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INTERVAL NEUTROSOPHIC SETS AND LOGIC: 
 

THEORY AND APPLICATIONS IN COMPUTING 
 

by 
 

HAIBIN WANG 
 

Under the Direction of Rajshekhar Sunderraman 
 

ABSTRACT 
 
 

 
A neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra. The neutrosophic set is 

a powerful general formal framework that has been recently proposed. However, the 

neutrosophic set needs to be specified from a technical point of view. Here, we define the set-

theoretic operators on an instance of a neutrosophic set, and call it an Interval Neutrosophic Set 

(INS). We prove various properties of INS, which are connected to operations and relations over 

INS. We also introduce a new logic system based on interval neutrosophic sets. 

 

We study the interval neutrosophic propositional calculus and interval neutrosophic predicate 

calculus. We also create a neutrosophic logic inference system based on interval neutrosophic 

logic. Under the framework of the interval neutrosophic set, we propose a data model based on 

the special case of the interval neutrosophic sets called Neutrosophic Data Model. This data 

model is the extension of fuzzy data model and paraconsistent data model. We generalize the set-

theoretic operators and relation-theoretic operators of fuzzy relations and paraconsistent relations 



to neutrosophic relations. We propose the generalized SQL query constructs and tuple-relational 

calculus for Neutrosophic Data Model. 

 

We also design an architecture of Semantic Web Services agent based on the interval 

neutrosophic logic and do the simulation study. 
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Chapter 1

INTRODUCTION

Essentially all the information in the real world is imprecise, here imprecise means fuzzy, incom-

plete and even inconsistent. There are many theories existing to handle such imprecise information,

such as fuzzy set theory, probability theory, propability theory, intuitionistic fuzzy set theory, para-

consistent logic theory, etc. These theories can only handle one aspect of imprecise problem but not

the whole in one framework. For example, fuzzy set theory can only handle fuzzy, vague information

not the incomplete and inconsistent information.

In this dissertation, we unify the above-mentioned theories under one framework. Under this

framework, we can not only model and reason with fuzzy, incomplete information but also incon-

sistent information without danger of trivilization. This framework is called Interval Neutrosophic

Set (INS) and Interval Neutrosophic Logic(INL). We also propose two applications based on INS

and INL.

1.1 Motivation

In a interval neutrosophic set, there are three components, truth-membership function, indeterminacy-

membership function and falsity-membership function. Indeterminacy is quantified explicitly and

three components are independent. This assumption is very important in many applications, such

as information fusion in which we try to combine the data from different sensors.

The interval neutrosophic set is an instance of more general framework called neutrosophic set

which was introduced by Florentin Smarandache. A neutrosophic set A defined on universe X.

x = x(T, I, F ) ∈ A with T, I and F being the real standard or non-standard subsets of ]0−, 1+[, T

is the degree of truth-membership of A, I is the degree of indeterminacy- membership of A and F

is the degree of falsity-membership of A.

The interval neutrosophic set and logic is more easy to apply to the scientific and engineering
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applications. We call it as “interval” because it is subclass of neutrosophic set and logic, that is we

only consider the subunitary interval of [0, 1].

1.2 Problem Statement

An interval neutrosophic set A defined on universe X,x = x(T, I, F ) ∈ A with T, I and F being

the subinterval of [0, 1]. The interval neutrosophic set generalizes the following sets:

1. the classical set, I = ∅, inf T = supT = 0or1, inf F = supF = 0or1 and supT + supF = 1.

2. the fuzzy set, I = ∅, inf T = supT ∈ [0, 1], inf F = supF ∈ [0, 1] and supT + supF = 1.

3. the interval valued fuzzy set, I = ∅, inf T, supT, inf F, supF ∈ [0, 1], sup T + inf F = 1 and

inf T + supF = 1.

4. the intuitionistic fuzzy set, I = ∅, inf T = supT ∈ [0, 1], inf F = supF ∈ [0, 1] and supT +

supF ≤ 1.

5. the interval valued intuitionistic fuzzy set, I = ∅, inf T, supT, inf F, supF ∈ [0, 1] and supT +

supF ≤ 1.

6. the paraconsistent set, I = ∅, inf T = supT ∈ [0, 1], inf F = supF ∈ [0, 1] and supT +supF >

1.

7. the interval valued paraconsistent set, I = ∅, inf T, supT, inf F, supF ∈ [0, 1] and inf T +

inf F > 1.

1.3 Contributions

Here, we give the overall contributions. They are broadly summarized as follows:

1. Interval Neutrosophic Sets: We are the first to propose the concept of interval neutrosophic

sets. We define the set-theoretic operators on the interval neutrosophic sets and study the

various properties of interval neutrosophic sets.
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2. Interval Neutrosophic Logic: Based on the interval neutrosophic sets, we create a new logic

system called interval neutrosophic logic. We define the syntax and semantics of interval

neutrosophic propositional logic and interval neutrosophic predicate logic. We also create

neutrosophic logic inference system based on the interval neutrosophic logic.

3. Neutrosophic Data Model: We propose an extension of relational data model called neutro-

sophic data model. This data model is based on the special case of interval neutrosophic

sets, i.e., I = ∅. This data model is the generalization of fuzzy relational data model and

paraconsistent relational data model. It could model and reason with fuzzy, incomplete and

inconsistent information.

4. Infinite-Valued Tuple Relational Calculus for Neutrosophic Database: We define one logic

query language called infinite-valued tuple relational calculus for the neutrosophic databases.

The sysntax of this logic query language is very similar to that of traditional relational

databases but its semantics is very different.

5. Generalized SQL Query Construct for Neutrosophic Databases: We define a generalized SQL

query language for neutrosophic databases. The syntax of our generalized SQL query con-

struct is similar to that of traditional databases, but its semantics is different.

6. Soft Semantic Web Services Agent: We propose an architecture of soft Semantic Web Services

agent which could provide high quality of service of Semantic Web Services. We perform the

simulation based on the interval neutrosophic logic, neural network and genetic algorithms.

By our knowledge, this is the first one in the literature until now.

1.4 Organization

The rest of the dissertation is organized as follows: Chapter 2 first introduces the interval neutro-

sophic sets. In this chapter, the definition of interval neutrosophic sets and set-theoretic operators

are given and various properties of interval neutrosophic sets are proved. Chapter 3 defines the

interval neutrosophic logic based on interval neutrosophic sets including the syntax and semantics
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of the first order interval neutrosophic propositional logic and the first order interval neutrosophic

predicate logic. In this chapter, we also design an interval neutrosophic logic inference system

based on the first order interval neutrosophic predicate logic. Chapter 4 gives one application of

interval neutrosophic sets in the field of relational databases. The neutrosophic data model is the

generalization of fuzzy data model and paraconsistent data model. Here, we generalize various

set-theoretic and relation-theoretic operations of fuzzy data model to the neutrosophic data model.

Chapter 5 gives another application of interval neutrosophic logic. A soft Semantic Web Services

agent framework is proposed to faciliate the registration and discovery of high quality Semantic

Web Services. The intelligent inference engine module of soft Semantic Web Services agent is

implemented using interval neutrosophic logic. Chapter 6 concludes the dissertation.
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Chapter 2

INTERVAL NEUTROSOPHIC SETS

A neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of neutralities,

as well as their interactions with different ideational spectra. The neutrosophic set is a powerful general

formal framework that has been recently proposed. However, the neutrosophic set needs to be specified from

a technical point of view. Now we define the set-theoretic operators on an instance of a neutrosophic set,

and call it an Interval Neutrosophic Set (INS). We prove various properties of INS, which are connected to

operations and relations over INS. Finally, we introduce and prove the convexity of interval neutrosophic

sets.

2.1 Introduction

The concept of fuzzy sets was introduced by Zadeh in 1965 [104]. Since then fuzzy sets and

fuzzy logic have been applied in many real applications to handle uncertainty. The traditional

fuzzy set uses one real number µA(x) ∈ [0, 1] to represent the grade of membership of fuzzy set

A defined on universe X. Sometimes µA(x) itself is uncertain and hard to be defined by a crisp

value. So the concept of interval valued fuzzy sets was proposed [97] to capture the uncertainty

of grade of membership. Interval valued fuzzy set uses an interval value [µL
A(x), µU

A(x)] with 0 ≤

µL
A(x) ≤ µU

A(x) ≤ 1 to represent the grade of membership of fuzzy set A. In some applications

such as expert system, belief system and information fusion, we should consider not only the truth-

membership supported by the evidence but also the falsity-membership against by the evidence.

That is beyond the scope of fuzzy sets and interval valued fuzzy sets. In 1986, Atanassov introduced

the intuitionistic fuzzy sets [23] that is a generalization of fuzzy sets and provably equivalent to

interval valued fuzzy sets. The intuitionistic fuzzy sets consider both truth-membership and falsity-

membership. Later on, intuitionistic fuzzy sets were extended to the interval valued intuitionistic

fuzzy sets [25]. The interval valued intuitionistic fuzzy set uses a pair of intervals [t−, t+], 0 ≤ t− ≤
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t+ ≤ 1 and [f−, f+], 0 ≤ f− ≤ f+ ≤ 1 with t+ + f+ ≤ 1 to describe the degree of true belief and

false belief. Because of the restriction that t+ +f+ ≤ 1, intuitionistic fuzzy sets and interval valued

intuitionistic fuzzy sets can only handle incomplete information not the indeterminate information

and inconsistent information which exists commonly in belief systems. For example, when we ask

the opinion of an expert about certain statement, he or she may say that the possibility that the

statement is true is between 0.5 and 0.7 and the statement is false is between 0.2 and 0.4 and the

degree that he or she is not sure is between 0.1 and 0.3. Here is another example, suppose there are

10 voters during a voting process. In time t1, three vote “yes”, two vote “no” and five are undecided,

using neutrosophic notation, it can be expressed as x(0.3, 0.5, 0.2). In time t2, three vote “yes”, two

vote “no”, two give up and three are undecided, it then can be expressed as x(0.3, 0.3, 02). That is

beyond the scope of the intuitionistic fuzzy set. So, the notion of neutrosophic set is more general

and overcomes the aforementioned issues.

In neutrosophic set, indeterminacy is quantified explicitly and truth-membership,

indeterminacy-membership and falsity-membership are independent. This assumption is very im-

portant in many applications such as information fusion in which we try to combine the data

from different sensors. Neutrosophy was introduced by Florentin Smarandache in 1980. “It is a

branch of philosophy which studies the origin, nature and scope of neutralities, as well as their

interactions with different ideational spectra” [89]. Neutrosophic set is a powerful general formal

framework which generalizes the concept of the classic set, fuzzy set [104], interval valued fuzzy

set [97], intuitionistic fuzzy set [23], interval valued intuitionistic fuzzy set [25], paraconsistent

set [89], dialetheist set [89], paradoxist set [89], tautological set [89]. A neutrosophic set A de-

fined on universe U . x = x(T, I, F ) ∈ A with T, I and F being the real standard or non-standard

subsets of ]0−, 1+[. T is the degree of truth-membership function in the set A, I is the degree of

indeterminacy-membership function in the set A and F is the degree of falsity-membership function

in the set A.

The neutrosophic set generalizes the above mentioned sets from philosophical point of view.

From scientific or engineering point of view, the neutrosophic set and set-theoretic operators need

to be specified. Otherwise, it will be difficult to apply in the real applications. In this chapter, we

define the set-theoretic operators on an instance of neutrosophic set called Interval Neutrosophic
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Set (INS). We call it as “interval” because it is subclass of neutrosophic set, that is we only consider

the subunitary interval of [0, 1].

An interval neutrosophic set A defined on universe X, x = x(T, I, F ) ∈ A with T , I and F

being the subinterval of [0, 1]. The interval neutrosophic set can represent uncertain, imprecise,

incomplete and inconsistent information which exist in real world. The interval neutrosophic set

generalizes the following sets:

1. the classical set, I = ∅, inf T = supT = 0 or 1, inf F = supF = 0 or 1 and supT +supF = 1.

2. the fuzzy set, I = ∅, inf T = supT ∈ [0, 1], inf F = supF ∈ [0, 1] and supT + supF = 1.

3. the interval valued fuzzy set, I = ∅, inf T, supT, inf F, supF ∈ [0, 1], supT + inf F = 1 and

inf T + supF = 1.

4. the intuitionistic fuzzy set, I = ∅, inf T = supT ∈ [0, 1], inf F = supF ∈ [0, 1] and supT +

supF ≤ 1.

5. the interval valued intuitionistic fuzzy set, I = ∅, inf T, supT, inf F, supF ∈ [0, 1] and supT +

supF ≤ 1.

6. the paraconsistent set, I = ∅, inf T = supT ∈ [0, 1], inf F = supF ∈ [0, 1] and supT +supF >

1.

7. the interval valued paraconsistent set, I = ∅, inf T, supT, inf F, supF ∈ [0, 1] and inf T +

inf F > 1.

The relationship among interval neutrosophic set and other sets is illustrated in Fig 2.1.

Note that → in Fig. 2.1 such as a → b means that b is a generalization of a.

We define the set-theoretic operators on the interval neutrosophic set. Various properties of

INS are proved, which are connected to the operations and relations over INS.

The rest of chapter is organized as follows. Section 2.2 gives a brief overview of the neutrosophic

set. Section 2.3 gives the definition of the interval neutrosophic set and set-theoretic operations.
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neutrosophic set


interval neutrosophic set


interval valued intuitionistic

fuzzy set


(intuitionistic fuzzy set)

interval valued fuzzy set


fuzzy set


classic set


interval valued

paraconsistent set


paraconsistent set


Figure 2.1: Relationship among interval neutrosophic set and other sets
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Section 2.4 presents some properties of set-theoretic operations. Section 2.5 defines the convexity

of the interval neutrosophic sets and proves some properties of convexity. Section ?? concludes the

chapter. To maintain a smooth flow throughout the chapter, we present the proofs to all theorems

in Appendix.

2.2 Neutrosophic Set

This section gives a brief overview of concepts of neutrosophic set defined in [89]. Here, we use

different notations to express the same meaning. Let S1 and S2 be two real standard or non-standard

subsets, then S1⊕S2 = {x|x = s1 +s2, s1 ∈ S1 and s2 ∈ S2}, {1
+}⊕S2 = {x|x = 1+ +s2, s2 ∈ S2}.

S1 	 S2 = {x|x = s1 − s2, s1 ∈ S1 and s2 ∈ S2}, {1
+} 	 S2 = {x|x = 1+ − s2, s2 ∈ S2}. S1 � S2 =

{x|x = s1 · s2, s1 ∈ S1 and s2 ∈ S2}.

Definition 1 (Neutrosophic Set) Let X be a space of points (objects), with a generic element

in X denoted by x.

A neutrosophic set A in X is characterized by a truth-membership function TA, a indeterminacy-

membership function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real

standard or non-standard subsets of ]0−, 1+[. That is

TA : X → ]0−, 1+[, (2.1)

IA : X → ]0−, 1+[, (2.2)

FA : X → ]0−, 1+[. (2.3)

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0− ≤ supTA(x)+sup IA(x)+

supFA(x) ≤ 3+.

Definition 2 The complement of a neutrosophic set A is denoted by Ā and is defined by
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TĀ(x) = {1+} 	 TA(x), (2.4)

IĀ(x) = {1+} 	 IA(x), (2.5)

FĀ(x) = {1+} 	 FA(x), (2.6)

for all x in X.

Definition 3 (Containment) A neutrosophic set A is contained in the other neutrosophic set B,

A ⊆ B, if and only if

inf TA(x) ≤ inf TB(x) , supTA(x) ≤ supTB(x), (2.7)

inf IA(x) ≥ inf IB(x) , sup IA(x) ≥ sup IB(x), (2.8)

inf FA(x) ≥ inf FB(x) , supFA(x) ≥ supFB(x), (2.9)

for all x in X.

