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Abstract. In this paper, the Choquet integral and the interval neutrosophic set theory are combined to make multi-criteria decision

for problems under neutrosophic fuzzy environment. Firstly, a ranking index is proposed according to its geometrical structure, and

an approach for comparing two interval neutrosophic numbers is given. Then, a ≤L implied operation-invariant total order which

satisfies order-preserving condition is proposed. Secondly, an interval neutrosophic number Choquet integral (INNCI) operator

is established and a detailed discussion on its aggregation properties is presented. In addition, the procedure of multi-criteria

decision making based on INNCI operator is given. Finally, a practical example for selecting the third party logistics providers is

provided to illustrate the feasibility of the developed approach.

Keywords: Neutrosophic set (NS), order relation, fuzzy measure, Choquet integral, multi-criteria decision making (MCDM)

1. Introduction

The concept of neutrosophic set (NS) is intro-

duced by Smarandache [22], which generalizes the

classic set, fuzzy set (FS), interval valued fuzzy set

(IVFS), intuitionistic fuzzy set (IFS), as well as inter-

val valued intuitionistic fuzzy set (IVIFS). A NS is

characterized independently by a truth-membership, an

indeterminacy-membership and a falsity-membership.

It is a powerful tool to deal with incomplete, indeter-

minate and inconsistent information. Comparing with

NS, IFSs and IVIFSs can only handle incomplete

information but not the indeterminate information and

inconsistent information which exist commonly in real

∗Corresponding author. Hong-Xia Sun, Business School, Beijing

Technology and Business University, No.33 Fucheng Road, Haid-

ian District, Beijing, China. Tel.: +86 10 68985991; Fax: +86 10

68984948; E-mail: sunhongxia@btbu.edu.cn.

situations. For example, in a decision making pro-

cess, a manager decides whether he should select the

third party logistics provider A or not. When we ask

about the opinion of an expert about a certain state-

ment, he may say that the possibility that he select A

is between 0.5 and 0.6, that he does not select A is

between 0.1 and 0.2, and the degree that he is not sure

is between 0.2 and 0.3. For a neutrosophic notation, it

can be expressed as x([0.5, 0.6], [0.1, 0.2], [0.2, 0.3]).

The sum of the degree of truth, indeterminacy, and

falsity may be greater or less than 1. For example,

if x = (0.6, 0.2, 0.3), x is a NS but is not an IFS. If

x = (0.5, 0.1, 0.2), x is a NS but is not an IFS. If

x = (0.5, 0.2, 0.3), x is not only a NS, but also an IFS.

Another example, assuming there are 10 voters during

a voting process, in time t1, four vote ’yes’, three vote

’no’ and three are undecided. For neutrosophic notation,

it can be expressed as x(0.4, 0.3, 0.3); in time t2, two

vote ’yes’, three vote ’no’, two give up, and three are

1064-1246/15/$35.00 © 2015 – IOS Press and the authors. All rights reserved
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undecided, then it can be expressed as x(0.2, 0.3, 0.3).

That is beyond the scope of the IFS. So the notion of

neutrosophic set is more general [22, 33].

In a NS, the degree of truth, indeterminacy, and falsity

belong to ]0−, 1+[, where ]0−, 1+[ is the non-standard

unit interval [21]. Obviously, it is difficult to apply

in real applications. Therefore, Wang et al. [27] pro-

posed the concept of a single valued neutrosophic set

(SVNS), which is the subclass of a NS. Sometimes the

degree of truth, falsity, and indeterminacy of a certain

statement cannot be defined exactly in the real situa-

tions but denoted by several possible interval values.

In order to research this problem, Wang et al. [26] pro-

posed the concept of interval neutrosophic set (INS) and

gave the set-theoretic operators of INS. Recently, many

researchers have shown great interest in multi-criteria

decision making (MCDM) problems with neutrosophic

information. Ye [30, 31] proposed correlation coeffi-

cients between SVNSs and applied them to MCDM

problems with single valued neutrosophic informa-

tion. Ye [32] proposed single valued neutrosophic cross

entropy and applied it to MCDM. Ye [29] introduced the

concept of simplified neutrosophic sets (SNSs), which

can be described by singleton subintervals/subsets in

the real unit interval [0, 1], and proposed a MCDM

method using aggregation operators for SNSs. Chi and

Liu [2] extended a TOPSIS method to interval neu-

trosophic multiple attribute decision-making problems.

Zhang et al. [34] defined the operations of INSs and

gave the aggregation operators of interval neutrosophic

number weighted averaging(INNWA) and interval neu-

trosophic number weighted geometric(INNWG), then

a MADM method is established based on the proposed

operators. Broumi and Smarandache [1] introduced the

concept of correlation coefficients of interval valued

neutrosophic set.

Aggregation function plays an important role in

MCDM problems. All above aggregation operators

only consider situations where criteria (attribute) and

preferences of decision makers are independent of one

another, which means that their effects are viewed as

additive. However, in many real decision making prob-

lems, it is common to find that there is interaction among

preference of decision makers. As an aggregation func-

tion, the Choquet integral [3] with respect to fuzzy

measures [23] is able to flexibly describe the relative

importance of decision criteria as well as their interac-

tions [11, 19]. Therefore, it is interesting to combine

the Choquet integral and the INS theory for MCDM

under neutrosophic fuzzy environment. On one hand,

we can deal with the imprecise and uncertain decision

information; on the other hand, we can efficiently take

into account of the various interactions among the deci-

sion criteria. Based on the above discussion, there are

three aims in the paper. First, it will propose a new rank-

ing method for interval neutrosophic numbers (INNs).

Second, it will propose an interval neutrosophic num-

ber Choquet integral (INNCI) operator and discuss its

properties. Third, it will establish a decision making

method based on the proposed ranking method and the

INNCI operator to handle decision making problems

with interval neutrosophic information.

The paper is organized as follows. In Section 2, the

concepts of NS, SNS, INS and operations of INS are

reviewed. In Section 3, a ranking index is proposed

according to geometrical quantities which reflect the

inferiors and superiors of INNs, and an approach to

compare two INNs is proposed. Furthermore, a ≤L

implied operation-invariant total order which satisfies

order-preserving condition is proposed. In Section 4,

INNCI operator is proposed, and some of its proper-

ties are researched. In Section 5, the MCDM procedure

based on INNCI operator is presented under neutro-

sophic environment. In Section 6, an example is given

to illustrate the concrete application of the method and

to demonstrate its feasibility and applicability. Conclu-

sions are made in Section 7.

2. Interval neutrosophic Set

Definition 2.1. [22] Let X be a space of points (objects),

with a generic element in X denoted by x. A NS A

in X is characterized by a truth-membership function

TA(x), an indeterminacy-membership function IA(x),

and a falsity-membership function FA(x). The func-

tions TA(x), IA(x) and FA(x) are real standard or

nonstandard subsets of ]0−, 1+[, i.e., TA(x) : X →
]0−, 1+[, IA(x) : X →]0−, 1+[, and FA(x) : X →
]0−, 1+[, where ]0−, 1+[ is the non-standard unit

interval. The sum of TA(x), IA(x) and FA(x) satisfies

the condition 0− ≤ sup TA(x) + sup IA(x) + sup FA(x)

≤ 3+.

