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Abstract:    To improve the multiple performance indices of practical engineering structures under uncertainties, an interval 

constrained multiobjective optimization model was constructed with structural performance indices included in objectives and 

constraints being functions of the interval uncertain parameters. An algorithm integrating radial basis function (RBF), interval 

analysis, and non-dominated sorting genetic algorithm (NSGA-II) was put forward to locate the Pareto-optimal solutions to the 

interval multiobjective optimization model. A series of RBFs were constructed based on the Latin hypercube experimental design 

(LHED) and finite element analysis (FEA), which were then integrated with interval analysis to compute the interval bounds of the 

objective and constraint functions under the fluctuation of uncertain parameters. Then the fitness of every individual during the 

NSGA-II-based optimization could be obtained. The case study on the optimization of the mechanical performance of a press 

slider with uncertain material properties demonstrated the feasibility and validity of the proposed methodology. 
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1  Introduction 

 

Although the deterministic structural optimiza-

tion has been widely studied and applied to some 

engineering problems, a variety of uncertainties are 

inherent in the material properties, manufacturing 

errors, loading conditions, and so on, for the design of 

many practical structures, which will result in fluctu-

ations of their mechanical performance. In the worst 

case, an optimal solution to the deterministic model 

may become infeasible in engineering practice due to 

the existence of uncertainties. Hence, it is necessary 

and important to objectively describe the uncertain-

ties in the modeling of structural optimization prob-

lems and develop corresponding uncertain optimiza-

tion algorithms to obtain solutions applicable in en-

gineering (Ishibuchi and Tanaka, 1990; Schuëller and 

Jensen, 2008; Guo et al., 2009; Roy et al., 2009; 

Wang and Huang, 2010; Salehghaffari et al., 2013).  

The methods appropriate for modeling the un-

certainties in structural optimization include the 

probabilistic method (Bozkurt Gönen et al., 2012), 

fuzzy set method (Luo et al., 2006; Cheng et al., 

2008), and convex models (Ben-Haim, 1995; Yao et 
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al., 2011). For the probabilistic method, the uncertain 

parameters are treated as random variables with their 

probability distribution functions defined according 

to the known variation trends of these uncertain pa-

rameters (Luo et al., 2011; Tootkaboni et al., 2012). 

For fuzzy programming, the uncertain parameters are 

regarded as fuzzy variables, the membership func-

tions of which also need to be known (Liu and 

Iwamura, 2001). However, it is usually difficult and 

costly to specify a precise probability distribution or 

membership function for an uncertain parameter for 

many practical structures, which greatly restricts the 

application of these methods in engineering. To 

overcome the limitations of these methods, convex 

models, such as ellipsoid (Luo et al., 2009) and in-

terval models (Chen et al., 2012), which only require 

the bounds of uncertain parameters, have been de-

veloped. The interval method has attracted great at-

tention from scholars all over the world, and it has 

been successfully applied in structural optimization 

involving uncertain parameters due to the fact that the 

determination of the lower and upper bounds of a 

parameter interval is much easier than the determina-

tion of a precise probability distribution or member-

ship function (Jiang et al., 2008a; 2008b; 2008c; 

Wang et al., 2011; Wang and Li, 2012; Li et al., 

2013b).  

Most of the existing research work on the in-

terval model-based structural optimization aimed at 

improving only one performance index of a structure, 

which did not accord with the fact that the practical 

design of a structure usually needs to improve more 

than one of its performance indices. Thus, a multi-

objective interval optimization model, including mul-

tiple performance indices of a structure in the objec-

tive and constraint functions, should be established to 

obtain a structure with good comprehensive perfor-

mance. For the generality of the interval multiobjec-

tive optimization model, the uncertain parameters 

should be included in both the objective and con-

straint functions because the performance indices of a 

structure both in the objectives and constraints may be 

related with the uncertain parameters. To achieve the 

objective, an interval multiobjective optimization 

method for structures was proposed (Li et al., 2013a), 

which utilized the adaptive Kriging approximations to 

compute the values of objective and constraint func-

tions. However, the algorithm for solving the interval 

multiobjective optimization model involves a double- 

loop nested optimization procedure, the associated 

computational cost of which is still prohibitive. The 

expensive computational cost of the interval optimi-

zation algorithm also greatly restricts the application 

of interval optimization theory and method in the 

design of practical engineering structures.  

To overcome the limitations of the present 

works, an intuitive idea is to construct approximate 

models for efficiently computing the structural per-

formance indices of a design scheme and reduce the 

number of computationally expensive finite element 

analyses (FEAs) involved in the optimization proce-

dure. Approximate models, such as the back propa-

gation neural network (BPNN) (Cheng et al., 2013), 

Kriging model (de Oliveira et al., 2013), regression 

model, and radial basis function (RBF) (Sun et al., 

2011; Yilmaz and Kaynar, 2011), which are fre-

quently utilized for the fast estimation of objective 

and constraint functions in the traditional deterministic 

optimization, can also be applied to the interval mul-

tiobjective optimization of structures. In the presented 

work, RBF is chosen as a surrogate model of FEA for 

the computation of objective and constraint functions 

considering the non-singularity of its coefficient ma-

trix as well as its good fitting precision and computa-

tional efficiency (Boyd, 2011). Qasem et al. (2012) 