Definition 4 (Union) The union of two neutrosophic sets A and B is a neutrosophic set C,

written as C = A∪B, whose truth-membership, indeterminacy-membership and falsity-membership

functions are related to those of A and B by

TC(x) = TA(x) ⊕ TB(x) 	 TA(x) � TB(x), (2.10)

IC(x) = IA(x) ⊕ IB(x) 	 IA(x) � IB(x), (2.11)

FC(x) = FA(x) ⊕ FB(x) 	 FA(x) � FB(x), (2.12)

for all x in X.

Definition 5 (Intersection) The intersection of two neutrosophic sets A and B is a neutrosophic

set C, written as C = A ∩ B, whose truth-membership, indeterminacy-membership and falsity-

membership functions are related to those of A and B by
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TC(x) = TA(x) � TB(x), (2.13)

IC(x) = IA(x) � IB(x), (2.14)

FC(x) = FA(x) � FB(x), (2.15)

for all x in X.

Definition 6 (Difference) The difference of two neutrosophic sets A and B is a neutrosophic

set C, written as C = A \ B, whose truth-membership, indeterminacy-membership and falsity-

membership functions are related to those of A and B by

TC(x) = TA(x) 	 TA(x) � TB(x), (2.16)

IC(x) = IA(x) 	 IA(x) � IB(x), (2.17)

FC(x) = FA(x) 	 FA(x) � FB(x), (2.18)

for all x in X.

Definition 7 (Cartesian Product) Let A be the neutrosophic set defined on universe E1 and B

be the neutrosophic set defined on universe E2. If x(T 1
A, I1

A, F 1
A) ∈ A and y(T 2

A, I2
A, F 2

A) ∈ B, then

the cartesian product of two neutrosophic sets A and B is defined by

(x(T 1
A, I1

A, F 1
A), y(T 2

A, I2
A, F 2

A)) ∈ A × B (2.19)

2.3 Interval Neutrosophic Set

In this section, we present the notion of the interval neutrosophic set (INS). The interval neu-

trosophic set (INS) is an instance of neutrosophic set which can be used in real scientific and

engineering applications.

Definition 8 (Interval Neutrosophic Set) Let X be a space of points (objects), with a generic

element in X denoted by x.
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An interval neutrosophic set (INS) A in X is characterized by truth-membership function TA,

indeterminacy-membership function IA and falsity-membership function FA. For each point x in

X, TA(x), IA(x), FA(x) ⊆ [0, 1].

An interval neutrosophic set (INS) in R1 is illustrated in Fig. 2.2.

0
 X


T
A
 (x)

I
A
 (x)

F
A
 (x)


1

sup F
 A
 (x)


inf F
 A
(x)


sup T
 A
 (x)


inf T
 A
(x)


sup I
 A
 (x)


Inf I
 A
(x)


Figure 2.2: Illustration of interval neutrosophic set in R1

When X is continuous, an INS A can be written as

A =

∫

X

〈T (x), I(x), F (x)〉/x, x ∈ X (2.20)

When X is discrete, an INS A can be written as

A =

n∑

i=1

〈T (xi), I(xi), F (xi)〉/xi, xi ∈ X (2.21)

Consider parameters such as capability, trustworthiness and price of semantic Web services.

These parameters are commonly used to define quality of service of semantic Web services. In this

section, we will use the evaluation of quality of service of semantic Web services [99] as running

example to illustrate every set-theoretic operation on interval neutrosophic set.

Example 1 Assume that X = [x1, x2, x3]. x1 is capability, x2 is trustworthiness and x3 is price.

The values of x1, x2 and x3 are in [0, 1]. They are obtained from the questionnaire of some domain

experts, their option could be degree of good, degree of indeterminacy and degree of poor. A is an
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interval neutrosophic set of X defined by

A = 〈[0.2, 0.4], [0.3, 0.5], [0.3, 0.5]〉/x1 + 〈[0.5, 0.7], [0, 0.2], [0.2, 0.3]〉/x2 +

〈[0.6, 0.8], [0.2, 0.3], [0.2, 0.3]〉/x3 .

B is an interval neutrosophic set of X defined by

B = 〈[0.5, 0.7], [0.1, 0.3], [0.1, 0.3]〉/x1 + 〈[0.2, 0.3], [0.2, 0.4], [0.5, 0.8]〉/x2 +

〈[0.4, 0.6], [0, 0.1], [0.3, 0.4]〉/x3 .

Definition 9 An interval neutrosophic set A is empty if and only if its inf TA(x) = supTA(x) = 0,

inf IA(x) = sup IA(x) = 1 and inf FA(x) = supTA(x) = 0, for all x in X.

We now present the set-theoretic operators on interval neutrosophic set.

Definition 10 (Containment) An interval neutrosophic set A is contained in the other interval

neutrosophic set B, A ⊆ B, if and only if

inf TA(x) ≤ inf TB(x) , supTA(x) ≤ supTB(x), (2.22)

inf IA(x) ≥ inf IB(x) , sup IA(x) ≥ sup IB(x), (2.23)

inf FA(x) ≥ inf FB(x) , supFA(x) ≥ supFB(x), (2.24)

for all x in X.

Definition 11 Two interval neutrosophic sets A and B are equal, written as A = B, if and only

if A ⊆ B and B ⊆ A

Let 0 = 〈0, 1, 1〉 and 1 = 〈1, 0, 0〉.

Definition 12 (Complement) Let CN denote a neutrosophic complement of A. Then CN is a

function

CN : N → N

and CN must satisfy at least the following three axiomatic requirements:

1. CN (0) = 1 and CN (1) = 0 (boundary conditions).
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2. Let A and B be two interval neutrosophic sets defined on X, if A(x) ≤ B(x), then CN (A(x)) ≥

CN (B(x)), for all x in X. (monotonicity).

3. Let A be an interval neutrosophic set defined on X, then CN (CN (A(x))) = A(x), for all x in

X. (involutivity).

�

There are many functions which satisfy the requirement to be the complement operator of

interval neutrosophic sets. Here we give one example.

Definition 13 (Complement CN1
) The complement of an interval neutrosophic set A is denoted

by Ā and is defined by

TĀ(x) = FA(x), (2.25)

inf IĀ(x) = 1 − sup IA(x), (2.26)

sup IĀ(x) = 1 − inf IA(x), (2.27)

FĀ(x) = TA(x), (2.28)

for all x in X. �

Example 2 Let A be the interval neutrosophic set defined in Example 1. Then,

Ā = 〈[0.3, 0.5], [0.5, 0.7], [0.2, 0.4]〉/x1 + 〈[0.2, 0.3], [0.8, 1.0], [0.5, 0.7]〉/x2+

〈[0.2, 0.3], [0.7, 0.8], [0.6, 0.8]〉/x3 .

Definition 14 (N-norm) Let IN denote a neutrosophic intersection of two interval neutrosophic

sets A and B. Then IN is a function

IN : N × N → N

and IN must satisfy at least the following four axiomatic requirements:

1. IN (A(x), 1) = A(x), for all x in X. (boundary condition).
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2. B(x) ≤ C(x) implies IN (A(x), B(x)) ≤ IN (A(x), C(x)), for all x in X. (monotonicity).

3. IN (A(x), B(x)) = IN (B(x), A(x)), for all x in X. (commutativity).

4. IN (A(x), IN (B(x), C(x))) = IN (IN (A(x), B(x)), C(x)), for all x in X. (associativity).

�

Here we give one example of intersection of two interval neutrosophic sets which satisfies above

N -norm axiomatic requirements. Other different definitions can be given for different applications.

Definition 15 (Intersection IN1
) The intersection of two interval neutrosophic sets A and B is

an interval neutrosophic set C, written as C = A ∩ B, whose truth-membership, indeterminacy-

membership, and false-membership are related to those of A and B by

inf TC(x) = min(inf TA(x), inf TB(x)), (2.29)

supTC(x) = min(supTA(x), supTB(x)), (2.30)

inf IC(x) = max(inf IA(x), inf IB(x)), (2.31)

sup IC(x) = max(sup IA(x), sup IB(x)), (2.32)

inf FC(x) = max(inf FA(x), inf FB(x)), (2.33)

supFC(x) = max(supFA(x), supFB(x)), (2.34)

for all x in X. �

Example 3 Let A and B be the interval neutrosophic sets defined in Example 1. Then, A ∩ B =

〈[0.2, 0.4], [0.3, 0.5], [0.3, 0.5]〉/x1 +

〈[0.2, 0.3], [0.2, 0.4], [0.5, 0.8]〉/x2 + 〈[0.4, 0.6], [0.2, 0.3], [0.3, 0.4]〉/x3 .

Theorem 1 A ∩ B is the largest interval neutrosophic set contained in both A and B.
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Definition 16 (N-conorm) Let UN denote a neutrosophic union of two interval neutrosophic sets

A and B. Then UN is a function

UN : N × N → N

and UN must satisfy at least the following four axiomatic requirements:

1. UN (A(x), 0) = A(x), for all x in X. (boundary condition).

2. B(x) ≤ C(x) implies UN (A(x), B(x)) ≤ UN (A(x), C(x)), for all x in X. (monotonicity).

3. UN (A(x), B(x)) = UN (B(x), A(x)), for all x in X. (commutativity).

4. UN (A(x), UN (B(x), C(x))) = UN (UN (A(x), B(x)), C(x)), for all x in X. (associativity).

�

Here we give one example of union of two interval neutrosophic sets which satisfies above N -

conorm axiomatic requirements. Other different definitions can be given for different applications.

Definition 17 (Union UN1
) The union of two interval neutrosophic sets A and B is an interval

neutrosophic set C, written as C = A ∪ B, whose truth-membership, indeterminacy-membership,

and false-membership are related to those of A and B by

inf TC(x) = max(inf TA(x), inf TB(x)), (2.35)

supTC(x) = max(supTA(x), supTB(x)), (2.36)

inf IC(x) = min(inf IA(x), inf IB(x)), (2.37)

sup IC(x) = min(sup IA(x), sup IB(x)), (2.38)

inf FC(x) = min(inf FA(x), inf FB(x)), (2.39)

supFC(x) = min(supFA(x), supFB(x)), (2.40)

for all x in X. �
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Example 4 Let A and B be the interval neutrosophic sets defined in Example 1. Then, A ∪ B =

〈[0.5, 0.7], [0.1, 0.3], [0.1, 0.3]〉/x1 +

〈[0.5, 0.7], [0, 0.2], [0.2, 0.3]〉/x2 + 〈[0.6, 0.8], [0, 0.1], [0.2, 0.3]〉/x3 .

The intuition behind the union operator is that if one of elements in A and B is true then it is

true in A∪B, only both are indeterminate and false in A and B then it is indeterminate and false

in A ∪ B. The other operators should be understood similarly.

Theorem 2 A ∪ B is the smallest interval neutrosophic set containing both A and B.

Theorem 3 Let P be the power set of all interval neutrosophic sets defined in the universe X.

Then 〈P ; IN1
, UN1

〉 is a distributive lattice.

Proof Let A,B,C be the arbitrary interval neutrosophic sets defined on X. It is easy to verify

that A ∩ A = A,A ∪ A = A (idempotency), A ∩ B = B ∩ A,A ∪ B = B ∪ A (commutativity),

(A ∩ B) ∩ C = A ∩ (B ∩ C), (A ∪ B) ∪ C = A ∪ (B ∪ C) (associativity), and A ∩ (B ∪ C) =

(A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (distributivity).

Definition 18 (Interval neutrosophic relation) Let X and Y be two non-empty crisp sets. An

interval neutrosophic relation R(X,Y ) is a subset of product space X×Y , and is characterized by the

truth membership function TR(x, y), the indeterminacy membership function IR(x, y), and the falsity

membership function FR(x, y), where x ∈ X and y ∈ Y and TR(x, y), IR(x, y), FR(x, y) ⊆ [0, 1].

Definition 19 (Interval Neutrosophic Composition Functions) The membership functions

for the composition of interval neutrosophic relations R(X,Y ) and S(Y,Z) are given by the interval

neutrosophic sup-star composition of R and S

TR◦S(x, z) = sup
y∈Y

min(TR(x, y), TS(y, z)), (2.41)

IR◦S(x, z) = sup
y∈Y

min(IR(x, y), IS(y, z)), (2.42)

FR◦S(x, z) = inf
y∈Y

max(FR(x, y), FS(y, z)). (2.43)



18

If R is an interval neutrosophic set rather than an interval neutrosophic relation, then Y = X

and

supy∈Y min(TR(x, y), TS(y, z)) becomes supy∈Y min(TR(x), TS(y, z)), which is only a function of the

output variable z. It is similar for supy∈Y min(IR(x, y), IS(y, z)) and

infy∈Y max(FR(x, y), FS(y, z)). Hence, the notation of TR◦S(x, z) can be simplified to TR◦S(z), so

that in the case of R being just an interval neutrosophic set,

TR◦S(z) = sup
x∈X

min(TR(x), TS(x, z)), (2.44)

IR◦S(z) = sup
x∈X

min(IR(x), IS(x, z)), (2.45)

FR◦S(z) = inf
x∈X

max(FR(x), FS(x, z)). (2.46)

Definition 20 (Difference) The difference of two interval neutrosophic sets A and B is an inter-

val neutrosophic set C, written as C = A \B, whose truth-membership, indeterminacy-membership

and falsity-membership functions are related to those of A and B by

inf TC(x) = min(inf TA(x), inf FB(x)), (2.47)

supTC(x) = min(supTA(x), supFB(x)), (2.48)

inf IC(x) = max(inf IA(x), 1 − sup IB(x)), (2.49)

sup IC(x) = max(sup IA(x), 1 − inf IB(x)), (2.50)

inf FC(x) = max(inf FA(x), inf TB(x)), (2.51)

supFC(x) = max(supFA(x), supTB(x)), (2.52)

for all x in X.

Example 5 Let A and B be the interval neutrosophic sets defined in Example 1. Then, A \ B =

〈[0.1, 0.3], [0.7, 0.9], [0.5, 0.7]〉/x1 +

〈[0.5, 0.7], [0.6, 0.8], [0.2, 0.3]〉/x2 + 〈[0.3, 0.4], [0.9, 1.0], [0.4, 0.6]〉/x3 .

Theorem 4 A ⊆ B ↔ B̄ ⊆ Ā
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Definition 21 (Addition) The addition of two interval neutrosophic sets A and B is an interval

neutrosophic set C, written as C = A + B, whose truth-membership, indeterminacy-membership

and falsity-membership functions are related to those of A and B by

inf TC(x) = min(inf TA(x) + inf TB(x), 1), (2.53)

supTC(x) = min(supTA(x) + supTB(x), 1), (2.54)

inf IC(x) = min(inf IA(x) + inf IB(x), 1), (2.55)

sup IC(x) = min(sup IA(x) + sup IB(x), 1), (2.56)

inf FC(x) = min(inf FA(x) + inf FB(x), 1), (2.57)

supFC(x) = min(supFA(x) + supFB(x), 1), (2.58)

for all x in X.

Example 6 Let A and B be the interval neutrosophic sets defined in Example 1. Then, A + B =

〈[0.7, 1.0], [0.4, 0.8], [0.4, 0.8]〉/x1 +

〈[0.7, 1.0], [0.2, 0.6], [0.7, 1.0]〉/x2 + 〈[1.0, 1.0], [0.2, 0.4], [0.5, 0.7]〉/x3 .

