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Abstract 
 
In this paper we describe a new methodology for constructing confidence intervals. 
The idea is to specify the tail cutoff areas in terms of a function of the target 
parameter rather than as constants. This function, called the tail function, can be 
engineered so as to provide shorter confidence intervals when prior information is 
available. It can also be used to improve the coverage properties of approximate 
confidence intervals. We illustrate the methodology by applying it to inference on the 
normal mean and binomial proportion, and develop measures of the resulting 
improvements. Guidelines for choosing the optimal tail function in any situation are 
provided, and the relationship with Bayesian inference is discussed. 
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1.   Introduction 
 
The classical theory of two-sided confidence intervals (CI’s) (Stuart et al., 1999) 
involves inverting a probability statement regarding a pivotal quantity, Y, so as to 
yield two statistics which ‘straddle’ the quantity of interest, θ . This theory requires 
the specification of a confidence level, 1 α−  (e.g. 0.95), which ‘cuts off’ an area of 

/ 2α  from either tail of Y’s distribution. In the statistical literature the tail areas have 
always been taken as constant. The new method involves specifying these areas in 
terms of a function of θ , called the tail function, and then proceeding to invert the 
probability statement to create a different CI for θ . The main advantage of this 
approach is that it can be used to produce shorter CI’s when prior information is 
available. It also provides a mechanism for improving the coverage properties of 
approximate CI’s for parameters of discrete distributions. 
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The classical theory of CI’s is reviewed in Section 2 and generalised in Section 3 by 
way of tail functions. Section 4 shows how these functions can be used in conjunction 
with prior information to produce shorter CI’s for a normal mean when the normal 
variance is known. We define measures of the improvements which may be achieved, 
such as the maximum reduction in interval width. We also develop guidelines for 
selecting the optimal tail function in any situation, and make comparisons with the 
Bayesian approach. Section 5 then deals with the case of unknown variance, aided by 
Monte Carlo methods. Section 6 shows how tail functions can be used to produce 
attractive variants of the ‘standard’, Wilson and Clopper-Pearson intervals for a 
binomial proportion. Section 7 concludes with some general discussion and advice. 
 
 
2.   The classical theory of two-sided confidence intervals 
 
Consider a scalar probability distribution which is dependent on a single unknown 
constant parameter, θ , and suppose that we are given a random sample of n 
observations, 1,..., nX X , from that distribution, with realised or possible values 
denoted 1,..., nx x . Let X and x denote the vectors 1( ,..., )nX X  and 1( ,..., )nx x , 
respectively. Next let ( , )Y g X θ=  be a scalar function of X and θ  with realised or 
possible value denoted ( , )y g x θ= , and suppose that the cumulative distribution 
function (cdf) of Y, denoted ( )YF y , is continuous and does not depend on θ . Then 

( )YF Y  has the standard uniform distribution, and we call Y a pivotal quantity. Next 
choose the confidence level, 1 α− , where (0,1)α∈ . Then it is true, for any value 
which θ  may take, that  
 
 1 ( / 2 ( ( , )) 1 / 2)YP F g Xα α θ α− = < < − .     (1) 
 
The classical theory of CI’s involves manipulating (1) so as to produce the statement  
 
 1 ( ( ) ( ))P L X U Xα θ− = < < ,      (2) 

 
where L and U are two functions of X which do not depend on θ . The 1 α−  
confidence interval (CI) for θ  is then defined as (l,u), where l and u are the solutions 
in θ  of the following equations, respectively: 
 
 ( ( , )) 1 / 2YF g x θ α= −         (3) 
 ( ( , )) / 2YF g x θ α= .        (4) 
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In many cases these equations can be solved analytically or at least easily using 
standard statistical software. However, in general they may require an iterative search 
procedure such as the Newton-Raphson algorithm. Explicitly, to solve (4) we choose 
a suitable starting value 0θ  and repeatedly calculate 1 ( ) / ( )j j j jθ θ ψ θ ψ θ+ ′= −  until 
convergence, where:  
  
 ( ) ( ( , )) / 2YF g xψ θ θ α= −        (5) 

 ( ) ( ( , )) ( ( , )) ( , )Y YF g x f g x g xψ θ θ θ θ
θ θ
∂ ∂′ = =
∂ ∂

.    (6) 

 
In (6), ( ) ( )Y Yf y F y′=  denotes the probability density function (pdf) of Y. Equation 
(3) can be solved in the same way as (4) but with / 2α  in  (5) replaced by 1 / 2α− . 
 
 
3.   A generalisation of the classical theory via tail functions 
 
Consider ( )τ θ , a function of θ  which is nondecreasing and has a range in the interval 
from 0 to 1. Then just as (1) is true for all θ , so also 
  
 1 ( ( ) ( ( , )) 1 ( ))YP F g Xα ατ θ θ α ατ θ− = < < − + .    (7) 
 
We now recognise (1) as being a special case of (7), namely where ( )τ θ  = 1/2 (a 
constant). Suppose that it is possible to invert (7) so as to produce a statement of the 
form (2). Then a 1 α−  CI’s for θ  is (l,u), where l and u are the solutions in θ  of the 
following equations, respectively: 
 
 ( ( , )) 1 ( )YF g x θ α ατ θ= − +         (8) 
 ( ( , )) ( )YF g x θ ατ θ= .                       (9) 
 
Equations (8) and (9) are solvable via the Newton-Raphson algorithm in the same 
way as (3) and (4). Explicitly, to solve (9) we choose a suitable starting value 0θ  and 
repeatedly calculate 1 ( ) / ( )j j j jθ θ ψ θ ψ θ+ ′= −  until convergence, where:  
  
 ( ) ( ( , )) ( )YF g xψ θ θ ατ θ= −                 (10) 

 ( ) ( ( , )) ( , ) ( )Yf g x g xψ θ θ θ ατ θ
θ
∂′ ′= −
∂

,   ( ) ( )τ θ τ θ
θ
∂′ =
∂

.            (11) 

 
Equation (8) can be solved in the same way as (9) but with ( )ατ θ  in  (10) replaced by 
1 ( )α ατ θ− + , and with (11) unchanged. We call ( )τ θ  the tail function. 



Page 4 of 42 

 
 
4.   Inference on a normal mean with known variance  
 
To illustrate the new technique, suppose that we have a random sample 1,..., nX X  
from the normal distribution with unknown mean µ  and known variance 2σ . We 
wish to construct a 1 α−  CI for µ . The classical approach involves using the result 
 

 ~ (0,1)
/

XY N
n
µ

σ
−= ,    where 

1

1 n

i
i

X X
n =

= ∑  is the sample mean, 

 
and taking the tail function as ( ) 1/ 2τ µ = , µ−∞< <∞  (constant). The resulting CI 
is / 2( / )x z nα σ± , where 1( ... ) /nx x x n= + +  and pz  denotes the upper  
p-quantile of the standard normal distribution. 
 
