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Abstract

Interval bankruptcy problems arise in situations where an estate
has to be liquidated among a fixed number of creditors and uncer-
tainty about the amounts of the estate and the claims is modeled
by intervals. We extend in the interval setting the classic results by
Curiel, Maschler and Tijs [Bankruptcy games, Zeitschrift für Opera-
tions Research, 31 (1987), A 143 – A 159] that characterize division
rules which are solutions of the cooperative bankruptcy game.

Keywords: cooperative games; interval data; bankruptcy prob-
lems.

JEL Classification: C71.

1 Introduction

Bankruptcy problems provide a simple and effective mathematical model to
describe situations where an estate has to be divided among a fixed number
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of individuals (creditors or players) who advance claims with total value too
large to be compensated by the value of the estate. The foundations for
these models are set in the works of O’Neill [8] and Aumann and Maschler
[2]. These authors analyze the seemingly mysterious solutions for specific
instances of a bankruptcy problem prescribed in the Babylonian Talmud and
find that the answers given by the ancient book are in fact solutions of a coop-
erative game, called the bankruptcy game, played by the creditors. Curiel,
Maschler and Tijs [6] consolidate the links between bankruptcy problems
and cooperative game theory by studying the whole class of division rules for
bankruptcy problems which are solutions of the corresponding bankruptcy
game. They provide a characterization of such rules by means of a trunca-
tion property: the solution based on the bankruptcy game are those, and
only those, that ignore claims which are higher than the whole estate, and
reduce them to the value of the estate. The same work also defines a simple
characterization for a division rule to provide allocations which belong to the
core of the bankruptcy game.

The bankruptcy problem studied in those pioneering works requires an
exact knowledge of all the terms of a bankruptcy problem. We allow instead
for a certain degree of uncertainty on the problem data. This may be the
result of limited knowledge of the bankruptcy problem by the creditors, who,
perhaps, will be able to determine the exact amount of the terms only at a
later time. Uncertainty takes here the form of interval uncertainty: the estate
and the claims are expressed as intervals, making up an interval bankruptcy
problem.

Our aim is to extend the general result by Curiel, Maschler and Tijs re-
garding bankruptcy problems with classical (or exact) data to the interval
setting. Can we characterize interval division rules which are solutions of
interval bankruptcy games? Special care is placed on the definitions of the
entities and of the operations in the new environment. In particular we pro-
vide two definitions for an interval bankruptcy game. The first proposal,
defined as the range of the classical bankruptcy games as the data for the
bankruptcy problem span the intervals is effective only under additional as-
sumptions. Another proposal for an interval bankruptcy game in which the
estate is fixed at its upper bound allows us to replicate the characterization
theorem of Curiel, Maschler and Tijs (Theorem 5 in [6]).

The remainder of the paper is organized as follows: Section 2 reviews the
definitions and the results of interest in the classical setting, Section 3 intro-
duces interval bankruptcy problems and their truncation properties. Sections
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4 and 5 deal, respectively, with two proposals for an interval bankruptcy
game. In both contexts we will seek to extend the characterizations theorem
contained in [6].

2 The classical setting

All the results in this section are taken from [6].
Consider the following basic elements of a bankruptcy problem:

The claimants (players) N = {1, 2, . . . , n}.

The estate E ∈ <+.

The claims d = (d1, d2, . . . , dn) ∈ <n
+.

Basic assumptions d1 ≤ d2 ≤ · · · ≤ dn and E ≤
∑

i∈N di.

A division rule f(E, d) = (f1(E, d), f2(E, d), . . . , fn(E, d)) such that

di ≥ fi(E, d) ≥ 0 for every i ∈ N and
∑
i∈N

fi(E, d) = E.

The bankruptcy game vE,d(S) = (E −
∑

i∈N\S di)+.

The truncated bankruptcy problem (E, d ∧ Ê) where

d ∧ Ê = (d1 ∧ E, d2 ∧ E, . . . , dn ∧ E)

and Ê = (E, . . . , E) ∈ <n
+.

We denote by BRN the set of all bankruptcy problems (E, d) with claimants
N .

Definition 2.1. A division rule f for a bankruptcy problem is a game theo-
retic division rule if there is a solution concept g for cooperative games such
that

f(E, d) = g(vE,d) for every (E, d) ∈ BRN .

