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INTERVAL EXCHANGE TRANSFORMATIONS 
AND SOME SPECIAL FLOWS 

ARE NOT MIXING 

BY 

A N A T O L E K A T O K *  

ABSTRACT 

An interval exchange transformation (I.E.T.) is a map of an interval into itself 
which is one-to-one and continuous except for a finite set of points and 
preserves Lebesgue measure. We prove that any I.E.T. is not mixing with 
respect to any Borel invariant measure. The same is true for any special flow 
constructed by any I.E.T. and any "roof" function of bounded variation. As an 
application of the last result we deduce that in any polygon with the angles 
commensurable with r the billiard flow is not mixing on two-dimensional 
invariant manifolds. 

w An interval  e x c h a n g e  t rans format ion  (I.E.T.) is a map of an interval 

I = [a, b] into itself which is one-to-one and continuous except for a finite set of 

points and preserves Lebesgue measure. It is easy to see that every I.E.T. f can 

be represented in the following form: there exist a positive integer m and 

numbers a,, or,, e,, i = 1, �9 �9 m, a = a0 < a~ < az < �9 �9 �9 < a,,_~ < a,~ = b, e~ = +-- 1 

such that 

(1) f ( x ) = e , x + ~  i f a , _ ~ < x < a ~  (i = 1 , . . - , m ) .  

We will not be concerned about any particular definition of f at the points a, 

because from the measure theoretical point of view this is unimportant.  Thus, 

every subinterval I~ = (a~-l, a~) moves as a rigid body without stretches, squeezes 

and breaks. This visual representation is responsible for the term "Interval 

exchange transformation." If m is the minimal positive integer such that an 

I.E.T. f has representation (1) we shall say that f is an e x c h a n g e  t rans format ion  

o f  m intervals. 
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Although an I.E.T. may have invariant measures different from Lebesgue 

measure, the following simple lemma shows that from the point of view of 

ergodic theory the general case can be reduced to that particular case. 

LEMMA 1. Let [ : I -~ I be an exchange transformation of m intervals and tx a 

Borel non-atomic probability measure invariant with respect to f. Then there exists 

an exchange transformation of r <= m intervals g : [0, 1]--~ [0, 1] such that f 

considered as an automorphism of the measure space (/, Ix ) is metrically isomor- 

phic to g with respect to Lebesgue measure A. Moreover, this metric isomorphism 

can be effected by a monotone function R : I -~ [0, 1]. 

PROOF. Let us define a map R :I--> [0, 1] in the following way: 

(2) R ( x )  = Ix ([a, x]), x E I. 

Since Ix is a non-atomic measure the map R is continuous and surjective. 

Obviously R is monotone and R.Ix  = A. In general, R is not bijective, but, 

nevertheless it is an isomorphism between the measure spaces (/,Ix) and 

([0, 1],;t). Let us define a map g : [0 ,1] -*[0 ,1]  by 

g(x)  = R( f (y ) )  

where y E I is any point such that Ry = x. The map g is well defined except 

possibly for a finite set of points. For, the set R-~x is either a point or an interval. 

In the first case the choice of y is unqiue. In the second case fR  - 'x is a union of a 

finite number of intervals. Actually, for all but a finite number of points x (in 

fact, for not more than m points) this set may contain only one interval. In this 

case RfR-~x  may be a point or an interval. But ) t (R fR - l x )  = Ix(fR-~x) = 

Ix(R-~x) = A({x}) = 0. Therefore,  RfR-~c is a point. 

The map g preserves Lebesgue measure. If R-Ix  does not contain any points 

of discontinuity of f, then g is continuous at x. Thus, g is continuous and 

one-to-one except for r-< m points and preserves Lebesgue measure. Conse- 

quently, g is an exchange map of at most r intervals. []  

The following lemma plays a key role in the subsequent proofs as well as in 

many other considerations concerning interval exchange transformations. 

LEMMA 2. Let f : I ~ I be an exchange transformation of m intervals and let 

A C I  be a subinterval. Then the induced map Fa is an exchange transformation of 

r <= m + 1 intervals. Moreover, there exists a decomposition 

A = A ~ U - - .  UA,, r<-s<-_m+l  

into disjoint subintervals and positive integers t~, �9 �9 ts such that for x E Ai 
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fa(x) = f', (x) 

with f continuous on every interval 

f k  h,, k = 0 , . . . ,  ti - 1. 