developed the RBF network based on time variant 

multiobjective particle swarm optimization for med-

ical disease diagnosis (Qasem and Shamsuddin, 

2011a) and proposed several multiobjective hybrid 

evolutionary algorithms for RBF network design 

(Qasem and Shamsuddin, 2011b), which demonstrated 

an appropriate balance between accuracy and sim-

plicity. However, the main concern of the RBF in our 

work is its fitting precision. The encryption technol-

ogy of sample points similar to that employed in the 

outer layer update of Kriging in our previous work (Li 

et al., 2014) is utilized here to ensure the fitting pre-

cision of the RBF. Specifically, the construction of 

the RBF is an iterative process to achieve a satisfac-

tory fitting precision. The test points for verifying the 

fitting precision of the current RBF are incorporated 

into the sample point set for generating the next RBF 

when the global precision of the current RBF is un-

satisfactory, while a small group of sample points 

within the local region of the maximum error are 

incorporated into the sample point set when the local 

precision is unsatisfactory. Furthermore, it has been 

noted that most uncertainties, such as the fluctuation 
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of the dimension parameters or material properties of 

a structure, are usually very small compared with 

their nominal values in engineering. Hence, the in-

terval analysis method (Qiu and Wang, 2003) is also 

introduced to calculate the interval bounds of the 

performance indices in the objective and constraint 

functions to avoid the nested optimization and further 

enhance the optimization efficiency since it has been 

proved to be effective when the uncertainty level of 

uncertain parameters is small (Jiang et al., 2007b; Wu 

et al., 2013).  

There is no single global solution to a multi-

objective problem, and it is often necessary to de-

termine a set of Pareto optimal points. Readers can 

refer to the reference (Marler and Arora, 2004) for 

understanding the concept of Pareto optimality. The 

non-dominated sorting genetic algorithm (NSGA-II) 

based on the concept of Pareto optimality (Deb, 2001) 

is utilized for locating the Pareto-optimal solutions to 

the interval multiobjective optimization model in our 

work. The fitness value of every individual in the 

evolution of NSGA is computed by integrating RBF 

models with the interval analysis method. 

In engineering practice, the final design of a 

structure is chosen from the Pareto-optimal solutions 

located by numerical algorithms according to the 

experts’ knowledge. The design parameters can be 

adjusted slightly in consideration of the manufacture 

and assembly constraints. Thus, it is reasonable to 

firstly locate the Pareto-optimal solutions to the in-

terval multiobjective optimization model based on 

approximate models, which provide comprehensive 

candidate solutions for decision-making. The feasi-

bility and superiority of the final scheme should be 

further verified by FEA or performance measurement 

before application in engineering since its parameter 

values will usually be adjusted on the basis of a cho-

sen Pareto-optimal solution. 

 

 

2  Multiobjective optimization model of un-

certain structures 

2.1  Interval multiobjective optimization model of 

structures 

Supposing that all the uncertainties of a structure 

are described as interval parameters, the general in-

terval multiobjective optimization model can be ex-

pressed as 
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where x is the n-dimensional design vector while xl and 

xr are the allowable minimum and maximum vectors of 

x, respectively. U is the Nu-dimensional uncertain 

vector with all its components Uk being interval num-

bers. The superscripts “L” and “R” denote the left and 

right bounds of the interval, respectively. fi(x, U) (i=1, 

2, …, No) and gj(x, U) (j=1, 2, …, Nc) are the objective 

and constraint functions, the values of which depend 

on the design vector x and the uncertain vector U, 

respectively. No, Nc, and Nu are the number of objec-

tives, constraints, and uncertain parameters, respec-

tively. Bj is the given interval constant of the jth con-

straint, which can also be a deterministic value.  

2.2  Transformation of interval optimization 

model into deterministic one 

The values of objective and constraint functions 

in Eq. (1) corresponding to a certain design vector x 

are interval numbers since they are functions of the 

design vector x and uncertain vector U. To solve the 

interval optimization model in Eq. (1), a direct ap-

proach is to transform it into a deterministic optimi-

zation model so that it can be solved by traditional 

deterministic optimization algorithms. 

2.2.1  Transformation of interval objective functions 

by interval ranking relation 

The interval ranking relation “  ” proposed by 

Hu and Wang (2006) has proved to satisfy the basic 

properties, such as reflexivity, anti-symmetry, and 

comparability, and it is capable of ranking any two 

interval numbers, which is defined as follows:  

Definition 1    For two interval numbers A and B, 

there is A  B if m(A)<m(B) or w(A)≥w(B) whenever 

m(A)=m(B), where m(A) and m(B) are the midpoints 

of A and B, while w(A) and w(B) are the widths of A 

and B, respectively. Furthermore, there is A  B if 

A  B and A≠B. 