Since it is difficult to apply NSs to practical problems,

Wang et al. [27] introduced the concept of a SVNS,

which is an instance of a NS and can be used in real

scientific and engineering applications.

Definition 2.2. Let X be a space of points (objects) with

generic elements in X denoted by x. A SVNS A in X

is characterized by truth-membership function TA(x),
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indeterminacy-membership function IA(x), and falsity-

membership function FA(x). For each point x in X,

TA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can be written

as A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X}.
Similar to interval-valued intuitionistic fuzzy set,

Wang et al. [26] proposed the concept of INS.

Definition 2.3. [26] Let X be a space of points (objects)

with generic elements in X denoted by x. An INS A in X

is characterized by a truth-membership function TA(x),

an indeterminacy-membership function IA(x), and a

falsity-membership function FA(x). For each point x

in X, we have that TA(x) = [inf TA(x), sup TA(x)] ⊆
[0, 1], IA(x) = [inf IA(x), sup IA(x)] ⊆ [0, 1],FA(x) =
[inf FA(x), sup FA(x)] ⊆ [0, 1].

Remark 2.1. From Definition 2, an INS A can be

expressed as

A = {〈x, TA(x), IA(x), FA(x)〉 | x ∈ X}

= {〈x, [inf TA(x), sup TA(x)], [inf IA(x), sup IA(x)],

[inf FA(x), sup FA(x)]〉 | x ∈ X}

Then, the sum of TA(x), IA(x) and FA(x) satisfies the

condition 0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3.

Definition 2.4. [26] An INS A is contained in the

other INS B, A ⊆ B, if and only if inf TA(x) ≤ inf

TB(x), sup TA(x) ≤ sup TB(x), inf IA(x) ≥ inf IB(x),

sup IA(x) ≥ sup IB(x), inf FA(x) ≥ inf FB(x), and

sup FA(x) ≥ sup FB(x) for any x in X.

For convenience, let ã = 〈[TL
ã , TU

ã ], [IL
ã , IU

ã ],

[FL
ã , FU

ã ]〉 denotes an INN and L be the set of all INNs

in X.

Definition 2.5. [2] Let ã and b̃ be two INNs, and λ be

a real number. Then, the operational rules are defined

as follows:

(1) ã ⊕ b̃ = 〈[TL
ã + TL

b̃
− TL

ã · TL
b̃

, TU
ã + TU

b̃
−

TU
ã · TU

b̃
], [IL

ã · IL
b̃
, IU

ã · IU
b̃

], [FL
ã · FL

b̃
, FU

ã · FU
b̃

]〉.
(2) ã ⊗ b̃ = 〈[TL

ã · TL
b̃

, TU
ã · TU

b̃
], [IL

ã + IL
b̃

− IL
ã ·

IL
b̃
, IU

ã + IU
b̃

− IU
ã · IU

b̃
], [FL

ã + FL
b̃

− FL
ã · FL

b̃
, FU

ã +
FU

b̃
− FU

ã · FU
b̃

]〉.
(3) λã = 〈[1 − (1 − TL

ã )λ, 1 − (1 − TU
ã )λ], [(IL

ã )λ,

(IU
ã )λ], [(FL

ã )λ, (FU
ã )λ]〉, λ > 0.

(4) ãλ = 〈[(TL
ã )λ, (TU

ã )λ], [1 − (1 − IL
ã )λ, 1 − (1 −

IU
ã )λ], [1 − (1 − FL

ã )λ, 1 − (1 − FU
ã )λ]〉, λ > 0.

The operations of two INNs has been defined by

Zhang et al. [34] by using of a strict Archimedean t-

norm T (x, y) = k−(k(x) + k(y)) and its dual t-conorm

S(x, y) = l−(l(x) + l(y)) with l(x) = k(1 − x). When

k(x) = − log(x), the operational rules defined in [2] and

[34] are identifiable.

Theorem 2.1. Let ã and b̃ be two INNs, then ã ⊕ b̃ and

λ ⊗ ã are also INNs.

The results of Theorem 2.1 are obvious. Further-

more, the operations of two INNs have the following

properties [34].

Proposition 2.1. Let ã ,b̃ and c̃ be INNs and α, β ≥ 0,

then

(1) ã ⊕ b̃ = ˜b ⊕ ã, ã ⊗ b̃ = b̃ ⊗ ã.

(2) (ã ⊕ b̃) ⊕ c̃ = ã ⊕ (b̃ ⊕ c̃), (ã ⊗ b̃) ⊗ c̃ = ã ⊗
(b̃ ⊗ c̃).

(3) α(ã ⊕ b̃) = αã ⊕ αb̃, (ã ⊕ b̃)α = ãα ⊕ b̃α.

(4) αã ⊕ βã = (α + β)ã, ãα ⊗ ãβ = ãα+β.

3. Comparison method of INNs

In this section, we will propose two approaches to

compare two INNs. Firstly, a ranking index is devel-

oped according to some geometrical quantities which

reflect the inferiors and superiors of INNs, and then

order relation ≤H is proposed. Furthermore, due to lim-

itations of ≤H , a ≤L implied operation-invariant order

is proposed.

3.1. Ranking method for INNs based on

geometrical structure

Let us consider a three-dimensional coordinate of

the technical neutrosophic cube that shown in Fig. 1,

where x is the truth axis with value range in [0, 1], y is

the false axis with value range in [0, 1], and similarly z

z

x

y

A(0,0,0)

D(0,1,0) C

B(1,0,0)

E(0,0,1)

H(0,1,1) G

F

Fig. 1. The three-dimensional coordinates of the INNs.
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Fig. 2. The two-dimensional projection of INNs.

is the indeterminate axis with value range in [0, 1]. The

neutrosophic cube can be divided into three disjoint

regions [5]:

(1) Triangle BDE , whose sides are equal to
√

2,

represents the geometrical locus of the points whose

sum of the coordinates is 1.

(2) The pyramid EADB is the locus of the points

whose sum of coordinates is less than 1.

(3) the solid EHDCGFB ( excluding △ BDE ) is the

locus of points whose sum of their coordinates is greater

than 1.

Considering a point a in the technical neutrosophic

cube. The superiors point is B(1, 0, 0) and the inferi-

ors point is H(0, 1, 1), therefore, the shorter distance

between a and B(1, 0, 0) is, and the longer distance

between a and H(0, 1, 1) is, the bigger a is.