Definition 22 (Cartesian product) The cartesian product of two interval neutrosophic sets A

defined on universe X1 and B defined on universe X2 is an interval neutrosophic set C, written as

C = A×B, whose truth-membership, indeterminacy-membership and falsity-membership functions

are related to those of A and B by

inf TC(x, y) = inf TA(x) + inf TB(y) − inf TA(x) · inf TB(y), (2.59)

supTC(x, y) = supTA(x) + supTB(y) − supTA(x) · supTB(y), (2.60)

inf IC(x, y) = inf IA(x) · sup IB(y), (2.61)

sup IC(x, y) = sup IA(x) · sup IB(y), (2.62)

inf FC(x, y) = inf FA(x) · inf FB(y), (2.63)

supFC(x, y) = supFA(x) · supFB(y), (2.64)

for all x in X1, y in X2.
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Example 7 Let A and B be the interval neutrosophic sets defined in Example 1. Then, A × B =

〈[0.6, 0.82], [0.03, 0.15], [0.03, 0.15]〉/x1 +

〈[0.6, 0.79], [0, 0.08], [0.1, 0.24]〉/x2 + 〈[0.76, 0.92], [0, 0.03], [0.03, 0.12]〉/x3 .

Definition 23 (Scalar multiplication) The scalar multiplication of interval neutrosophic set A

is an interval neutrosophic set B, written as B = a · A, whose truth-membership, indeterminacy-

membership and falsity-membership functions are related to those of A by

inf TB(x) = min(inf TA(x) · a, 1), (2.65)

supTB(x) = min(supTA(x) · a, 1), (2.66)

inf IB(x) = min(inf IA(x) · a, 1), (2.67)

sup IB(x) = min(sup IA(x) · a, 1), (2.68)

inf FB(x) = min(inf FA(x) · a, 1), (2.69)

supFB(x) = min(supFA(x) · a, 1), (2.70)

for all x in X, a ∈ R+.

Definition 24 (Scalar division) The scalar division of interval neutrosophic set A is an interval

neutrosophic set B, written as B = a ·A, whose truth-membership, indeterminacy-membership and

falsity-membership functions are related to those of A by

inf TB(x) = min(inf TA(x)/a, 1), (2.71)

supTB(x) = min(supTA(x)/a, 1), (2.72)

inf IB(x) = min(inf IA(x)/a, 1), (2.73)

sup IB(x) = min(sup IA(x)/a, 1), (2.74)

inf FB(x) = min(inf FA(x)/a, 1), (2.75)

supFB(x) = min(supFA(x)/a, 1), (2.76)

for all x in X, a ∈ R+.
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Now we will define two operators: truth-favorite (4) and false-favorite (∇) to remove the inde-

terminacy in the interval neutrosophic sets and transform it into interval valued intuitionistic fuzzy

sets or interval valued paraconsistent sets. These two operators are unique on interval neutrosophic

sets.

Definition 25 (Truth-favorite) The truth-favorite of interval neutrosophic set A is an interval

neutrosophic set B, written as B = 4A, whose truth-membership and falsity-membership functions

are related to those of A by

inf TB(x) = min(inf TA(x) + inf IA(x), 1), (2.77)

supTB(x) = min(supTA(x) + sup IA(x), 1), (2.78)

inf IB(x) = 0, (2.79)

sup IB(x) = 0, (2.80)

inf FB(x) = inf FA(x), (2.81)

supFB(x) = supFA(x), (2.82)

for all x in X.

Example 8 Let A be the interval neutrosophic set defined in Example 1. Then, 4A = 〈[0.5, 0.9], [0, 0], [0.3, 0.5]〉/x1+

〈[0.5, 0.9], [0, 0], [0.2, 0.3]〉/x2 +

〈[0.8, 1.0], [0, 0], [0.2, 0.3]〉/x3 .

The purpose of truth-favorite operator is to evaluate the maximum of degree of truth-membership

of interval neutrosophic set.

Definition 26 (False-favorite) The false-favorite of interval neutrosophic set A is an interval

neutrosophic set B, written as B = ∇A, whose truth-membership and falsity-membership functions
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are related to those of A by

inf TB(x) = inf TA(x), (2.83)

supTB(x) = supTA(x), (2.84)

inf IB(x) = 0, (2.85)

sup IB(x) = 0, (2.86)

inf FB(x) = min(inf FA(x) + inf IA(x), 1), (2.87)

supFB(x) = min(supFA(x) + sup IA(x), 1), (2.88)

for all x in X.

Example 9 Let A be the interval neutrosophic set defined in Example 1. Then, ∇A = 〈[0.2, 0.4], [0, 0], [0.6, 1.0]〉/x1+

〈[0.5, 0.7], [0, 0], [0.2, 0.5]〉/x2 +

〈[0.6, 0.8], [0, 0], [0.4, 0.6]〉/x3 .

The purpose of false-favorite operator is to evaluate the maximum of degree of false-membership

of interval neutrosophic set.

Theorem 5 For every two interval neutrosophic sets A and B:

1. 4(A ∪ B) ⊆ 4A ∪4B

2. 4A ∩4B ⊆ 4(A ∩ B)

3. ∇A ∪∇B ⊆ ∇(A ∪ B)

4. ∇(A ∩ B) ⊆ ∇A ∩∇B
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2.4 Properties of Set-theoretic Operators

In this section, we will give some properties of set-theoretic operators defined on interval neutro-

sophic sets as in Section 2.3. The proof of these properties is left for the readers.

Property 1 (Commutativity) A∪B = B ∪A, A∩B = B∩A, A+B = B +A, A×B = B ×A

Property 2 (Associativity) A ∪ (B ∪ C) = (A ∪ B) ∪ C,

A ∩ (B ∩ C) = (A ∩ B) ∩ C,

A + (B + C) = (A + B) + C,

A × (B × C) = (A × B) × C.

Property 3 (Distributivity) A∪ (B∩C) = (A∪B)∩ (A∪C), A∩ (B∪C) = (A∩B)∪ (A∩C).

Property 4 (Idempotency) A ∪ A = A, A ∩ A = A, 44A = 4A, ∇∇A = ∇A.

Property 5 A ∩ Φ = Φ, A ∪ X = X, where inf TΦ = supTΦ = 0, inf IΦ = sup IΦ = inf FΦ =

supFΦ = 1 and inf TX = supTX = 1, inf IX = sup IX = inf FX = supFX = 0.

Property 6 4(A + B) = 4A + 4B, ∇(A + B) = ∇A + ∇B.

Property 7 A ∪ Ψ = A, A ∩ X = A, where inf TΦ = supTΦ = 0, inf IΦ = sup IΦ = inf FΦ =

supFΦ = 1 and inf TX = supTX = 1, inf IX = sup IX = inf FX = supFX = 0.

Property 8 (Absorption) A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A

Property 9 (DeMorgan’s Laws) A ∪ B = Ā ∩ B̄, A ∩ B = Ā ∪ B̄.

Property 10 (Involution) A = A

Here, we notice that by the definitions of complement, union and intersection of interval neu-

trosophic set, interval neutrosophic set satisfies the most properties of class set, fuzzy set and

intuitionistic fuzzy set. Same as fuzzy set and intuitionistic fuzzy set, it does not satisfy the prin-

ciple of middle exclude.
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2.5 Convexity of Interval Neutrosophic Set

We assume that X is a real Euclidean space En for correctness.

Definition 27 (Convexity) An interval neutrosophic set A is convex if and only if

inf TA(λx1 + (1 − λ)x2) ≥ min(inf TA(x1), inf TA(x2)), (2.89)

supTA(λx1 + (1 − λ)x2) ≥ min(supTA(x1), supTA(x2)), (2.90)

inf IA(λx1 + (1 − λ)x2) ≤ max(inf IA(x1), inf IA(x2)), (2.91)

sup IA(λx1 + (1 − λ)x2) ≤ max(sup IA(x1), sup IA(x2)), (2.92)

inf FA(λx1 + (1 − λ)x2) ≤ max(inf FA(x1), inf FA(x2)), (2.93)

supFA(λx1 + (1 − λ)x2) ≤ max(supFA(x1), supFA(x2)), (2.94)

for all x1 and x2 in X and all λ in [0, 1].

Fig. 2.2 is an illustration of convex interval neutrosophic set.

Theorem 6 If A and B are convex, so is their intersection.

Definition 28 (Strongly Convex) An interval neutrosophic set A is

strongly convex if for any two distinct points x1 and x2, and any λ in the

open interval (0, 1),

inf TA(λx1 + (1 − λ)x2) > min(inf TA(x1), inf TA(x2)), (2.95)

supTA(λx1 + (1 − λ)x2) > min(supTA(x1), supTA(x2)), (2.96)

inf IA(λx1 + (1 − λ)x2) < max(inf IA(x1), inf IA(x2)), (2.97)

sup IA(λx1 + (1 − λ)x2) < max(sup IA(x1), sup IA(x2)), (2.98)

inf FA(λx1 + (1 − λ)x2) < max(inf FA(x1), inf FA(x2)), (2.99)

supFA(λx1 + (1 − λ)x2) < max(supFA(x1), supFA(x2)), (2.100)

for all x1 and x2 in X and all λ in [0, 1].

Theorem 7 If A and B are strongly convex, so is their intersection.
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Chapter 3

INTERVAL NEUTROSOPHIC LOGIC

In this chapter, we present a novel interval neutrosophic logic that generalizes the interval valued fuzzy

logic, the intuitionistic fuzzy logic and paraconsistent logics which only consider truth-degree or falsity-degree

of a proposition. In the interval neutrosophic logic, we consider not only truth-degree and falsity-degree but

also indeterminacy-degree which can reliably capture more information under uncertainty. We introduce

mathematical definitions of an interval neutrosophic propositional calculus and an interval neutrosophic

predicate calculus. We propose a general method to design an interval neutrosophic logic system which

consists of neutrosophication, neutrosophic inference, a neutrosophic rule base, neutrosophic type reduction

and deneutrosophication. A neutrosophic rule contains input neutrosophic linguistic variables and out-

put neutrosophic linguistic variables. A neutrosophic linguistic variable has neutrosophic linguistic values

which defined by interval neutrosophic sets characterized by three membership functions: truth-membership,

falsity-membership and indeterminacy-membership. The interval neutrosophic logic can be applied to many

potential real applications where information is imprecise, uncertain, incomplete and inconsistent such as

Web intelligence, medical informatics, bioinformatics, decision making, etc.

3.1 Introduction

The concept of fuzzy sets was introduced by Zadeh in 1965 [104]. Since then fuzzy sets and fuzzy

logic have been applied to many real applications to handle uncertainty. The traditional fuzzy

set uses one real value µA(x) ∈ [0, 1] to represent the grade of membership of fuzzy set A defined

on universe X. The corresponding fuzzy logic associates each proposition p with a real value

µ(p) ∈ [0, 1] which represents the degree of truth. Sometimes µA(x) itself is uncertain and hard

to be defined by a crisp value. So the concept of interval valued fuzzy sets was proposed [97] to

capture the uncertainty of grade of membership. The interval valued fuzzy set uses an interval

value [µL
A(x), µU

A(x)] with 0 ≤ µL
A(x) ≤ µU

A(x) ≤ 1 to represent the grade of membership of fuzzy



26

set. The traditional fuzzy logic can be easily extended to the interval valued fuzzy logic. There

are related works such as type-2 fuzzy sets and type-2 fuzzy logic [62, 66, 72]. The family of fuzzy

sets and fuzzy logic can only handle “complete” information that is if a grade of truth-membership

is µA(x) then a grade of false-membership is 1 − µA(x) by default. In some applications such

as expert systems, decision making systems and information fusion systems, the information is

both uncertain and incomplete. That is beyond the scope of traditional fuzzy sets and fuzzy

logic. In 1986, Atanassov introduced the intuitionistic fuzzy set [23] which is a generalization

of a fuzzy set and provably equivalent to an interval valued fuzzy set. The intuitionistic fuzzy

sets consider both truth-membership and false-membership. The corresponding intuitionistic fuzzy

logic [24, 26, 27] associates each proposition p with two real values µ(p)-truth degree and ν(p)-

falsity degree, respectively, where µ(p), ν(p) ∈ [0, 1], µ(p) + ν(p) ≤ 1. So intuitionistic fuzzy sets

and intuitionistic fuzzy logic can handle uncertain and incomplete information.

However, inconsistent information exists in a lot of real situations such as those mentioned

above. It is obvious that the intuitionistic fuzzy logic cannot reason with inconsistency because

it requires µ(p) + ν(p) ≤ 1. Generally, two basic approaches are used to solve the inconsistency

problem in knowledge bases: the belief revision and paraconsistent logics. The goal of the first

approach is to make an inconsistent theory consistent, either by revising it or by representing it

by a consistent semantics. On the other hand, the paraconsistent approach allows reasoning in

the presence of inconsistency as contradictory information can be derived or introduced without

trivialization [48]. de Costa’s Cw logic [46] and Belnap’s four-valued logic [33] are two well-known

paraconsistent logics.

Neutrosophy was introduced by Smarandache in 1995. “Neutrosophy is a branch of philosophy

which studies the origin, nature and scope of neutralities, as well as their interactions with dif-

ferent ideational spectra” [90]. Neutrosophy includes neutrosophic probability, neutrosophic sets

and neutrosophic logic. In a neutrosophic set (neutrosophic logic), indeterminacy is quantified ex-

plicitly and truth-membership (truth-degree), indeterminacy-membership (indeterminacy-degree)

and false-membership (falsity-degree) are independent. The independence assumption is very im-

portant in a lot of applications such as information fusion when we try to combine different data

from different sensors. A neutrosophic set (neutrosophic logic) is different from an intuitionistic
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fuzzy set (intuitionistic fuzzy logic) where indeterminacy membership (indeterminacy-degree) is

1 − µA(x) − νA(x) (1 − µ(p) − ν(p)) by default.

The neutrosophic set generalizes the above mentioned sets from a philosophical point of view.

From a scientific or engineering point of view, the neutrosophic set and set-theoretic operators need

to be specified meaningfully. Otherwise, it will be difficult to apply to the real applications. In

chapter 2 we discussed a special neutrosophic set called an interval neutrosophic set and defined a set

of set-theoretic operators. It is natural to define the interval neutrosophic logic based on interval

neutrosophic sets. In this chapter, we give mathematical definitions of an interval neutrosophic

propositional calculus and a first order interval neutrosophic predicate calculus.

The rest of this chapter is organized as follows. Section 3.2 gives the mathematical definition

of the interval neutrosophic propositional calculus. Section 3.3 gives the mathematical definition

of the first order interval neutrosophic predicate calculus. Section 3.4 provides one application

example of interval neutrosophic logic as the foundation for the design of interval neutrosophic

logic system. In section ?? we conclude the chapter and discuss the future research directions.

3.2 Interval Neutrosophic Propositional Calculus

In this section, we introduce the elements of an interval neutrosophic propositional calculus based

on the definition of the interval neutrosophic sets by using the notations from the theory of classical

propositional calculus [73].

3.2.1 Syntax of Interval Neutrosophic Propositional Calculus

Here we give the formalization of syntax of the interval neutrosophic propositional calculus.

Definition 29 An alphabet of the interval neutrosophic propositional calculus consists of three

classes of symbols:

1. A set of interval neutrosophic propositional variables, denoted by lower-case letters, some-

times indexed;
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2. Five connectives ∧,∨,¬,→,↔ which are called conjunction, disjunction, negation, implica-

tion, and biimplication symbols respectively;

3. The parentheses ( and ).

�

The alphabet of the interval neutrosophic propositional calculus has combinations obtained by

assembling connectives and interval neutrosophic propositional variables in strings. The purpose of

the construction rules is to have the specification of distinguished combinations, called formulas.

Definition 30 The set of formulas (well-formed formulas) of interval neutrosophic propositional

calculus is defined as follows.

1. Every interval neutrosophic propositional variable is a formula;

2. If p is a formula, then so is (¬p);

3. If p and q are formulas, then so are

(a) (p ∧ q),

(b) (p ∨ q),

(c) (p → q), and

(d) (p ↔ q).

4. No sequence of symbols is a formula which is not required to be by 1, 2, and 3.

�

To avoid having formulas cluttered with parentheses, we adopt the following precedence hierar-

chy, with the highest precedence at the top:
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¬,

∧,∨,

→,↔.