According to Definition 1, the midpoints of the 

intervals determine the order of A and B when 

m(A)<m(B), while their interval widths determine the 

order when m(A)=m(B), and the interval with the 

smaller width is always regarded as the better. As far 
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as the minimization problem in Eq. (1) is concerned, 

the minimization of the interval objective functions 

equals the minimization of both their midpoints and 

widths. Hence, the objectives in Eq. (1) can be 

transformed into the following deterministic ones via 

Hu and Wang (2006)’s interval ranking relation “  ”.  
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where fi
M

(x) and fi
W

(x) are the midpoint and width of 

the ith interval objective function fi(x, U), while fi
L
(x) 

and fi
R
(x) are its left and right bounds, respectively, 

the values of which can be obtained by  
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where Γ={U|U
L≤U≤U

R
}. As can be seen, the uncer-

tain vector U in the objective functions is eliminated 

with the introduction of the inlayer optimization 

processes within the uncertain parameter space.  

2.2.2  Transformation of interval constraints by sat-

isfactory degree of interval 

The satisfactory degree of an interval (Jiang et 

al., 2007a) represents the possibility that one interval 

is smaller than another, which is often utilized for the 

comparison of various intervals. For intervals A and B, 

the satisfactory degree P(A≤B) is a fuzzy definition of 

the possibility that the interval A is smaller than the 

interval B, which is computed by 
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The constraints are generally made to be satis-

fied with a certain prescribed confidence level so that 

the uncertain constraints can be transformed into 

deterministic ones in probability optimization. Simi-

larly, the interval constraints in Eq. (1) can be trans-

formed into deterministic ones by satisfying them 

with a certain satisfactory level. Specifically, the 

uncertain constraints gj(x, U)≤Bj can be transformed 

as 
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where Gj is the jth interval constraint at x resulting 

from the uncertainties of vector U, P(Gj≤Bj) is a fuzzy 

definition of the possibility that the interval Gj is 

smaller than the interval Bj, and λj is a prescribed 

satisfactory degree level of the jth constraint. gj
L
(x) 

and gj
R
(x) are the left and right bounds of Gj, respec-

tively, the values of which can be obtained by  

 
L

R

( ) ( , ),min

( ) ( , ).max

j j

j j

g g

g g












U

U

x x U

x x U
                      (6) 

 

As can be seen, the uncertain vector U is elimi-

nated based on Eq. (6) and the transformed con-

straints in Eq. (5) are deterministic. 

2.3  Treatment of multiple objectives and constraints 

After the transformation of interval objective 

and constraint functions into deterministic ones by the 

interval ranking relation and satisfactory degree of 

interval, respectively, the multiobjective optimization 

model of an uncertain structure can be represented as 
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where ωi[0, 1] is the weighting factor, different 

values of which indicate different preferences to the 

minimization of the midpoints and the width of the 

objective functions caused by the uncertain parame-

ters. The parameter αi is introduced to ensure the non- 

negativity of fi
M

(x)+αi while the parameters βi and γi 
are normalization factors to ensure that the midpoint 

(fi
M

(x)+αi) pertains to the same order of magnitude as 

the width fi
W

(x), the values of which are dependent on 
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specific optimization problems. Specifically, there is 

always ωi=βi=1 for a deterministic objective function 

fi(x) irrelevant to the uncertain parameters since 

fi
W

(x)=0, fi(x)=fi
M

(x). 

The constrained multiobjective optimization 

model in Eq. (7) can be further transformed into the 

following unconstrained optimization model based on 

the penalty function method: 
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where ( )
ip

f x  is the penalty function corresponding 

to the ith objective, ψj is the penalty factor of the jth 

constraint that is often specified as a large value while 

φ can be represented as 
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3  Optimization algorithm based on RBF, in-

terval analysis, and NSGA-II 

 

As can be seen from Eqs. (3)–(8), the multi-

objective optimization problem of an uncertain 

structure is finally transformed into a double-level 

nested optimization problem. The computational cost 

for the solution of such a nested optimization problem 

is often extremely expensive since it always requires 

the computation of a structure’s performance indices 

involved in the objective and constraint functions for 

thousands and millions of times. The associated 

computational costs are usually prohibitive, espe-

cially when the structure is represented by a large and 

detailed finite element model. To overcome this dif-

ficulty, RBF is introduced to efficiently compute the 

structure’s performance indices instead of FEAs. On 

the other hand, interval analysis is also introduced to 

eliminate the inlayer optimization for computing the 

interval bounds of objective and constraint functions 

caused by the fluctuations of uncertain parameters 

since it proves to be feasible and valid when all the 

uncertain parameters considered in the optimization 

of a structure are at small uncertainty levels. Finally, a 

computationally fast NSGA-II is utilized to solve the 

optimization problem in Eq. (8). Every individual 

chromosome of the NSGA-II denotes a candidate 

design vector x, the fitness value of which can be 

efficiently obtained based on the RBF models and 

interval analyses. 

3.1  RBF for computing objectives and constraints 

3.1.1  Basic idea of the RBF 

The basic idea of the RBF is to approximate the 

response at a point x for any dimension Nd by the 

linear superposition of the basic function based on the 

response values of the sample points xi dN  (i=1, 

2, …, NS), where NS is the number of sample points. 