Given a INN ã, the two-dimensional projection of ã

in plan (x, y) is shown in Fig. 2. The smaller area of S1

is, and the bigger area of S2 is, the bigger ã is. The

shorter distance between
(

TL
ã + TU

ã /2 , IL
ã + IU

ã /2,

FL
ã + FU

ã /2
)

and B(1, 0, 0) is, and the longer distance

between
(

TL
ã + TU

ã /2 , IL
ã + IU

ã /2, FL
ã + FU

ã /2
)

and

H(0, 1, 1) is, the bigger ã is. According to the geomet-

rical description of INNs, the ranking index of INNs is

proposed.

Definition 3.1. Let ã be an INN. The ranking index of

ã is defined as follow

H(ã) =
S2 + D−

S1 + S2 + D∗ + D− (1)

where S1 = (1 − TU
ã ) · FL

ã , S2 = (1 −
FU

ã ) · TL
ã , D∗ =

√

(1 − T̄ã)2 + Ī2
ã + F̄2

ã ,

D− =
√

T̄ 2
ã + (1 − Īã)2 + (1 − F̄ã)2, T̄ã =

TL
ã + TU

ã

2
, Īã =

IL
ã + IU

ã

2
and F̄ã =

FL
ã + FU

ã

2
.

From the Definition 3.1, it is easy to get the following

proposition.

Proposition 3.1. For any INNs ã =
〈[

TL
a , TU

a

]

,
[

IL
a , IU

a

]

,
[

FL
a , FU

a

]〉

, then H(ã) ∈ [0, 1]. Further-

more, if ã = 〈[1, 1], [0, 0], [0, 0]〉, then H(ã) = 1, and

if ã=〈[0, 0], [1, 1], [1, 1]〉, then H(ã) = 0.

Theorem 3.1. Let ã =
〈

[TL
ã , TU

ã ], [IL
ã , IU

ã ],

[FL
ã , FU

ã ]
〉

and b̃ =
〈

[TL
b̃

, TU
b̃

], [IL
b̃
, IU

b̃
], [FL

b̃
, FU

b̃
]
〉

be two INNs. If TL
ã ≤ TL

b̃
, TU

ã ≤ TU
b̃

, IL
ã ≥ IL

b̃
,

IU
ã ≥ IU

b̃
, FL

ã ≥ FL
b̃

and FU
ã ≥ FU

b̃
, then H(ã) ≤ H(b̃).

Proof. Let G(ã) =
1

H(ã)
=

S1 + D∗

S2 + D− + 1, then

∂G(ã)

∂T L
ã

=
−

1

2
(D∗)−1

(

1 −
T L

ã + T U
ã

2

)

S2 + D− −
S1 + D∗

(S2 + D−)2

×
[

1 − FU
ã + 1

2

(

D−
)−1

(

T L
ã + T U

ã

2

)]

,

∂G(ã)

∂T U
ã

=
−FL

ã −
1

2
(D∗)−1

(

1 −
T L

ã + T U
ã

2

)

S2 + D−

−
S1 + D∗

(S2 + D−)2
×

1

2

(

D−)−1

(

T L
ã + T U

ã

2

)

.

Since Ta ⊆ [0, 1], Fa ⊆ [0, 1], then
∂G(ã)

∂TL
ã

≤

0,
∂G(ã)

∂TU
ã

≤ 0. Similarly,
∂G(ã)

∂IL
ã

≥ 0,
∂G(ã)

∂IU
ã

≥ 0,

∂G(ã)

∂FL
ã

≥ 0,
∂G(ã)

∂FU
ã

≥ 0.

Thus, G(ã) is a decreasing function of TL
ã and TU

ã ,

an increasing function of IL
ã , IU

ã , FL
ã and FU

ã . There-

fore, H(ã) is an increasing function of TL
ã and TU

ã , a

decreasing function of IL
ã , IU

ã , FL
ã and FU

ã . The proof

of Theorem is completed.

Based on the ranking index of INNs, an approach to

compare two INNs is proposed as follow.

Definition 3.2. Let ã and b̃ be two INNs, H(ã) and

H(b̃) be ranking index of ã and b̃, respectively, then

(1) If H(ã) < H(b̃), then ã is smaller than b̃, denoted

by ã <H b̃.
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(2) If H(ã) = H(b̃), then ã and b̃ represent the same

information, denoted by ã =H b̃.

The order relation ≤H is reflexive, antisymmetric,

transitive and total, and hence defines a total order on

INNs.

3.2. ≤L implied operation-invariant order

Definition 3.3. Let ã =
〈

[TL
ã , TU

ã ], [IL
ã , IU

ã ], [FL
ã ,

FU
ã ]
〉

and b̃ =
〈

[TL
b̃

, TU
b̃

], [IL
b̃
, IU

b̃
], [FL

b̃
, FU

b̃
]
〉

be two

INNs. An order relation ≤L on L is defined by

(1) ã ≤L b̃ iff TL
ã ≤ TL

b̃
, TU

ã ≤ TU
b̃

, IL
ã ≥ IL

b̃
,

IU
ã ≥ IU

b̃
, FL

ã ≥ FL
b̃

and FU
ã ≥ FU

b̃
;

(2) ã <L b̃ iff ã ≤ b̃ and ã /= b̃

The order relation ≤L is reflexive, antisymmetric and

transitive, and so a partial order. As compared with

the order relation ≤H , the order relation ≤L has some

important properties although it is not a total order.

According to Theorem 3.1 and Definition 3.3, it is easy

to obtain the following proposition.

Proposition 3.2. Let ã, b̃ and c̃ be INNs and α ≥ 0.

(1) If ã ≤L b̃, then ã ≤H b̃.

(2) If ã ≤L b̃, then ã ⊕ c̃ ≤L b̃ ⊕ c̃ and ã ⊗ c̃ ≤L

b̃ ⊗ c̃.

(3) If ã ≤L b̃, then αã ≤L αb̃ and ãα ≤L b̃α.

Monotonicity is one of the most important properties

of an aggregation function. Therefore it is necessary to

define an operation-invariant total order. Inspired by

the concept of the operation-invariant total order on

IFVs proposed by Liu [15–17] and an order implied

operation-invariant total order proposed by Wu et al.

[25], the following definition is given.

Definition 3.4. Let ã, b̃ and c̃ be INNs and α ≥ 0. A

≤L implied operation-invariant total order, denoted by

≤̇, is a total order on INNs if it satisfies the following

conditions

(1) If ã ≤L b̃, then ã≤̇b̃.

(2) If ã≤̇b̃, then ã ⊕ c̃≤̇b̃ ⊕ c̃ and ã ⊗ c̃≤̇b̃ ⊗ c̃.

(3) If ã≤̇b̃, then αã≤̇αb̃ and ãα≤̇b̃α.

In the following, we will propose a ≤L implied

operation-invariant total order.

