function of x > 0, xf1(x|w1) is a unimodal function of x > 0, and lim

x→0
xf1(x|w1) =

lim
x→∞

xf1(x|w1) = 0.
(ii) For w1 > 0, under (A1) and (A2), f1(x|w1;µ1, σ1)/f1(x|w1) is strictly increasing in
x > 0 unless the ratio in (A2) is constant as a function of x > 0.

We now seek to improve on I0 by constructing another interval that has smaller
ratio of endpoints while maintaining the coverage probability above the nominal level
1 − α. To motivate our choice of improved interval, we note that in typical cases (as,
for instance, in Examples 1–3 below) the problem of interval estimation of σ is inva-
riant under the group of scale transformations (T1, S1, T2, S2) −→ (c1T1, c1S1, c2T2, c2S2),
ci > 0, i = 1, 2, and the corresponding class of scale equivariant intervals is given by
{(ψ1(W1,W2)S, ψ2(W1,W2)S) : ψ1 < ψ2 positive functions }, where W2 = T2/S2. A
subclass which is simpler to study consists of intervals of the form

I(S,W1) = (φ1(W1)S, φ2(W1)S) ,

for positive functions φ1 < φ2. It is the latter class that we will next consider. Following
Goutis and Casella [5], [6] we will require that I(S,W1) and I0 have the same coverage
probability when µ1 = µ10 and σ1 = σ10. Using Stein’s [25] idea, this requirement will
hold if it holds conditionally for each given value of W1. Since we also seek to improve
on the ratio of endpoints we will in addition require that φ2/φ1 is minimized. To this
end, for each w1 > 0, we determine φ10 = φ10(w1) and φ20 = φ20(w1) from the equations∫ 1/φ10

1/φ20

f1(x|w1)dx =
∫ b

a
f1(x|w1)dx and

1
φ10

f1(
1
φ10

|w1) =
1
φ20

f1(
1
φ20

|w1) . (2.4)

The existence and uniqueness of φ10 and φ20 follows from Lemma 2.1(i). Define now a
confidence interval for σ by

I1(S,W1) = (φ1(W1)S, φ2(W1)S) ,

where

φ1(w1)=

{
min{φ10(w1), 1/b} , if w1>0
1/b , if w1≤0

and φ2(w1)=

{
min{φ20(w1), 1/a} , if w1>0
1/a , if w1≤0.

(2.5)
The next theorem establishes the superiority of I1(S,W1) over I0. Condition (2.6)

below is exemplified in Theorem 2.3. Also, the underlying value of (µ1, σ1) in the pro-
bability statements of the theorem is that specified in (A2).

Theorem 2.2 Assume that (A1), (A2), and (A3) hold. If

P(W1 > 0 and bf1(b|W1) > af1(a|W1)) > 0 (2.6)
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then we have the following.
(i) P(σ ∈ I1(S,W1)) ≥ P(σ ∈ I0) = 1− α and the inequality is strict unless the ratio in
(A2) is constant as a function of x > 0.
(ii) The ratio of endpoints of I1(S,W1) is less than or equal to b/a (i.e., the ratio of
endpoints of I0) and is strictly less with positive probability.

Proof. (i) Let B the set on which I1(S,W1) differs from I0, i.e., B = {w1 : w1 >

0 and φ10(w1) < 1/b}. We first show that B = {w1 : w1 > 0 and bf1(b|w1) > af1(a|w1)}.
Let w1 > 0 be such that

bf1(b|w1) > af1(a|w1) . (2.7)

Trivially, the first equality in (2.4) implies that neither of the intervals (1/φ20, 1/φ10)
and (a, b) can be a proper subset of the other. Consequently, using the second equality
in (2.4), (2.7), and the unimodality of xf1(x|w1) (Lemma 2.1 (i)), from Lemma 4.5 we
conclude that φ10(w1) < 1/b. Hence, B ⊇ {w1 : w1 > 0 and bf1(b|w1) > af1(a|w1)}.
Conversely, consider w1 > 0 with φ10(w1) < 1/b. Then a < b ≤ 1/φ20 < 1/φ10 or
a < 1/φ20 ≤ b < 1/φ10. In either case, the unimodality of xf1(x|w1) and (2.4) imply
that bf1(b|w1) > af1(a|w1), and thus B ⊆ {w1 : w1 > 0 and bf1(b|w1) > af1(a|w1)}. To
establish (i), since the two intervals differ only on the set B and P(B) > 0, by (2.6), it
suffices to show that