Supposing that the NS sample points with their real 

response values f(x1), f(x2), …, f(xNS
) are known, the 

RBF approximation of the following form is em-

ployed by 
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where ||·|| is the Euclidean distance, ωi is the weight of 

the ith basic function, and (·) is the Gauss basic 

function in the expression of 

2(|| ||) exp( || || ),i i   x x x x            (11) 

where γ≥0 is a positive constant. 
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the RBF that interpolates ((x1, f(x1)), (x2, f(x2)), …, 

(xNS
, f(xNS

))) can be obtained by solving 

 

,Φω f                               (13) 

 

where ω=[ω1, ω2, …, ωNS
]
T
 and f=[f(x1), f(x2), …, 

f(xNS
)]

T
 are the weighting and real response vectors, 

respectively. Hence, the weighting vector can be 

computed by ω=Φ−1
f if Φ is a reversible matrix, and 
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thus the RBF approximate model can be established 

by Eq. (10). 

3.1.2  Encryption technology of sample points 

To ensure the precision of the RBFs for compu-

ting structural performance indices in objective and 

constraint functions, the construction of every RBF 

here is an iterative process based on encryption 

technology. The multiple correlation coefficient R
2
=

 

2 2

1 1
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n n

i i i
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   is 

utilized to evaluate the global and local precisions of 

RBF, where yi=f(xi) is the performance index of the 

ith test point obtained by FEA while ( )i iy f x  is the 

corresponding value predicted by RBF, y  and STD 

are the mean and standard deviation of the test point 

set, respectively, and n is the number of the points in 

the test point set. The construction process of an RBF 

is illustrated in Fig. 1, where Prec_g and Prec_l are 

desired global and local precisions of RBF while Iencry 

is the indicator of encryption. The test points are in-

corporated into the sample point set when the global 

precision of the current RBF does not satisfy R
2
< 

Pre_g while a small group of sample points arranged 

by the Latin hypercube experimental design (LHED)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

within the local region of the biggest RMAE are in-

corporated into the sample point set when the local 

precision of the current RBF does not satisfy 

RMAE>Prec_l. 

3.2  Interval analysis for determining interval 

bounds of performance indices 

Based on interval mathematics, the interval 

vector U can be rewritten as 
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midpoint and width vectors of U, respectively. Hence, 

the uncertain vector U can be expressed as  
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Supposing that the uncertainty level of vector U 

is relatively small, the objective functions in Eq. (1) 

can be approximated in the uncertain field through the 

first-order Taylor expansion: 
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Fig. 1  Flowchart for construction of RBF 
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Substituting δuk[−1, 1]uk
W

 into Eq. (16), the 

interval of the objective function can be obtained 

through a natural interval extension: 
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Thus, the left and right bounds of the ith objec-

tive function at the point x can be obtained by 

 
u

u

M

L M W

1

M

R M W

1

o

( , )
( ) ( , ) ,

( , )
( ) ( , ) ,

1, 2, , .

N

i

i i k

k k

N

i

i i k

k k

f
f f u

u

f
f f u

u

i N






 




 









x u
x x u

x u
x x u



        (18) 

 

Similarly, the left and right bounds of the jth 

constraint function at the point x can be obtained by 
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       (19) 

In Eqs. (18) and (19), fj(x, u
M

) and gj(x, u
M

) can 

be obtained directly through a single evaluation of the 

objective and constraint functions at the point (x, u
M

) 

while the first derivatives of the objective and con-

straint functions regarding the uncertain vector can be 

obtained explicitly based on the RBF models con-

structed in Section 3.1. As a result, the intervals of the 

objective and constraint functions at the point x can 

be obtained without the time-consuming optimization 

processes to solve Eqs. (3) and (6) by applying in-

terval analysis, and only a small number of evalua-

tions on the objective and constraint functions are 

involved. 

3.3  NSGA-II for locating Pareto-optimal solutions 

The optimization problem of a structure as ex-

pressed in Eq. (8) has multiple objectives. There is no 

single optimal solution but rather a set of compromise 

solutions named Pareto-optimal to such an optimiza-

tion problem with multiple conflicting objectives. 

Among the Pareto-optimal solutions, a solution is 

worse with regard to at least another objective if it is 

better with regard to one objective. Thus, the final 

scheme of a structure should be determined by de-

signers on the basis of the performance evaluations on 

various Pareto-optimal solutions. The NSGA-II that 

integrates a powerful real-coded genetic algorithm 

(GA) with the concept of Pareto-optimality to pro-

duce solutions illustrative of the Pareto-optimal set is 

proposed to resolve the multiobjective optimization 

problem in Eq. (8). The algorithm is based on the 

classification of the individuals in categories ac-

cording to the concepts of Pareto-optimal set and 

non-domination. All the non-dominated individuals 

of a population are assigned rank 1. The remaining 

individuals are classified again and the non- 

dominated ones are assigned rank 2. Such a procedure 

of classification continues until all the individuals of a 

population are assigned a rank to the effect that indi-

viduals with lower ranks are superior to those with 

higher ranks.  