Let us now consider a different tail function, one of the form  
   

  ( ) (1 2 ) µ ητ µ δ δ
λ

 − = + − Φ   
,                (12) 

  
where η ∈ℜ , 0λ≥ , 0 1/ 2δ≤ ≤ , and ( )zΦ  denotes the standard normal cdf. This 
tail function is nondecreasing, with values δ  at −∞ , 1/2 at η , and 1 δ−  at +∞ . It is 
also continuous if λ  > 0, in which case its slope is given by  
 

 1 2( ) ( ) δ µ ητ µ τ µ φ
µ λ λ

   ∂ − −  ′ = =        ∂
,              (13) 

 
where ( )tφ  denotes the standard normal pdf. Several examples of ( )τ µ  are shown in 
Figure 1. Note that δ  determines the minimum deviation of ( )τ µ  from 0 or 1, η  is 
the value of µ  at which ( )τ µ  equals 1/2, and λ  is inversely proportionate to the 
slope of ( )τ µ , whose maximum value is  ( ) (1 2 ) /( 2 )τ η δ λ π′ = − .  
 
We will refer to the tail function (12) and associated CI’s as Gaussian with 
parameters η , δ  and λ , although the terms modified, alternative and new will often 
be used instead. Observe that ( )τ µ  reduces to 1/2 if δ  = 1/2 or λ=∞ . In that case 
we refer to ( )τ µ  and associated CI’s as ordinary or classical. 
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Figure 1   Several Gaussian tail functions 
 
 

( )τ µ  
 
 
 
            δ  = 0.5 (ordinary)  
            η  = 0, δ  = 0.10, λ  = 1 
            η  = 0, δ  = 0.10, λ  = 2 
            η  = 0, δ  = 0.02, λ  = 1 
            η  = 2, δ  = 0.20, λ  = 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       µ  
 
 
To find the lower bound of a Gaussian 1 α−  CI, we choose a suitable starting value 

0µ  and repeatedly calculate 1 ( ) / ( )j j j jµ µ ψ µ ψ µ+ ′= −  until convergence, where:  
 

 ( ) ( )
/

x
n
µψ µ ατ µ

σ
 − =Φ −  

                (14) 

 1( ) ( )
/ /

x
n n
µψ µ φ ατ µ

σ σ
  − −  ′ ′= −       

.              (15) 

 
The upper bound can be found in the same way but with ( )ατ µ  in (14) replaced by 
1 ( )α ατ µ− + , and with (15) unchanged. S-PLUS code (Venables and Ripley, 1999) 
and R code (Venables and Smith, 2004) for calculating these bounds and those of all 
other CI’s in this paper can be obtained from the authors upon request. 
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Example 1 
 
Suppose that  n = 4, x  = 55 and σ  = 17. Then the classical 95% CI for µ  is  
(55 1.96(17)/ 4) ±  = (38.3, 71.7). Implementing the above Newton-Raphson 
algorithm with starting values equal to the classical bounds, and with η  = 50, δ  = 1/8 
and λ  = 10, we find that the new CI is (39.9, 69.6). Observe that the lengths of these 
two intervals are 33.3 and 29.7, respectively. Thus the alternative tail function has 
resulted in a width reduction of about 11%.  
 
To see what is going on, let us plot the classical and new confidence limits for all 
values of x  from 0 to 100. Figure 2 illustrates, with the bounds of the two CI’s in 
Example 1 shown as points (see Note 1). We see that the alternative tail function 
creates a ‘distortion’ of the classical bounds, so that when x  is near η  = 50, the new 
CI is narrower. This effect is compensated for by the new CI being somewhat wider 
when x  is far from η . We find that this pattern is symmetric about η . Thus the 
alternative CI has a minimum width at x  = η , and at x  = 45 its width is the same as 
at x  = 55, i.e. 29.7.  
 
With these observations we have established the significance of the parameter η . It 
should be specified as a value of µ  which is deemed very likely a priori, for then X  
will likely be close to η  and hence the resulting CI will likely be narrower than the 
ordinary CI. This idea will be made more precise later on. 
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Figure 2   Two sets of 95% confidence bounds when n = 4, σ  = 17, η  = 50,  
      δ  = 1/8 and λ  = 10 
 
 
 
 
 
x  
 
 
 
 
 
    55x =  
 
 
 
 
 
 
 
 
 
 
                µ  
 
 
The significance of δ  and λ  
 
To gain an understanding of the parameters δ  and λ , it is useful to examine some 
more examples. Figure 3 shows, for 0η=  and n = σ  = 1, the 95% confidence 
bounds implied by the first four tail functions in Figure 1 (including the ‘ordinary’ 
one). We see that δ  determines the minimum and maximum possible lengths of the 
CI, and λ  influences the rate at which those extrema are approached as x  tends to η  
or ± ∞ . Specifying a small value of δ  results in a relatively short interval if x  is 
close to η  and a wide one otherwise. Specifying a large value of λ  has the effect of 
evening out the disturbance due to δ , whilst not altering the crossover points, given 
generally by / 2( , ) ( , / )x z nαµ η η σ= ± . Examples of these points are (0,± 1.96) in 
Figure 3, and (50,50 1.96(17) / 4)±  = (50,33.3) and (50,66.7) in Figure 2. 
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Figure 3   Several sets of 95% confidence bounds when n = σ  = 1 and η  = 0 
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               δ  = 0.5 (ordinary)  
               δ  = 0.10, λ  = 1 
               δ  = 0.10, λ  = 2 
               δ  = 0.02, λ  = 1 
 
 
 
 
                      µ  
 
 
 
The PDL and EPDL 
 
A convenient way to quantify the length (or width) of a modified CI is in terms of the 
proportion by which it is shorter than the corresponding ordinary CI. This leads us to 
define the proportional decrease in length (PDL) as  
 

 ,
,

( )
( )

W W x
D x

W
δ λ

δ λ

−
= ,                 (16) 

 
where  , ( )W x u lδ λ = −  is the length of the modified CI and / 22 /W z nα σ=  is the 
length of the ordinary CI. 
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Another useful quantity is the expected proportional decrease in length (EPDL), 
which may be defined as  
 

 , , ,( ) { ( ) | } ( ) ( | )e E D X D x f x dxδ λ δ λ δ λµ µ µ
∞

−∞

= = ∫ ,              (17) 

 
where ( | ) (( ) / ) /f x x n nµ φ µ σ σ= − , since 2( | ) ~ ( , / )X N nµ µ σ .  
 
Figure 4 shows both the PDL and EPDL for each of the three new CI’s in Figure 3. 
The first of these two functions shows clearly the values of x  for which the CI is 
narrower than the ordinary CI (a neighbourhood around η  = 0). In contrast, the latter 
function shows the values of µ  for which the CI is expected to be narrower (again 
near η ). Both the PDL and EPDL are symmetric about and have a maximum at η . 
 