Here is an example of the interval neutrosophic propositional calculus formula:

¬p1 ∧ p2 ∨ (p1 → p3) → p2 ∧ ¬p3

Definition 31 The language of interval neutrosophic propositional calculus given by an alphabet

consists of the set of all formulas constructed from the symbols of the alphabet. �

3.2.2 Semantics of Interval Neutrosophic Propositional Calculus

The study of interval neutrosophic propositional calculus comprises, among others, a syntax, which

has the distinction of well-formed formulas, and a semantics, the purpose of which is the assignment

of a meaning to well-formed formulas.

To each interval neutrosophic proposition p, we associate it with an ordered triple components

〈t(p), i(p), f(p)〉, where t(p), i(p), f(p) ⊆ [0, 1]. t(p), i(p), f(p) is called truth-degree, indeterminacy-

degree and falsity-degree of p, respectively. Let this assignment be provided by an interpretation

function or interpretation INL defined over a set of propositions P in such a way that

INL(p) = 〈t(p), i(p), f(p)〉.

Hence, the function INL : P → N gives the truth, indeterminacy and falsity degrees of all

propositions in P . We assume that the interpretation function INL assigns to the logical truth

T : INL(T ) = 〈1, 0, 0〉, and to F : INL(F ) = 〈0, 1, 1〉.

An interpretation which makes a formula true is a model of the formula.

Let i, l be the subinterval of [0, 1]. Then i+l = [inf i+inf l, sup i+sup l], i−l = [inf i−sup l, sup i−

inf l], max(i, l) = [max(inf i, inf l),max(sup i, sup l)], min(i, l) = [min(inf i, inf l),min(sup i, sup l)].

The semantics of four interval neutrosophic propositional connectives is given in Table I. Note

that p ↔ q if and only if p → q and q → p.
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Table 3.1: Semantics of Four Connectives in Interval Neutrosophic Propositional Logic

Connectives Semantics

INL(¬p) 〈f(p), 1 − i(p), t(p)〉

INL(p ∧ q) 〈min(t(p), t(q)),max(i(p), i(q)),max(f(p), f(q))〉

INL(p ∨ q) 〈max(t(p), t(q)),min(i(p), i(q)),min(f(p), f(q))〉

INL(p → q) 〈min(1, 1 − t(p) + t(q)),max(0, i(q) − i(p)),max(0, f(q) − f(p))〉

Example 10 INL(p) = 〈0.5, 0.4, 0.7〉 and INL(q) = 〈1, 0.7, 0.2〉. Then, INL(¬p) = 〈0.7, 0.6, 0.5〉,

INL(p ∧ ¬p) = 〈0.5, 0.4, 0.7〉, INL(p ∨ q) = 〈1, 0.7, 0.2〉, INL(p → q) = 〈1, 1, 0〉. �

A given well-formed interval neutrosophic propositional formula will be called a tautology (valid)

if INL(A) = 〈1, 1, 0〉, for all interpretation functions INL. It will be called a contradiction (incon-

sistent) if INL(A) = 〈0, 0, 1〉, for all interpretation functions INL.

Definition 32 Two formulas p and q are said to be equivalent, denoted p = q, if and only if the

INL(p) = INL(q) for every interpretation function INL. �

Theorem 8 Let F be the set of formulas and ∧ be the meet and ∨ the join, then 〈F ;∧,∨〉 is a

distributive lattice.

Proof We leave the proof to the reader.

Theorem 9 If p and p → q are tautologies, then q is also a tautology.

Proof Since p and p → q are tautologies then for every INL, INL(p) = INL(p → q) = 〈1, 0, 0〉,

that is

t(p) = 1, i(p) = f(p) = 0, t(p → q) = min(1, 1− t(p)+ t(q)) = 1, i(p → q) = max(0, i(q)−f(p)) = 0,

f(p → q) = max(0, f(q) − f(p)) = 0. Hence,

t(q) = 1, i(q) = f(q) = 0. So q is a tautology.
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3.2.3 Proof Theory of Interval Neutrosophic Propositional Calculus

Here we give the proof theory for interval neutrosophic propositional logic to complement the

semantics part.

Definition 33 The interval neutrosophic propositional logic is defined by the following axiom

schema.

p → (q → p)

p1 ∧ . . . ∧ pm → q1 ∨ . . . qn provided some pi is some qj

p → (q → p ∧ q)

(p → r) → ((q → r) → (p ∨ q → r))

(p ∨ q) → r iff p → r and q → r

p → q iff ¬q → ¬p

p → q and q → r implies p → r

p → q iff p ↔ (p ∧ q) iff q → (p ∨ q)

�

The concept of (formal) deduction of a formula from a set of formulas, that is, using the standard

notation, Γ ` p, is defined as usual; in this case, we say that p is a syntactical consequence of the

formulas in T .

Theorem 10 For interval neutrosophic propositional logic, we have

1. {p} ` p,

2. Γ ` p entails Γ ∪ ∆ ` p,

3. if Γ ` p for any p ∈ ∆ and ∆ ` q, then Γ ` q.

Proof It is immediate from the standard definition of the syntactical consequence (`).

Theorem 11 In interval neutrosophic propositional logic, we have:
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1. ¬¬p ↔ p

2. ¬(p ∧ q) ↔ ¬p ∨ ¬q

3. ¬(p ∨ q) ↔ ¬p ∧ ¬q

Proof Proof is straight forward by following the semantics of interval neutrosophic propositional

logic.

Theorem 12 In interval neutrosophic propositional logic, the following schema do not hold:

1. p ∨ ¬p

2. ¬(p ∧ ¬p)

3. p ∧ ¬p → q

4. p ∧ ¬p → ¬q

5. {p, p → q} ` q

6. {p → q,¬q} ` ¬p

7. {p ∨ q,¬q} ` p

8. ¬p ∨ q ↔ p → q

Proof Immediate from the semantics of interval neutrosophic propositional logic.

Example 11 To illustrate the use of the interval neutrosophic propositional consequence relation,

let’s consider the following example.

p → (q ∧ r)

r → s
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q → ¬s

a

From p → (q ∧ r), we get p → q and p → r. From p → q and q → ¬s, we get p → ¬s. From p → r

and r → s, we get p → s. Hence, p is equivalent to p∧ s and p∧¬s. However, we cannot detach s

from p nor ¬s from p. This is in part due to interval neutrosophic propositional logic incorporating

neither modus ponens nor and elimination. �

3.3 Interval Neutrosophic Predicate Calculus

In this section, we will extend our consideration to the full language of first order interval neutro-

sophic predicate logic. First we give the formalization of syntax of first order interval neutrosophic

predicate logic as in classical first-order predicate logic.

3.3.1 Syntax of Interval Neutrosophic Predicate Calculus

Definition 34 An alphabet of the first order interval neutrosophic predicate calculus consists of

seven classes of symbols:

1. variables, denoted by lower-case letters, sometimes indexed;

2. constants, denoted by lower-case letters;

3. function symbols, denoted by lower-case letters, sometimes indexed;

4. predicate symbols, denoted by lower-case letters, sometimes indexed;

5. Five connectives ∧,∨,¬,→,↔ which are called the conjunction, disjunction, negation, impli-

cation, and biimplication symbols respectively;

6. Two quantifiers, the universal quantifier ∀ (for all) and the existential quantifier ∃ (there

exists);
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7. The parentheses ( and ).

�

To avoid having formulas cluttered with brackets, we adopt the following precedence hierarchy,

with the highest precedence at the top:

¬,∀,∃

∧,∨

→,↔

Next we turn to the definition of the first order interval neutrosophic language given by an

alphabet.

Definition 35 A term is defined as follows:

1. A variable is a term.

2. A constant is a term.

3. If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , fn) is a term.

�

Definition 36 A (well-formed )formula is defined inductively as follows:

1. If p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is a formula

(called an atomic formula or, more simply, an atom).

2. If F and G are formulas, then so are (¬F ), (F ∧ G), (F ∨ G), (F → G) and (F ↔ G).

3. If F is a formula and x is a variable, then (∀xF ) and (∃xF ) are formulas.



35

�

Definition 37 The first order interval neutrosophic language given by an alphabet consists of the

set of all formulas constructed from the symbols of the alphabet. �

Example 12 ∀x∃y(p(x, y) → q(x)),¬∃x(p(x, a) ∧ q(x)) are formulas. �

Definition 38 The scope of ∀x (resp. ∃x) in ∀xF (resp. ∃xF ) is F . A bound occurrence of a

variable in a formula is an occurrence immediately following a quantifier or an occurrence within

the scope of a quantifier, which has the same variable immediately after the quantifier. Any other

occurrence of a variable is free. �

Example 13 In the formula ∀xp(x, y) ∨ q(x), the first two occurrences of x are bound, while the

third occurrence is free, since the scope of ∀x is p(x, y) and y is free. �

3.3.2 Semantics of Interval Neutrosophic Predicate Calculus

In this section, we study the semantics of interval neutrosophic predicate calculus, the purpose

of which is the assignment of a meaning to well-formed formulas. In the interval neutrosophic

propositional logic, an interpretation is an assignment of truth values (ordered triple component)

to propositions. In the first order interval neutrosophic predicate logic, since there are variables

involved, we have to do more than that. To define an interpretation for a well-formed formula in

this logic, we have to specify two things, the domain and an assignment to constants and predicate

symbols occurring in the formula. The following is the formal definition of an interpretation of a

formula in the first order interval neutrosophic predicate logic.

Definition 39 An interpretation function (or interpretation) of a formula F in the first order in-

terval neutrosophic predicate logic consists of a nonempty domain D, and an assignment of “values”

to each constant and predicate symbol occurring in F as follows:

1. To each constant, we assign an element in D.

2. To each n-ary function symbol, we assign a mapping from Dn to D. (Note that Dn =

{(x1, . . . , xn)|x1 ∈ D, . . . , xn ∈ D}).
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3. Predicate symbols get their meaning through evaluation functions E which assign to each

variable x an element E(x) ∈ D. To each n-ary predicate symbol p, there is a function

INP (p) : Dn → N . So INP (p(x1, . . . , xn)) = INP (p)(E(x1), . . . , E(xn)).

�

That is, INP (p)(a1, . . . , an) = 〈t(p(a1, . . . , an)), i(p(a1, . . . , an)), f(p(a1, . . . , an)),

where t(p(a1, . . . , an)), i(p(a1, . . . , an)), f(p(a1, . . . , an)) ⊆ [0, 1]. They are called truth-degree, indeterminacy-

degree and falsity-degree of p(a1, . . . , an) respectively. We assume that the interpretation function

INP assigns to the logical truth T : INP (T ) = 〈1, 1, 0〉, and to F : INP (F ) = 〈0, 0, 1〉.

The semantics of four interval neutrosophic predicate connectives and two quantifiers is given

in Table II. For simplification of notation, we use p to denote p(a1, . . . , ai). Note that p ↔ q if and

only if p → q and q → p.

Table 3.2: Semantics of Four Connectives and Two Quantifiers in Interval Neutrosophic Predicate
Logic

Connectives Semantics

INP (¬p) 〈f(p), 1 − i(p), t(p)〉

INP (p ∧ q) 〈min(t(p), t(q)),max(i(p), i(q)),max(f(p), f(q))〉

INP (p ∨ q) 〈max(t(p), t(q)),min(i(p), i(q)),min(f(p), f(q))〉

INP (p → q) 〈min(1, 1 − t(p) + t(q)),max(0, i(q) − i(p)),max(0, f(q) − f(p))〉

INP (∀xF ) 〈min t(F (E(x))),min i(F (E(x))),max f(F (E(x)))〉, E(x) ∈ D

INP (∃xF ) 〈max t(F (E(x))),max i(F (E(x))),min f(F (E(x)))〉, E(x) ∈ D

Example 14 Let D = 1, 2, 3 and p(1) = 〈0.5, 1, 0.4〉, p(2) = 〈1, 0.2, 0〉, p(3) = 〈0.7, 0.4, 0.7〉. Then

INP (∀xp(x)) = 〈0.5, 0.2, 0.7〉, and INP (∃xp(x)) = 〈1, 1, 0〉. �

Definition 40 A formula F is consistent (satisfiable) if and only if there exists an interpretation

I such that F is evaluated to 〈1, 1, 0〉 in I. If a formula F is T in an interpretation I, we say that

I is a model of F and I satisfies F . �
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Definition 41 A formula F is inconsistent (unsatisfiable) if and only if there exists no interpre-

tation that satisfies F . �

Definition 42 A formula F is valid if and only if every interpretation of F satisfies F . �

Definition 43 A formula F is a logical consequence of formulas F1, . . . , Fn if and only if for every

interpretation I, if F1 ∧ . . . ∧ Fn is true in I, F is also true in I. �

Example 15 (∀x)(p(x) → (∃y)p(y)) is valid, (∀x)p(x) ∧ (∃y)¬p(y) is consistent. �

Theorem 13 There is no inconsistent formula in the first order interval neutrosophic predicate

logic.

Proof It is direct from the definition of semantics of interval neutrosophic predicate logic.

Note that the first order interval neutrosophic predicate logic can be considered as an extension

of the interval neutrosophic propositional logic. When a formula in the first order logic contains no

variables and quantifiers, it can be treated just as a formula in the propositional logic.

3.3.3 Proof Theory of Interval Neutrosophic Predicate Calculus

In this part, we give the proof theory for first order interval neutrosophic predicate logic to com-

plement the semantics part.

Definition 44 The first order interval neutrosophic predicate logic is defined by the following axiom

schema.

(p → q(x)) → (p → ∀xq(x))

∀xp(x) → p(a)

p(x) → ∃xp(x)

(p(x) → q) → (∃xp(x) → q)

�

Theorem 14 In the first order interval neutrosophic predicate logic, we have:
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1. p(x) ` ∀xp(x)

2. p(a) ` ∃xp(x)

3. ∀xp(x) ` p(y)

4. Γ ∪ {p(x)} ` q, then Γ ∪ {∃xp(x)} ` q

Proof Directly from the definition of the semantics of first order interval neutrosophic predicate

logic.

Theorem 15 In the first order interval neutrosophic predicate logic, the following schemes are

valid, where r is a formula in which x does not appear free:

1. ∀xr ↔ r

2. ∃xr ↔ r

3. ∀x∀yp(x, y) ↔ ∀y∀xp(x, y)

4. ∃x∃yp(x, y) ↔ ∃y∃xp(x, y)

5. ∀x∀yp(x, y) → ∀xp(x, x)

6. ∃xp(x, x) → ∃x∃yp(x, y)

7. ∀xp(x) → ∃xp(x)

8. ∃x∀yp(x, y) → ∀y∃xp(x, y)

9. ∀x(p(x) ∧ q(x)) ↔ ∀xp(x) ∧ ∀xq(x)

10. ∃x(p(x) ∨ q(x)) ↔ ∃xp(x) ∨ ∃xq(x)

11. p ∧ ∀xq(x) ↔ ∀x(p ∧ q(x))



39

12. p ∨ ∀xq(x) ↔ ∀x(p ∨ q(x))

13. p ∧ ∃xq(x) ↔ ∃x(p ∧ q(x))

14. p ∨ ∃xq(x) ↔ ∃x(p ∨ q(x))

15. ∀x(p(x) → q(x)) → (∀xp(x) → ∀xq(x))

16. ∀x(p(x) → q(x)) → (∃xp(x) → ∃xq(x))

17. ∃x(p(x) ∧ q(x)) → ∃xp(x) ∧ ∃xq(x)

18. ∀xp(x) ∨ ∀xq(x) → ∀x(p(x) ∨ q(x))

19. ¬∃x¬p(x) ↔ ∀xp(x)

20. ¬∀x¬p(x) ↔ ∃p(x)

21. ¬∃xp(x) ↔ ∀x¬p(x)

22. ∃x¬p(x) ↔ ¬∀xp(x)

Proof It is straightforward from the definition of the semantics and axiomatic schema of first order

interval neutrosophic predicate logic.