The selection policy employed in NSGA-II is a 

combination of the rank- and crowding distance- 

based tournament selection and the recombination- 

based elite strategy. Supposing that the population 

size of NSGA-II is Pop, all the individuals are sorted 

based on non-domination and assigned a crowding 

distance rank-wise. The basic idea of crowding dis-

tance is to compute the Euclidian distance between 

each individual in the same rank based on their No 

objective values in the No-dimensional objective 

space. The individuals on the boundaries are assigned 

infinite distances, so that they can be selected all the 

time. The offspring population generated from the 

crossover and mutation operations is combined with 

the current population for the selection operation to 

generate the next population, so that all the best in-

dividuals in previous and current populations can be 

reserved. Then the 2×Pop-sized population is sorted 

again based on non-domination and only the best Pop 

individuals are selected. The diversities of individuals 

are ensured by the crowding distance-based selection 

in descending order until the population size equals 

Pop if it exceeds Pop when all the individuals on the 

same rank are added. The flowchart of the solution 

procedure of the multiobjective optimization problem 

in Eq. (8) is illustrated in Fig. 2. 

3.4  Description of optimization algorithm 

The implementation of the proposed algorithm 

for solving the multiobjective structural optimization 
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problem under uncertainties proceeds as follows.  

Step 1.  Establish the interval multiobjective 

optimization model of a structure. The requirements 

for the mechanical properties of the structure are 

reflected in either objective or constraint functions. 

The feasible domains of the structural parameters to 

be optimized and the varying ranges of the uncer-

tainties influencing the mechanical properties of the 

structure are defined. 

Step 2.  Perform FEAs to acquire enough sample 

data, every group of which includes the values of 

design and interval variables as well as that of objec-

tive and constraint functions involved in the optimi-

zation model established in Step 1.  

Step 3.  Develop RBFs for computing the ob-

jective and constraint functions by utilizing the sam-

ple data acquired in Step 2 as training and test sample 

points. 

Step 4.  Construct the approximate deterministic 

optimization model by integrating interval ranking 

relation, satisfactory degree of interval, and the RBFs 

developed in Step 3. 

Step 5.  Find the Pareto-optimal solutions to the 

approximate deterministic optimization model by 

NSGA-II. The RBFs are integrated with interval 

analysis for efficiently computing the interval bounds 

of objective and constraint functions. The detailed 

flowchart of this step is illustrated in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6.  Choose a final parameter scheme of the 

structure from the Pareto-optimal solutions obtained 

in Step 5 based on expertise and the requirements or 

constraints in engineering practice. 

 

 

4  Application in optimization of a press 

slider 

 

As the key component of a high speed press, the 

performance of the slider mechanism, such as stiff-

ness, intensity, and weight, greatly influences the 

quality of stamping products, the service life of molds, 

the working performance of the press, and so on. 

Hence, it is important to optimize the mechanical 

performance of the slider in the design of a press, the 

objective of which is to achieve high stiffness and 

light weight. The material properties of a press slider, 

such as the elastic modulus and Poisson’s ratio, usu-

ally fluctuate within some small varying ranges, 

which will result in the fluctuation of the slider’s 

mechanical performance. Thus, it is an interval mul-

tiobjective optimization problem to improve the me-

chanical performance of a press slider.  

This section focuses on the dimension optimiza-

tion of the slider in a high speed ultra-precision press 

with double drive and four linkages as illustrated in 

Fig. 3, the objective of which is to achieve high  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2  Flowchart of multiobjective optimization based on RBF, interval analysis, and NSGA-II 

Start NSGA-II for the optimization process: initializations; Pop0 generation

k=0

k>max_Gen?

Crossover, mutation. Generate Popk+1 

k=k+1 

No

Yes

Select the best Pop individuals from PopkPopk+1 according to their fitness values 

Compute the fitness of individuals 

Compute the intervals of objective and 
constraint functions based on RBF  

models and interval analysis 

Fitness computation 

RBFs for computing 
gj(x, U) 

Compute the intervals of objective and constraint functions  
based on RBF models and interval analysis 

Compute the values of penalty functions

RBFs for computing fi(x, U) 

The Pareto 
optimal set

Compute the values of penalty functions 
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stiffness and light weight. The work table of the press 

is 2700 mm in length and 1000 mm in width. The 

slider mechanism is composed of a slider, a pin, a 

linkage, an axle, and a beam, where l and h are the 

space between two end linkages and the overall height 

of the slider, respectively. The stiffness of the slider is 

represented by the linear deflection in the length di-

rection of the slider produced under the stamping 

force perpendicular to its lower surface, which is 

denoted as d hereinafter. The measurement of the 

linear deflection d is illustrated in Fig. 4. Supposing 

that the deflections at sensors 1, 4, and 7 are measured 

as δ1, δ4, and δ7, respectively, the linear deflection d is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

computed by d=[δ4−(δ1+δ7)/2]/(2l1+l2), and there is 

2l1+l2=1900 mm for the press slider investigated here. 

Note that the linear defection defined here is a ratio of 

deflection to length and thus it is dimensionless. 