Figure 4   Examples of the PDL and EPDL when n = σ  = 1 and η  = 0 
 
 
 
 
 
 
 
 
 
 
 
            PDL  , ( )D xδ λ  
 
          δ  = 0.10, λ  = 1 
           δ  = 0.10, λ  = 2 
           δ  = 0.02, λ  = 1 
 
        EPDL    , ( )eδ λ µ  
 
          δ  = 0.10, λ  = 1 
          δ  = 0.10, λ  = 2 
          δ  = 0.02, λ  = 1 
 
 
                              ,x µ  
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The MPIL 
 
It is also useful to be able to quantify the extent by which a CI in the new class may 
be worse than the ordinary CI. It can be shown that the maximum width of a modified 
CI is , (1 )( ) ( ) /W W z z nδ λ αδ α δ σ−= ∞ = + . Accordingly, we define the maximum 
proportional increase in length (MPIL) as  
 

 (1 )

/ 2

1
2

z zW WI
W z

αδ α δ
δ

α

−+−= = − .               (18) 

 
For example if α  = 0.05 then 0.1I  = 0.0896. Observe that the MPIL does not depend 
on λ . Also, it is strictly increasing and converges to infinity as δ  tends to zero.  
 
It is a fact that decreasing δ  always has the effect of increasing the maximum possible 
decrease in length, namely at x η=  (see Figures 3 and 4). This suggests a useful rule. 
Suppose we want to be sure that the new CI does not exceed the old CI in length by 
more than 100I%. Then we should specify δ  as the value for which Iδ = I.  
 
For example, if I = 0.1 and α  = 0.05, then we find using the Newton-Raphson 
algorithm that δ  = 0.0871 (see Note 2). Figure 5 illustrates the relationship between 
δ  and the MPIL for various values of α , with the two points being at  
( , )Iδ δ  = (0.0896,0.1) and (0.1,0.0871). 
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Figure 5   Relationship between δ  and the MPIL  
 
 
 
 
δ  
 
 
            α  = 0.01 
            α  = 0.05 
            α  = 0.10 
            α  = 0.20 
 
 
 
 
 
 
 
 
 
 
 
                                                          Iδ  
 
The MPDL, GMPDL and AGMPDL 
 
Recall that a modified CI is always narrowest at x η= . Accordingly we define the 
maximum proportional decrease in length (MPDL) as , , ( )M Dδ λ δ λ η= . We find that 
for a given δ , this quantity is a nonincreasing function of λ  and so has a maximum at 
λ  = 0. Accordingly, we define the greatest maximum proportional decrease in length 
(GMPDL) as ,0G Mδ δ= . We then find that Gδ  is a decreasing function of δ . 
Accordingly, we define the absolute greatest maximum proportional decrease in 
length (AGMPDL) as 0A G= . The following are formulae for all these quantities: 
 
 , ,( ) 1 ( ) /D x W x Wδ λ δ λ= −   (PDL) 
 , , ,( ) 1 ( ) /M D W Wδ λ δ λ δ λη η= = −  (MPDL) 
 ,0 (1 ) / 21 /G M z zδ δ α δ α−= = −   (GMPDL)             (19) 
 0 / 21 /A G z zα α= = −    (AGMPDL). 
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Figure 4 shows three values of the MPDL when α  = 0.05 and 1nσ= = , namely the 
heights of the three thin lines at x  = η  = 0. These values are 0.1,1M  = 0.1255,  

0.1,2M  = 0.0918 and  0.02,1M  = 0.1443. Thus, for example, if δ  = 0.1 and λ  = 2, the 
improvement in interval length is limited to 9.2%. 
 
To see the significance of the GMPDL, recall that a MPIL of 10% implies  
δ  = 0.0871. The associated GMPDL is 0.0871 0.05(1 0.0871) 0.05/ 21 /G z z−= −  = 0.138. This 
means that if we want to be sure that the new 95% CI will be no more than 10% wider 
than the ordinary 95% CI, we must also accept that it will be no more than 13.8% 
narrower, with that limit achievable only if λ  = 0. 
 
The AGMPDL provides an absolute upper bound on the improvement to a 1 α−  CI 
which can be achieved. For example, if α  = 0.05 then 1 1.645 /1.96A= −  = 0.161. 
Thus a modified 95% CI can be no more than 16.1% narrower than an ordinary 95% 
CI, regardless of the values of x , σ , n, η , δ  and λ . Some other examples of the 
AGMPDL are 0.097, 0.221, 0.343 and 1.000 when α  = 0.01, 0.10, 0.20 and 0.50, 
respectively. From this we see that modification via tail functions is potentially most 
effective if an interval with small confidence level is required. 
 
Figure 6 provides further illustrations of the MPDL, GMPDL and AGMPDL, with 
some of the above numbers shown as points. The height of each line at the origin 
represents a GMPDL, and the height of the highest line at the origin is the AGMPDL 
for the case α  = 0.05. For further discussion of Figure 6 see Note 3. 
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(2, 0.092)    (MPDL)   
(0, 0.138)    (GMPDL)   
(0, 0.161)    (AGMPDL)   

Figure 6   Examples of the MPDL, GMPDL and AGMPDL  
       when n = σ  = 1 and α  = 0.05 
 
 
 

 
          δ  = 0 
          δ  = 0.02 
          δ  = 0.05 
          δ  = 0.1 
          δ  = 0.2 
          δ  = 0.5 
 
 
 
 
 
 
 
 
 
 
 
 
                            λ  
 
 
The case of λ  = 0 
 
In the limiting case λ  = 0, the new interval can be written tractably, with no need for 
the Newton-Raphson algorithm. With / nκ σ= , its bounds are then: 
 
 (x zαδκ− , (1 ) )x zα δ κ−+ ,  x zαδη κ> +  
 (η ,  (1 ) )x zα δ κ−+ ,  (1 )z x zα δ αδη κ η κ−+ ≤ < +  
 (1 )(x zα δ κ−− , (1 ) )x zα δ κ−+ ,  (1 ) (1 )z x zα δ α δη κ η κ− −− ≤ ≤ +            (20) 
 (1 )(x zα δ κ−− , )η ,   (1 )z x zαδ α δη κ η κ−− ≤ < −  
 (1 )(x zα δ κ−− , )x zαδκ+ ,  x zαδη κ< −  
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Figure 7 shows 95% CI’s corresponding to various values of δ  when 0η λ= =  and 
1nσ= = . The case λ  = 0 is important because it implies the maximum possible 

improvement at x η=  for a given δ . It thereby provides a convenient benchmark 
against which other values of λ  may be assessed. Note that when λ  = 0 the tail 
function (12) is discontinuous and consists of a single step up of 1 2δ−  (from δ  to 
1 δ− ) at µ η= . We will refer to this tail function and associated CI’s such as those in 
Figure 7 as maximal (or maximal Gaussian). 
 