PROOF. Let us denote by II the set of points of discontinuity of f plus the 

endpoints of the interval A. The set II contains at most m + 1 points. Let 

~ = { x E A : f a x = f ' x  and f~tEII ,  k = 0 , ' . - , t - l , t = l , 2 , . . . } .  

Obviously, f~ is an open set. Since f~ contains all but a finite number of points 

for which the induced map fa is defined, ,~ (A \ ~ )  = 0 and, consequently, the set 

f~ is dense in A. 
Let ~ be one of the (maximal) intervals forming II. Then on the interval X, 

f A = f  ~, 

U fk]~ n]-I=O 

but the endpoints of the intervals 

fkX, k = 0 , . . . , t . ~ -  I 

hit the set [I at least twice. If not, the interval 1~ could be extended within the set 

l~. On the other hand, all intervals f~E, ]~ E 11, k = 0 , . . . ,  t~ -  1 are disjoint so 

that every point p E II may serve as an endpoint for at most two intervals of this 

form. Thus, the set f~ consists of at most m + 1 intervals. These intervals are 

disjoint and the union of their closures coincides with A. [] 

TrmOREM 1. Let  f : I ~ I be an LE.T . ,  tx - -  any Borel probability measure 

invariant with respect to f. Then f, considered as an automorphism o f  the measure 

space (L t z ), is not mixing. 

PROOF. It is enough to consider ergodic measures. Such a measure p. is either 

periodic (concentrated on a finite set) or non-atomic. In the first case f is 

obviously non-mixing, in the second case we can apply Lemma 1 and reduce the 

problem to the case when /z is Lebesgue measure. 

Let us fix an interval A CL Using Lemma 2 we can represent I (ignoring a 

finite set of points) as a union of disjoint intervals: 

S I i  I 1 

(3) I =  U U f"(A,). 
i = l  n = 0  

Let us denote for brevity 
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f"(A,) = h~' 

and the partition of I rood 0 

{AT, i= l , . . . , s ,n=O, . . . , t , -1}  

by ~A. Since the length of every interval A7 does not exceed the length of A, the 
partition ~A may be made arbitrarily fine by choosing A sufficiently small. Let us 
consider now the induced map f~, and use Lemma 2 once more. We have the 

following representations with some positive integers t0, i = 1 , . . . ,  si, si < m + 1: 

(4) A, = O Au = O f',,A~j, 
i~l i=l 

3 t~ -- I 

0 0 u r(a,,), 
i = 1  j = l  n ~ O  

where f"Aq are disjoint intervals and s~ =< m + 1 (i = 1 , . . . ,  s). Obviously tq => ti. 
Let us denote 

f"(Aq)byA~ f o r i = l , . . . , s ,  j = l , . . . , s , ,  n = 0 , . . . , t , - 1 .  

Let us show that 

(5) f',, (A~) CAr. 

Note that f',~(A~)= f"f',(Aq). But f',JA~j CA, (cf. (4)) and consequently f',J(A~)C 
f - ( a , )  = At. 

We have from (4) and (5), 

and 

$i 

A7 = U A,S, 
j = l  

n - t  n A,,; Cf "A,, 

~d 

(6) A?C U f-"A'L 
i - I  

Now let A be any set measurable with respect to the partition ~ .  Then by (6) 

A C  0 U /-',,A 
i - 1  1~1 

and since f is measure-preserving and s _- m + 1, s, _-< m + 1 there exists tq such 
that 
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(7) 
1 

Iz(A N [',,A )= I~(f-",A N A ) > ( m  + 1)2P.(A). 

Now let us fix a set A such that 

1 
(8) /~ (A)  < 10(m + 1) 2 

and a positive integer N. 

We can choose an interval A C I  so small that 

(i) there exists a set AA measurable with respect to the partition so. and such 

that 

/z (A Aaa)  < l ( p .  (A))2; 

(ii) all numbers ti in decomposition (3) corresponding to the interval A are 
bigger than N. 

To fulfill (ii) we take a point x E I such that f is continuous at the points ["x, 
n = 0, 1 , . . . ,  N - 1 .  All these points are different. For, suppose that for some 

positive integers k, l, k > l we have fkx = f~X. Then the map fk-a is continuous at 

the fixed point fax. This together with (1) imply that near that point either 

fk-ay = y or fk-ay = _ y. In both cases f has a set of positive measure consisting 
of periodic points. 