P(σ ∈ I1(S,W1)|W1 = w1) ≥ P(σ ∈ I0|W1 = w1) (2.8)

for each w1 ∈ B with strict inequality holding unless the ratio in (A2) is constant as a
function of x > 0. In the case of constant ratio in (A2), f1(x|w1;µ1, σ1) = f1(x|w1) and
hence we have equality in (2.8) for all w1 ∈ B because of (2.4). Suppose now that the
ratio in (A2) is not constant and consider w1 ∈ B. Then, (2.4), the relation φ10(w1) <
1/b, and the fact that f1(x|w1;µ1, σ1)/f1(x|w1) is strictly increasing (Lemma 2.1 (ii))

imply
∫ 1/φ10(w1)

1/φ20(w1)
f1(x|w1;µ1, σ1)dx >

∫ b

a
f1(x|w1;µ1, σ1)dx, by Lemma 4.6. Thus, (2.8)

holds as strict inequality.
(ii) For a given value w1 of W1, the ratio of endpoints of I1(S,W1) is either b/a or
φ20/φ10. In the latter case, w1 ∈ B and we have φ20/φ10 < b/a since by construction

y = 1/φ10 and t = 1/φ20 uniquely minimize y/t subject to
∫ y

t
f1(x|w1)dx = δ, where

δ =
∫ b

a
f1(x|w1)dx, see (2.4). The result now follows since P(B) > 0.

In a similar fashion we can construct an improved interval for σ of the form

I(S,W2) = (φ1(W2)S, φ2(W2)S). (2.9)

In this case, instead of (A2) and (A3), we need to suppose that there is a value (µ20, σ20)
of (µ2, σ2) with λ2(µ20, σ20) = 0 such that setting h2(x) = h2(x;µ20, σ20), x > 0, the
following two conditions hold.
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(A′2)
h2(x;µ2, σ2)I(λ2,∞)(x)

h2(x)
is nondecreasing in x > 0.

(A′3)
h2(c1x)
h2(c2x)

is strictly increasing in x > 0 for 0 < c1 < c2.

Details of the construction of I(S,W2) are given in Iliopoulos and Kourouklis [8].

The improved intervals in Theorem 2.2 and in (2.9) use only one of T1 and T2. It
would be of considerable interest to construct improved intervals that use both of these
statistics. The conditions in Theorem 2.2 are illustrated in the following general result.

Theorem 2.3 Suppose that gi(x) is a gamma density and that (µ10, σ10) in (A3) is such
that h1(x) is also a gamma density, i.e., gi(x) ∝ xαi−1e−x/βi and h1(x) ∝ xγ1−1e−x/δ1 , x >

0, αi, βi, γ1, δ1 > 0, i = 1, 2. Then (A1), (A3), and (2.6) hold.

Proof. (A1) and (A3) are straightforward to show. Thus we only prove (2.6).
Using (2.3) and the assumption of the theorem, it is easily seen that, for w1 > 0,
bf1(b|w1) > af1(a|w1) holds if and only if w1 < w10, where w10 is given by

w10 = δ1

{
1
β2

bd − ad

bad − abd
− 1
β1

}
(2.10)

and d = (α1 + γ1)/(α1 + γ1 + α2). Next, evaluating and substituting g(x) in the second
equation of (2.1) gives

1/β2 + b/β1

1/β2 + a/β1
=
{
b

a

} α1
α1+α2

. (2.11)

Thus, from (2.10) and (2.11) we obtain that w10 > 0, and consequently {w1 > 0 :
bf1(b|w1) > af1(a|w1)} = {w1 : 0 < w1 < w10}. Since W1 is supported on (0,∞) or
(−∞,∞) (depending on whether λ1 ≥ 0 or λ1 < 0) (2.6) holds.