 
 
Figure 7   Several  maximal 95% CI’s (λ  = 0 ) when n = σ  = 1 and η  = 0 
 
 
 
 
x  
   δ  = 0.5 (ordinary) 
   δ  = 0.2 
   δ  = 0.01 
   δ  = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     µ  
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The PEPDL 
 
In order to choose useful values of η , δ  and λ , we must have in mind some prior 
distribution for µ . Suppose that this prior is normal with mean 0µ  and standard 
deviation 0σ  (see Note 4). In that case we should take η  = 0µ  and may set δ  at the 
value implied by the desired MPIL. That leaves only λ  to be specified. One 
possibility is to let λ  = 0, because then the PDL at (16) will be maximised. However, 
it may be preferable to take λ  as the value 0λ  which maximizes the prior expected 
proportional decrease in length (PEPDL), defined as 
 

 , ,( ) ( ) ( ) ( | ) ( )p ED X D x f x f dx dδ δ λ δ λλ µ µ µ
∞ ∞

−∞−∞

= = ∫ ∫ ,            (21) 

 
where 0 0 0( ) (( ) / ) /f µ φ µ µ σ σ= −  and ( | ) (( ) / ) /f x x n nµ φ µ σ σ= − . For other 

ways to write the PEPDL see Note 5. 
 
Calculation of 0λ  requires a search by trial and error. Figure 8 shows the PEPDL at 
each 0,0.01,0.02,...,1λ=  for various values of 0σ  when n = σ  = 1, δ  = 0.1, 0µ  = 0 
and 0.05α= . For example, if 0σ  = 1 then the PEPDL is maximized at λ  =  0.22, to 
the nearest 0.01. Refining our search we find that 0λ  = 0.2233 and 0.1 0( )p λ  = 0.1053. 
We also find that 0.1(0)p  = 0.1042. Thus in this case there was not much gain from 
finding 0λ  (only a 1.0% decrease in the PEPDL). For inference we may as well take 
λ  as zero and use the simple formulae at (20). 
 
For the case 0σ  = 2, we find that the optimal value of λ  is 0.9123, with associated 
PEPDL 0.0664. This amounts to an improvement of  14.5% over 0.0580, the PEPDL 
when λ  = 0. From this we see that when the prior information is more diffuse, there 
are greater benefits to be had from finding 0λ . On the other hand, less prior 
information implies a smaller possible improvement. This is illustrated in Figure 8 
where the maxima uniformly decrease as the prior standard deviation 0σ  increases. 
 
Observe that 0.9123 0.2233 4≈ × . Thus 0λ  at 0σ  = 2 is roughly 22  times 0λ  at  

0σ  = 1. Also, 0λ  = 0 when 0σ  = 0. These facts are part of a general pattern which 
may be written 2

0 0 /k nδλ σ σ≈ . Three examples of the constant kδ  here are  

0.1k = 0.22, 0.05k  = 0.27 and 0.20k  = 0.16. Although this formula is only approximate it 
does provide some guidance to conducting the search for 0λ   in any given situation. 
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Figure 8   Examples of the PEPDL and its maximization  
      when α  = 0.05, n = σ  = 1, 0η µ=  = 0 and δ  = 0.1 
 
 
 

0.1( )p λ  
             0 0σ =  
        
             
 
 
 
 
                            0 1σ =              

 
   
    
 
           
 
           
           0 2σ =  
  
     0 0,0.2,0.4,..., 2σ =   top to bottom 
 
 
 
             λ  
 
 
 
Comparison with Bayesian inference 
 
It may appear that the tail function methodology is Bayesian (see Lee, 1989) since it 
requires the specification of a prior distribution. However, this is not so, because 
nowhere does that methodology involve a posterior calculation. The resulting CI’s are 
all frequentist in the usual sense. It may then be asked why Bayesian posterior 
intervals should not be used instead, considering that with informative priors they can 
result in far greater width reductions than those which have been mentioned (e.g. an 
AGMPDL of 16.1% when α  = 0.05).  
 



Page 17 of 42 

The answer is that a Bayesian posterior interval may fail to contain the target 
parameter with the required probability if that parameter happens to be outside ‘the 
most probable region’. In contrast, frequentist CI’s have the correct coverage 
probabilities for all possible values of the target parameter. Tail functions provide a 
tool whereby prior information can be usefully incorporated into the inferential 
process without sacrificing this very important feature of the frequentist approach. 
 
Example 2 
 
Suppose that µ ’s prior is 2

0 0( , )N µ σ  (see Note 4). Then it is a standard result that µ ’s 
posterior is 2

* *( , )N µ σ , where * 0(1 )k kxµ µ= − + , 2 2
* /k nσ σ=  and 

2 2
01/{1 /( )}k nσ σ= +  (the ‘credibility factor’). It follows that µ 's 1 α−  highest 

posterior density region (HPDR) is * / 2 *( ) ( )H x zαµ σ= ± . The length of this interval 
is / 2 *2zα σ  and so the associated PDL is / 2 / 21 2 /{2 / }z z nα ασ σ∗−  = 1 k− .  
 
For example, suppose that 0µ  = 0 and n = σ  =  1. Then for 0σ  = 0, 1, 2, respectively, 
we find that k = 0, 0.5, 0.8; and the associated PDL’s are 1, 0.293 and 0.106. These 
results may be compared to the corresponding PEPDL’s in Figure 8, whose maxima 
are 0.126, 0.105 and 0.066. Thus the Bayesian 95% HPDR is in every case shorter in 
expectation than the optimal modified 95% CI defined by tail function (12), η  = 0µ  
and δ  = 0.1.  
 
Let us now examine the frequentist coverage properties of µ ’s Bayesian HPDR. It 
can be shown that the conditional probability of that HPDR containing µ  is  
 

   0 / 2 0 / 2( )(1 ) ( )(1 )( ( ) | )
/ /

k z k zP P H X
k n k k n k

α α
µ

µ µ µ µµ µ
σ σ

   − − − −  = ∈ =Φ + −Φ −        
  (22) 

 
(see Note 6). Figure 9 shows this probability when α  = 0.05, 0µ  = 0 and n = σ  =  

0 1σ = , and also µ ’s prior pdf, 0 0 0( ) (( ) / ) /f µ φ µ µ σ σ= − . We see that 0Pµ →  as 
µ→±∞ . Also, Pµ  > 0.95 if and only if 1.12 1.12µ− < < ; and therefore 

( 0.95)P Pµ >  = 0.737. Thus the frequentist coverage probability of the Bayesian 95% 
HPDR falls severely short of the required 95% level if µ  happens to be far from its 
prior mean, 0µ ; and the prior probability of that coverage probability being at least 
95% is only 74%. In contrast, any 95% CI in the class defined by tail function (12) 
contains µ  with probability exactly 95% for all possible values of µ . 
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Figure 9   Prior density of µ  and coverage probabilities of µ ’s HPDR 
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5.   Inference on a normal mean with unknown variance  
 
Consider the scenario in Section 4 but with the normal variance 2σ  unknown rather 
than known. In that case the standard classical approach is to make use of the result 
 

 ~ ( 1)
/

XY t n
S n
µ−= − , where 2 2

1

1 ( )
1

n

i
i

S X X
n =

= −
− ∑  is the sample variance, 

 
and thereby construct a 1 α−  CI for µ  of the form / 2( ( 1) / )x t n s nα± − , where 

( )pt v  denotes the upper p-quantile of the t-distribution with v degrees of freedom.  
 