Definition 3.5. Let ã =
〈

[TL
ã , TU

ã ], [IL
ã , IU

ã ], [FL
ã ,

FU
ã ]
〉

and b̃ =
〈

[TL
b̃

, TU
b̃

], [IL
b̃
, IU

b̃
], [FL

b̃
, FU

b̃
]
〉

be two

INNs. A ≤L implied operation-invariant total order,

denoted by ≤S , can be defined as follows:

• If TU
ã < TU

b̃
, then ã <S b̃;

• If TU
ã = TU

b̃
, then

� If TL
ã < TL

b̃
, then ã <S b̃;

� If TL
ã = TL

b̃
, then

⊛ If FU
ã < FU

b̃
, then ã <S b̃;

⊛ If FU
ã = FU

b̃
, then

⊚ If FL
ã < FL

b̃
, then ã <S b̃;

⊚ If FL
ã = FL

b̃
, then

∗ If IU
ã < IU

b̃
, then ã <S b̃;

∗ If IU
ã = IU

b̃
, then

⋆ If IL
ã < IL

b̃
, then ã <S b̃;

⋆ If FL
ã = FL

b̃
, then ã =S b̃.

It is easy to verify that the order relation ≤S satis-

fies the implication conditions and the order-preserving

conditions given in the Definition 3.4.

3.3. Comparative analysis with score, accuracy

and certainty functions for INNs

Zhang et al. [34] defined the score function, accu-

racy function and certainty function for an INN ã =
〈

[TL
ã , TU

ã ], [IL
ã , IU

ã ], [FL
ã , FU

ã ]
〉

as follows:

s(ã) =
[

TL
ã + 1 − IU

ã + 1 − FU
ã , TU

ã

+1 − IL
ã + 1 − FL

ã

]

, (2)

a(ã) =
[

min{TL
ã − FL

ã , TU
ã − FU

ã },

min{TL
ã − FL

ã , TU
ã − FU

ã }
]

, (3)

c(ã) = [TL
ã , TU

ã ]. (4)

where s(ã), a(ã) and c(ã) represent the score function,

accuracy function, and certainty function of the INN ã,

respectively.

Zhang et al. [34] gave the ranking method as follows:

Definition 3.6. Let ã and b̃ be two INNs, then

(1) If p(s(ã) ≥ s(b̃)) > 0.5, then ã is greater than b̃,

denoted by ã >P b̃;

(2) If p(s(ã) ≥ s(b̃)) = 0.5 and p(a(ã) ≥ a(b̃)) >

0.5, then ã is greater than b̃, denoted by ã >P b̃;

(3) If p(s(ã) ≥ s(b̃)) = 0.5, p(a(ã) ≥ a(b̃)) = 0.5

and p(c(ã) ≥ c(b̃)) > 0.5, then ã is greater than b̃,

denoted by ã >P b̃;

(4) If p(s(ã) ≥ s(b̃)) = 0.5, p(a(ã) ≥ a(b̃)) = 0.5

and p(c(ã) ≥ c(b̃)) = 0.5, then ã is equal to b̃, denoted

by ã =P b̃.
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where P(a ≥ b) denotes the degree of possibility of a ≥
b and is formulated for a = [aL, aU ] and b = [bL, bU ]
by

P(a ≥ b) = max

{

1 − max

{

bU − aL

aU − aL + bU − bL
, 0

}

, 0

}

.

Remark 3.1. The order relations ≤H and ≤P can

reflect the characteristics of INNs and have their own

advantages. The order relation ≤H puts emphasis on

geometrical structure of INNs, and ≤P can reflect

the possibility degree of ã ≥ b̃. Comparing with ≤H

and ≤P , the order relation ≤S puts a heavy emphasis

on the truth-membership degree of an INN and more

or less neglects the indeterminacy-membership degree

and falsity-membership degree. It does not adequately

reflect the characteristics of INNs.

The order relation ≤H and ≤P have some limitations

which will be shown in examples below.

Example 3.1. Let ã = 〈[0.65, 0.75], [0.10, 0.30],

[0.25, 0.55]〉, b̃ = 〈[0.55, 0.85], [0.10, 0.30], [0.35,

0.45]〉.
(1) The degrees of possibility of s(ã) and s(b̃)), a(ã)

and a(b̃)), c(ã) and c(b̃)) are computed as follows:

p(s(ã) ≥ s(b̃)) = p(a(ã) ≥ a(b̃)) = p(c(ã)

≥ c(b̃)) = 0.5.

then from Definition 3.6, ã =P b̃. But it is obvious that

ã and b̃ are not equal.

(2) By Eq. (1), H(ã) = 0.7157, H(b̃) = 0.7205, then

ã <H b̃.

Example 3.2. Let ã = 〈[0.65, 0.75], [0.20, 0.45],

[0.32, 0.38]〉, b̃ = 〈[0.62, 0.68], [0.25, 0.40], [0.25,

0.35]〉.
(1) The degrees of possibility of s(ã) and s(b̃)), a(ã)

and a(b̃)), c(ã) and c(b̃)) are computed as follows:

p(s(ã) ≥ s(b̃)) = p(a(ã) ≥ a(b̃)) = 0.5,

p(c(ã) ≥ c(b̃)) = 0.8125.

then from Definition 3.6, ã >P b̃.

(2) By Eq. (1), H(ã) = H(b̃) = 0.7095, then ã =H b̃.

But it is obvious that ã and b̃ are not equal.

The order relation ≤H and ≤P are not order-

preserving for operations ã ⊕ b̃, ã ⊗ b̃, λã and ãλ. In

the following, counterexamples are given.

Example 3.3. Let ã = 〈[0.66, 0.71], [0.35, 0.26],

[0.26, 0.30]〉, b̃ = 〈[0.66, 0.70], [0.32, 0.42], [0.20,

0.23]〉. From Definition 4.3, H(ã) = 0.7351, H(b̃) =
0.7435, then ã <H b̃. From Definition 3.6, p(s(ã) ≥
s(b̃)) = 0.4848, then ã <P b̃.

(1) Let c̃ = 〈[0.64, 0.90], [0.51, 0.52], [0.10, 0.70]〉,
then ã ⊕ c̃ >H b̃ ⊕ c̃, ã ⊕ c̃ >P b̃ ⊕ c̃.

(2) Let c̃ = 〈[0.64, 0.90], [0.51, 0.52], [0.68, 0.70]〉,
then ã ⊗ c̃ >H b̃ ⊗ c̃, ã ⊗ c̃ >P b̃ ⊗ c̃.

(3) Let λ = 2, then λã >H λb̃, λã >P λb̃.

(4) Let λ = 0.2, then ãλ >H b̃λ, then ãλ >P b̃λ.

Remark 3.2. From Example 3.1 and Example 3.2, in

some situations, if we use ranking method as given in

Definition 3.2 and Definition 3.6 to compare two INNs,

the results might be irrational. We can use the order

relation ≤H to compare two INNs if the comparing

results is obviously irrational by using the order rela-

tion ≤P and vice versa. Therefore, the order relation

≤H and ≤P can be viewed as mutually complementary.