Remark 2.1. We discuss some computational aspects of the interval I1(S,W1) for
the case considered in Theorem 2.3. First recall that for the computation of I0 one needs
to solve ∫ b

a
g(x;α1)dx = 1− α and ag(a;α1) = bg(b;α1)

for a and b. Here g(x;α1) is the density of the ratio of two independent gamma densities,
the notation stressing the dependency of the function g on the shape parameter α1 of
g1(x). Let s and w1 be the observed values of S and W1. Then I1(s, w1) 6= I0 only
if 0 < w1 < w10. In that case, it is not difficult to show that f1(x|w1) ∝ g((1 +
w1β1/δ1)x;α1 + γ1). Next, because of (2.4) and with ε =

∫ b(1+w1β1/δ1)
a(1+w1β1/δ1) g(x;α1 + γ1)dx,

to compute I1(s, w1) one solves∫ b∗

a∗
g(x;α1 + γ1)dx = ε and a∗g(a∗;α1 + γ1) = b∗g(b∗;α1 + γ1) ,

for a∗ and b∗, evaluates φ10 = (1+w1β1/δ1)/b∗ and φ20 = (1+w1β1/δ1)/a∗, and delivers
I(s, w1) = (φ10s, φ20s). We thus see that the main step in the computation of I1(S,W1)
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is simply a rerun of the procedure that produces I0 replacing α1 and 1−α by α1+γ1 and
ε respectively. This makes the proposed interval I1(S,W1) quite easy to use in practice.

Example 1. (Normal distribution) Let U, V, S1, S2 be independent random variables
where U ∼ Np(µ1, σ

2
1Ip), V ∼ Nq(µ2, σ

2
2Iq), S1/σ

2
1 ∼ χ2

n and S2/σ
2
2 ∼ χ2

m. In this
example the parameter of interest is σ = σ2

1/σ
2
2. Accordingly, we have T1 = ||U ||2

and T2 = ||V ||2 with distributions T1/σ
2
1 ∼ χ2

p(||µ1||2/σ2
1) and T2/σ

2
2 ∼ χ2

q(||µ2||2/σ2
2)

(so that λ1 = λ2 = 0). Taking µ10 = 0, σ2
10 = 1, Condition (A2) holds by the well

known monotone likelihood ratio property of the noncentral chi–squared distribution.
Also (A1), (A3), and (2.6) are satisfied by Theorem 2.3. Figures 1–3 give the coverage
probability and percentage improvement in expected ratio of endpoints of I1(S,W1) over
the standard F–interval plotted against the noncentrality parameter λ1 = ||µ1||2/σ2

1 for
selected values of n,m, p and nominal level 1−α = 0.95. These numerical results indicate
that for λ1 close to zero and small values of n,m, the improvement in ratio of endpoints
can be quite substantial, whereas the maximum coverage probability can reach 0.9549.

Example 2. (Exponential distribution) Let X1, . . . , Xn, n ≥ 2, and Y1, . . . , Ym,
m ≥ 2, be two independent random samples from exponential distributions E(µ1, σ1)

and E(µ2, σ2) with densities
1
σ1
e−(x−µ1)/σ1I(µ1,∞)(x) and

1
σ2
e−(x−µ2)/σ2I(µ2,∞)(x) re-

spectively. Here the parameter of interest is σ = σ1/σ2, and S1 =
n∑
i=1

(Xi −X(1)), S2 =

m∑
i=1

(Yi−Y(1)), T1 = X(1) = min{Xi : i = 1, . . . , n} and T2 = Y(1) = min{Yi : i = 1, . . . ,m}

with distributions S1/σ1 ∼ 1
2χ

2
2(n−1), S2/σ2 ∼ 1

2χ
2
2(m−1), T1/σ1 ∼ E(µ1/σ1, 1/n) and

T2/σ2 ∼ E(µ2/σ2, 1/m) (so that λ1 = µ1/σ1 and λ2 = µ2/σ2). Taking µ10 = 0, σ10 = 1,
Condition (A2) holds trivially whereas (A1), (A3), and (2.6) are satisfied by Theorem
2.3.

Example 3. (Inverse Gaussian distribution) Let X1, . . . , Xn, n ≥ 2, and Y1, . . . , Ym,
m ≥ 2, be two independent random samples from inverse Gaussian distributions with

densities
(

σi
2πx3

)1/2

exp

{
−σi(x− µi)2

2µ2
ix

}
, x > 0, µi > 0, σi > 0, i = 1, 2. In this example

the parameter µi is not a location parameter and consequently this model is not a
purely location–scale model. Here the parameter of interest is σ = σ2/σ1 (1/σi is often
referred to as the dispersion parameter, so σ is the ratio of dispersion parameters). The

standard confidence interval, I0, for σ is based on S = S1/S2, where S1 =
n∑
i=1

(
1
Xi

− 1
X̄

)
,

S2 =
m∑
i=1

(
1
Yi
− 1
Ȳ

)
, with distributions σ1S1 ∼ χ2

n and σ2S2 ∼ χ2
m. To improve on I0,

we let T1 = n(X̄ − 1)2/X̄ and T2 = m(Ȳ − 1)2/Ȳ (so that λ1 = λ2 = 0), and note that
when µi = 1, σiTi has a χ2