To find the upper bound of a modified 1 α−  CI for µ  in this case, we choose a 
suitable starting value 0µ  and repeatedly calculate 1 ( ) / ( )j j j jµ µ ψ µ ψ µ+ ′= −  until 
convergence, where now:  
 

 ( 1)( ) ( )
/t n

xF
s n
µψ µ ατ µ−

 − = −  
               (23) 

 ( 1)
1( ) ( )

/ /t n
xf
s n s n
µψ µ ατ µ−

  − −  ′ ′= −       
.              (24) 

 
Here, ( 1) (.)t nF −  and ( 1) (.)t nf −  denote the cdf and pdf of the t distribution with 1n−  
degrees of freedom (cf. (14) and (15)). The lower bound can be found in the same way 
but with ( )ατ µ  in (23) replaced by 1 ( )α ατ µ− + , and with (24) unchanged. 
 
When λ  = 0, the confidence bounds are given by (20) with each pz  replaced by 

( 1)pt n− , and with σ  in each κ  replaced by s. Similar modifications apply to all the 
other equations in Section 4, such as that for the MPIL at (18). As in Section 4, it is a 
good practise to specify η  as µ ’s prior mean, 0µ , and to set δ  equal to the value 
implied by a desired MPIL. 
 
If an optimal value of λ  is desired, we first define the PEPDL in this context as 
 

       , ,
0 0

( ) ( , ) ( , ) ( , | , ) ( , )p ED X S D x s f x s f dx ds d dδ δ λ δ λλ µ σ µ σ µ σ
∞ ∞ ∞ ∞

−∞ −∞

= = ∫ ∫ ∫ ∫    (25) 

 
(cf. (21)), where , ,( , ) 1 ( , ) / ( )D x s W x s W sδ λ δ λ= −  is the PDL (cf. (16)), , ( , )W x sδ λ  is 
the width of the modified CI, / 2( ) 2 ( 1) /W s t n s nα= −  is the width of the ordinary 
CI, ( , | , )f x s µ σ  is the joint conditional pdf of X  and S, and ( , )f µ σ  is the joint prior 
pdf of µ  and σ . For more details see Note 7. 
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As in Section 4 our task is to find the value of λ  which maximizes ( )pδ λ . 
Fortunately, (25) can easily be approximated via Monte Carlo for any given value of 
λ . One way is to draw values of µ  and σ  from their joint prior distribution, generate 
a random sample of size n from the associated 2( , )N µ σ  distribution, calculate the 
corresponding standard and new CI’s, repeat many times, and each time record the 
PDL. The result will be a random sample, 1 ,..., Jd d , from the prior distribution of the 
PDL. An unbiased point estimate of and (ordinary) 95% CI for the PEPDL, ( )pδ λ , 
are then 1

1
J
j jd J d−
== ∑  and ( 1.96 / )dd s J± , where 2 1 2

1( 1) ( )J
d j js J d d−

== − ∑ − . 
Repeating this whole process using many different values of λ  will lead to an 
estimate of the value 0λ  which maximises ( )pδ λ .  
 
Example 3 
 
Suppose that we are about to sample n = 4 observations from the 2( , )N µ σ  
distribution where 2σ  is unknown and then construct a 95% CI for µ . We want the 
CI to be shorter than the standard 95% CI, but don’t want to risk it being more than 
10% longer. Solving (1 ) / 2{ (3) (3)}/{2 (3)} 1 0.1t t tαδ α δ α−+ − =  with 0.05α=  (see (18)), 
we find that the appropriate value of δ  is 0.2227.  
 
Suppose that our prior distributions for µ  and σ  are independently 2

0 0( , )N µ σ  and 
( , )Gamma a b ,  where 0µ  = 50, 0σ  = 5, a = 100 and b = 10 (so that Eσ  = a/b = 10). 

These priors are shown in Figure 10. Applying the above Monte Carlo procedure with 
η  = 50, δ  = 0.2227, J = 1000 and each λ  = 0,1,2,...,20, we obtain the estimates and 
(ordinary) 95% CI’s for the PEPDL shown in Figure 11. We see that there is little 
gain to be had from refining the search, and decide to take λ  = 0. Figure 11 reveals 
that if our priors are ‘correct’ then we can expect the maximal CI defined by ( , , )η δ λ  
= (50,0.2227,0) to be about 14.5% narrower than the standard 95% CI (see Note 8). 
 
We now observe the data and find that x  = 55 and s = 17. Hence by (20) the maximal 
95% CI for µ  is 0.05(1 0.2227)(55 (3)17 / 4)t −±  = (32.6,77.4). In contrast, the ordinary 
95% CI is 0.025(55 (3)17 / 4)t±  = (27.9, 82.1). The lengths of these CI’s are 44.9 and 
54.1. Therefore the new methodology has resulted in an improvement of 17.1%.  
 
Note that this is the maximum improvement which was possible, since by (19) the 
GMPDL is  0.2227 (1 0.2227) / 21 (3) / (3)G t tα α−= −  = 0.171. Also note that exactly the same 
improvement would have been achieved had the sample mean, x  = 55, been any 
other number in the interval 0.05(1 0.2227)(50 (3)17 / 4)t −±  = (27.6, 72.4). 
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Figure 10   Prior densities of the normal mean and standard deviation  
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Figure 11   Monte Carlo estimates of the PEPDL when 0σ  = 5  
 
 

0.2227 ( )p λ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           λ  
 
Example 4 
 
Consider the situation in Example 3, but with 0σ  = 25 (rather than 5). The 
corresponding prior on µ  is shown in Figure 10. We repeat the Monte Carlo search 
procedure, this time over λ  = 0,5,10,...,100, and conclude on the basis of the results 
shown in Figure 12 that the optimal value of λ  is about 20 (see Note 9). Applying the 
Newton Raphson algorithm defined by (23) and (24), with η  = 50, δ  = 0.2227,  
λ  = 20, n = 4, x  = 55 and s = 17, we find that the new 95% CI for µ  is (31.2,78.0).  
 
Observe that this interval is slightly wider than the maximal one, (32.6,77.4), and only 
13.5% narrower than the ordinary one, (27.9, 82.1). This makes sense because a 
poorer performance is to be expected with a decrease in prior information. Actually, 
13.5% is well above the 4.5% improvement which could on the basis of Figure 12 be 
expected when 0σ  = 25 and λ  = 20. Note that with 0σ  = 25 and λ  = 0, the expected 
decrease in interval length is only about 2.5% (see Note 9).  
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The fact that the actual improvement using λ  = 0 is 17.1% (see Example 3) may be 
attributed to x  happening by chance to fall very near µ ’s prior mean, 0 50µ η= = . 
When 0σ  is 25 (rather than 5), specifying λ  as 20 (rather than 0) may be thought of 
as taking out insurance  at the cost of a slightly wider interval  against the 
possibility of a much wider interval resulting due to x  being far from 0µ  (then a 
more likely outcome).  
 