From Example 3.3, it is easy to obtain that the order

relation ≤S is order-preserving for operations ranking

method. Meantime, it can avoid the irrational results as

mentioned in Example 3.1 and Example 3.2, therefore,

comparing with ≤H and ≤P , the order relation ≤S is

more superior.

4. Interval neutrosophic Choquet integral

operator and its properties

4.1. Fuzzy measure and Choquet integral

Definition 4.1. [9, 12, 13, 20, 23] A fuzzy measure

on X is a set function µ : P(X) → [0, 1] satisfies the

following conditions.

(1) µ(∅) = 0, µ(X) = 1 (boundary condition)

(2) If A, B ∈ P(X) and A ⊆ B then µ(A) ≤ µ(B)

(monotonicity)

One can see that a fuzzy measure is a normal mono-

tone set function which vanishes at the empty set.

Furthermore, A fuzzy measure on X is said to be

• additive if µ(A ∪ B) = µ(A) + µ(B) for all dis-

joint subsets A, B ⊆ X.

• cardinality-based if, for any A ⊆ X, µ(A) depends

only on the cardinality of A.

In the framework of the MCDM, X can be interpreted

as a finite decision criteria set. µ(A) can be viewed as

the grade of subjective importance of subset A ⊆ X.

The monotonicity of the fuzzy measure means that the

importance of a subset of criteria cannot decrease when

new criteria are added to it [12].



A
U

T
H

O
R

 C
O

P
Y

H.-X. Sun et al. / Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making 2449

Definition 4.2. Let f be a real-valued function on X, the

Choquet integral of f with respect to a fuzzy measure

µ on X is defined as

(C)

∫

fdµ =
n
∑

i=1

(µ(X(i)) − µ(X(i+1)))f (x(i))

where (·) indicates a permutation on X such that

f (x(1)) ≤ f (x(2)) · · · ≤ f (x(n)) and X(·) = {x(i), · · · ,
x(n)}, X(n+1) = ∅.

When using a fuzzy measure to model the importance

of the subsets of criteria, the Choquet integral can be

viewed as a aggregation function [4, 24, 25]. It has been

proposed by many authors as an adequate substitute to

weighted arithmetic mean (WAM) or ordered weighted

averaging (OWA) operator to aggregate interacting cri-

teria [10, 14, 19]. The Choquet integral identifies with

a WAM (resp. OWA) as soon as the fuzzy measure is

additive (resp. cardinality-based).

4.2. Interval neutrosophic numbers Choquet

integral operator

Definition 4.3. Let f̃ : X → L be an interval neutro-

sophic number function on X, and µ be a fuzzy measure

on X. The interval neutrosophic number Choquet inte-

gral (INNCI) of f with respective to µ is defined as

(C)

∫

f̃ dµ =
n
∑

i=1

⊕
[

µ(X(i)) − µ(X(i+1))
]

f̃ (x(i)) (5)

where (·) indicates a permutation on X according to

a given total order ≤ such that f̃ (x(1)) ≤ f̃ (x(2)) · · · ≤
f̃ (x(n)) and X(·) = {x(i), · · · , x(n)}, X(n+1) = ∅.

Example 4.1. Let X = {x1, x2}, an interval

neutrosophic number function f̃ : X → L is given

by f̃ (x1) = 〈[0.59, 0.68], [0.05, 0.15], [0.10, 0.18]〉,
f̃ (x2) = 〈[0.65, 0.70], [0.25, 0.35], [0.15, 0.30]〉.
Since H(f̃ (x1)) = 0.5682, H(f̃ (x2)) = 0.5686, then

f̃ (x1) <H f̃ (x2).
Assume that fuzzy measure µ : X → [0, 1] is

given by µ(∅) = 0, µ({x1}) = 0.5, µ({x2}) = 0.3,
µ({x1, x2}) = 1. By Eq. (5), we have

(C)
∫

f̃ dµ

=
[

µ(X) − µ(x(2))
]

f̃ (x(1)) + [µ({x2}) − µ(∅)] f̃ (x(2))

= 〈[0.6090, 0.6861], [0.0810, 0.1934], [0.1129, 0.2098]〉

Theorem 4.1. Let f̃ : X → L be an interval neutro-

sophic number function on X, and µ be a fuzzy measure

on X. Then their aggregated value by using the INNCI

operator is also an interval neutrosophic number, and

(C)
∫

f̃ dµ =
〈[

1 −
∏n

i=1

(

1 − TL

f̃ (x(i))

)µ(X(i))−µ(X(i+1))

,

1 −
∏n

i=1

(

1 − TU

f̃ (x(i))

)µ(X(i))−µ(X(i+1))
]

,

[

∏n

i=1
(IL

f̃ (x(i))
)µ(X(i))−µ(X(i+1)),

∏n

i=1
(IU

f̃ (x(i))
)µ(X(i))−µ(X(i+1))

]

,(6)

[

∏n

i=1
(FL

f̃ (x(i))
)µ(X(i))−µ(X(i+1)),

∏n

i=1
(FU

f̃ (x(i))
)µ(X(i))−µ(X(i+1))

]〉

where (·) indicates a permutation on X according to

a given total order ≤ such that f̃ (x(1)) ≤ f̃ (x(2)) · · · ≤
f̃ (x(n)) and X(·) = {x(i), · · · , x(n)}, X(n+1) = ∅.

Proof. The first result can be directly obtained from

Definition 4.3 and Theorem 2.1. Eq. (6) is easily proved

by using mathematical induction on n.

Definition 4.4. Let f̃ and g̃ be two interval neutro-

sophic number functions on X. f̃ and g̃ are said to be

comonotonic about a given order relation ≤ if

f̃ (xi) ≤ f̃ (xj) iff g̃(xi) ≤ g̃(xj) ∀i, j ∈ {1, 2, · · · , n}

The following propositions show some properties of

the INNCI operator.

Proposition 4.1. (Idempotency). Let f̃ , g̃ be interval

neutrosophic number functions on X, and ã be an INN.

If f̃ (xi) = ã for xi ∈ X, then (C)
∫

f̃ dµ = ã.

Proposition 4.2. Let f̃ , g̃ be interval neutrosophic num-

ber functions on X and µ, ν be fuzzy measures on X,

then

(C)

∫

f̃ dµ ⊕ (C)

∫

f̃ dν = (C)

∫

f̃ d(µ + ν).

Proposition 4.3. Let f̃ be interval neutrosophic number

function on X, λ > 0, and µ be fuzzy measures on X,

then

C)

∫

f̃ d(αµ) = α(C)

∫

f̃ dµ.

Remark 4.1. According to Definition 4.3 and statement

(4) of Proposition 2.1, it is easy to obtain Proposition

4.1, Proposition 4.2 and Proposition 4.3. The set func-

tions µ + ν and αµ, α > 0, (in the Proposition 4.2 and

4.3), are not normal fuzzy measures (see Definition 4.1)

since their ranges are the interval [0, 2] and [0, α].
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However, we can also calculate the two expressions,

(C)
∫

f̃ dµ ⊕ (C)
∫

f̃ dν and (C)
∫

f̃ d(αµ), by Eqs. (5)

and (6).