1 distribution, i = 1, 2. Taking µ10 = 1, σ10 = 1, Condition
(A2) is shown to hold in Kourouklis [12], whereas (A1), (A3), and (2.6) are satisfied by
Theorem 2.3.
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3 Improved intervals for ordered scale parameters

In this section we assume the model and the conditions of Section 2. Under the order
restriction σ1 ≤ σ2 we address the problem of constructing better intervals for σ1 than
the standard ones, i.e., those that do not take into account this restriction. With σi0,
i = 1, 2, as in (A2), (A3), (A′2), and (A′3) we will need the following condition.

(C1) σ10 = σ20.
The standard confidence interval for σ1 with confidence coefficient 1−α and minimum

ratio of endpoints is given by
I1 = (S1/b1, S1/a1), (3.1)

where a1 and b1 satisfy∫ b1

a1

g1(x)dx = 1− α and a1g1(a1) = b1g1(b1) . (3.2)

We aim at constructing intervals of smaller ratio of endpoints that, in addition,
maintain coverage probability above the nominal level 1 − α. In typical cases (such as
Examples 1–3 in Section 2), the problem of interval estimation of σ1 subject to the
restriction σ1 ≤ σ2 is invariant under the group of transformations (T1, S1, T2, S2)
−→ (cT1, cS1, cT2, cS2), c > 0, and the class of equivariant intervals is C =
{(ψ∗1(S2/S1, T1/S1, T2/S1)S1, ψ∗2(S2/S1, T1/S1, T2/S1)S1) : ψ∗1<ψ

∗
2 positive functions }.

For V = S2/S1 we first consider the subclass of intervals of the form I =
(ψ1(V )S1, ψ2(V )S1). For v > 0, we find ψ10 = ψ10(v) and ψ20 = ψ20(v) so that∫ 1/ψ10

1/ψ20

xg1(x)g2(xv)dx=
∫ b1

a1

xg1(x)g2(xv)dx and
1
ψ2

10

g1(
1
ψ10

)g2(
v

ψ10
)=

1
ψ2

20

g1(
1
ψ20

)g2(
v

ψ20
).

(3.3)
As in (2.4), the existence and uniqueness of ψ10 and ψ20 follows from the continuity of
xg1(x)g2(xv) and the unimodality of x2g1(x)g2(xv) as functions of x > 0 upon using
Lemma 4.1 and (A1). We then define a confidence interval for σ1 by

I(S1, V ) = (ψ1(V )S1, ψ2(V )S1) ,

where
ψ1(V ) = min{ψ10(V ), 1/b1} and ψ2(V ) = min{ψ20(V ), 1/a1} . (3.4)

Theorem 3.1 Assume that (A1) holds. If σ1 ≤ σ2 and

P(b1g2(b1V ) > a1g2(a1V )) > 0 (3.5)

then we have the following.
(i) P(ψ1(V ) < 1/b1) > 0.
(ii) P(σ1 ∈ I(S1, V )) ≥ P(σ1 ∈ I1) = 1− α and the inequality is strict unless σ1 = σ2.
(iii) The ratio of endpoints of I(S1, V ) is less than or equal to b1/a1 and is strictly less
with positive probability.
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Proof. (i) The second equality in (3.3), the unimodality of x2g1(x)g2(xv) as a func-
tion of x, and an argument analogous to that in the beginning of the proof of Theorem
2.2 yield {v > 0 : ψ1(v) < 1/b1} = {v > 0 : b1g2(b1v) > a1g2(a1v)}. Thus, the result
follows from (3.5).
(ii), (iii) The conditional density of S1/σ1 given V=v is g1(x|v;σ1, σ2)∝xg1(x)g2(

σ1

σ2
xv)

and thus for σ1 = σ2 it simplifies to g1(x|v) ∝ xg1(x)g2(xv). Furthermore, (A1) and
the relation σ1 ≤ σ2 imply that g1(x|v;σ1, σ2)/g1(x|v) is strictly increasing in x > 0
unless σ1 = σ2. The proof of the result is now as that of Theorem 2.2 replacing
W1, a, b, f1(x|w1), and f1(x|w1;µ1, σ1) by V, a1, b1, g1(x|v), and g1(x|v;σ1, σ2) respec-
tively.