 
 
Figure 12   Monte Carlo estimates of the PEPDL when 0σ  = 25  
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                λ  
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6.   Inference on the binomial proportion 
 
We will now focus on the problem of estimating a binomial proportion p based on X 
successes in n Bernoulli trials. It will be shown how tail functions can be used to 
modify three favourite CI’s for p, namely the ‘standard’, Wilson, and Clopper-
Pearson intervals (see Brown et al., 2001), so as to reduce their prior expected 
lengths. In some cases the modified interval also exhibits better coverage properties. 
 
The ‘standard’ interval 
 
We first consider the most commonly used 1 α−  CI for p, namely the ‘standard’ 
interval. This may be written  
 
 / 2( / )x z nα σ± ,                  (26) 
 
where /x x n= , x is the observed value of X, 2 (1 )x xσ = − , and where bounds less 
than 0 or greater than 1 are taken as 0 or 1, respectively. This approximate CI is a 
consequence of the central limit theorem which, with  /X X n= , implies that 
 

 (0,1)
(1 ) /

dX p N
X X n

− →
−

    as n →∞ .                  (27) 

 
The lower and upper bounds of (26) are obtained as the values of p for which 

(( ) / )x p n σΦ −  equals 1 / 2α−  and / 2α , respectively.  
 
We see that this scenario is identical to the one in Section 4, with pµ= . Thus if 
prior information regarding p is available, we may replace 1 / 2α−  and / 2α  in the 
last paragraph with 1 ( )pα ατ− +  and ( )pατ , where ( )pτ  is given by (12) and 
suitable choices of η , δ  and λ .  Note that 2σ  = 0 if x = 0 or n, in which case we 
define the modified standard CI as the single point 0 or 1, respectively (i.e. we make 
no modification to the ordinary standard CI). 
 
Example 5 
 
Suppose that we are about to conduct a binomial experiment with n = 100 trials and 
feel confident that p lies near 0.5. We consider using a Gaussian standard 95% CI 
with parameters η  = 0.5 and δ  = 0.01. Figure 13 shows the bounds of this CI for all 
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possible outcomes, x = 0,1...,100, both when λ  = 0 and when λ  = 0.1. Also shown 
are the bounds of the ordinary standard 95% CI (δ  = 0.5). 
 
 
Figure 13   Bounds of three standard 95% CI’s when n = 100 and η  = 0.5 
 
 
 
x 
 
   0.5δ=  (ordinary) 
   0.01δ= , λ  = 0 
   0.01δ= , λ  = 0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               p 
 
 
 
Observe in Figure 13 that the two modified CI’s are shorter than the ordinary CI when 
x is close to 50, corresponding to p being close to η  = 0.5. This effect is ‘paid for’ by 
the modified CI’s being longer for other values of x.  
 
Let us now compare the coverage probabilities of the three CI’s. These are illustrated 
in Figure 14, and it is interesting that both of the modified 95% CI’s have coverage 
properties which are distinctly better than those of the standard 95% CI. 
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Figure 14   Coverage probabilities of three standard 95% CI’s when n = 100  
         and η  = 0.5 
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     0.01δ= , λ  = 0 
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              0.01δ= , λ  = 0.1 
 
 
      p 
 
 
Let us now compare expected lengths. In Figure 15 we see that the maximal CI 
(defined by λ  = 0) has lengths which are smaller on average than those of the 
ordinary CI for values of p between about 0.4 and 0.6, and larger for values outside 
that range. The CI defined by λ  = 0.1 provides a greater range for which there is 
improvement over the ordinary interval (roughly 0.3-0.7), and also a smaller 
maximum expected length (0.18 rather than 0.22). However, these improvements 
come at the expense of it being slightly longer than the maximal CI for p very near 
0.5.  
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Figure 15   Expected lengths of three standard 95% CI’s when n = 100  
         and η  = 0.5  
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Our final decision regarding which interval to use will depend on the strength of our 
prior beliefs. For example, if we believe very strongly that p is between 0.45 and 0.55 
then a good choice is the maximal CI defined by (η ,δ ,λ ) = (0.5,0.01,0). If we 
believe that p might be anywhere between 0.3 and 0.7 then a ‘safer’ choice is  
(η ,δ ,λ ) = (0.5,0.01,0.1). If we believe that p could be anywhere from 0.2 to 0.8, then 
perhaps it is best to stick with the ordinary standard interval (δ  = 0.5), or else 
investigate other values of δ  and λ . 
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The Wilson interval 
 
An interval with better coverage properties than the standard interval, especially when 
n is small, is the Wilson  interval (Wilson, 1927), whose bounds are given by: 
 

     

2 2 2 2

2 2

2 2

(1 ) (1 )
2 4 2 4( , ) ,

1 1

a a a a
a a

a a
a a

z z z zx x x xx z x z
n n n n n nl u

z z
n n

 − −   + − + + + +    =    + +    

,          (28) 

 
where a = / 2α . This interval is based on the result 
 

 (0,1)
(1 ) /

dX p N
p p n

− →
−

     as n →∞ ,                     (29) 

 
where the rate of convergence is faster than in (27). It can be shown that if we apply 
the tail function (12) with λ  = 0, then the resulting modified 1 α−  Wilson CI is: 
 
 ( ,lαδ       (1 ) )uα δ− , x dη> +  
 ( ,η        (1 ) )uα δ− , c x dη η+ < ≤ +  
 (1 )(lα δ− ,    (1 ) )uα δ− ,  c x cη η− ≤ ≤ +                       (30) 
 (1 )( ,lα δ−    )η ,  d x cη η− ≤ < +  
 (1 )( ,lα δ−    )uαδ ,  x dη< − , 

 
where (1 ) (1 ) /c z nα δ η η−= −  and (1 ) /d z nαδ η η= − . Note that if δ  = 1/2 then the 
maximal Wilson CI (30) reduces to the ordinary Wilson CI (28), which in turn reduces 
to the ordinary standard CI (26)  in the limit as n tends to infinity. 
 
If λ  > 0 then the modified Wilson CI can be obtained via the Newton-Raphson 
algorithm as follows. The upper bound may be found by choosing a suitable starting 
value 0p  and iterating 1 ( ) / ( )j j j jp p p pψ ψ+ ′= −  until convergence, where: 
  
 ( ) ( ( , )) ( )p g x p pψ ατ=Φ −                 (31) 

 ( ) ( ( , )) ( , ) ( )p g x p g x p p
p

ψ φ ατ∂′ ′= −
∂

              (32) 

 ( , )
(1 ) /
x pg x p

p p n
−=
−

    and     
3 3

( 1/ 2) / 2( , )
(1 ) /

x p pg x p
p p p n
∂ − −=
∂ −

.           (33) 
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The lower bound can be found in the same way but with ( )pατ  in (31) replaced  
by 1 ( )pα ατ− + , and with (32) unchanged. Note that this Newton-Raphson 
algorithm can also be used to find the modified standard CI after replacing (33) with 

( , ) ( ) / (1 ) /g x p x p x x n= − −   and  ( , ) / 1/ (1 ) /g x p p x x n∂ ∂ =− − . 
 