Thus, we can find an interval A0 containing the point x such that the intervals 

f"A0, n = 0,. �9 N - 1 are disjoint. Every subinterval of that interval satisfies (ii). 

Applying (7) to the set Aa w e  conclude that for some to --> t, > N 

Iz (A f'l f',Ja ) > I.t (A,, f'l f',~A,,) - 21z (A Aaa)  

1 
>- ( m  + 1) 2 - ( .4) )2 .  

Since ~ (A~)> ~ ( A )  we have from (8) 

( 9 )  2 1 1)2/x ( A ) -  5(/.* (A))2 I.L(a Nf ' , ,A)> "~ (m + 

>( / z (a ) )2 ( l~292  ~ ) > 2 ( / z ( A ) )  2. 

Thus, f is not mixing. Moreover, since A is an arbitrary set satisfying (8) [ 
cannot even have any mixing factors. [] 

w Now let us consider the special flow {f h} constructed by an I.E.T. f : I ~ I 

and "roof"  function h : I  ~ R § This flow acts on the space 
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Ih,,= {(x, t )E I • a, 0-< t =< h(x)} 

by uniform "vertical" motion with jumps from the point (x, h (x)) to (f(x), 0). If 

the roof function is bounded then every finite f-invariant measure/z generates a 

finite invariant measure #h~.) for the special flow. Namely, tza~.) is the restriction 

of the direct product # x ,~ (A is the Lebesgue measure on R) to the space lh~.). 

If the roof function is bounded away from zero then every finite invariant 

measure for the special flow has the described form. 

THEOREM 2. Let f : I ~ I be an interval exchange transformation, h a positive 

function on I of bounded variation, v a Borel probability measure invariant with 

respect to the special]tow {fh}. Then the]low {f h} is not mixing with respect to v. 

PROOF. We are going to combine the method from w with an idea used by 

A. Ko~ergin in [1] in the proof of a similar result for special flows over irrational 

rotations of the circle. 

As above we can assume that {f h} is ergodic with respect to 1,. Then taking (if 

necessary) a smaller interval I '  C I we can represent the flow {fh} as a special flow 

over the induced I.E.T. fl, with the roof function h '  > 1. For x E I '  let 

Then 

f i , x  = fn(X)x. 

h '(x ) = h 0r'x ) 
i=O 

so that h '  is also a function of bounded variation. So we can assume from the 

beginning that h > 1. Consequently the measure v has the form v = ght-) for 

some finite Borel ergodic f-invariant measure #. If the measure/z  is discrete the 

flow {f,~} is periodic, so we can assume that the measure g is non-atomic. Then 

we can use Lemma 1 and conjugate f with another I.E.T. g such that the 

measure tz goes to Lebesgue measure. This conjugation can be lifted in an 

obvious manner to a conjugation between the flow {[h} and a special flow over g. 

Since the map R given by (2) is monotone the new roof function also has 

bounded variation. 

Summarizing, we have reduced the general case to a situation when h > 1, the 

measure v has a form Ah~j where A is Lebesgue measure on I and the I.E.T. f is 

ergodic with respect to A. 

Let us fix an interval A C I  and make all the constructions described in w Let 

x, y E AT.i. We want to compare the time of first return of the points (x, 0) and 

(y,0) to the set A~'• {0}. These two times Tx and Ty are given by 
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tij - 1 

T~ = ~, h( fkx)  
k=O 

and 

t . . - I  

Ty = ~'~ h(f~y).  
k = O  

For  k = 0 , . . . ,  t~ i - n - 1 the points fkx and fky belong to the interval f~+~A,.j. 

These intervals are pairwise disjoint. For  k = t~i - n , . . . ,  t,j - 1 the points fn(x)  

and f~ (y )  belong to the interval A~ . . . .  ,, which are also disjoint. Therefore  

t . - 1  

t l j --n--1 /q--I  

(9) <= ~, Ih(f~x)-h(f~y)t+ ~, th(f~x)-h(f~y)l 
k = O  k =t l t -n - I  

=< 2 Var h. 

Now, let x E A,,j, 0 _----- n --< t~ - 1. We want to compare  Tx and Trx. We have 

n - I  n - I  

Tx - Tt.x = ~, h( fkx)  - E h(fk*"x) �9 
k = 0  k = 0  

The points fkx and fk+',,x belong to the interval 21, k and these intervals with 

k = 0 , . . . ,  n - 1 are pairwise disjoint. There fore  

n - I  

(10) ITx - Tt,xl<= ~'~ Ih ( f k x ) -h ( f k+"x ) l<-Varh .  
k = O  

Combining (9) and (10) we see that for  every two points  x E A~"~, y E A, 7, 

0 =< n, m = < t, 

IT~ - Ty I < 4 V a r  h. 