We denote with BRGN the set of all bankruptcy games (N, vE,d).

Theorem 2.1. ([6], Theorem 5) A division rule f for bankruptcy problems
is a game theoretic division rule if and only if f(E, d) = f(E, d ∧ E).
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3 The interval setting

The basic notions for an interval bankruptcy problem are:

A set of claimants (players) N = {1, 2, . . . , n}.

An interval estate [E] = [E,E].

A set of interval claims [d] = ([d1, d1], [d2, d2], . . . , [dn, dn]).

Basic assumption

E ≤
∑
i∈N

di. (1)

We denote by IN the set of n-dimensional vectors of closed and bounded
intervals, and by IBRN the family of all interval bankruptcy problems with
claimant set N .

Definition 3.1. An interval bankruptcy rule determines, for each interval
estate [E] and each set of interval claims [d] a set of interval rewards

F([E], [d]) = (F1([E], [d]),F2([E], [d]), . . . ,Fn([E], [d])) ∈ IN

which are:

Reasonable, i.e. [0, 0] � Fi([E], [d]) � [di, di] for each i ∈ N ,

Efficient, i.e.
∑

i∈N Fi([E], [d]) = [E].

We now define two interval bankruptcy rules based on a classical bankruptcy
rule f which satisfies reasonable monotonicity assumptions. Denote with d−i

the set of all claims but the claim of the i-th player, i.e. d−i = {d1, . . . , di−1, di+1, . . . , dn}.
Our f will satisfy the following:

Assumption 3.1. For every i ∈ N , the component fi of the classical bankruptcy
rule f is weakly increasing in E and di, while it is weakly decreasing in each
dj, j ∈ N \ {i}.

In the appendix we show that the most important bankruptcy rules verify
Assumption 3.1.

First of all, consider the interval bankruptcy rule based on f as

F(f ; [E], [d]) = (Fi(f ; [E], [d]))i∈N
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where

Fi(f ; [E], [d]) = [fi(E, di, d−i), fi(E, di, d−i)] for every i ∈ N . (2)

We say that an interval with a given property is tight if each proper subset
of the same interval does not satisfy the same property.

Proposition 3.1. Suppose f satisfies Assumption 3.1, then

(i) For each i ∈ N , Ẽ ∈ [E] and d̃ ∈ [d], we have

fi(Ẽ, d̃) ∈ Fi(f ; [E], [d])

and, for all i ∈ N , the interval Fi(f ; [E], [d]) is tight.

(ii) F(f, ·, ·) is efficient and reasonable.

Proof. To prove (i) consider the following chain of inequalities valid by As-
sumption 3.1 for each i ∈ N , Ẽ ∈ [E] and d̃ ∈ [d]:

fi(E, di, d−i) ≤ fi(E, di, d̃−i) ≤ fi(Ẽ, d̃) ≤ fi(E, di, d̃−i) ≤ fi(E, di, d−i) .

Since the extremes are attained, they define the smallest interval with this
property.

To prove (ii) simply note that the classical bankruptcy rule f is reason-
able, and therefore, for each i ∈ N ,

di ≥ fi(E, di, d−i) ≥ 0 ; di ≥ fi(E, di, d−i) ≥ 0,

and efficient, so∑
i∈N

fi(E, di, d−i) = E ;
∑
i∈N

fi(E, di, d−i) = E.

Next, we focus on truncation properties for interval claims. Any claim
that exceeds the highest possible estate E may be considered excessive. Ac-
cordingly, we truncate all claims with respect to this single value. Denote

[d] ∧ E =
(
[di, di] ∧ [E,E]

)
i∈N

=
(
[di ∧ E, di ∧ E]

)
i∈N
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Definition 3.2. The truncated interval bankruptcy rule based on f is given
by

F t(f ; [E], [d]) = F(f ; [E], [d] ∧ E). (3)

The truncated interval rule plays an important role when the underlying
classical division rule f is game theoretic.

Proposition 3.2. Suppose that f is a game theoretic division rule satisfying
Assumption 3.1. Then

(i) The interval bankruptcy rule coincides with the truncated bankruptcy
rule, i.e.