4.1  Construction of interval multiobjective opti-

mization model 

As mentioned above, the stiffness of the press 

slider is described by the linear deflection d. Hence, 

both objectives of linear deflection and weight should 

be minimized since the smaller the slider’s linear 

deflection, the larger its stiffness. The maximum 

stress of the slider should be less than 45 MPa ac-

cording to expert experience, which is included as a 

constraint function in the optimization model. The 

result of sensitivity analysis demonstrates that the 

dimensions b1, b2, and b3 in the cross section (Fig. 5) 

besides the space l and height h also greatly influence 

the stiffness and weight of the press slider. Hence, the 

five dimensions are chosen as design variables, 

namely, there is x=(l, h, b1, b2, b3). At the same time, 

the uncertainties of the material properties including 

the elastic modulus E and Poisson’s ratio ν are con-

sidered in the optimization of the press slider, namely, 

U=(E, v). The nominal values of E and ν are 

1.4×10
5
 MPa and 0.25 while their uncertainty level is 

supposed to be 10% and 8%, respectively. Conse-

quently, the interval multiobjective optimization 

model of the press slider can be described as  

1 2 3
1 2 3 1 2 3
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  (20) 

 

where the first objective d indicating the linear de-

flection and the constraint σ indicating the maximum 

stress are functions of the design vector x and the 

uncertain parameter vector U, which fluctuate under 

the uncertain material properties of elastic modulus E 

l 

h 

  Beam 

    Axle 

Linkage 

    Pin 

Slider 

Fig. 3  One fourth solid model of press slider 

Fig. 4  Diagram for measurement of slider’s linear

deflection (unit: mm) 

Press 
slider 

Displacement 
sensor 

Working 
table 

Generator 
 of uniformly 
distributed 

load 

Measuring 
stand 
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and Poisson’s ratio ν. The second objective w indi-

cating the weight is independent of the uncertain 

parameter vector U and it is a deterministic objective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2  Optimization procedure 

Fig. 6 illustrates the 1/4 FEA model of the press 

slider that acts as a high fidelity simulation model for 

computing the slider’s mechanical performance. A 

uniformly distributed load of B=750 kN is applied on 

the lower surface in the 1/4 FEA model of the slider 

(arrow B) since the whole lower surface of the slider 

suffers a uniformly distributed load of 3000 kN dur-

ing the stamping process. The upper beam is con-

nected with four driving oil cylinders and there is a 

pressure of A=800 kN at every connected position 

(arrow A). The beam is limited at the bottom by the 

adjusting nuts on the four columns, and thus a fixed 

support is exerted at its bottom (arrow C). The slider 

reciprocates up and down during the stamping pro-

cess, and thus a displacement constraint is exerted at 

the guiding column, allowing only the vertical 

movement of the slider (arrow D). Symmetric con-

straints are applied on two symmetry planes of the 1/4 

model (arrows E and F). The mesh model of the 1/4 

slider consists of 10 685 Solid45 elements and 

175 976 nodes, the FEA of which is computationally 

expensive and time-consuming due to the nonlinear 

contact among different parts. 

The global and local precisions Prec_g and 

Prec_l for terminating the encryption of the sample 

points are prescribed as 0.95 and 0.05, respectively. 

The global and local precisions of the final RBF 

models for linear deflection, weight, and maximum 

stress are listed in Table 1, demonstrating that the 

RBFs are precise enough to be utilized as substitutes 

for FEA during the interval optimization process of 

the press slider. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Considering that the second objective function 

w(x) is a deterministic objective, its weighting and 

normalization factors are set as 1 while its penalty 

factor is set as 0 to keep its independence from the 

uncertain parameters. The penalty function of the 

slider weight is p
( ) ( ).w w x x  Hence, the interval 

optimization model of the press slider in Eq. (20) can 

be transformed into the following approximate opti-

mization model based on interval ranking relation and 

satisfactory degree of interval:  

Table 1  Statistics of RBFs for computing three perfor-

mance indices of press slider 

Statistics
Linear deflection,

d  

Weight, 

 w  

Maximum stress, 

  

R2 0.9745 0.9628 0.9813 

RMAE 0.0489 0.0367 0.0432 

Fig. 5  Cross section of slider 

b2 

b1 

b3

h 

Fig. 6  FEA model of 1/4 press slider: loads and constraints

Force: 8.0×105 N
Force 2: 7.5×105 N 
Frictionless support 1 
Frictionless support 2 
Fixed support 
Cylindrical support: 0.0 mm 
Standard gravity: 9806.6 mm/s2 
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where p
( )d x  is the penalty function of the slider’s 

linear deflection d.  

Let α=0, β=1.2×10
−5

, γ=1.5×10
−6

, ω=0.5, λ=1.0, 

and ψ=10 000, the Pareto-optimal solutions to the 

multiobjective deterministic optimization model in 

Eq. (21) obtained by NSGA-II is illustrated in Fig. 7, 

the population, cross and mutation probability, and 

the maximum generation of the evolution are 100, 

0.75, 0.2, and 200, respectively. Point “1” represents 

the solution that has the lightest weight but the largest 

linear deflection while Point “2” represents the solu-

tion that has the smallest linear deflection but the 

heaviest weight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 lists 10 Pareto-optimal solutions selected 

from the Pareto-optimal front in Fig. 7. The 8th solu-

tion indicated in boldface is chosen as the final 

scheme because the manufacturer of the high speed 

press requires that the linear deflection of the press 

slider be less than 3.333×10
−5

 and the manufacturing 

cost should be as low as possible. The final dimen-

sions of the slider are determined as xo=(658, 875, 52, 

23, 19) to ensure its high stiffness since the results of 

the sensitivity analysis demonstrated that the smaller 

spacing l, the bigger height h, and the bigger b1, b2, 

and b3 in the cross section will result in the smaller 

deflection d and thus the larger stiffness of the slider. 