In o ther  words,  there are numbers  T~, i = 1 , . . . ,  s, j = 1 , . - . ,  s~ such that for 

every x E A~"j, n = 0 , . . . ,  t, - 1 

(11) T~j =< T~ =< T~j + 4 Var  h. 

Let J be a subinterval of [0, 1] and 

A ~ =  A ? x J  CIh<.) 

(recall that  h > 1). We have for x ~ A~.j 
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(12) f~- (x, O) = (f',x, 0). 

It follows from (4) that 

s i 

(13) A~'= U f"aL 
i = l  

Combining (11), (12) and (13) we obtain 

s t 

U 
j = l  

C 
s i 

U U fk,+,(a,,xs) 
j = l  O ~ t ' c 4 V a r h  

s i 

c U  U " " f r,+,A i. 
i ~ l  0~1  ~ 4 V a r h  

The second union is infinite but the special structure of the set A ~' allows us to 
replace it by a finite union. Namely let 8 be the length of J and K = 

[4 Var h/8] + 1. Obviously 

K 

U f~, i+,Ar c U " " 
0 ~ / ~ 4 V a r h  I ~ 0  

and consequently 

St K 

(14) A~ C U U h . 
i - I  i = O  

Now let A = E x J where E is a set which is measurable with respect to the 
partition ~,. Then (14) implies that 

s st K 

(15) A C U U U f~,,+~A. 
i ~ l  ] - I  I ~ 0  

Since h > 1, the number T, is bigger than t,. Consequently, if the subinterval 

A is small enough we can arrange that T~j > N for a fixed number N (cf. w 

Furthermore, it follows from (15) that for some i, j, l 

1 
(16) hhe,(A 13 f~,,.~A) > (m + 1) z- (K + 1) Ah~.,(A). 

Now let A be an arbitrary set of the form E x J where E C/, and 

(17) /z (A) < 
10(m + 1)2(K + 1)" 
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If the interval A is small enough we can approximate A by a set Aa = EA x J 

where Ea is measurable with respect to the partition ~:a and 

(18) hht )(A AA a) < 1-~ (/z (A))2. 

We have from (16), (17) and (18), where the numbers i, j and I are chosen for the 

set Aa, 
h A hh(~(A A f~.+~A) > hht.)(A Afr ,  j,~ ) -  2Ah(.~(AAA~) 

> 
(m + 1y(K § b 

(.(A)) 

9 1 
> 10- (m + 1)2(K + 1 i ~ (A)  - g (~  (A))2 

> (9 - ~) (p. (A))2 > 2(/~ (A))2. 

Since T~j + 18 is big enough, if the interval A is small enough, this contradicts the 

mixing property for {/~}. [] 

w An interesting application of Theorem 2 occurs in the study of billiard 

flows. Namely, let Q be a polygon in the plane R 2 and assume that all angles of Q 

are commensurable with zr. Then the phase space Q x S 1 of the billiard flow {7",} 

in Q splits into invariant subsets Mo 0 <= c < ~'/N where N is the least common 

denominator of the numbers n, where the angles of O have the form a, = rrm,/n, 

(cf. [2]). 

Each of the sets Mc has the form (2 x IIc where Ilc is a finite set in S 1 and the 

flow {Z} restricted to Mc has a natural representation as a special flow over a 

map defined on 0(2 x IL. The set c~Q x IL is a union of a finite number of 

intervals, where length is the natural parameter and the natural invariant 

measure has a piecewise linear density with respect to this parameter. The roof 

function is also piecewise linear and, consequently, has bounded variation. 

Obviously, we can transform 0(2 x IL piecewise linearly to the interval [0, 1] 

such that the invariant measure becomes Lebesgue measure and our transforma- 

tion becomes an I.E.T. The lift of this map transforms the flow T, lu, (the 

restriction of T, into the invariant set Me) into some special flow over this I.E.T. 

with a piecewise linear roof function. Thus, we can apply Theorem 2 and obtain 

the following. 

THEOREM 3. Let Q be a polygon with angles commensurable with ~r. The 

restriction of the billiard flow in Q to any manifold M, is not mixing. 
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