3.4 An Application of Interval Neutrosophic Logic

In this section we provide one practical application of the interval neutrosophic logic – Interval

Neutrosophic Logic System (INLS). INLS can handle rule uncertainty as same as type-2 FLS [66],

besides, it can handle rule inconsistency without the danger of trivialization. Like the classical FLS,

INLS is also characterized by IF-THEN rules. INLS consists of neutrosophication, neutrosophic

inference, a neutrosophic rule base, neutrosophic type reduction and deneutrosophication. Given
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Figure 3.1: General Scheme of an INLS

an input vector x = (x1, . . . , xn), where x1, . . . , xn can be crisp inputs or neutrosophic sets, the

INLS will generate a crisp output y. The general scheme of INLS is shown in Fig. 2.1.

Suppose the neutrosophic rule base consists of M rules in which each rule has n antecedents

and one consequent. Let the kth rule be denoted by Rk such that IF x1 is Ak
1, x2 is Ak

2 , . . ., and

xn is Ak
n, THEN y is Bk. Ak

i is an interval neutrosophic set defined on universe Xi with truth-

membership function TAk

i

(xi), indeterminacy-membership function IAk

i

(xi) and falsity-membership

function FAk

i

(xi), where TAk

i

(xi), IAk

i

(xi), FAk

i

(xi) ⊆ [0, 1], 1 ≤ i ≤ n. Bk is an interval neutrosophic

set defined on universe Y with truth-membership function TBk(y), indeterminacy-membership func-

tion IBk(y) and falsity-membership function

FBk(y), where TBk(y), IBk (y), FBk (y) ⊆ [0, 1]. Given fact x1 is Ãk
1 , x2 is Ãk

2 , . . ., and xn is Ãk
n,

then consequence y is B̃k. Ãk
i is an interval neutrosophic set defined on universe Xi with truth-

membership function TÃk

i

(xi), indeterminacy-membership function IÃk

i

(xi) and falsity-membership

function FÃk

i

(xi), where TÃk

i

(xi), IÃk

i

(xi), FÃk

i

(xi) ⊆ [0, 1], 1 ≤ i ≤ n. B̃k is an interval neutrosophic

set defined on universe Y with truth-membership function TB̃k(y), indeterminacy-membership func-

tion IB̃k(y) and falsity-membership function

FB̃k(y), where TB̃k(y), IB̃k(y), FB̃k (y) ⊆ [0, 1]. In this chapter, we consider ai ≤ xi ≤ bi and

α ≤ y ≤ β.

An unconditional neutrosophic proposition is expressed by the phrase: “Z is C”, where Z

is a variable that receives values z from a universal set U , and C is an interval neutrosophic
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set defined on U that represents a neutrosophic predicate. Each neutrosophic proposition p is

associated with 〈t(p), i(p), f(p)〉 with t(p), i(p), f(p) ⊆ [0, 1]. In general, for any value z of Z,

〈t(p), i(p), f(p)〉 = 〈TC(z), IC(z), FC (z)〉.

For implication p → q, we define the semantics as:

sup tp→q = min(sup t(p), sup t(q)), (3.1)

inf tp→q = min(inf t(p), inf t(q)), (3.2)

sup ip→q = max(sup i(p), sup i(q)), (3.3)

inf ip→q = max(inf i(p), inf i(q)), (3.4)

sup fp→q = max(sup f(p), sup f(q)), (3.5)

inf fp→q = max(inf f(p), inf f(q)), (3.6)

where t(p), i(p), f(p), t(q), i(q), f(q) ⊆ [0, 1].

Let X = X1 × · · · × Xn. The truth-membership function, indeterminacy-membership function

and falsity-membership function TB̃k(y), IB̃k(y), FB̃k (y) of a fired kth rule can be represented us-

ing the definition of interval neutrosophic composition functions (1.44–1.46) and the semantics of

conjunction and disjunction defined in Table 2.2 and equations (2.1–2.6) as:

supTB̃k(y) = sup
x∈X

min(supTÃk

1
(x1), supTAk

1
(x1), . . . , supTÃk

n

(xn), supTAk
n
(xn), supTBk(y)),(3.7)

inf TB̃k(y) = sup
x∈X

min(inf TÃk

1
(x1), inf TAk

1
(x1), . . . , inf TÃk

n

(xn), inf TAk
n
(xn), inf TBk(y)), (3.8)

sup IB̃k(y) = sup
x∈X

max(sup IÃk

1
(x1), sup IAk

1
(x1), . . . , sup IÃk

n

(xn), sup IAk
n
(xn), sup IBk(y)),(3.9)

inf IB̃k(y) = sup
x∈X

max(inf IÃk

1
(x1), inf IAk

1
(x1), . . . , inf IÃk

n

(xn), inf IAk
n
(xn), inf IBk(y)), (3.10)

supFB̃k(y) = inf
x∈X

max(supFÃk

1
(x1), supFAk

1
(x1), . . . , supFÃk

n

(xn), supFAk
n
(xn), supFBk (y)),(3.11)

inf FB̃k(y) = inf
x∈X

max(inf FÃk

1
(x1), inf FAk

1
(x1), . . . , inf FÃk

n

(xn), inf FAk
n
(xn), inf FBk(y)),(3.12)

where y ∈ Y .

Now, we give the algorithmic description of INLS.

BEGIN

Step 1: Neutrosophication
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The purpose of neutrosophication is to map inputs into interval neutrosophic input sets. Let

Gi
k be an interval neutrosophic input set to represent the result of neutrosophication of ith input

variable of kth rule, then

supTGi
k(xi) = sup

xi∈Xi

min(supTÃk

i

(xi), supTAk

i

(xi)), (3.13)

inf TGk

i

(xi) = sup
xi∈Xi

min(inf TÃk

i

(xi), inf TAk

i

(xi)), (3.14)

sup IGk

i

(xi) = sup
xi∈Xi

max(sup IÃk

i

(xi), sup IAk

i

(xi)), (3.15)

inf IGk

i

(xi) = sup
xi∈Xi

max(inf IÃk

i

(xi), inf IAk

i

(xi)), (3.16)

supFGk

i

(xi) = inf
xi∈Xi

max(supFÃk

i

(xi), supFAk

i

(xi)), (3.17)

inf FGk

i

(xi) = inf
xi∈Xi

max(inf FÃk

i

(xi), inf FAk

i

(xi)), (3.18)

where xi ∈ Xi.

If xi are crisp inputs, then equations (50–55) are simplified to

supTGk

i

(xi) = supTAk

i

(xi), (3.19)

inf TGk

i

(xi) = inf TAk

i

(xi), (3.20)

sup IGk

i

(xi) = sup IAk

i

(xi), (3.21)

inf IGk

i

(xi) = inf IAk

i

(xi), (3.22)

supFGk

i

(xi) = supFAk

i

(xi), (3.23)

inf FGk

i

(xi) = inf FAk

i

(xi), (3.24)

where xi ∈ Xi.

Fig. 2 shows the conceptual diagram for neutrosophication of a crisp input x1.

Step 2: Neutrosophic Inference

The core of INLS is the neutrosophic inference, the principle of which has already been explained

above. Suppose the kth rule is fired. Let Gk be an interval neutrosophic set to represent the result
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Figure 3.2: Conceptual Diagram for Neutrosophication of Crisp Input

of the input and antecedent operation for kth rule, then

supTGk(x) = sup
x∈X

min(supTÃk

1
(x1), supTAk

1
(x1), . . . , supTÃk

n

(xn), supTAk
n
(xn)), (3.25)

inf TGk(x) = sup
x∈X

min(inf TÃk

1
(x1), inf TAk

1
(x1), . . . , inf TÃk

n

(xn), inf TAk
n
(xn)), (3.26)

sup IGk(x) = sup
x∈X

max(sup IÃk

1
(x1), sup IAk

1
(x1), . . . , sup IÃk

n

(xn), sup IAk
n
(xn)), (3.27)

inf IGk(x) = sup
x∈X

max(inf IÃk

1
(x1), inf IAk

1
(x1), . . . , inf IÃk

n

(xn), inf IAk
n
(xn)), (3.28)

supFGk(x) = inf
x∈X

max(supFÃk

1
(x1), supFAk

1
(x1), . . . , supFÃk

n

(xn), supFAk
n
(xn)), (3.29)

inf FGk(x) = inf
x∈X

max(inf FÃk

1
(x1), inf FAk

1
(x1), . . . , inf FÃk

n

(xn), inf FAk
n
(xn)), (3.30)
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where xi ∈ Xi.

Here we restate the result of neutrosophic inference:

supTB̃k(y) = min(supTGk

1
(x), supTBk(y)), (3.31)

inf TB̃k(y) = min(inf TGk(x), inf TBk(y)), (3.32)

sup IB̃k(y) = max(sup IGk(x), sup IBk(y)), (3.33)

inf IB̃k(y) = max(inf IGk(x), inf IBk(y)), (3.34)

supFB̃k (y) = max(supFGk(x), supFBk(y)), (3.35)

inf FB̃k (y) = max(inf FGk(x), inf FBk(y)), (3.36)

where x ∈ X, y ∈ Y .

Suppose that N rules in the neutrosophic rule base are fired, where N ≤ M , then, the output

interval neutrosophic set B̃ is:

supTB̃(y) =
N

max
k=1

supTB̃k(y), (3.37)

inf TB̃(y) =
N

max
k=1

inf TB̃k(y), (3.38)

sup IB̃(y) =
N

min
k=1

sup IB̃k(y), (3.39)

inf IB̃(y) =
N

min
k=1

inf IB̃k(y), (3.40)

supFB̃(y) =
N

min
k=1

supTB̃k(y), (3.41)

inf TB̃(y) =
N

min
k=1

inf TB̃k(y), (3.42)

where y ∈ Y .

Step 3: Neutrosophic type reduction

After neutrosophic inference, we will get an interval neutrosophic set B̃ with TB̃(y), IB̃(y),

FB̃(y) ⊆ [0, 1]. Then, we do the neutrosophic type reduction to transform each interval into one
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number. There are many ways to do it, here, we give one method:

T
′

B̃
(y) = (inf TB̃(y) + supTB̃(y))/2, (3.43)

I
′

B̃
(y) = (inf IB̃(y) + sup IB̃(y))/2, (3.44)

F
′

B̃
(y) = (inf FB̃(y) + supFB̃(y))/2, (3.45)

where y ∈ Y .

So, after neutrosophic type reduction, we will get an ordinary neutrosophic set (a type-1 neu-

trosophic set) B̃. Then we need to do the deneutrosophication to get a crisp output.

Step 4: Deneutrosophication

The purpose of deneutrosophication is to convert an ordinary neutrosophic set (a type-1 neutro-

sophic set) obtained by neutrosophic type reduction to a single real number which represents the

real output. Similar to defuzzification [63], there are many deneutrosophication methods according

to different applications. Here we give one method. The deneutrosophication process consists of

two steps.

Step 4.1: Synthesization: It is the process to transform an ordinary neutrosophic set (a type-1

neutrosophic set) B̃ into a fuzzy set B̄. It can be expressed using the following function:

f(T
′

B̃
(y), I

′

B̃
(y), F

′

B̃
(y)) : [0, 1] × [0, 1] × [0, 1] → [0, 1] (3.46)

Here we give one definition of f :

TB̄(y) = a ∗ T
′

B̃
(y) + b ∗ (1 − F

′

B̃
(y)) + c ∗ I

′

B̃
(y)/2 + d ∗ (1 − I

′

B̃
(y)/2), (3.47)

where 0 ≤ a, b, c, d ≤ 1, a + b + c + d = 1.

The purpose of synthesization is to calculate the overall truth degree according to three com-

ponents: truth-membership function, indeterminacy-membership function and falsity-membership

function. The component–truth-membership function gives the direct information about the truth-

degree, so we use it directly in the formula; The component–falsity-membership function gives the

indirect information about the truth-degree, so we use (1 − F ) in the formula. To understand the

meaning of indeterminacy-membership function I, we give an example: a statement is “The quality
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of service is good”, now firstly a person has to select a decision among {T, I, F}, secondly he or she

has to answer the degree of the decision in [0, 1]. If he or she chooses I = 1, it means 100% “not

sure” about the statement, i.e., 50% true and 50% false for the statement (100% balanced), in this

sense, I = 1 contains the potential truth value 0.5. If he or she chooses I = 0, it means 100% “sure”

about the statement, i.e., either 100% true or 100% false for the statement (0% balanced), in this

sense, I = 0 is related to two extreme cases, but we do not know which one is in his or her mind. So

we have to consider both at the same time: I = 0 contains the potential truth value that is either

0 or 1. If I decreases from 1 to 0, then the potential truth value changes from one value 0.5 to two

different possible values gradually to the final possible ones 0 and 1 (i.e., from 100% balanced to 0%

balanced), since he or she does not choose either T or F but I, we do not know his or her final truth

value. Therefore, the formula has to consider two potential truth values implicitly represented by

I with different weights (c and d) because of lack of his or her final decision information after he or

she has chosen I. Generally, a > b > c, d; c and d could be decided subjectively or objectively as

long as enough information is available. The parameters a, b, c and d can be tuned using learning

algorithms such as neural networks and genetic algorithms in the development of application to

improve the performance of the INLS.

Step 4.2: Calculation of a typical neutrosophic value: Here we introduce one method of calcu-

lation of center of area. The method is sometimes called the center of gravity method or centroid

method, the deneutrosophicated value, dn(TB̄(y)) is calculated by the formula

dn(TB̄(y)) =

∫ β

α
TB̄(y)ydy

∫ β

α
TB̄dy

. (3.48)

END.
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Chapter 4

NEUTROSOPHIC RELATIONAL DATA MODEL

In this chapter, we present a generalization of the relational data model based on interval neutrosophic

sets. Our data model is capable of manipulating incomplete as well as inconsistent information. Fuzzy

relation or intuitionistic fuzzy relation can only handle incomplete information. Associated with each relation

are two membership functions one is called truth-membership function T which keeps track of the extent to

which we believe the tuple is in the relation, another is called falsity-membership function which keeps track

of the extent to which we believe that it is not in the relation. A neutrosophic relation is inconsistent if

there exists one tuple a such that T (a) + F (a) > 1. In order to handle inconsistent situation, we propose an

operator called “split” to transform inconsistent neutrosophic relations into pseudo-consistent neutrosophic

relations and do the set-theoretic and relation-theoretic operations on them and finally use another operator

called “combine” to transform the result back to neutrosophic relation. For this model, we define algebraic

operators that are generalisations of the usual operators such as interesection, union, selection, join on fuzzy

relations. Our data model can underlie any database and knowledge-base management system that deals

with incomplete and inconsistent information.

4.1 Introduction

Relational data model was proposed by Ted Codd’s pioneering paper [43]. Since then, relational

database systems have been extensively studied and a lot of commercial relational database sys-

tems are currently available [51, 87]. This data model usually takes care of only well-defined and

unambiguous data. However, imperfect information is ubiquitous – almost all the information that

we have about the real world is not certain, complete and precise [78]. Imperfect information can

be classified as: incompleteness, imprecision, uncertainty, inconsistency. Incompleteness arises from

the absence of a value, imprecision from the existence of a value which cannot be measured with

suitable precision, uncertainty from the fact that a person has given a subjective opinion about the
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truth of a fact which he/she does not know for certain, and inconsistency from the fact that there

are two or more conflicting values for a variable.