F t(f ; [E], [d]) = F(f ; [E], [d]) ; (4)

(ii) For each i ∈ N , Ẽ ∈ [E] and d̃ ∈ [d], we have

fi(Ẽ, d̃) ∈ F t
i (f ; [E], [d])

and, for all i ∈ N , the interval F t
i (f, [E], [d]) is tight;

(iii) F t(f ; ·, ·) is efficient and reasonable.

Proof. To prove (i), note that, since f is game theoretic

F(f ; [E], [d]) =
(
[fi(E, di, d−i), fi(E, di, d−i)]

)
i∈N

=(
[fi(E, di ∧ E, d−i ∧ E), fi(E, di ∧ E, d−i ∧ E)]

)
i∈N

=(
[fi(E, di ∧ E, d−i ∧ E), fi(E, di ∧ E, d−i ∧ E)]

)
i∈N

=

F(f ; [E], [d] ∧ E) = F t(f ; [E], [d]).

The last but one inequality is justified by the fact that, for any x ∈ R

(x ∧ E) ∧ E = x ∧ E.

To show (ii) consider the following chain of inequalities valid for each i ∈ N ,
Ẽ ∈ [E] and d̃ ∈ [d]:

fi(E, di ∧ E, d−i ∧ E) = fi(E, di ∧ E, d−i ∧ E) = fi(E, di, d−i) ≤
fi(Ẽ, d̃) ≤ fi(E, di, d−i) = fi(E, di ∧ E, d−i ∧ E) . (5)
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The inequalities in the middle derive from the monotonicity property of f ,
while the fact that f is a game theoretic rule and Theorem 2.1 explain the
equality signs at the extremes. Once again, the extremes are attained.

Regarding (iii), we have

di ≥ fi(E, di, d−i) = fi(E, di ∧ E, d−i ∧ E) = fi(E, di ∧ E, d−i ∧ E) ≥ 0 ,

di ≥ fi(E, di, d−i) = fi(E, di ∧ E, d−i ∧ E) ≥ 0 ,

while∑
i∈N

fi(E, di ∧ E, d−i ∧ E) =
∑
i∈N

fi(E, di ∧ E, d−i ∧ E) =
∑
i∈N

fi(E, di, d−i) = E ,∑
i∈N

fi(E, di ∧ E, d−i ∧ E) =
∑
i∈N

fi(E, di, d−i) = E .

4 Interval Bankruptcy Games and Game The-

oretic Rules

We now extend the notion of bankruptcy game to the specific interval setting
we are considering. An interval bankruptcy game has already been defined in
[5] for the case where only the claims are expressed in the form of intervals,
while the estate is exact.

Definition 4.1. The interval bankruptcy game for the interval estate [E] and
interval claims [d] is defined, for each S ⊂ N , by

w[E],[d](S) = [vE,d(S), vE,d(S)] =E − ∑
i∈N\S

di


+

,

E − ∑
i∈N\S

di


+

 . (6)

For each S ⊂ N , the interval is delimited by what is left to coalition S
in the worst and in the best possible situation, respectively, after the players
outside S have been compensated with their full claim. Note that w[E],[d]

coincides with the interval bankruptcy game defined in [5] when [E] shrinks
to a single value.
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We denote by IBRGN the family of all interval bankruptcy games with
claimant set N . We now show that the interval given in the definition is
proper and every classical bankruptcy game originating from the estate [E]
and claims [d] is a selection of the interval bankruptcy game as defined in [1].

Proposition 4.1. For each S ⊂ N , each Ẽ ∈ [E] and each d̃ ∈ [d]

vẼ,d̃(S) ∈ w[E],[d](S) for each S ⊂ N ,

and each interval w[E],[d](S) is tight.

Proof. Simply note that, for each S ⊂ N , each Ẽ ∈ [E] and each d̃ ∈ [d],

E −
∑

i∈N\S

di ≤ Ẽ −
∑

i∈N\S

d̃i ≤ E −
∑

i∈N\S

di

and the chain of inequalities remains valid if we take the positive parts.
Therefore

w[E],[d](S) ≤ vẼ,d̃(S) ≤ w[E],[d](S).

Having extended the notions of division rule and bankruptcy game, re-
spectively, to the interval setting, we may hope that an analogous of Theorem
2.1 would hold, namely that the coincidence between a division rule and its
truncated form is a necessary and sufficient condition for the rule to be a
solution concept for interval bankruptcy games. The following counterex-
ample, however, highlights a situation where condition (4) holds, but the
division rule cannot be based on the interval bankruptcy game. Therefore, a
straightforward extension of Theorem 3 is not possible.

