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Overview

Theorem (Our main result)
Interval graph isomorphism can be decided in logspace.1

Previous results:
• Linear time [Lueker, Booth 79]

• In AC2 [Klein 96]

First step in both cases: Compute a perfect elimination order.

Not obvious how to do that in logspace!

1In fact, we compute canonical interval representations. Details follow.
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Interval graphs

Definition (Interval Graph)
A graph G is an interval graph iff it is (isomorphic to) the
intersection graph of a set I of intervals.
Such an I is an interval representation of G.

• Each interval corresponds to a vertex.
• Two vertices are adjacent iff the corresponding intervals

intersect.

G:

c

b

d

 ƒ

e

I:

0 1 2 3

b


c d e ƒ

• An interval representation I of G is minimal,
if no interval representation of G has fewer points.
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Maxcliques
Definition
A maxclique is an inclusion-maximal clique.

Lemma
If I is a minimal interval representation of G,
then the points of I correspond to the maxcliques of G.

Lemma
Each maxclique of an interval graph G can be represented as
the common neighborhood of two vertices.
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Bundles of maxcliques

• For a vertex  ∈ V(G), the bundle B is the set of those
maxcliques that contain .

• The bundle hypergraph BG of G has the maxcliques as
vertices and the bundles as hyperedges.

G:

c

b

d



e

ƒ
I:

0 1 2 3

b


c d e ƒ

BG:

C0

Bc

C1

Bd

C2

Be

C3

Bƒ

Bb B

Lemma
For every minimal interval representation I of G:
I ∼= BG as hypergraphs.
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Interval hypergraphs

• A hypergraph H is an interval hypergraph
iff it is isomorphic to a set of intervals I.

• An isomorphism from H to I induces an interval labeling ℓ
that maps hyperedges to intervals.

0 1 2 3 4 5 6

 e ƒ


j
b
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d

g h

• We compute canonical interval labelings in logspace:
For each interval hypergraph H we compute an interval
labeling ℓH such that H ∼= K⇔HℓH = KℓK .
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Step 1: Decomposition into overlap components

• Two hyperedges A,B overlap (A Ç B), iff A ∩ B /∈ {∅, A, B}

• Two hyperedges are in the same overlap component,
iff they are connected by an overlap-path.

• Two points are in the same slot of an overlap component,
iff they belong to the same edges of this component.

• Overlap components form a tree:
Each component is located at a slot of its parent.
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Step 2: Canonizing overlap components
Challenge: compute a canonical interval labeling for a single
overlap component

Lemma
The interval representation of an overlap component is unique
up to reversing. Both admissible interval labelings can be
computed in logspace.

Sketch of the algorithm:
1 Identify the two side-slots, take one as leftmost

2 For each hyperedge E and slots S1, S2 ⊆ E, S 6⊆ E:
S1 is left (right) of S iff S2 is left (right) of S

• This yields a linear order on the slots [Laubner 09]
• Compute this order as undirected reachability in an

auxiliary graph [Reingold 05]
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Step 3: Canonizing whole interval hypergraphs
• Idea: Canonize the tree of overlap components
• Complication: Restrictions on the order of children

• Solution: Slot-nodes and connector-nodes, colors

• Asymmetric components: All slots are low,
colored by distance to left side

• Symmetric components: Slots are low/middle/high
and colored by distance to the nearest side
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Results

Theorem
Canonical interval labelings of interval (hyper)graphs can be
computed in logspace.

Corollary
Recognition, isomorphism and automorphism problems of
interval (hyper)graphs and convex graphs are in logspace.

Theorem
For proper/unit interval graphs, canonical proper/unit interval
representations can be computed in logspace.

Theorem
Recognition, isomorphism and automorphism problems of the
mentioned graph classes are hard for logspace.
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Open problems

• Circular arc graphs:
Intersection graphs of arcs on a circle

• Recognition in linear time [Kaplan, Nussbaum 06]
• But: Algorithms require different techniques

• Rooted directed path graphs:
Intersection graphs of paths in a rooted directed tree

• Maxcliques can be recognized
• But: Ordering of maxcliques within overlap

components fails
• Generalizations to 2 dimensions:

• Boxicity 2 graphs are isomorphism complete
[Uehara 08]

• What about (unit) squares/circles?
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Thank you!
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