Example 6 
 
Suppose that we are about to conduct a binomial experiment with n = 25 trials and 
feel confident that p lies near 0.3. Since n is small we consider using a modified 
Wilson 95% CI with parameters η  = 0.3 and δ  = 0.03, where λ  is either 0 or 0.15. 
 
Figures 16-18 provide the same kinds of information as Figures 13-15. In Figure 18 
we see that when p is near 0.3, the maximal Wilson CI (defined by λ  = 0) provides 
greater gains in expected length over the standard Wilson CI than the one defined by 
λ  = 0.15, and that this comes at the expense of it being more ‘risky’ overall. Note that 
the coverage probabilities of the two modified intervals in Figure 17 are asymmetric, 
unlike in Figure 14. This is because η  equals 0.3 and not 0.5. 
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Figure 16   Bounds of three Wilson 95% CI’s when n = 25 and η  = 0.3 
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Figure 17   Coverage probabilities of three Wilson 95% CI’s when n = 25  
         and η  = 0.3 
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Figure 18   Expected lengths of three Wilson 95% CI’s when n = 25  
         and η  = 0.3 
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The Clopper-Pearson interval 
 
As is evident from Figures 14 and 17, the coverage probabilities of the standard and 
Wilson intervals are only approximately equal to the desired level, 1 α− . One CI 
which contains p with probability at least 1 α−  is the so-called ‘exact’ Clopper-
Pearson (CP) CI, after Clopper and Pearson (1934). This interval may be written 
( ( ), ( ))L a U a  where, with / 2a α= , ( )L a  and ( )U a  are the solutions in p of the 
equations: 
 
 ( ; )P X x p a≥ =   
 ( ; )P X x p a≤ = ,  

 
respectively, except that ( )L a  = 0 if x = 0 and ( )U a  = 1 if x = n. It can be shown that 

( ) ( ; , 1)L a Beta a x n x= − +  and ( ) (1 ; 1, )U a Beta a x n x= − + − , where ( ; , )Beta q r s  
denotes the (lower) q quantile of the beta distribution with parameters r and s.  
 
A problem with the CP CI is that it tends to be wider than necessary, and recently 
Blaker (2000) has modified it so as to produce a new ‘gold standard’ that is uniformly 
shorter on average whilst still being ‘exact’. Moreover, Blaker’s interval has an 
attractive nesting condition which is absent from some earlier ‘exact’ CI’s, for 
example those developed by Blyth and Still (1983) and Casella (1986). 
  
The tail function methodology can also be applied in this context. Given a tail 
function ( )pτ , the modified Clopper-Pearson CI is defined as (l,u), where l and u are 
the solutions in p of the equations: 
 
 ( ; ) (1 ( ))P X x p pα τ≥ = −   
 ( ; ) ( )P X x p pατ≤ = ,                 (34) 
 
respectively, except that once again l = 0 if x = 0 and u = 1 if x = n. These equations 
can be solved via the Newton-Raphson algorithm in the usual manner, after noting 
that 0( ; ) ( ; )x

t XP X x p f t p=≤ =∑  where ( ; ) (1 )n t n t
X tf t p C p p −= − . The calculations 

can also be facilitated by noting certain relationships between the binomial and F 
distributions, and by interpreting CP CI’s, both ordinary and modified, as a natural 
byproduct of randomised confidence interval theory. For more details see Puza and 
O’Neill (2004). 
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An important special case is where the tail function is a step function, in which case 
the bounds of the modified CP CI can be written in terms of the ordinary CP CI. For 
example, suppose that the tail function is Gaussian (12) with λ  = 0. Then the bounds 
of the associated ‘maximal’ CI are: 
 

 
( (1 )) if ( (1 ))

( ) if ( )
otherwise

L L
l L L

α δ α δ η
αδ αδ η
η

 − − ≤= ≥

 

                    (35) 

 
( (1 )) if ( (1 ))

( ) if ( )
otherwise

U U
u U U

α δ α δ η
αδ αδ η
η

 − − ≥= ≤

  

 
These equations can easily be generalized to accommodate any number of steps in the 
tail function. For an example, see Note 10. 
 
Example 7 
 
Suppose that we are about to conduct a binomial experiment with only n = 10 trials, 
where the goal is an ‘exact’ 95% CI for p, whose value is believed to be small and 
certainly less than 0.4. We consider five candidates: the standard CP CI, the Blaker 
CI, the one-sided CP CI (0,Uα ), and the modified CP CI’s defined by ( , , )η δ λ   
= (0.2,0,0) and (0.25,0,0). Note that the one-sided CI can also be thought of as a 
modified CP CI defined by ( , , )η δ λ  = (0,0,0), or equivalently, by ( ) 1pτ = . 
 
Figures 19-21 show the same diagnostics as in previous examples, but for the above 
five CI’s. We see in Figure 21 that in terms of expected length, the modified CI 
defined by η  = 0.25 is clearly the best of the five intervals for all p less than 0.4. In 
particular, it is everywhere narrower on average than the one-sided CI, except at  
p = 0, where the two intervals have exactly the same expected length. For further 
discussion see Note 11. 
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Figure 19   Bounds of five ‘exact’ 95% CI’s when n = 10 and δ  = λ  = 0 
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Figure 20   Coverage probabilities of five ‘exact’ 95% CI’s when n = 10 
         and δ  = λ  = 0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Ordinary CP (solid lines)         One-sided CP  (η  = 0) 
       and Blaker (dashed lines)          
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Figure 21   Expected lengths of five ‘exact’ 95% CI’s when n = 10  
        and δ  = λ  = 0 
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 7.   Summary and discussion 
 
In this paper we have shown how confidence intervals can be constructed using tail 
functions. Classical methods may be thought of as a special case of the new theory, 
with all tail functions taken as constant. Focussing on the normal mean and binomial 
proportion, we have provided several examples of how a suitable choice of tail 
function can lead to a CI which is shorter in expectation than its ‘ordinary’ or classical 
counterpart. Such improvements rely on prior information being available and are 
most effective when that information is strong.  
 
The tail function methodology provides an attractive frequentist alternative to the 
Bayesian approach when it is desired that the coverage probability be correct for all 
values of the target parameter. Also, it has the advantage of not requiring prior 
information to be expressed in an exact way. For example, if we are about to conduct 
a binomial experiment with 10 trials and know only that the binomial proportion is 
less than 0.4 then a good tail function can be found without any additional 
information (see Example 7). In contrast, the Bayesian approach requires a specific 
prior distribution, such as the beta, in order to proceed. 
 