Example 4.1. Compare the following two situations with two claimants.

Situation a [E,E]a = [6, 8], [d1, d1]a = [6, 7] and [d2, d2]a = [2, 3]

Situation b [E,E]b = [6, 8], [d1, d1]b = [6, 7.5] and [d2, d2]b = [2, 3]

If we consider f to be the contested garment (CG) rule, the truncation
property (4) holds by (iii) in Proposition 3.2. However

F(CG; [E]a, [d]a) = ([4.5, 6.5], [1, 2.5]) 6=
([4.5, 6.75], [1, 2.5]) = F(CG; [E]b, [d]b) (7)

8



On the other hand, the two interval games w[E]a,[d]a and w[E]b,[d]b coincide,
since

w[E]a,[d]a({1}) = w[E]b,[d]b({1}) = [3, 6]

w[E]a,[d]a({2}) = w[E]b,[d]b({2}) = [0, 2]

w[E]a,[d]a({1, 2}) = w[E]b,[d]b({1, 2}) = [0, 0]

In conclusion we cannot express F(CG; ·, ·) as a solution concept of w.

The trouble seems to be lying in the given definition of interval bankruptcy
game, which is not able to deliver information about the upper claims di when
these are enclosed between the lower and the upper estate. We overcome this
problem by considering another interval game based entirely on the upper
estate E.

Definition 4.2. The upper estate interval bankruptcy game (UEIBG) wu
[E],[d]

for the interval bankruptcy situation ([E], [d]) is defined as

wu
[E],[d](N) = [E,E] and, for S $ N (8)

wu
[E],[d](S) =

[
vE,d(S), vE,d(S)

]
=

(E −
∑

i∈N\S

di)+, (E −
∑

i∈N\S

di)+

 . (9)

We verify that the definition is correct, and the set of classical bankruptcy
games with parameters Ẽ and d̃ in the ranges [E] and [d], respectively, can
be described in terms of this interval game.

Proposition 4.2. For each Ẽ ∈ [E] and d̃ ∈ [d],

vẼ,d̃(N) ∈ wu
[E],[d](N) and, for each S $ N ,

vẼ,d̃(S) ∈
[
(wu

[E],[d](S)− wu
[E],[d](N) + wu

[E],[d](N))+, w
u
[E],[d](S)

]
(10)

Proof. We need to show that, for S $ N ,

(wu
[E],[d](S)− wu

[E],[d](N) + wu
[E],[d](N))+ = (E −

∑
i∈N\S

di)+ . (11)

Simply note that we can write the first term as(E −
∑

i∈N\S

di)+ − E + E


+

.
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If
∑

i∈N\S di ≤ E this coincides with the right-hand side in (11). Otherwise,∑
i∈N\S di > E, and then(E −

∑
i∈N\S

di)+ − E + E


+

= (E − E)+ = 0

which, again coincides with the right-hand side in (11) in the present sit-
uation. We proved already in Proposition 4.1 that for each Ẽ ∈ [E] and
d̃ ∈ [d],

(E −
∑

i∈N\S

di)+ ≤ vẼ,d̃ ≤ (E −
∑

i∈N\S

di)+ ,

and, therefore, (10) holds.

Just as in the previous section, we consider a truncated form.

Definition 4.3. The truncated upper estate interval bankruptcy game (TUEIBG)
is defined as wu

[E],[d]∧E
. More in detail:

wu
[E],[d]∧E

(N) = wu
[E],[d](N) = [E,E] and, for S $ N ,

wu
[E],[d]∧E

(S) =
[
vE,d∧E(S), vE,d∧E(S)

]
=

(E −
∑

i∈N\S

(di ∧ E))+, (E −
∑

i∈N\S

(di ∧ E))+

 .

As in the previous case, the two games coincide.

Proposition 4.3. The games UEIBG and TUEIBG coincide, i.e. wu
[E],[d]∧E

(S) =

wu
[E],[d](S) for all S ⊂ N .