Proposition 4.4. (monotonicity). Let f̃ , g̃ be interval

neutrosophic number functions on X. For a ≤L implied

operation-invariant total order ≤̇, if f̃ (xi)≤̇g̃(xi) for all

xi ∈ X, then

(C)

∫

f̃ dµ≤̇(C)

∫

g̃dµ.

Proof. Let (π(1), π(2), · · · , π(n)) be the per-

mutations on (1, 2, · · · , n) such that f̃ (xπ(1))

≤̇ f̃ (xπ(2))≤̇ · · · ≤̇f̃ (xπ(n)).

If f̃ and g̃ are comonotonic about the permutations

(π(1), π(2), · · · , π(n)), then the conclusion is com-

pleted.

In the following, we consider the case that If f̃

and g̃ are not comonotonic about the permutation

(π(1), π(2), · · · , π(n)). Let

g̃(xπ(i0)) = min
1≤i≤n

{

g̃(xπ(i))
}

1 ≤ i0 ≤ n

The interval neutrosophic numbers function f̃ (1) is

defined as:

f̃ (1)(xπ(j)) =
{

f̃ (xπ(i0)), j ≤ i0,

f̃ (xπ(j)), otherwise.

Let π(1) = (π(1)(1), · · · , π(1)(n)) is a permutation

such that g̃(xπ(1)(1))≤̇g̃(xπ(1)(2))≤̇ · · · ≤̇g̃(xπ(1)(i0)) for

1 ≤ j ≤ i0, and π(1)(j) = π(j) for i0 + 1 ≤ j ≤ n.

We will consider two cases.

Case 1. If g̃(xπ(1)(i0+1))≤̇g̃(xπ(1)(i0+2))≤̇ · · · ≤̇g̃

(xπ(1)(n)), then the function f̃ (1) and g̃ are comonotonic

about the permutation π(1) = (π(1)(1), · · · , π(1)(n)).

We can obtain (C)
∫

f̃ (1)dµ≤̇(C)
∫

g̃dµ.

By the definition of f̃ (1),

(C)

∫

f̃ dµ≤̇(C)

∫

f̃ (1)dµ≤̇(C)

∫

g̃dµ.

Case 2. If there exists at least one point xj0 such

that g̃(xπ(1)(j0+1))≥̇g̃(xπ(1)(j0+1)), we define the interval

neutrosophic numbers function f̃ (2) as

f̃ (2)(xπ(j)) =
{

f̃ (xπ(j0)), i0 + 1 ≤ j ≤ j0,

f̃ (1)(xπ(j)), otherwise.

Let π(2) = (π(2)(1), · · · , π(2)(n)) is a permutation

such that g̃(xπ(2)(i0+1))≤̇g̃(xπ(2)(i0+2))≤̇ · · · ≤̇g̃(xπ(2)(j0))

for 1 ≤ j ≤ i0, and π(2)(j) = π(j) for 1 ≤ j ≤ i0 and

j0 + 1 ≤ j ≤ n.

If g̃(xπ(2)(j0+1))≤̇g̃(xπ(2)(j0+2))≤̇ · · · ≤̇g̃(xπ(2)(n)),

then the function f̃ (1) and g̃ are comonotonic about

the permutation π(2) = (π(2)(1), · · · , π(2)(n)). We can

obtain (C)
∫

f̃ (2)dµ≤̇(C)
∫

g̃dµ.

By the definition of f̃ (2),

(C)

∫

f̃ dµ≤̇(C)

∫

f̃ (1)dµ≤̇
∫

f̃ (2)dµ≤̇(C)

∫

g̃dµ.

If there exists at least one point xk0 such that

g̃(xπ(2)(k0+1)) ≥̇g̃(xπ(2)(k0+1)), repeat the above steps

until k0 = n. Then we will define a series interval neu-

trosophic numbers functions f̃ (k) (k ≤ n) and permuta-

tions π(k), then the function f̃ (k) and g̃ are comonotonic

about the permutation π(k) = (π(k)(1), · · · , π(k)(n)).

We can obtain (C)
∫

f̃ (k)dµ≤̇(C)
∫

g̃dµ.

By the definition of f̃ (k),

(C)

∫

f̃ dµ≤̇(C)

∫

f̃ (1)dµ≤̇ · · · ≤̇(C)

∫

f̃ (k)dµ≤̇(C)

∫

g̃dµ.

Proposition 4.5. Let f̃ , g̃ be interval neutrosophic

number functions on X. For a ≤L implied operation-

invariant total order ≤̇, if f̃ and g̃ are comonotonic

about order relation ≤̇, then

(C)

∫

(f̃ ⊕ g̃)dµ = (C)

∫

f̃ dµ ⊕ (C)

∫

g̃dµ.

Proof. According to Definition 4.4 and Definition

3.4, it is easy to get the conclusion.

Proposition 4.6. Let f̃ be interval neutrosophic number

function on X. For a ≤L implied operation-invariant

total order ≤̇ and λ ≥ 0,

(C)

∫

λf̃dµ = λ(C)

∫

f̃ dµ.

Proof. According to Definition 3.4, it is easy to get

the conclusion.

From Proposition 4.5 and 4.6, we can obtain the

following corollary.

Corollary 4.1. Let f̃ , g̃ be interval neutrosophic num-

ber functions on X, ã be an INNs. For a ≤L implied

operation-invariant total order ≤̇ and λ ≥ 0,

(C)

∫

λ(f̃ ⊕ ã)dµ = λ

(

(C)

∫

f̃ dµ ⊕ ã

)

.
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It is not hard to see that the aggregation properties of

the INNCI greatly depend on the given order relation.

Based on the order relations ≤H and ≤P , the INNCI

only has the Properties 4.1 − 4.2. However, based on a

≤L implied operation-invariant total order, the INNCI

has all the properties presented above.

Zhang et al. [34] have developed interval neutro-

sophic number weighted averaging (INNWA) operator

and interval neutrosophic number weighted geometric

(INNWG) operator, which are respectively defined as

follows.

Definition 4.5. Let ãj (j = 1, 2, · · · , n) be a collection

of INNs, and let INNWA : INNn → INN, INNWA is

called an interval neutrosophic number weighted aver-

aging operator if

INNWAω(ã1, ã2, · · · , ãn) =
n
∑

i=1

⊕

ωiãi

where ω = (ω1, ω2, · · · , ωn) is the weight vector of

ãi (i = 1, 2, · · · , n), with ωi ≥ 0 (i = 1, 2, · · · , n) and
n
∑

i=1

ωi = 1.