The advantage of the interval optimization con-

sidering the uncertainties of the material properties 

over the deterministic one is obvious since the opti-

mal solution obtained by the latter may probably 

become infeasible in engineering due to the fluctua-

tion of material properties. Specifically, the linear 

deflection may become larger than 3.333×10
−5

 when 

the dimensions of the optimal solution to a deter-

ministic optimization model are employed in the 

production of the press slider. 

The computational efficiency of the proposed 

interval optimization algorithm based on RBF models 

and interval analysis has been improved exponen-

tially in comparison with the traditional FEA-based 

nested optimization algorithm. Supposing that the 

interval optimization model is solved by a traditional 

double-level nested algorithm based on FEAs, where 

the outer-layer optimization is implemented by the 

NSGA-II with the same maximum generation and 

population size of 200 and 100, respectively, while 

the inlayer optimization for computing the interval  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  Ten Pareto-optimal solutions to interval optimization problem of press slider 

 No. 
Design vector 

(l, h, b1, b2, b3) 

Weight, 

w (kg) 

Penalty function of 

deflection, dp (×10−5) 

Interval of 

deflection, d (×10−5) 

1 (652.7, 900.3, 51.7, 71.2, 39.9) 1321.8 1.58 [1.763, 2.213] 

2 (648.5, 889.9, 46.1, 67.8, 36.7) 1269.6 1.63 [1.805, 2.273] 

3 (648.8, 888.6, 42.7, 61.7, 36.6) 1227.0 1.68 [1.842, 2.328] 

4 (615.2, 895.7, 43.1, 52.4, 39.1) 1193.3 1.71 [1.977, 2.449] 

5 (645.8, 888.4, 43.4, 42.1, 36.8) 1124.7 1.78 [2.002, 2.504] 

6 (653.9, 884.3, 42.6, 33.2, 38.6) 1074.9 1.86 [2.106, 2.630] 

7 (615.7, 908.7, 40.6, 25.1, 31.2) 1023.6 1.97 [2.378, 2.902] 

8 (658.5, 874.9, 51.3, 22.8, 18.8) 999.17 2.02 [2.419, 2.969] 

9 (612.7, 788.7, 41.1, 25.5, 25.2) 946.70 2.24 [2.840, 3.404] 

10 (625.3, 757.7, 41.6, 20.2, 16.7) 897.03 2.47 [2.933, 3.599] 

Penalty function of linear deflection of press slider, dp(x)
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Fig. 7  Pareto-optimal solutions to interval optimization

problem of press slider 
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bounds of the objective and constraint functions is 

implemented by GAs with the maximum generation 

of 200 and the population size of 100. Then a total of 

2×10
4
 individuals are involved in the outer-layer 

optimization. As for every individual in the outer- 

layer optimization, four GA-based optimization pro-

cedures are called for computing the interval bounds 

of the linear deflection d and maximum stress σ, with 

each procedure involving 2×10
4
 individuals. Thus, 

the traditional nested algorithm based on FEA re-

quires a total of 1.6×10
9
 FEAs for solving the interval 

optimization problem of the press slider in Eq. (20). 

However, the proposed interval optimization method 

involves only dozens of FEAs for collecting the 

sample points during the construction of RBF models. 

The high efficiency enables the application of the 

interval optimization method in practical uncertain 

structures. 

4.3  Experimental verification of optimal solution 

The experiment was conducted here to measure 

whether the linear deflection of the slider manufac-

tured according to the scheme obtained by the pro-

posed optimization method meets the requirement of 

stiffness, specifically, a linear deflection of d< 

3.333×10
−5

. To verify the validity of the proposed 

interval multiobjective optimization approach, an 

experimental prototype of the high speed press was 

manufactured with its slider designed according to the 

optimization result obtained in Section 4.2, namely, 

xo=(658, 875, 52, 23, 19). The linear deflection of its 

slider was measured by applying the generator of 

uniformly distributed load as shown in Fig. 8, which 

comprised an integrated board of oil cylinders with 

cartridge valves, a hydraulic station with control 

valves and accumulators, an electric cabinet with 

touch screen, several blocks with the same height, and 

so on. The integrated board in Fig. 8a is 2025 mm in 

length and 400 mm in width, which comprises 125 oil 

cylinders uniformly arranged in 5 rows and 25 col-

umns. The centre distance between two adjacent 

cylinders is 80 mm. For an oil cylinder, the diameters 

of the piston and its rod are 50 mm and 32 mm, re-

spectively, while the ejection stroke is 20 mm. The 

125 cylinders are controlled by 15 groups. The 55 

cylinders in the 11 middle columns are controlled by a 

valve while the 70 cylinders symmetrically arranged 

in 14 columns at both sides are controlled by 14 

valves, namely, every five cylinders in a column are 

independently controlled by a valve. Therefore, the 

gradient loading can be realized by an appropriate 

control of the 15 valves. The nominal working pres-

sure of the hydraulic system is 25 MPa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The arrangement of the uniformly distributed 

load generator in the press is illustrated in Fig. 4 and 

Fig. 9. Fig. 4 illustrates that the loading area of the 

investigated press slider is 2000 mm×400 mm, hence, 

all of the 125 oil cylinders in the integrated board 

should work simultaneously. When the working 

pressure of the hydraulic system was set as 12.2 MPa, 

every oil cylinder could provide a load of 24 kN and 

the nominal load of 3000 kN uniformly distributed 

could be applied to the surface of the press slider. As 

shown in Fig. 4, displacement sensors 1, 3, 5, and 7 

were located aligned to the centreline of the four 

linkages while sensors 2, 4, and 6 were located in the 

middle of the two neighbouring linkages. All the 

probes of these displacement sensors are vertically 

touched the lower surface of the slider (Fig. 9). 