A useful observation is that a modified CI tends to be relatively short on average for 
values of the target parameter at which the tail function is steep. This fact provides a 
guide to choosing the optimal tail function in any situation. One important special 
case is where the tail function consists of a single step. The implied CI can often be 
calculated easily, without the Newton-Raphson algorithm (see (20), (30) and (35)). 
Moreover, this case allows for the maximum possible reduction in width and is a good 
choice in many situations. This suggests that we give special consideration to tail 
functions which consist only of steps (see Note 10)). We leave these and other tail 
functions as a topic for future research. 
 
It should be kept in mind that there is a price to be paid for a CI with smaller expected 
width, namely the risk that it will be longer if the data happens to be extreme or the 
prior has been misspecified. Thus the proposed methodology involves an element of 
gambling. Also, the choice of tail function should not be allowed to depend on the 
observed data. If it does, then any reduction in interval width may be illusory due to a 
deflated coverage effect (see Note 12). Ideally, the exact form of the CI should be 
specified before the data have been observed. Note that this advice applies equally in 
any situation where there are two or more ways to construct an interval estimate. 
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Notes 
 
1. Each of the two pairs of lines in Figure 2 also satisfy the following equations: 
  1(1 ( )) /x nµ α ατ µ σ−= +Φ − +  (upper line) 
  1( ( )) /x nµ ατ µ σ−= +Φ   (lower line). 
 The continuous lines correspond to ( ) 1/ 2τ µ = , and the dashed ones to (12)  
 with η  = 50, δ  = 1/8 and λ  = 10. This simple way to graph interval bounds  
 follows from (7), (8) and (9) after putting θ µ= , ( , ) ( ) /g x y x nθ µ σ= = −   
 and ( ) ( )YF y y=Φ . 
 
2. The equation I Iδ =  can be solved via Newton-Raphson as follows.  
 Let ( )h I Iδδ = −  and (1 ) / 2( ) ( ) /(2 )h z z zαδ α δ αδ α −′ ′ ′= − ,  
 where / 1/ ( )t t tz dz dt zφ′= =− . Then choose a starting value 0δ  and  
 repeatedly calculate 1 ( ) / ( )j j j jh hδ δ δ δ+ ′= −  until convergence. 
 
3. Except for values of λ  near the origin, the MPDL’s in Figure 6 are  
 proportionate to / nσ . For example, if ( , )n σ  = (1,1) is changed to either  
 (4,1) or (1,0.5) then 0.1,2M  = 0.092 changes to 0.056. At the same time, each  
 GMPDL (e.g. 0.0871 0.138G = ) stays the same, and the ‘plateaus’ near the  
 origin become shorter. In general, , ( 0)M G Iδ λ δ λ→ =  as 0σ →  or  
 n →∞  (for all δ ), and ,M Gδ λ δ→  as σ →∞  (for all δ  and λ ). 
 
4. One way in which the prior 2

0 0~ ( , )Nµ µ σ  might arise is if a random sample  
 of 0n  values from the 2( , )N µ σ  distributions were previously observed and  
 their average was 0x . Using a flat ‘pre-prior’ for µ  and standard Bayesian  
 calculations (see Lee, 1989), we may then specify 0 0xµ =  and 2 2

0 0/ nσ σ= . 
 
5. An equivalent definition for the PEPDL at (21) is  
 ,( ) ( ) ( )p D x f x dxδ δ λλ ∞

−∞= ∫ , where 0 # #( ) (( ) / ) /f x xφ µ σ σ= −  and  

 2 2 2
# 0 / nσ σ σ= + . This is because 2

0 #~ ( , )X N µ σ . We may also write  

 , ,( ) ( ) ( ) ( )p Ee e f dδ δ λ δ λλ µ µ µ µ∞
−∞= = ∫ , where  , ( )eδ λ µ  is the EPDL at (17). 

 
6. In contrast to Pµ  at (22), the unconditional probability of µ ’s HPDR  
 containing µ  is exactly 95%. This can be shown by integrating ( )P fµ µ  over  
 the whole real line, but is most easily proved as follows:  
  ( ( )) ( ( ) | ) (1 ) 1P H X EP H X X Eµ µ α α∈ = ∈ = − = − . 
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7. In (25), ( , | , ) ( | , ) ( | )f x s f x f sµ σ µ σ σ= ,  
 where:  ( | , ) (( ) / ) /f x x n nµ σ φ µ σ σ= −  
   ( | ) ( | ) /f s f u du dsσ σ=  
   2 2( 1) /u n s σ= − ,   2/ 2( 1) /du ds n s σ= −   
   (1/ 2)( 1) 1 / 2 (1/ 2)( 1)( | ) /{2 (( 1) / 2)}n u nf u u e nσ − − − −= Γ − . 
 This follows because X  and 2S  are conditionally independent, because 
 2( | , ) ~ ( , / )X N nµ σ µ σ , and because 2 2 2(( 1) / | , ) ~ ( 1)n S nσ µ σ χ− − . 
 
8. Using numerical techniques to evaluate the integral at (25) exactly, we find  
 that the PEPDL in Figure 11 equals 0.144 at λ  = 0 and has a maximum of  
 0.145 at λ  = 0.9. 
 
9. Using numerical techniques to evaluate the integral at (25) exactly, we find  
 that the PEPDL in Figure 12 equals 0.022 at λ  = 0. It also equals 0.043 at  
 λ  = 20 and has a maximum of 0.043 at λ  = 19.1 (same to three decimals). 
 
10. Suppose that the tail function is  

  
1 1

2 1 2

3 2

, 0
( ) ,

, 1

p
p p

p

δ η
τ δ η η

δ η

 ≤ <= ≤ < ≤ ≤

               

 where 1 20 1η η≤ ≤ ≤  and 1 2 30 1δ δ δ≤ ≤ ≤ ≤ . Then the bounds of the 
  associated 1 α−  Clopper-Pearson CI are: 
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11. This relationship also holds between the one-sided CI and all modified CP  
 CI’s defined by 0δ λ= =  and 0 < η  ≤  0.2589. For η  > 0.2589 the modified  
 CI is wider in expectation for values of p in a neighbourhood of zero whose  
 size increases as η  increases. The reason for this is that the one-sided CI at  
 x = 0 is (0,0.2589), which follows from (34), whereby 1/101 0.05u= −   
 = 0.2589. Thus any increase in η  past 0.2589 has the effect of making u at  
 (35) also increase to η  when x = 0 (see Figure 19). The result is that the  
 modified CI is wider than the one-sided CI when x = 0 and so has a larger  
 prior expected width if p is sufficiently small. 
 
12. For example, the Gaussian tail function (12) with 0δ λ= =  and xη=   
 implies an automatic reduction in expected length (relative to the ordinary  
 95% CI for µ  in Section 4) of 16.1% (the AGMPDL at (19) when α  = 0.05).  
 However, by (20) it also implies an actual coverage probability of only 90%. 
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