Definition 4.6. Let ãj (j = 1, 2, · · · , n) be a collection

of INNs, and let INNWG : INNn → INN, INNWG is

called an interval neutrosophic number weighted geo-

metric operator if

INNWGω(ã1, ã2, · · · , ãn) =
n
∑

i=1

⊕

ã
ωi
i

where ω = (ω1, ω2, · · · , ωn) is the weight vector of

ãi (i = 1, 2, · · · , n), with ωi ≥ 0 (i = 1, 2, · · · , n) and
n
∑

i=1

ωi = 1.

The following theorems show that INNCI operator

is a generalization of INNWA and INNWG.

Theorem 4.2. Let f̃ be an interval neutrosophic number

function on X, µ be a fuzzy measure on X.

(1) If µ is additive, then there exists ω ∈ [0, 1]n, such

that (C)
∫

f̃ dµ = INNWA.

(2) If µ is cardinality-based, then there exists ω ∈
[0, 1]n, such that (C)

∫

f̃ dµ = INNWG.

Proof. (1) If µ is additive, let ωi = µ({i}), then the

conclusion is obvious.

(2) If µ is cardinality-based, ω is defined as follows:

ωn = µ({i}) for any {i} ⊆ X,

ωn−1 = µ({i, j}) − ωn for any {i, j} ⊆ X,

· · ·
ωn−k = µ({i + 1, i + 2, · · · , i + k}) − ωn−k+1 for

any {i + 1, i + 2, · · · , i + k} ⊆ X,

· · ·
ω1 = 1 − ω2,

then the proof is completed.

Remark 4.2. The relationship between fuzzy measure

and weight vector can be given as follows:

(1) The additive fuzzy measure µ associated to an

INNWA is given by µ(A) =
∑

xi∈A ωi for A ⊆ X.

(2) The cardinality-based fuzzy measure µ associ-

ated to an INNWG is given by µ(A) =
∑n

i=n−|A|+1 ωi

for any non-empty subset A ⊆ X.

5. Multicriteria decision-making method based

on interval neutrosophic numbers Choquet

integral operator

This section presents a new method for MCDM, in

which the partial evaluations of the alternatives are

given by INNs and the interaction among the criteria

are allowed.

For a MCDM problem, let Y = {y1, y2, · · · , ym} be a

set of alternatives, X = {x1, x2, · · · , xn} be a set of cri-

teria. To get the best alternative, the MCDM procedure

based on INNCI operator is proposed as follows.

Step 1. Construct the INNs decision matrix. Assume

that the partial evaluation of the alternative yi (i =
1, 2, · · · , m) on the criteria xj (j = 1, 2, · · · , n) is mea-

sured by INN d̃ij = 〈Tij, Iij, Fij〉, where Tij indicates

the degree to which the alternative yi satisfies the crite-

rion xj , Iij indicates the indeterminacy degree to which

the alternative yi satisfies or does not satisfy the crite-

rion xj , Fij indicates the degree to which the alternative

yi does not satisfy the criterion xj , and Tij ⊆ [0, 1],

Iij ⊆ [0, 1], Fij ⊆ [0, 1]. Then we can obtain a decision

making matrix as follow:

D̃ =

⎛

⎜

⎜

⎜

⎝

d̃11, d̃12, · · · , d̃1n

d̃21, d̃22, · · · , d̃2n

· · · · · · · · ·
d̃m1, d̃m2, · · · , d̃mn

⎞

⎟

⎟

⎟

⎠

Step 2. Reorder the partial evaluation d̃ij of the

alternative yj such that d̃i(j) ≤ d̃i(j+1) for a given order

relation. For example, by order relation ≤H of Defini-

tion 3.2, we calculate H(d̃ij) of the partial evaluation d̃ij

of the alternative yj (j = 1, 2, · · · , m) on the criteria xi

(i = 1, 2, · · · , n), and then rank the partial evaluation

d̃ij such that d̃i(j) ≤H d̃i(j+1).
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Step 3. Identify the fuzzy measure on the criterion

set X = {x1, x2, · · · , xn}. There are several methods for

the determination of the fuzzy measure, such as linear

methods [18], quadratic methods [6, 7], heuristic-based

methods [8], genetic algorithms [28] and so on.

Step 4. Choose the INNCI operator to aggregate the

partial evaluations of each alternative and get the overall

evaluations.

Step 5. Rank those overall evaluations according to

the given total order relation on INNs, and select the

best one(s).

6. An illustrative example

This section presents an application of the proposed

method to select the third party logistics providers. Sup-

pose that there are four providers (y1, y2, y3, y4) whose

core competencies are evaluated by means of the fol-

lowing four criteria (x1, x2, x3, x4):

(1) the cost of service (x1);

(2) the operational experience in the industry (x2);

(3) customer satisfaction (x3);

(4) market reputation (x4).

6.1. Procedures of decision making based on three

order relation ≤H , ≤P and ≤S

Step 1. The INNs decision matrix of the third party

logistics providers is made up according to the four

evaluating criteria. The evaluation of a provider yi(i =
1, 2, 3, 4) with respect to a criteria xj(j = 1, 2, 3, 4)

is obtained from the experts. Suppose that the INNs

decision matrix is constructed as shown in Table 1.

Step 2. According to Table 1, by Definition 3.2, Defi-

nition 3.5 and Definition 3.6, the partial evaluation d̃ij of

the candidate yj is reordered such that d̃i(j) ≤∗ d̃i(j+1)

(i = 1, 2, 3, 4), where ≤∗ denotes the order relations

≤H , ≤P and ≤S , respectively. The results are shown in

Table 2.

Therefore

d̃1(1) = d̃12, d̃1(2) = d̃13, d̃1(3) = d̃11, d̃1(4) = d̃14;

d̃2(1) = d̃24, d̃2(2) = d̃21, d̃2(3) = d̃23, d̃4(4) = d̃22;

d̃3(1) = d̃31, d̃3(2) = d̃34, d̃3(3) = d̃33, d̃3(4) = d̃32;

d̃4(1) = d̃42, d̃4(2) = d̃43, d̃4(3) = d̃44, d̃4(4) = d̃41.

Step 3. Suppose that the fuzzy measures of criteria

of X and subsets of X are shown in Table 3.