In order to represent and manipulate various forms of incomplete information in relational

databases, several extensions of the classical relational model have been proposed [36, 38, 44, 67,

68, 71]. In some of these extensions, a variety of ”null values” have been introduced to model

unknown or not-applicable data values. Attempts have also been made to generalize operators of

relational algebra to manipulate such extended data models [36, 44, 71, 69, 70]. The fuzzy set

theory and fuzzy logic proposed by Zadeh [102] provide a requisite mathematical framework for

dealing with incomplete and imprecise information. Later on, the concept of interval-valued fuzzy

sets was proposed to capture the fuzziness of grade of membership itself [97]. In 1986, Atanassov

introduced the intuitionistic fuzzy set [23] which is a generalization of fuzzy set and provably equiv-

alent to interval-valued fuzzy set. The intuitionistic fuzzy sets consider both truth-membership T

and falsity-membership F with T (a), F (a) ∈ [0, 1] and T (a) +F (a) ≤ 1. Because of the restriction,

the fuzzy set, interval-valued fuzzy set and intuitionistic fuzzy set cannot handle inconsistent infor-

mation. Some authors [22, 32, 39, 41, 61, 80, 83] have studied relational databases in the light of

fuzzy set theory with an objective to accommodate a wider range of real-world requirements and to

provide closer man-machine interactions. Probability, possibility and Dempster-Shafer theory have

been proposed to deal with uncertainty. Possibility theory [103] is built upon the idea of a fuzzy

restriction. That means a variable could only take its value from some fuzzy set of values and any

value within that set is a possible value for the variable. Because values have different degrees of

membership in the set, they are possible to different degrees. Prade and Testemale [81] initially

suggested using possibility theory to deal with incomplete and uncertain information in database.

Their work is extended in [82] to cover multivalued attributes. Wong [100] proposes a method

that quantifies the uncertainty in a database using probabilities. His method maybe is the simplest

one which attached a probability to every member of a relation, and to use these values to provide

the probability that a particular value is the correct answer to a particular query. Carvallo and

Pittarelli [40] also use probability theory to model uncertainty in relational databases systems.

Their method augmented projection an join operations with probability measures.

However, unlike incomplete, imprecise and uncertain information, inconsistent information has
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not enjoyed enough research attention. In fact, inconsistent information exists in a lot of appli-

cations. For example, in data warehousing application, inconsistency will appear when trying to

integrate the data from many different sources. Another example is that in the expert system,

there exist facts which are inconsistent with each other. Generally, two basic approaches have been

followed in solving the inconsistency problem in knowledge bases: belief revision and paraconsistent

logic. The goal of the first approach is to make an inconsistent theory consistent, either by revising

it or by representing it by a consistent semantics. On the other hand, the paraconsistent approach

allows reasoning in the presence of inconsistency, and contradictory information can be derived or

introduced without trivialization [49]. Bagai and Sunderraman [29, 95] proposed a paraconsistent

relational data model to deal with incomplete and inconsistent information. The data model has

been applied to compute the well-founded and fitting model of logic programming [31, 30]. This

data model is based on paraconsistent logics which were studied in detail by de Costa [45] and

Belnap [34].

In this chapter, we present a new relational data model – neutrosophic relational data model

(NRDM). Our model is based on the neutrosophic set theory which is an extension of intuitionistic

fuzzy set theory[56] and is capable of manipulating incomplete as well as inconsistent information.

We use both truth-membership function grade α and falsity-membership function grade β to denote

the status of a tuple of a certain relation with α, β ∈ [0, 1] and α+β ≤ 2. NRDM is the generalization

of fuzzy relational data model (FRDM). That is, when α + β = 1, neutrosophic relation is the

ordinary fuzzy relation. This model is distinct with paraconsistent relational data model (PRDM),

in fact it can be easily shown that PRDM is a special case of PIFRDM. That is when α, β =

0 or 1, neutrosophic relation is just paraconsistent relation. We can use Figure 4.1 to express the

relationship among FRDM, PRDM and PIFRDM.

We introduce neutrosophic relations, which are the fundamental mathematical structures un-

derlying our model. These structures are strictly more general than classical fuzzy relations and

intuitionistic fuzzy relations (interval-valued fuzzy relations), in that for any fuzzy relation or in-

tuitionistic fuzzy relation (interval-valued fuzzy relation) there is a neutrosophic relation with the

same information content, but not vice versa. The claim is also true for the relationship between

neutrosophic relations and paraconsistent relations. We define algebraic operators over neutrosophic
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Figure 4.1: Relationship Among FRDM, PRDM, NRDM and RDM

relations that extend the standard operators such as selection, join, union over fuzzy relations.

There are many potential applications of our new data model. Here are some examples:

(a) Web mining. Essentially the data and documents on the Web are heterogeneous, inconsistency

is unavoidable. Using the presentation and reasoning method of our data model, it is easier

to capture imperfect information on the Web which will provide more potentially value-added

information.

(b) Bioinformatics. There is a proliferation of data sources. Each research group and each new

experimental technique seems to generate yet another source of valuable data. But these data

can be incomplete and imprecise and even inconsistent. We could not simply throw away one

data in favor of other data. So how to represent and extract useful information from these

data will be a challenge problem.

(c) Decision Support System. In decision support system, we need to combine the database with

the knowledge base. There will be a lot of uncertain and inconsistent information, so we need
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an efficient data model to capture these information and reasoning with these information.

The chapter is organized as follow. Section 4.2 of the chapter deals with some of the basic

definitions and concepts of fuzzy relations and operations. Section 4.3 introduces neutrosophic

relations and two notions of generalising the fuzzy relational operators such as union, join, projection

for these relations. Section 4.4 presents some actual generalised algebraic operators for neutrosophic

relations. These operators can be used for sepcifying queries for database systems built on such

relations. Section 4.5 gives an illustrative application of these operators. Finally, Section ?? contains

some concluding remarks and directions for future work.

4.2 Fuzzy Relations and Operations

In this section, we present the essential concepts of a fuzzy relational database. Fuzzy relations

associate a value between 0 and 1 with every tuple representing the degree of membership of the

tuple in the relation. We also present several useful query operators on fuzzy relations.

Let a relation scheme (or just scheme) Σ be a finite set of attribute names, where for any

attribute name A ∈ Σ, dom(A) is a non-empty domain of values for A. A tuple on Σ is any map

t : Σ → ∪A∈Σdom(A), such that t(A) ∈ dom(A), for each A ∈ Σ. Let τ(Σ) denote the set of all

tuples on Σ.

Definition 45 A fuzzy relation on scheme Σ is any map R : τ(Σ) → [0, 1]. We let F(Σ) be the

set of all fuzzy relations on Σ. �

If Σ and ∆ are relation schemes such that ∆ ⊆ Σ, then for any tuple t ∈ τ(∆), we let tΣ denote

the set {t′ ∈ τ(Σ) | t′(A) = t(A), for all A ∈ ∆} of all extensions of t. We extend this notion for

any T ⊆ τ(∆) by defining T Σ = ∪t∈T tΣ.

4.2.1 Set-theoretic operations on Fuzzy relations

Definition 46 Union: Let R and S be fuzzy relations on scheme Σ. Then, R ∪ S is a fuzzy

relation on scheme Σ given by

(R ∪ S)(t) = max{R(t), S(t)}, for any t ∈ τ(Σ).�
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Definition 47 Complement: Let R be a fuzzy relation on scheme Σ. Then, −R is a fuzzy

relation on scheme Σ given by

(−R)(t) = 1 − R(t), for any t ∈ τ(Σ).�

Definition 48 Intersection: Let R and S be fuzzy relations on scheme Σ. Then, R∩S is a fuzzy

relation on scheme Σ given by

(R ∩ S)(t) = min{R(t), S(t)}, for any t ∈ τ(Σ).�

Definition 49 Difference: Let R and S be fuzzy relations on scheme Σ. Then, R − S is a fuzzy

relation on scheme Σ given by

(R − S)(t) = min{R(t), 1 − S(t)}, for any t ∈ τ(Σ).�

4.2.2 Relation-theoretic operations on Fuzzy relations

Definition 50 Let R and S be fuzzy relations on schemes Σ and ∆, respectively. Then, the natural

join (or just join) of R and S, denoted R on S, is a fuzzy relation on scheme Σ ∪ ∆, given by

(R on S)(t) = min{R(πΣ(t)), S(π∆(t))}, for any t ∈ τ(Σ ∪ ∆).�

Definition 51 Let R be a fuzzy relation on scheme Σ and let ∆ ⊆ Σ. Then, the projection of R

onto ∆, denoted by Π∆(R) is a fuzzy relation on scheme ∆ given by

(Π∆(R))(t) = max{R(u)|u ∈ tΣ}, for any t ∈ τ(∆).�

Definition 52 Let R be a fuzzy relation on scheme Σ, and let F be any logic formula involving

attribute names in Σ, constant symbols (denoting values in the attribute domains), equality symbol

=, negation symbol ¬, and connectives ∨ and ∧. Then, the selection of R by F , denoted σ̇F (R), is

a fuzzy relation on scheme Σ, given by

(σ̇F (R))(t) =





R(t) if t ∈ σF (τ(Σ))

0 Otherwise

where σF is the usual selection of tuples satisfying F . �
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4.3 Neutrosophic Relations

In this section, we generalize fuzzy relations in such a manner that we are now able to assign a

measure of belief and a measure of doubt to each tuple. We shall refer to these generalized fuzzy

relations as neutrosophic relations. So, a tuple in a neutrosophic relation is assigned a measure

〈α, β〉, 0 ≤ α, β ≤ 1. α will be referred to as the belief factor and β will be referred to as the doubt

factor. The interpretation of this measure is that we believe with confidence α and doubt with

confidence β that the tuple is in the relation. The belief and doubt confidence factors for a tuple

need not add to exactly 1. This allows for incompleteness and inconsistency to be represented. If

the belief and doubt factors add up to less than 1, we have incomplete information regarding the

tuple’s status in the relation and if the belief and doubt factors add up to more than 1, we have

inconsistent information regarding the tuple’s status in the relation.

In contrast to fuzzy relations where the grade of membership of a tuple is fixed, neutrosophic

relations bound the grade of membership of a tuple to a subinterval [α, 1−β] for the case α+β ≤ 1.

The operators on fuzzy relations can also be generalised for neutrosophic relations. However, any

such generalization of operators should maintain the belief system intuition behind neutrosophic

relations.

This section also develops two different notions of operator generalisations.

We now formalize the notion of a neutrosophic relation.

Recall that τ(Σ) denotes the set of all tuples on any scheme Σ.

Definition 53 A neutrosophic relation R on scheme Σ is any subset of

τ(Σ) × [0, 1] × [0, 1].

For any t ∈ τ(Σ), we shall denote an element of R as 〈t, R(t)+, R(t)−〉, where R(t)+ is the belief

factor assigned to t by R and R(t)− is the doubt factor assigned to t by R. Let V(Σ) be the set of

all neutrosophic relations on Σ.

Definition 54 A neutrosophic relation R on scheme Σ is consistent if R(t)+ + R(t)− ≤ 1, for

all t ∈ τ(Σ). Let C(Σ) be the set of all consistent neutrosophic relations on Σ. R is said to be
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complete if R(t)+ + R(t)− ≥ 1, for all t ∈ τ(Σ). If R is both consistent and complete, i.e.

R(t)+ + R(t)− = 1, for all t ∈ τ(Σ), then it is a total neutrosophic relation, and let T (Σ) be the

set of all total neutrosophic relations on Σ.

Definition 55 R is said to be pseudo-consistent if

max{bi|(∃t ∈ τ(Σ))(∃di)(〈t, bi, di〉 ∈ R)}+max{di|(∃t ∈ τ(Σ))(∃bi)(〈t, bi, di〉 ∈ R)} > 1, where for these

〈t, bi, di〉, bi + di = 1. Let P(Σ) be the set of all pseudo-consistent neutrosophic relations on Σ.

Example 16 Neutrosophic relation R = {〈a, 0.3, 0.7〉,

〈a, 0.4, 0.6〉, 〈b, 0.2, 0.5〉, 〈c, 0.4, 0.3〉} is pseudo-consistent. Because for t = a, max{0.3, 0.4}+max{0.7, 0.6} =

1.1 > 1.

It should be observed that total neutrosophic relations are essentially fuzzy relations where the

uncertainty in the grade of membership is eliminated. We make this relationship explicit by defining

a one-one correspondence λΣ : T (Σ) → F(Σ), given by λΣ(R)(t) = R(t)+, for all t ∈ τ(Σ). This

correspondence is used frequently in the following discussion.

Operator Generalisations

It is easily seen that neutrosophic relations are a generalization of fuzzy relations, in that for each

fuzzy relation there is a neutrosophic relation with the same information content, but not vice

versa. It is thus natural to think of generalising the operations on fuzzy relations such as union,

join, projection etc. to neutrosophic relations. However, any such generalization should be intuitive

with respect to the belief system model of neutrosophic relations. We now construct a framework

for operators on both kinds of relations and introduce two different notions of the generalization

relationship among their operators.

An n-ary operator on fuzzy relations with signature 〈Σ1, . . . ,Σn+1〉 is a function Θ : F(Σ1) ×

· · · × F(Σn) → F(Σn+1), where Σ1, . . . ,Σn+1 are any schemes. Similarly, an n-ary operator on

neutrosophic relations with signature 〈Σ1, . . . ,Σn+1〉 is a function Ψ : V(Σ1) × · · · × V(Σn) →

V(Σn+1).
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Definition 56 An operator Ψ on neutrosophic relations with signature 〈Σ1, . . . ,Σn+1〉 is totality

preserving if for any total neutrosophic relations R1, . . . , Rn on schemes Σ1, . . . ,Σn, respectively,

Ψ(R1, . . . , Rn) is also total. �

Definition 57 A totality preserving operator Ψ on neutrosophic relations with signature

〈Σ1, . . . ,Σn+1〉

is a weak generalization of an operator Θ on fuzzy relations with the same signature, if for any

total neutrosophic relations R1, . . . , Rn on schemes Σ1, . . . ,Σn, respectively, we have

λΣn+1
(Ψ(R1, . . . , Rn)) = Θ(λΣ1

(R1), . . . , λΣn
(Rn)).�

The above definition essentially requires Ψ to coincide with Θ on total neutrosophic relations (which

are in one-one correspondence with the fuzzy relations). In general, there may be many operators on

neutrosophic relations that are weak generalisations of a given operator Θ on fuzzy relations. The

behavior of the weak generalisations of Θ on even just the consistent neutrosophic relations may in

general vary. We require a stronger notion of operator generalization under which, at least when

restricted to consistent intuitionistic fuzzy relations, the behavior of all the generalised operators is

the same. Before we can develop such a notion, we need that of ‘representations’ of a neutrosophic

relation.

We associate with a consistent neutrosophic relation R the set of all (fuzzy relations correspond-

ing to) total neutrosophic relations obtainable from R by filling in the gaps between the belief and

doubt factors for each tuple. Let the map repsΣ : C(Σ) → 2F(Σ) be given by

repsΣ(R) = {Q ∈ F(Σ) |
∧

ti∈τ(Σ)

(R(ti)
+ ≤ Q(ti) ≤ 1 − R(ti)

−)}.

The set repsΣ(R) contains all fuzzy relations that are ‘completions’ of the consistent neutrosophic

relation R. Observe that repsΣ is defined only for consistent neutrosophic relations and produces

sets of fuzzy relations. Then we have following observation.

Proposition 1 For any consistent neutrosophic relation R on scheme Σ, repsΣ(R) is the singleton

{λΣ(R)} iff R is total.�
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Proof It is clear from the definition of consistent and total neutrosophic relations and from the

definition of reps operation.

We now need to extend operators on fuzzy relations to sets of fuzzy relations. For any operator

Θ : F(Σ1)×· · ·×F(Σn) → F(Σn+1) on fuzzy relations, we let S(Θ) : 2F(Σ1)×· · ·×2F(Σn) → 2F(Σn+1)

be a map on sets of fuzzy relations defined as follows. For any sets M1, . . . ,Mn of fuzzy relations

on schemes Σ1, . . . ,Σn, respectively,

S(Θ)(M1, . . . ,Mn) = {Θ(R1, . . . , Rn) | Ri ∈ Mi, for all i, 1 ≤ i ≤ n}.