Proof. We need to prove thatE − ∑
i∈N\S

(di ∧ E)


+

=

E − ∑
i∈N\S

di


+

; (12)

E − ∑
i∈N\S

(di ∧ E)


+

=

E − ∑
i∈N\S

di


+

. (13)

We distinguish three cases.
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Case 1 di ≤ E for every i ∈ N \ S. In this case, no truncation occurs and
both sides of (12) and (13) are identical.

Case 2 di ≤ E for every i ∈ N \ S and dj > E for some j ∈ N \ S. No
truncation occurs for the lower bounds of the claims w.r.t. the estate,
so (13) holds. Regarding (12), we have

E −
∑

i∈N\S

(di ∧ E) ≤ E − dj ∧ E = E − E = 0 ,

E −
∑

i∈N\S

di ≤ E − dj ≤ 0 ,

and (12) holds, both terms being null.

Case 3 dj > E for some j ∈ N \ S. We have

E −
∑

i∈N\S

(di ∧ E) ≤ E − dj ∧ E = E − E = 0

and
E −

∑
i∈N\S

di ≤ E − dj ≤ 0 .

Therefore, the positive parts of both terms are null, and (13) holds.
Identity (12) holds because both terms are non negative and they are
not greater than the corresponding terms in (13). Consequently, they
are both null.

We now consider those division rules which can be based on the interval
games just introduced.

Definition 4.4. An interval division rule Fu is an interval game theoretic
rule (IGTR) if there exists a solution concept G for interval cooperative games
such that

Fu([E], [d]) = G(wu
[E],[d]).

We are now able to state a full extension of Theorem 2.1 We begin with
the following
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Theorem 4.4. An interval division rule based on the classical bankruptcy
rule f is game theoretic if and only if the rule coincides with the truncated
form, i.e. (4) holds.

Proof. Suppose that F(f ; ·, ·) is game theoretic. Then, for any interval estate
[E] and claims [d]

F(f ; [E], [d]) = G(wu
[E],[d]) = G(wu

[E],[d]∧E
) =

F(f ; [E], [d] ∧ E) = F t(f ; [E], [d])

and, therefore (4) holds.
Conversely, suppose that (4) holds, and consider the following solution

concept defined for each w ∈ IGN by

G(w) =
(
[fi(w(N),Mw

i + ew
i ,M

w

−i + ew
i ), fi(w(N),M

w

i + ew
i ,M

w
−i + ew

i )]
)

i∈N

where, for any i ∈ N ,

M
w

i = w(N)− w(N − i); Mw
i = w(N)− w(N − i);

ew
i =

(
w(N)−Mw

i −
∑

j 6=iM
w
j

)
+

n
;

ew
i =

(
w(N)−Mw

i −
∑

j 6=iM
w

j

)
+

n
.

When an UEIBG replaces the generic game w, we obtain w(N) = E, w(N) =
E, and, for every i ∈ N

M
wu

i = di ∧ E; Mwu

i = di ∧ E; (14)

ewu

i = 0; ewu

i = 0. (15)

To prove (14), note that, for any i ∈ N

M
wu

i = wu(N)− wu(N − i) = E − (E − di)+ = di ∧ E

and
Mwu

i = wu(N)− wu(N − i) = E − (E − di)+ = di ∧ E.
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Passing to the first equation in (15), we can write

E − (di ∧ E)−
∑
j 6=i

(di ∧ E) ≤ E −
∑
i∈N

(di ∧ E).

Now, if di ≤ E for any i ∈ N , then

E −
∑
i∈N

(di ∧ E) = E −
∑
i∈N

di ≤ 0

by the basic assumption on interval bankruptcy problems. Otherwise, dj > E
for some j ∈ N , and

E −
∑
i∈N

(di ∧ E) ≤ E − (dj ∧ E) = E − E = 0.

In both cases we deal with non positive quantities, and therefore ewu

i = 0 for
every i ∈ N .

To prove the second inequality in (15) simply note that

E − (di ∧ E)−
∑
j 6=i

(di ∧ E) ≤ E −
∑
i∈N

(di ∧ E) ≤ 0.

Therefore ewu

i = 0 for every i ∈ N .
In conclusion, we have verified that

G(wu
[E],[d]) =

(
[fi(E, di ∧ E, d−i ∧ E), fi(E, di ∧ E, d−i ∧ E)]

)
i∈N

=

F t(f ; [E], [d]),

and, since (4) holds,
F(f ; [E], [d]) = G(wu

[E],[d]).