Table 1

The INNs decision matrix of the third party logistics providers

x1

y1 〈[0.60, 0.76], [0.22, 0.33], [0.23, 0.30]〉
y2 〈[0.66, 0.71], [0.26, 0.31], [0.25, 0.33]〉
y3 〈[0.66, 0.71], [0.26, 0.31], [0.25, 0.33]〉
y4 〈[0.60, 0.76], [0.22, 0.33], [0.23, 0.30]〉

x2

y1 〈[0.70, 0.72], [0.31, 0.37], [0.28, 0.31]〉
y2 〈[0.68, 0.75], [0.19, 0.29], [0.28, 0.35]〉
y3 〈[0.68, 0.75], [0.19, 0.29], [0.28, 0.35]〉
y4 〈[0.70, 0.72], [0.31, 0.37], [0.28, 0.31]〉

x3

y1 〈[0.71, 0.73], [0.21, 0.27], [0.35, 0.39]〉
y2 〈[0.55, 0.73], [0.20, 0.25], [0.23, 0.30]〉
y3 〈[0.55, 0.73], [0.20, 0.25], [0.23, 0.30]〉
y4 〈[0.71, 0.73], [0.21, 0.27], [0.35, 0.39]〉

x4

y1 〈[0.71, 0.77], [0.23, 0.30], [0.29, 0.37]〉
y2 〈[0.65, 0.70], [0.31, 0.32], [0.25, 0.27]〉
y3 〈[0.65, 0.72], [0.25, 0.32], [0.22, 0.35]〉
y4 〈[0.61, 0.74], [0.28, 0.30], [0.20, 0.32]〉

Table 2

Ranking order of d̃ij based on the order relation ≤∗.

ranking order ≤∗

y1 d̃12 ≤∗ d̃13 ≤∗ d̃11 ≤∗ d̃14

y2 d̃24 ≤∗ d̃21 ≤∗ d̃23 ≤∗ d̃22

y3 d̃31 ≤∗ d̃34 ≤∗ d̃33 ≤∗ d̃32

y4 d̃42 ≤∗ d̃43 ≤∗ d̃44 ≤∗ d̃41

Table 3

Every subset A of X and its corresponding fuzzy measure value

A µ(A) A µ(A) A µ(A)

∅ 0 {3} 0.10 {1, 3} 0.20

{1} 0.10 {4} 0.10 {1, 4} 0.50

{2} 0.10 {1, 2} 0.30 {2, 3} 0.4

A µ(A) A µ(A)

{2, 4} 0.40 {1, 3, 4} 0.60

{3, 4} 0.20 {2, 3, 4} 0.30

{1, 2, 3} 0.85 {1, 2, 3, 4} 1

Table 4

Results of aggregation based on INNCI operator

Results of aggregation

y1 〈[0.6657, 0.7428], [0.2523, 0.3354], [0.2656, 0.3187]〉
y2 〈[0.6308, 0.7189], [0.2391, 0.2901], [0.2466, 0.3130]〉
y3 〈[0.6335, 0.7193], [0.2338, 0.2878], [0.2498, 0.3207]〉
y4 〈[0.6582, 0.7362], [0.2461, 0.2965], [0.2624, 0.3430]〉

Step 4. By Eq. (6), utilizing the INNCI operator to

aggregate the partial evaluations of each alternative yi

(i = 1, 2, 3, 4). The results are shown in Table 4.

Step 5. According to the overall evaluations of

the third party logistic providers, by Definition 3.2,
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Table 5

Ranking order of the third party logistics providers.

Order relation Ranking order

≤H y1 ≻ y2 ≻ y3 ≻ y4

≤P y2 ≻ y3 ≻ y4 ≻ y1

≤S y1 ≻ y4 ≻ y3 ≻ y2

Definition 3.5 and Definition 3.6, the ranking order

based on the order relation ≤∗ of providers is shown

in Table 5.

6.2. Comparison analysis of results

In Section 6.1, we have given the ranking order based

on three order relations ≤H , ≤P and ≤S , but from the

results shown in Table 5, the raking order calculated

based on three order relations is different. Therefore, it

is very difficult to decide which alternative is the best

choice and whether an alternative is definitely better

than another one.

From Table 1, we have that

d̃11 = d̃41, d̃12 = d̃42, d̃13 = d̃43,

d̃14 >S d̃44,

d̃14 >H d̃44 (since H(d̃14) = 0.7496 > H(d̃44)

= 0.7460),

d̃14 >P d̃44 (since p(s(d̃14) > s(d̃44)) = 0.5417).

Which mean that, on each criterion, the partial eval-

uation of y1 is larger or at least equal to that of y4

(denoted as y1 ≻ y4). Hence, the overall evaluation of

y1 should be larger or at least equal to that of y4. But

unfortunately, aggregation function INNCI produce the

contrary results based on the order relation <P :

INNCI(y1) <P INNCI(y4).

It is obvious that the above result is unreasonable.

Table 6 shows the unreasonable results in this illus-

trative example based on the order relation ≤H and

≤P . The main reason for such unreasonable results is

that, as mentioned in Section 3.3, the order relation

≤H and ≤P are not order-preserving for operations,

that is , these two order relations are not an operation-

invariant total order on INNs. The increasingness

property of an aggregation function strongly depends

on the order-preserving property of the given order

relation. Therefore, the interval neutrosophic numbers

Table 6

The unreasonable results based on the order relation≤H and ≤P .

Corresponding unreasonable ranking order

y1 >Z y4 y1 <Z y4

y2 <Z y3 y2 >Z y3

y2 <H y3 y2 >H y3

Choquet integral operator, INNCI, is not increasing

with respect to these two order relation.

The key to avoiding such unreasonable results is to

adopt a ≤L implied operation-invariant total order (see

Definition 3.5) in the aggregation process. Based on the

≤L implied operation-invariant total order ≤S , we can

generate the overall evaluations of the alternatives by

using the INNCI, as shown in Table 5, and then we will

select provider y1.

7. Conclusions

Interval neutrosophic set (INS) is a subclass of

a neutrosophic set, which can be applied in the

problems with uncertain, imprecise, incomplete, and

inconsistent information existing in real applications.

As an aggregation function, the Choquet integral

with respect to fuzzy measures is able to flexibly

describe the relative importance of decision criteria

as well as their interactions. In this paper, we com-

bined the Choquet integral and the INS theory to

propose INNCI operator for MCDM problem with

netrosophic information and investigated their aggrega-

tion properties, such as idempotency and monotonicity.

INNCI operator can represent INNWA and INNWG.

Therefore, INNCI operator is superior to existing

operators.

Increasingness is a natural requirement for an aggre-

gation function in MCDM. The increasingness property

of INNCI aggregation function strongly depends on

the order-preserving property of the given order rela-

tion. In this paper, we proposed two approaches to

compare two INNs. According to its geometrical struc-

ture, the ranking index is developed according to

some geometrical quantities which reflect the infe-

riors and superiors of INNs. Based on the ranking

index, an order relation, denoted by ≤H , is proposed.

Examples shown that order relations ≤H and ≤P

have some limitations, but they can be viewed as

mutually complementary if the comparing results is

obviously irrational. Because order relation ≤H and

≤P are not order-preserving for operations, we fur-

thermore proposed a ≤L implied operation-invariant
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total order to ensure the increasingness of INNCI oper-

ator, and it is more superior than the order relations

≤H and ≤P .

We only have proposed a kind of a ≤L implied

operation-invariant total order (Definition 3.5), which

does not adequately reflect the characteristics of INNs.

Therefore, it is of great interest to find a ≤L implied

operation-invariant total order which can better reflect

the characteristics of INNs. Furthermore, how to find

a good aggregation operation is also an important key

issue in netrosophic MCDM problems.
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