For further improvement we study intervals in the larger class C, which, in addition,
employ W1 = T1/S1 and Z1 = T2/S1, i.e., I = (ψ∗1(V,W1, Z1)S1, ψ

∗
2(V,W1, Z1)S1). We

let v > 0, w1 > 0, z1 > 0 and determine ψ∗10 = ψ∗10(v, w1, z1), ψ∗20 = ψ∗20(v, w1, z1) so that∫ 1/ψ∗10

1/ψ∗20

x3g1(x)g2(xv)h1(xw1)h2(xz1)dx =
∫ 1/ψ1

1/ψ2

x3g1(x)g2(xv)h1(xw1)h2(xz1)dx (3.6)

and

1

ψ∗
4

10

g1(
1
ψ∗10

)g2(
v

ψ∗10

)h1(
w1

ψ∗10

)h2(
z1
ψ∗10

) =
1

ψ∗
4

20

g1(
1
ψ∗20

)g2(
v

ψ∗20

)h1(
w1

ψ∗20

)h2(
z1
ψ∗20

) ,

where ψ1 = ψ1(v) and ψ2 = ψ2(v) are as in (3.4). Setting

ψ∗1(v, w1, z1) =

{
min{ψ∗10(v, w1, z1), ψ1(v)} , if v > 0, w1 > 0, z1 > 0 ,
ψ1(v) , otherwise

ψ∗2(v, w1, z1) =

{
min{ψ∗20(v, w1, z1), ψ2(v)} , if v > 0, w1 > 0, z1 > 0 ,
ψ2(v) , otherwise

,

we obtain the interval

I(S1, V,W1, Z1) = (ψ∗1(V,W1, Z1)S1, ψ
∗
2(V,W1, Z1)S1) . (3.7)

The next result establishes the domination of I(S1, V,W1, Z1) over I(S1, V ) and hence
over I1.

Theorem 3.2 Assume that (A1), (A2), (A3), (A′2), (A′3), and (C1) hold. If σ1 ≤ σ2

and
P(W1 > 0, Z1 > 0, b1g2(b1V ) > a1g2(a1V ),

1
ψ2

1(V )
h1(

W1

ψ1(V )
)h2(

Z1

ψ1(V )
) >

1
ψ2

2(V )
h1(

W1

ψ2(V )
)h2(

Z1

ψ2(V )
)) > 0 , (3.8)

where ψ1(V ) and ψ2(V ) are as in (3.4) then we have the following.
(i) P(ψ∗10(V,W1, Z1) < ψ1(V )) > 0.
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(ii) P(σ1 ∈ I(S1, V,W1, Z1)) ≥ P(σ1 ∈ I(S1, V )) ≥ 1− α .

(iii) The ratio of endpoints of I(S1, V,W1, Z1) is less than or equal to that of I(S1, V )
and is strictly less with positive probability.

Proof. (i) Using (3.3), (3.4), the relations defining ψ∗10, ψ
∗
20, the unimodality

of x4g1(x)g2(xv)h1(xw1)h2(xz1) , and the argument in the beginning of the proof of
Theorem 2.2 we obtain that {v > 0, w1 > 0, z1 > 0 : ψ∗10(v, w1, z1) < ψ1(v)} =
{v > 0, w1 > 0, z1 > 0 : b1g2(b1v) > a1g2(a1v),

1
ψ2

1(v)
h1(

w1

ψ1(v)
)h2(

z1
ψ1(v)

) >
1

ψ2
2(v)

h1(
w1

ψ2(v)
)h2(

z1
ψ2(v)

)}.

Thus, the result follows from (3.8).
(ii), (iii) The conditional density of S1/σ1 given V = v > 0, W1 = w1 > 0, and
Z1 = z1 > 0 is g1(x|v, w1, z1;µi, σi) ∝

x3g1(x)g2(
σ1

σ2
xv)h1(xw1;µ1, σ1)h2(

σ1

σ2
xz1;µ2, σ2)I(max(0,

λ1
w1
,
λ2σ2
z1σ1

),∞)
(x)

which for µi = µi0 and σi = σi0, i = 1, 2, simply becomes

g1(x|v, w1, z1) ∝ x3g1(x)g2(xv)h1(xw1)h2(xz1)I(0,∞)(x) .