Therefore, the division rule is game theoretic.

Example 4.2 (Example 4.1 continued). In this case

wu
[E]a,[d]a({2}) = [0.5, 2] 6= [1, 2] = wu

[E]b,[d]b
({2}) .

Therefore, relation (4) does not contradict the general result.

Corollary 4.5. If f is game theoretic, then F(f ; ·, ·) is game theoretic.

Proof. If f is game theoretic, then (4) holds by Proposition 3.2. Apply
Theorem 4.4.

13



A Most bankruptcy rules satisfy Assumption

3.1

It can be checked that the most important bankruptcy rules verify assump-
tion 3.1:

The proportional rule defined as

PROPi(E, d) =
diE∑
i∈N di

=
diE

di +
∑

j 6=i dj

.

Just take the partial derivatives:

∂PROPi

∂E
=

di∑
i∈N di

> 0;

∂PROPi

∂di

=
(
∑

j 6=i dj)E

(
∑

i∈N di)2
> 0;

∂PROPi

∂dj

=
−diE

(
∑

i∈N di)2
< 0.

The constrained equal awards rule defined as

CEAi(E, d) = min{α, di}

with α > 0 such that
∑
i∈N

CEAi(E, d) = E.

Here it is more convenient to think in terms of the hydraulic rationing
setting proposed by Kaminski [7]. In this context, a quantity E of
water is poured into n communicating vessels, with heights given by
the vector d, as illustrated in Figure 11.

The elements of the bankruptcy problem are in turn increased by a
small quantity ∆ > 0.

• If E is increased, then the vessels of the players J such that dj > α
are increased by ∆/|{j : dj > α}| each2.

1In this picture, α has been replaced by a, and ∆ by D
2Note the increase ∆ is so small that no vessel gets filled up, and a similar precaution

will be used in the sequel.
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E

d1 d2 d3

+D
-D/2

-D/2

a

Figure 1: Illustration of the CEA rule and its monotonicity properties in the
claims

• If di ≥ α an increase in the claims of player i does not affect the
reward of any player.

• If di < α, then an increase of player i’s claims by ∆ will increase
her award by the same amount. The level α will decrease by
∆/|{j : dj ≥ α}| for all players j with dj ≥ α. All the other
players will have their reward unaltered.

The constrained equal loss rule defined by

CELi(E, d) = max{di − β, 0}

with β such that
∑
i∈N

CELi(E, d) = E.

Once again, we recur to a hydraulic representation (see Figure 23), and
increase each quantity by a small amount ∆ > 0.

• An increase in E will increase the reward of each player such i
that di ≥ β. The other rewards do not change.

• If di < β, then an increase in the claim of player i will produce no
effect.

3In this picture, β has been replaced by b, and ∆ by D.
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E

d1 d2 d3
b

+D-D/2

-D/2

Figure 2: Illustration of the CEL rule and its monotonicity properties in the
claims

• If di ≥ β, an increase by ∆ of player i’s claim will decrease β
by ∆/|{j : dj > β}|. Therefore, for the players j with dj > β
the reward will decrease by the same amount. Player i’s reward,
instead, will increase since

∆− ∆

|{j : dj > β}|
> 0,

All the other players will get the same as before.

The contested garment rule defined as follows. Define E∗ =
∑

i∈N di/2.

If E ≤ E∗ then
CGi(E, d) = CEAi(E, d/2) (16)

where d/2 = (d1/2, d2/2, . . . , dn/2). If E > E∗ then

CGi(E, d) = CELi(E − E∗, d/2) + d1/2. (17)

If E < E∗ then (16) shares the properties of CEA, while if E > E∗

then (17) inherits the properties of CEL. Extra care is needed for the
border case E = E∗ and we recur to the hydraulic representation (see
Figure 3). If E is increased by ∆, then player n’s reward will increase
by the same amount and the other rewards remain unchanged. If any

16



claim is increased by ∆, no reward changes (not even the reward of the
player with the claim increased).

E+D

d2/2

d3 +DE*
d2/2

d1/2

d1/2

Figure 3: Illustration of the CG rule and its monotonicity properties in the
estate when E = E∗
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