In other words, S(Θ)(M1, . . . ,Mn) is the set of Θ-images of all tuples in the cartesian product

M1 × · · · × Mn. We are now ready to lead up to a stronger notion of operator generalization.

Definition 58 An operator Ψ on neutrosophic relations with signature 〈Σ1, . . . ,Σn+1〉 is consis-

tency preserving if for any consistent neutrosophic relations R1, . . . , Rn on schemes Σ1, . . . ,Σn,

respectively, Ψ(R1, . . . , Rn) is also consistent. �

Definition 59 A consistency preserving operator Ψ on neutrosophic relations with signature 〈Σ1, . . . ,Σn+1〉

is a strong generalization of an operator Θ on fuzzy relations with the same signature, if for any

consistent neutrosophic relations R1, . . . , Rn on schemes Σ1, . . . ,Σn, respectively, we have

repsΣn+1
(Ψ(R1, . . . , Rn)) = S(Θ)(repsΣ1

(R1), . . . , repsΣn
(Rn)).�

Given an operator Θ on fuzzy relations, the behavior of a weak generalization of Θ is ‘controlled’

only over the total neutrosophic relations. On the other hand, the behavior of a strong general-

ization is ‘controlled’ over all consistent neutrosophic relations. This itself suggests that strong

generalization is a stronger notion than weak generalization. The following proposition makes this

precise.

Proposition 2 If Ψ is a strong generalization of Θ, then Ψ is also a weak generalization of Θ.�

Proof Let 〈Σ1, . . . ,Σn+1〉 be the signature of Ψ and Θ, and let R1, . . . , Rn be any total neutrosophic

relations on schemes Σ1, . . . ,Σn, respectively. Since all total relations are consistent, and Ψ is a

strong generalization of Θ, we have that

repsΣn+1
(Ψ(R1, . . . , Rn)) = S(Θ)(repsΣ1

(R1), . . . , repsΣn
(Rn)),
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Proposition 1 gives us that for each i, 1 ≤ i ≤ n, repsΣi
(Ri) is the singleton set {λΣi

(Ri)}.

Therefore, S(Θ)(repsΣ1
(Ri), . . . , repsΣn

(Rn)) is just the singleton set:

{Θ(λΣ1
(R1), . . . , λΣn

(Rn))}.

Here, Ψ(R1, . . . , Rn) is total, and

λΣn+1
(Ψ(R1, . . . , Rn)) = Θ(λΣ1

(R1), . . . , λΣn
(Rn)), i.e. Ψ is a weak generalization of Θ.

Though there may be many strong generalisations of an operator on fuzzy relations, they all

behave the same when restricted to consistent neutrosophic relations. In the next section, we

propose strong generalisations for the usual operators on fuzzy relations. The proposed generalised

operators on neutrosophic relations correspond to the belief system intuition behind neutrosophic

relations.

First we will introduce two special operators on neutrosophic relations called split and combine

to transform inconsistent neutrosophic relations into pseudo-consistent neutrosophic relations and

transform pseudo-consistent neutrosophic relations into inconsistent neutrosophic relations.

Definition 60 (Split) Let R be a neutrosophic relation on scheme Σ. Then,

4(R) = {〈t, b, d〉|〈t, b, d〉 ∈ R and b + d ≤ 1} ∪ {〈t, b′, d′〉|〈t, b, d〉 ∈ R and b + d > 1 and b′ =

b and d′ = 1 − b} ∪ {〈t, b′, d′〉|〈t, b, d〉 ∈ R and b + d > 1 and b′ = 1 − d and d′ = d}.

It is obvious that 4(R) is pseudo-consistent if R is inconsistent.

Definition 61 (Combine) Let R be a neutrosophic relation on scheme Σ. Then,

∇(R) = {〈t, b′, d′〉|(∃b)(∃d)((〈t, b′, d〉 ∈ R and (∀bi, di)(〈t, bi, di〉 → b′ ≥ bi) and

〈t, b, d′〉 ∈ R and (∀bi)(∀di)(〈t, bi, di〉 → d′ ≥ di))}.

It is obvious that ∇(R) is inconsistent if R is pseudo-consistent.

Note that strong generalization defined above only holds for consistent or pseudo-consistent

neutrosophic relations. For any arbitrary paraconsisent intuitionistic fuzzy relations, we should

first use split operation to transform them into non inconsistent neutrosophic relations and apply

the set-theoretic and relation-theoretic operations on them and finally use combine operation to

transform the result into arbitrary neutrosophic relation. For the simplification of notation, the

following generalized algebra is defined under such assumption.
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4.4 Generalized Algebra on Neutrosophic Relations

In this section, we present one strong generalization each for the fuzzy relation operators such as

union, join, projection. To reflect generalization, a hat is placed over a fuzzy relation operator to

obtain the corresponding neutrosophic relation operator. For example, ./ denotes the natural join

among fuzzy relations, and ./ denotes natural join on neutrosophic relations. These generalized

operators maintain the belief system intuition behind neutrosophic relations.

Set-Theoretic Operators

We first generalize the two fundamental set-theoretic operators, union and complement.

Definition 62 Let R and S be neutrosophic relations on scheme Σ. Then,

(a) the union of R and S, denoted R ∪̂ S, is a neutrosophic relation on scheme Σ, given by

(R ∪̂ S)(t) = 〈max{R(t)+, S(t)+},min{R(t)−, S(t)−}〉, for any t ∈ τ(Σ);

(b) the complement of R, denoted −̂ R, is a neutrosophic relation on scheme Σ, given by

(−̂ R)(t) = 〈R(t)−, R(t)+〉, for any t ∈ τ(Σ).

�

An intuitive appreciation of the union operator can be obtained as follows: Given a tuple t, since

we believed that it is present in the relation R with confidence R(t)+ and that it is present in the

relation S with confidence S(t)+, we can now believe that the tuple t is present in the “either-R-or-

S” relation with confidence which is equal to the larger of R(t)+ and S(t)+. Using the same logic,

we can now believe in the absence of the tuple t from the “either-R-or-S” relation with confidence

which is equal to the smaller (because t must be absent from both R and S for it to be absent

from the union) of R(t)− and S(t)−. The definition of complement and of all the other operators

on neutrosophic relations defined later can (and should) be understood in the same way.

Proposition 3 The operators ∪̂ and unary −̂ on neutrosophic relations are strong generalisations

of the operators ∪ and unary − on fuzzy relations.
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Proof Let R and S be consistent neutrosophic relations on scheme Σ. Then repsΣ(R ∪̂ S) is the

set

{Q |
∧

ti∈τ(Σ)

(max{R(ti)
+, S(ti)

+} ≤ Q(ti) ≤ 1 − min{R(ti)
−, S(ti)

−})}

This set is the same as the set

{r ∪ s |
∧

ti∈τ(Σ)

(R(ti)
+ ≤ r(ti) ≤ 1 − R(ti)

−),
∧

ti∈τ(Σ)

(S(ti)
+ ≤ s(ti) ≤ 1 − S(ti)

−)}

which is S(∪)(repsΣ(R), repsΣ(S)). Such a result for unary −̂ can also be shown similarly.

For sake of completeness, we define the following two related set-theoretic operators:

Definition 63 Let R and S be neutrosophic relations on scheme Σ. Then,

(a) the intersection of R and S, denoted R ∩̂ S, is a neutrosophic relation on scheme Σ, given by

(R ∩̂ S)(t) = 〈min{R(t)+, S(t)+},max{R(t)−, S(t)−}〉, for any t ∈ τ(Σ);

(b) the difference of R and S, denoted R −̂ S, is a neutrosophic relation on scheme Σ, given by

(R −̂ S)(t) = 〈min{R(t)+, S(t)−},max{R(t)−, S(t)+}〉, for any t ∈ τ(Σ);

�

The following proposition relates the intersection and difference operators in terms of the more

fundamental set-theoretic operators union and complement.

Proposition 4 For any neutrosophic relations R and S on the same scheme, we have

R ∩̂ S = −̂(−̂R ∪̂ −̂S), and

R −̂ S = −̂(−̂R ∪̂ S).
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Proof

By definition, −̂R(t) = 〈R(t)−, R(t)+〉

−̂S(t) = 〈S(t)−, S(t)+〉

and (−̂R ∪̂ −̂S)(t) = 〈max(R(t)−, S(t)−), min(R(t)+, S(t)+)〉

so, (−̂(−̂R ∪̂ −̂S))(t) = 〈min(R(t)+, S(t)+),max(R(t)−, S(t)−)〉

= R ∩̂ S(t).

The second part of the result can be shown similarly.

Relation-Theoretic Operators

We now define some relation-theoretic algebraic operators on neutrosophic relations.

Definition 64 Let R and S be neutrosophic relations on schemes Σ and ∆, respectively. Then, the

natural join (further for short called join) of R and S, denoted R .̂/ S, is a neutrosophic relation

on scheme Σ ∪ ∆, given by

(R .̂/ S)(t) = 〈min{R(πΣ(t))+, S(π∆(t))+},max{R(πΣ(t))−, S(π∆(t))−}〉,

where π is the usual projection of a tuple. �

It is instructive to observe that, similar to the intersection operator, the minimum of the belief

factors and the maximum of the doubt factors are used in the definition of the join operation.

Proposition 5 .̂/ is a strong generalization of ./.

Proof Let R and S be consistent neutrosophic relations on schemes Σ and ∆, respectively. Then

repsΣ ∪ ∆(R .̂/ S) is the set {Q ∈ F(Σ ∪ ∆) |
∧

ti∈τ(Σ ∪ ∆)(min{RπΣ
(ti)

+, Sπ∆
(ti)

+} ≤ Q(ti) ≤

1 − max{RπΣ
(ti)

−, Sπ∆
(ti)

−})} and S(./)(repsΣ(R), reps∆(S)) = {r ./ s | r ∈ repsΣ(R), s ∈

reps∆(S)}

Let Q ∈ repsΣ∪∆(R .̂/ S). Then πΣ(Q) ∈ repsΣ(R), where πΣ is the usual projection over Σ

of fuzzy relations. Similarly, π∆(Q) ∈ reps∆(S). Therefore, Q ∈ S(./)(repsΣ(R), reps∆(S)).
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Let Q ∈ S(./)(repsΣ(R), reps∆(S)). Then Q(ti) ≥ min{RπΣ
(ti)

+, Sπ∆
(ti)

+} and Q(ti) ≤

min{1−RπΣ(ti)
−, 1−Sπ∆

(ti)
−} = 1−max{RπΣ

(ti)
−, Sπ∆

(ti)
−}, for any ti ∈ τ(Σ∪∆), because R

and S are consistent.

Therefore, Q ∈ repsΣ∪∆(R .̂/ S).

We now present the projection operator.

Definition 65 Let R be a neutrosophic relation on scheme Σ, and ∆ ⊆ Σ. Then, the projection

of R onto ∆, denoted π̂∆(R), is a neutrosophic relation on scheme ∆, given by

(π̂∆(R))(t) = 〈max{R(u)+|u ∈ tΣ},min{R(u)−|u ∈ tΣ}〉.

�

The belief factor of a tuple in the projection is the maximum of the belief factors of all of the

tuple’s extensions onto the scheme of the input neutrosophic relation. Moreover, the doubt factor

of a tuple in the projection is the minimum of the doubt factors of all of the tuple’s extensions onto

the scheme of the input neutrosophic relation.

We present the selection operator next.

Definition 66 Let R be a neutrosophic relation on scheme Σ, and let F be any logic formula

involving attribute names in Σ, constant symbols (denoting values in the attribute domains), equality

symbol =, negation symbol ¬, and connectives ∨ and ∧. Then, the selection of R by F , denoted

σ̂F (R), is a neutrosophic relation on scheme Σ, given by

(σ̂F (R))(t) = 〈α, β〉, where

α =





R(t)+ if t ∈ σF (τ(Σ))

0 otherwise
and β =





R(t)− if t ∈ σF (τ(Σ))

1 otherwise

where σF is the usual selection of tuples satisfying F from ordinary relations. �

If a tuple satisfies the selection criterion, it’s belief and doubt factors are the same in the selection

as in the input neutrosophic relation. In the case where the tuple does not satisfy the selection

criterion, its belief factor is set to 0 and the doubt factor is set to 1 in the selection.
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Proposition 6 The operators π̂ and σ̂ are strong generalisations of π and σ, respectively.

Proof Similar to that of Proposition 5.

Example 17 Relation schemes are sets of attribute names, but in this example we treat them

as ordered sequences of attribute names (which can be obtained through permutation of attribute

names), so tuples can be viewed as the usual lists of values. Let {a, b, c} be a common domain for

all attribute names, and let R and S be the following neutrosophic relations on schemes 〈X,Y 〉 and

〈Y,Z〉 respectively.

t R(t)

(a, a) 〈0, 1〉

(a, b) 〈0, 1〉

(a, c) 〈0, 1〉

(b, b) 〈1, 0〉

(b, c) 〈1, 0〉

(c, b) 〈1, 1〉

t S(t)

(a, c) 〈1, 0〉

(b, a) 〈1, 1〉

(c, b) 〈0, 1〉

For other tuples which are not in the neutrosophic relations R(t) and S(t), their 〈α, β〉 = 〈0, 0〉

which means no any information available. Because R and S are inconsistent, we first use split

operation to transform them into pseudo-consistent and apply the relation-theoretic operations on

them and transform the result back to arbitrary neutrosophic set using combine operation. Then,

T1 = ∇(4(R) .̂/ 4(S)) is a neutrosophic relation on scheme 〈X,Y,Z〉 and T2 = ∇(π̂〈X,Z〉(4(T1)))

and T3 = σ̂X¬=Z(T2) are neutrosophic relations on scheme 〈X,Z〉. T1, T2 and T3 are shown below:
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t T1(t)

(a, a, a) 〈0, 1〉

(a, a, b) 〈0, 1〉

(a, a, c) 〈0, 1〉

(a, b, a) 〈0, 1〉

(a, b, b) 〈0, 1〉

(a, b, c) 〈0, 1〉

(a, c, a) 〈0, 1〉

(a, c, b) 〈0, 1〉

(a, c, c) 〈0, 1〉

(b, b, a) 〈1, 1〉

(b, c, b) 〈0, 1〉

(c, b, a) 〈1, 1〉

(c, b, b) 〈0, 1〉

(c, b, c) 〈0, 1〉

(c, c, b) 〈0, 1〉

t T2(t)

(a, a) 〈0, 1〉

(a, b) 〈0, 1〉

(a, c) 〈0, 1〉

(b, a) 〈1, 0〉

(c, a) 〈1, 0〉

t T3(t)

(a, a) 〈0, 1〉

(a, b) 〈0, 1〉

(a, c) 〈0, 1〉

(b, a) 〈1, 0〉

(b, b) 〈0, 1〉

(c, a) 〈1, 0〉

(c, c) 〈0, 1〉

�

4.5 An Application

Consider the target recognition example presented in [94]. Here, an autonomous vehicle needs to

identify objects in a hostile environment such as a military battlefield. The autonomous vehicle is

equipped with a number of sensors which are used to collect data, such as speed and size of the

objects (tanks) in the battlefield. Associated with each sensor, we have a set of rules that describe

the type of the object based on the properties detected by the sensor.

Let us assume that the autonomous vehicle is equipped with three sensors resulting in data

collected about radar readings, of the tanks, their gun characteristics and their speeds. What

follows is a set of rules that associate the type of object with various observations.

Radar Readings:



64

• Reading r1 indicates that the object is a T-72 tank with belief factor 0.80 and doubt factor

0.15.

• Reading r2 indicates that the object is a T-60 tank with belief factor 0.70 and doubt factor

0.20.

• Reading r3 indicates that the object is not a T-72 tank with belief factor 0.95 and doubt

factor 0.05.

• Reading r4 indicates that the object is a T-80 tank with belief factor 0.85 and doubt factor

0.10.

Gun Characteristics:

• Characteristic c1 indicates that the object is a T-60 tank with belief factor 0.80 and doubt

factor 0.20.