Thus (A1) to (C1) imply that g1(x|v, w1, z1;µi, σi)/g1(x|v, w1, z1) is nondecreasing in
x > 0. Furthermore, when b1g2(b1v) > a1g2(a1v) we have ψ1(v) = ψ10(v) (see the proof
of part i of Theorem 3.1). Hence, by (3.3), the last inequality in (3.8) can be written as
1
ψ1
g1(

1
ψ1
|v, w1, z1)>

1
ψ2
g1(

1
ψ2
|v, w1, z1). In other words, (3.8) is equivalent to

P(W1 > 0, Z1 > 0, b1g2(b1V ) > a1g2(a1V ),
1

ψ1(V )
g1(

1
ψ1(V )

|V,W1, Z1) >
1

ψ2(V )
g1(

1
ψ2(V )

|V,W1, Z1)) > 0.

The rest of the proof proceeds as in Theorem 2.2 replacing a, b, f1(x|w1) and
f1(x|w1;µ1, σ1) by 1/ψ1, 1/ψ2, g1(x|v, w1, z1), and g1(x|v, w1, z1;µi, σi) respectively.

To illustrate Conditions (3.5) and (3.8), we consider the case where the g′is and h′is

are the gamma densities in Theorem 2.3. Using the relations defining a1 and b1 in (3.2),
it is straightforward to show that (3.5) is equivalent to P(V < α2β2

α1β1
) > 0 which clearly

holds. Also, using (3.3), it can be seen that (3.8) is equivalent to

P(W1 > 0, Z1 > 0, V <
α2β2

α1β1
,
W1

δ1
+
Z1

δ2
<
γ1 + γ2

α1 + α2
(

1
β1

+
V

β2
)) > 0

which is satisfied. Thus, in particular, Conditions (3.5) and (3.8) hold for the normal,
exponential, and inverse Gaussian models in Examples 1–3 of Section 2.

Remark 3.1. We comment on the computation of the improved intervals I(S1, V )
and I(S1, V,W1, Z1) when the g′is and h′is are the gamma densities in Theorem 2.3. In
this case, making an obvious scale transformation, the integrand in (3.3) becomes the
gamma density with shape parameter α1 + α2 and scale parameter β1. Similarly, the
integrand in (3.6) becomes the gamma density with shape parameter α1+α2+γ1+γ2 and
scale β1. On the other hand, the computation of I1 in (3.1) involves the gamma density
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with shape parameter α1 and scale β1. Therefore, the main steps for the computation
of I(S1, V ) and I(S1, V,W1, Z1) are, merely, reruns of the algorithm that produces the
standard interval I1 in (3.1). Thus, the computational difficulty of all three intervals is
essentially the same.

Remark 3.2. It is clear from the proofs of Theorems 3.1 and 3.2 that the standard
interval I1 in (3.1) can be improved by choosing any subset of V,W1, Z1. If, initially,
one uses only W1 the resulting improvement is also a standard interval in the sense that
its construction does not exploit the restriction σ1 ≤ σ2. Then better improvements can
be obtained by employing in addition V and/or Z1.

We now present an application of the above results. Consider the balanced one way
random effects linear model Yij = µ+αi + eij , i = 1, . . . , κ, j = 1, . . . ,m, where αi’s
and eij ’s are independent random variables with distributions αi ∼ N(0, σ0) and eij ∼
N(0, σ1). The minimal sufficient statistic (S1, S2, Ȳ ) has independent components S1 =
κ∑
i=1

m∑
j=1

(Yij−Ȳi)2 ∼ σ1χ
2
n, S2 = m

κ∑
i=1

(Ȳi−Ȳ )2 ∼ (σ1+mσ0)χ2
κ−1, Ȳ =

κ∑
i=1

m∑
j=1

Yij/(mκ) ∼

N

(
µ,
σ1 +mσ0

mκ

)
, where Ȳi =

m∑
j=1

Yij/m and n = κ(m − 1). The standard interval for

σ1 is based on S1 whereas better ones are given in Kubokawa et al. [15]. The latter
improve on coverage probability while maintaining the same ratio of endpoints as the