Before the start of every experimental run, all the 

displacement sensors were zeroed. The nominal load of 

3000 kN was slowly applied to the lower surface of the 

press slider in five steps with an increment of 600 kN 

by adjusting the working pressure of the hydraulic 

system from 2.44 MPa to 12.2 MPa with an increment 

of 2.44 MPa at every step. Then the displacements of 

Fig. 8  Generator of uniformly distributed load: (a) inte-

grated board of oil cylinder; (b) electric cabinet 

(a) 

(b) 
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all the sensors could be recorded. A total of five ex-

perimental runs were conducted. The final displace-

ments of the slider at the seven measuring points were 

obtained by averaging their corresponding values 

recorded in five runs, which are listed in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from Table 3, the average dis-

placements at measuring points 1, 4, and 7 were fi-

nally obtained as δ1=0.195, δ4=0.249, and δ7=0.199, 

respectively. Hence, the linear deflection of the slider 

was computed as d=[δ4−(δ1+δ7)/2]/1900=2.737×10
−5

, 

which satisfied the requirement of d<3.333×10
−5

. It 

was concluded that the proposed interval multiobjec-

tive optimization approach based on RBF models, 

interval analysis, and NSGA-II can improve the me-

chanical performance of the press slider and yield an 

optimal design scheme applicable in engineering 

practice. 

 

 

5  Conclusions 

 

To achieve the optimal design of structures with 

small uncertainties that satisfy the performance re-

quirements in engineering practice, an interval con-

strained multiobjective optimization model was pre-

sented, including interval parameters in both objective 

and constraint functions, which were transformed into 

a deterministic unconstrained one based on the in-

terval ranking relation, satisfactory degree of interval, 

and penalty function method. A novel algorithm in-

tegrating RBF, interval analysis, and NSGA-II was 

put forward to efficiently solve the multiobjective 

optimization model. A series of RBF models were 

constructed for the efficient computation of objective 

and constraint functions corresponding to given de-

sign variables and uncertain parameters while interval 

analyses were utilized to quickly compute their in-

terval bounds. Then the Pareto-optimal solutions to 

the multiobjective optimization problem could be 

finally located by NSGA-II, during the evolution of 

which the fitness value of every individual was 

quickly obtained based on RBFs and interval analysis. 

The advantages of the proposed optimization method 

over the existing ones were discussed. 

The implementation of the proposed methodol-

ogy was highlighted by the optimization of a press 

slider’s five key dimensions aimed at achieving high 

stiffness, light weight, and sufficient strength when 

considering the uncertainty of the elastic modulus and 

Poisson’s ratio. The measurement results on the 

stiffness of the press slider manufactured according to 

the chosen Pareto-optimal solution demonstrated the 

feasibility of the proposed methodology as well as its 

applicability in engineering practice. 
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中文概要： 

 

本文题目：基于径向基函数、区间分析和非支配排序遗传算法的结构区间多目标优化 

Interval multiobjective optimization of structures based on radial basis function, interval 

analysis, and NSGA-II 

研究目的：为改善实际工程结构在不确定性条件下的多性能指标，提供一种高效的区间多目标优化方

法。 

创新要点：建立一个目标和约束均为区间不确定性参数函数的区间约束多目标优化模型，提出并实现

基于径向基函数、区间分析和非支配排序遗传算法（NSGA-II）的区间多目标优化算法。 

研究方法：首先，利用区间序关系将每个区间目标转换为同时优化其中点和半径的确定性双目标，利

用区间可能度法将区间约束转换为确定性约束，并在此基础上，利用加权法和罚函数法将

每个区间目标的约束优化问题转换为相应的无约束优化问题；然后，利用拉丁超立方实验

设计和有限元分析构建预测各待优化结构性能指标值的径向基函数；最后，将径向基函数、

区间分析法与 NSGA-II 相结合，快速求出转换后确定性无约束多目标优化问题的所有

Pareto 最优解，并通过考虑材料不确定性的高速压力机滑块机构设计实例验证该方法的有

效性。 

重要结论：目标和约束均为不确定性参数函数的区间多目标优化模型能有效反映实际工程中同时改善

结构多性能指标的需求。基于径向基函数、区间分析和 NSGA-II 相结合的区间多目标优化

算法将传统区间优化模型求解中的嵌套优化过程简化为单层遗传优化过程，大大提高了求

解效率，并可获得多目标优化问题的所有 Pareto 最优解。 

关键词组：区间多目标优化；不确定性；径向基函数；区间分析法；非支配排序遗传算法（NSGA-II）