standard interval. Setting σ2 = σ1 +mσ0 and T2 = mκȲ 2 ∼ σ2χ
2
1

(
mκµ2

σ2

)
, Theorems

3.1 and 3.2 can be used to provide improvements in terms of both coverage probability
and ratio of endpoints by employing S2/S1 and/or mκȲ 2/S1. The magnitude of the
improvement of I1(S1, V ) over I1 (for the above model) was investigated numerically
for selected values of κ,m and nominal level 1 − α = 0.95. In Figures 4 and 5, the
coverage probability and percentage improvement in expected ratio of endpoints are
plotted against σ0. (Note that these quantities are functions of σ2/σ1 = 1 + mσ0/σ1,
so σ1 was taken one.) The numerical results indicate that I1(S1, V ) performs better, in
terms of maximum improvement, when the number of levels of the random effect is large
relative to the cell size.

Theorems 3.1 and 3.2 can be extended towards two directions: one is to treat
more than two populations and the other one is to allow Tj to have a scale para-
meter βj rather than σj . Specifically, consider the model where one observes inde-
pendent random variables S1, . . . , Sκ and T1, . . . , Tm such that Si/σi ∼ gi(x)I(0,∞)(x)
and Tj/βj ∼ hj(x;µj , βj)I(λj ,∞)(x). Then under the restrictions σ1 ≤ σi, i = 2, . . . , κ,
σ1 ≤ βj , j = 1, . . . ,m and some obvious modifications of (A1) to (C1), one can de-
rive improved intervals for σ1 which are extensions of those in Theorems 3.1 and 3.2.
An interesting situation where the above applies is the problem of interval estimation
of the error variance in a general balanced mixed linear model. This model is studied
in Mathew and Sinha [21] and Mathew et al. [22], where the latter presents improved
point estimators of the error variance, σ1 say. Improved intervals for σ1, however, are
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not available in the literature. The model can be described by means of independent
canonical variables Si ∼ σiχ

2
qi and Tj ∼ βjχ

2
pj

(δj) where σ1 ≤ σi and σ1 ≤ βj for
i = 2, . . . , κ and j = 1, . . . ,m. (For instance, S1 is the error sum of squares.) We refer
to the above articles for a detailed account on this canonical form of the model. Thus,
the interval estimation of σ1 falls into the above framework and improved procedures
can be produced.

We close this section by noting that the standard minimum ratio of endpoints interval
for σ2, which is of the form (S2/b2, S2/a2), can be improved (under σ1 ≤ σ2) by an inter-
val of the form (φ1(S)S2, φ2(S)S2). The construction of the latter is analogous to that
in Theorem 3.1. Details of this construction are given in Iliopoulos and Kourouklis [8].

4 Appendix

Lemma 4.1 Let g(x) be a density function on (0,∞) with g(x) > 0 for every x > 0 and
such that

g(c1x)/g(c2x) is strictly increasing in x for 0 < c1 < c2. (4.1)

Then g(x) is continuous on (0,∞), xg(x) is unimodal, and lim
x→0

xg(x)= lim
x→∞

xg(x)=0.

Proof. Condition (4.1) means that the scale family {c−1g(x/c) : c > 0} has the
monotone likelihood ratio property and hence that −log(eyg(ey)) is a convex function of
y ∈ (−∞,∞), cf. Lehmann [18], p.510. Consequently, g(x) is continuous on (0,∞). In
addition, f(y) = eyg(ey) is either monotone or increasing and then decreasing. The for-
mer obviously cannot hold since f(y) is a strictly positive density on (−∞,∞). There-
fore, for x > 0, xg(x) = f(logx) is increasing and then decreasing function of x. In
addition, xg(x) cannot be constant on any interval (x1, x2), since if it were then setting
x0 = (x1x2)1/2 and c2 = x0/x1 we would have g(x)/g(c2x) = c2 for all x ∈ (x1, x0)
which contradicts (4.1). Now for small x, xg(x) <

∫ 2x
x g(v)dv, implying lim

x→0
xg(x) = 0.

Similarly for large x, xg(x) < 2
∫ x
x/2 g(v)dv, and thus lim

x→∞
xg(x) = 0.

Lemma 4.2 Suppose that b1(x) and b2(x) are densities supported on the same interval
of the real line and b2(x)/b1(x) is strictly increasing. If X is a random variable with
density b1(x) or b2(x) and h(x) is nondecreasing but not constant on the common support
of b1(x) and b2(x), then Eb2h(X) > Eb1h(X) (provided expectations exist).

Proof. It is given in Lehmann [18], p.85.

Lemma 4.3 Let Xi and Y be independent random variables, where Xi has density
fi(x), i = 1, 2, Y has density f(x), X1, Y are supported on (0,∞) and X2 is sup-
ported on (µ,∞), µ ≥ 0. Furthermore suppose that f2(x)/f1(x) is nondecreasing on
(0,∞) and f(c1x)/f(c2x) is strictly increasing for 0 < c1 < c2. If hi(x) is the density of
Xi/Y, i = 1, 2, then h2(x)/h1(x) is strictly increasing in x > 0 unless f1 = f2.
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Proof. It can be given using arguments of total positivity (Karlin [11], composition
theorem) or variation diminishing transformations (Brown et al. [1]). See also Iliopoulos
and Kourouklis [10] for a direct proof.

Lemma 4.4 Let Yi, i = 1, 2, be independent random variables with densities gi(x), re-
spectively, supported on (0,∞). Suppose that gi(c1x)/gi(c2x) is strictly increasing in
x > 0 for 0 < c1 < c2 and denote by g(x) the density of Y1/Y2. Then g(c1x)/g(c2x) is
also strictly increasing in x > 0 for 0 < c1 < c2.

Proof. It is an application of Lemma 4.3 with X1 = Y1/c2, X2 = Y1/c1, and Y = Y2.

Lemma 4.5 Let f(x) be a positive valued function on (0,∞) such that xf(x) is unimodal
and cf(c) = df(d) for 0 < c < d. Suppose also that for 0 < a < b, neither of the intervals
(a, b) and (c, d) is a proper subset of the other. Then the relation bf(b) > (resp. < ) af(a)
implies d > (resp. < )b.

Proof. The argument is along the lines of that in the proof of Lemma A.2 of Goutis
and Casella [5].

Lemma 4.6 Suppose that f1(x) is an integrable function on (0,∞) such that f1(x) > 0
for every x > 0 and, for µ ≥ 0, f2(x) is an integrable function on (µ,∞). Furthermore
assume that for constants a < b and c < d in the interval (µ,∞) we have

∫ d

c
f1(x)dx =

∫ b

a
f1(x)dx . (4.2)

If d > b and f2(x)/f1(x) is strictly increasing (resp. nondecreasing) in (µ,∞) or if d < b

and f2(x)/f1(x) is strictly decreasing (resp. nonincreasing) in (µ,∞), then

∫ d

c
f2(x)dx > (resp. ≥)

∫ b

a
f2(x)dx . (4.3)

Proof. We prove the result only when d > b and f2(x)/f1(x) is strictly increasing.
Then, by (4.2), the possible cases are:
(i) a < c < b < d ,

(ii) a < b ≤ c < d .

Assume that (i) holds. Then
∫ d

c
f2(x)dx −

∫ b

a
f2(x)dx =

∫ d

b
f2(x)dx −

∫ c

a
f2(x)dx >

f2(b)
f1(b)

∫ d

b
f1(x)dx −

f2(c)
f1(c)

∫ c

a
f1(x)dx =

(
f2(b)
f1(b)

− f2(c)
f1(c)

)∫ c

a
f1(x)dx > 0. The proof

under (ii) is similar.
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Fig.1. n =m =3, p =3. Maximum coverage probability 0.9535. Maximum percentage improvement in expected
          ratio of endpoints 24.5%.

Fig.2. n =m =3, p =10. Maximum coverage probability 0.9549. Maximum percentage improvement in expected
          ratio of endpoints 36.5%.

Fig.3. n =20, m =30, p =10. Maximum coverage probability 0.9532. Maximum percentage improvement in expected
          ratio of endpoints 5.91%.

Fig.4. κ=5, m =6, n =κ(m-1) =25. Maximum coverage probability 0.9515. Maximum percentage improvement in 
          expected ratio of endpoints 4.93%.

Fig.5. κ =25, m =2, n =κ(m-1) =25. Maximum coverage probability 0.9565. Maximum percentage improvement in 
          expected ratio of endpoints 17.25%.
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