• Characteristic c2 indicates that the object is not a T-80 tank with belief factor 0.90 and doubt

factor 0.05.

• Characteristic c3 indicates that the object is a T-72 tank with belief factor 0.85 and doubt

factor 0.10.

Speed Characteristics:

• Low speed indicates that the object is a T-60 tank with belief factor 0.80 and doubt factor

0.15.

• High speed indicates that the object is not a T-72 tank with belief factor 0.85 and doubt

factor 0.15.

• High speed indicates that the object is not a T-80 tank with belief factor 0.95 and doubt

factor 0.05.
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• Medium speed indicates that the object is not a T-80 tank with belief factor 0.80 and doubt

factor 0.10.

These rules can be captured in the following three neutrosophic relations:

Radar Rules

Reading Object Confidence Factors

r1 T-72 〈0.80, 0.15〉

r2 T-60 〈0.70, 0.20〉

r3 T-72 〈0.05, 0.95〉

r4 T-80 〈0.85, 0.10〉

Gun Rules

Reading Object Confidence Factors

c1 T-60 〈0.80, 0.20〉

c2 T-80 〈0.05, 0.90〉

c3 T-72 〈0.85, 0.10〉

Speed Rules

Reading Object Confidence Factors

low T-60 〈0.80, 0.15〉

high T-72 〈0.15, 0.85〉

high T-80 〈0.05, 0.95〉

medium T-80 〈0.10, 0.80〉

The autonomous vehicle uses the sensors to make observations about the different objects and

then uses the rules to determine the type of each object in the battlefield. It is quite possible

that two different sensors may identify the same object as of different types, thereby introducing

inconsistencies.

Let us now consider three objects o1, o2 and o3 which need to be identified by the autonomous

vehicle. Let us assume the following observations made by the three sensors about the three
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objects. Once again, we assume certainty factors (maybe derived from the accuracy of the sensors)

are associated with each observation.

Radar Data

Object-id Reading Confidence Factors

o1 r3 〈1.00, 0.00〉

o2 r1 〈1.00, 0.00〉

o3 r4 〈1.00, 0.00〉

Gun Data

Object-id Reading Confidence Factors

o1 c3 〈0.80, 0.10〉

o2 c1 〈0.90, 0.10〉

o3 c2 〈0.90, 0.10〉

Speed Data

Object-id Reading Confidence Factors

o1 high 〈0.90, 0.10〉

o2 low 〈0.95, 0.05〉

o3 medium 〈0.80, 0.20〉

Given these observations and the rules, we can use the following algebraic expression to identify

the three objects:

π̂Object-id,Object(Radar Data .̂/ Radar Rules) ∩̂

π̂Object-id,Object(Gun Data .̂/ Gun Rules) ∩̂

π̂Object-id,Object(Speed Data .̂/ Speed Rules)

The intuition behind the intersection is that we would like to capture the common (intersecting)

information among the three sensor data. Evaluating this expression, we get the following neutro-

sophic relation:
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Table 4.1: EVAL

I1 q1 〈0.9, 0.2〉

I1 q2 〈1.0, 0.0〉

I1 q3 〈0.1, 0.8〉

I2 q1 〈1.0, 1.0〉

I2 q3 〈0.8, 0.3〉

Object-id Object Confidence Factors

o1 T-72 〈0.05, 0.0〉

o2 T-80 〈0.0, 0.05〉

o3 T-80 〈0.05, 0.0〉

It is clear from the result that by the given information, we could not infer any useful information

that is we could not decide the status of objects o1, o2 and o3.

4.6 An Infinite-Valued Tuple Relational Calculus

As an example, suppose in the e-shopping environment, there are two items I1 and I2, which are

evaluated by customers for some categories of quality q1, q2 and q3. Let the evaluation results be

captured by the following neutrosophic relation EVAL on scheme {I,Q}:

The above neutrosophic relation contains the information that the confidence of item I1 was

evaluated ”good” for category q1 is 0.9 and the doubt is 0.2. The confidence of item I1 was evaluated

”good” for category q2 is 1.0 and the doubt is 0.0. The confidence of item I1 was evaluated ”poor”

for category q3 is 0.8 and the doubt is 0.1. Also, the confidence of item I2 was evaluated ”good” for

category q1 is 1.0 and the doubt is 1.0 (similarly, the confidence of item I2 was evaluated ”poor” for

category q1 is 1.0 and the doubt is 1.0). The confidence of I2 was evaluated ”good” for category q3 is

0.8 and the doubt is 0.3. Note that the evaluation results of item I2 for category q2 is unknown. The

above information contains fuzziness, incompleteness and inconsistency. Such information may be
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due to various reasons, such as evaluation not conducted, or evaluation results not yet available, the

evaluation is not reliable, and different evaluation results for the same category producing different

results, etc.

We define a infinite-valued membership function of a neutrosophic relation, which maps tuples

to the pair of values 〈α, β, with 0 ≤ α + β ≤ 2. We use the symbol I to denote the set of these

values, i.e. I = {〈α, β〉}. Now, for a neutrosophic relation R = 〈t, R(t)+, R(t)−〉 on scheme Σ, its

membership function is a infinite-valued predicate ΦR : τ(Σ) → I, given by

ΦR(t) = 〈R(t)+, R(t)−〉.

In [28], it proposed a 4-valued characteristic function of neutrosophic relation, which maps

tuples to one of the following values: > (for contradiction), t (for true), f(for false) and ⊥ (for

unknown). It can be easily verified that when R(t)+ = R(t)− = 1, it corresponds to >; when

R(t)+ = 1, R(t)− = 0, it corresponds to t; when R(t)+ = 0, R(t)− = 1, it corresponds to f; and

when R(t)+ = R(t)− = 0, it corresponds to ⊥.

The tuple relational calculus provides a very natural, set-theoretic, declarative notation for

querying ordinary relational database management systems. A tuple calculus expression has the

form:

{t of Σ|P (t)},

where t is a tuple variable, Σ a scheme, and P is some 2-valued predicate on tuples in τ(Σ). The

expression denotes the set of all tuple values T (from τ(Σ)) of the variable t for which the predicate

P (T ) is true.

We retain the above simple syntax in the generalised tuple calculus expression for neutrosophic

databases. However, the predicate P is now interpreted as a infinite-valued predicate on tuples.

Moreover, the entire expression now denotes a neutrosophic relation (of which P is the membership

function).

In this section we define the syntax and semantics of legal infinite-valued predicate expressions.

They are defined in relation to a given set of binary comparators on domains associated with the

attribute names appearing in schemes. Most intuitive binary comparators, like < and ≤, produce
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2-valued results, but in principle infinite-valued comparators are possible. The basic building blocks

of formulas are atoms, of which there are four kinds:

1. For any tuple variable t and relation R on the same scheme, t ∈̃ R is an atom. For any tuple

value T for the variable t, the atom t ∈̃ R denotes the value ΦR(T ).

2. For any tuple variable t1 and t2, attribute names A and B in the schemes of t1 and t2

respectively, and binary comparator Θ such that A and B are Θ-comparable, t1.A Θ t2.B is

an atom. For any tuple values T1 and T2 for the variables t1 and t2 respectively, the atom

t1.A Θ t2.B denotes the value T1(A) Θ T2(B).

3. For any tuple variable t, constant c, and attribute names A and B such that A is in the

scheme of t, c ∈ dom(B), and A and B are Θ-comparable, t.A Θ c is an atom. For any

tuple value T for the variable t, the atom t.A Θ c denotes the value T (A) Θ c.

4. For any constant c, tuple variable t, and attribute names A and B such that c ∈ dom(A),

B is in the scheme of t, and A and B are Θ-comparable, c Θ t.B is an atom. For any tuple

value T for the variable t, the atom c Θ t.B denotes the value c Θ T (B).

We use infinite-valued connectives ¬̃ (not), ∧̃ (and), ∨̃ (or), ∃̃ (there exists) and ∀̃ (for all) to

recursively build formulas from atoms. Any atom is a formula, where the formula denotes the same

value as the atom.

If f and g are formulas, and f+ is truth-degree of the f , f− is falsity-degree of f , then ¬̃ f ,

f ∧̃ g and f ∨̃ g are also formulas. The values of such formulas are given as the following:

¬̃ f = 〈f−, f+〉 (4.1)

f ∧̃ g = 〈min(f+, g+),max(f−, g−)〉 (4.2)
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f ∨̃ g = 〈max(f+, g+),min(f−, g−)〉 (4.3)

An intuitive appreciation of the disjunctive connective can be obtained as follows: Given a

tuple t, since we believed that it is present in the relation R with confidence R(t)+ and that it is

present in the relation S with confidence S(t)+, we can now believe that the tuple t is present in

the “either-R-or-S” relation with confidence which is equal to the larger of R(t)+ and S(t)+. Using

the same logic, we can now believe in the absence of the tuple t from the “either-R-or-S” relation

with confidence which is equal to the smaller (because t must be absent from both R and S for it

to be absent from the disjunction) of R(t)− and S(t)−. The definition of negation and conjunction

can be understood in the same way.

The duality of ∧̃ and ∨̃ is evident from the above formulas. It is interesting to note the algebraic

laws shown in Table 4.2 that are exhibited by these connectives.

If t is a tuple variable, Σ a scheme, and P an infinite-valued predicate on tuples in τ(Σ), then

∃̃t of Σ|P (t) and ∀̃t of Σ|P (t) are formulas. If P is the membership function of the neutrosophic

relation R, then the values denoted by these formulas are given by

∃̃t of Σ|P (t) = 〈t∃̃, f∃̃〉, (4.4)

where t∃̃ = max{R(t)+}, for all t ∈ τ(Σ), f∃̃ = min{R(t)−}, for all t ∈ τ(Σ).

∀̃t of Σ|P (t) = 〈t∀̃, f∀̃〉, (4.5)

where t∀̃ = min{R(t)+}, for all t ∈ τ(Σ), f∃̃ = max{R(t)+}, for all t ∈ τ(Σ).

The extended De Morgan laws can be verified to continue to hold for our generalized infinite-

valued semantics for quantifiers, i.e. the following pairs of formulas are equivalent:

∃̃t of Σ|P (t) ≡ ¬̃ (∀̃t of Σ|¬̃ P (t))

∀̃t of Σ|P (t) ≡ ¬̃ (∃̃t of Σ|¬̃ P (t))
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Table 4.2: Albegraic Properties of Infinite-Valued Propositional Connectives

(commutative laws) f ∨̃ g = g ∨̃ f

f ∧̃ g = g ∧̃ f

(associative laws) (f ∨̃ g) ∨̃ h = f ∨̃ (g ∨̃ h)

(f ∧̃ g) ∧̃ h = f ∧̃ (g ∧̃ h)

(distributive laws) f ∨̃ (g ∧̃ h) = (f ∨̃ g) ∧̃ (f ∨̃ h)

f ∧̃ (g ∨̃ h) = (f ∧̃ g) ∨̃ (f ∧̃ h)

(idempotent laws) f ∨̃ f = f

f ∧̃ f = f

(identity laws) f ∨̃ f = f

f ∧̃ t = f

(double complementation) ¬̃ (¬̃ f) = f

(De Morgan laws) ¬̃ (f ∨̃ g) = ¬̃ f ∧̃ ¬̃ g

¬̃ (f ∧̃ g) = ¬̃ f ∨̃ ¬̃ g

∃̃t of Σ|(P (t) ∧̃ Q(t)) ≡ ¬̃ (∀̃t of Σ|¬̃ P (t) ∨̃ ¬̃ Q(t))

∃̃t of Σ|(P (t) ∨̃ Q(t)) ≡ ¬̃ (∀̃t of Σ|¬̃ P (t) ∧̃ ¬̃ Q(t))

∀̃t of Σ|(P (t) ∧̃ Q(t)) ≡ ¬̃ (∃̃t of Σ|¬̃ P (t) ∨̃ ¬̃ Q(t))

∀̃t of Σ|(P (t) ∨̃ Q(t)) ≡ ¬̃ (∃̃t of Σ|¬̃ P (t) ∧̃ ¬̃ Q(t))

It is worth mentioning that in ordinary 2-valued relational calculus caution needs to be exer-

cised in mixing negation and quantifiers in a safe manner as the resulting expressions have the

potential of denoting infinite relations, even if all components denote finite relations. Fortunately,

as neutrosophic databases are by nature capable of handling infinite relations, safety of expressions

is not an issue in infinite-valued calculus.
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4.6.1 An Example

Let us now consider an example illustrating some infinite-valued computations. We use the neu-

trosophic relation EVAL on scheme {I,Q} of the item-category evaluation as example.

Consider the query:

What items showed contradictory evaluation results for some category?

In ordinary relational databases, it is impossible to store contradictory information, let alone

entertaining queries about contradiction.

Let ∆ = {I}, and Σ = {I,Q} be schemes. A tuple calculus expression for this query is:

{d of ∆|(∃̃t of Σ|t.I = d.I ∧̃ t ∈̃ EVAL ∧̃ ¬̃ t ∈̃ EVAL)}

In the ordinary 2-valued logic the above query will produce an empty answer due to the condition

for the tuple t to simultaneously be in EVAL as well as not be in EVAL. In infinite-valued logic,

however, the query denotes that neutrosophic relation on scheme ∆ whose membership function is

denoted by the infinite-valued predicate expression

∃̃t of Σ|t.I = d.I ∧̃ t ∈̃ EVAL ∧̃ ¬̃ t ∈̃ EVAL (4.6)

That function can be computed by determining the value of the above expression for all possible

values of its free variable d, namely I1 and I2.

For the value d = I1, the expression ( 4.6) can be seen to reduce to the value 〈0.2, 0.8〉. For the

value d = I2, the expression ( 4.6) can be seen to reduce to the value 〈1.0, 0.8〉. The result is the

neutrosophic relation:

I1 〈0.2, 0.8〉

I2 〈1.0, 0.8〉
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The result states that I1 showed contradictory evaluation result for some category with confi-

dence is 0.2 and doubt is 0.8, so it is safe to conclude that I1 did not show contradictory evaluation

resulti, but I2 showed contradictory evaluation result for some category with confidence 1.0 and

doubt is 0.8, the explanation is that I2 did show contradictory result for some category and did not

show contradictory for other category at the same times.

4.7 A Generalized SQL Query Construct for Neutrosophic Relations

The most popular construct for information retrieval from most commercial systems is the SQL’s

SELECT statement. While the statement has many options and extensions to its basic form, here

we just present an infinite-valued generalization to the basic form, as generalizing the options then

just becomes a trivial matter of detail. The basic form of the statement contains three clauses

select, from and where, and has the following format:

select A1, A2, . . . Am from R1, R2, . . . Rn where C

where

1. A1, A2, . . . Am is a list of attribute names whose values are to be retrieved by the query,

2. R1, R2, . . . Rn is a list of relation names required to process the query, and

3. C is a boolean expression that identifies the tuples to be retrieved by the query.

Without loss of generality, we assume that each attribute name occurs in exactly one relation,

because if some attribute Ai occurs in more than one relation, we require, instead of simply the

attribute Ai, a pair of the form Rj.Ai qualifying that attribute. The result of the SELECT statement

is a relation with attributes A1, A2, . . . Am chosen from the attributes of R1 × R2 × · · · × Rn for

tuples that satisfy the boolean condition C, i.e.

πA1,A2,...Am
(σC(R1 × R2 × · · · × Rn)),
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where π, σ, and × are the projection, selection and product operations, respectively, on ordinary

relations. We retain the above syntax in the generalized SELECT statement for the neutrosophic

relations. However, the relation names R1, R2, . . . Rn now represent some neutrosophic relations

and C is some infinite-valued condition. The result of the generalized SELECT statement is then

the value of the algebraic expression:

πA1,A2,...,Am
(σ̂C(R1×̂R2×̂ · · · ×̂Rn)),

where π̂, σ̂, and ×̂ are, respectively, the projection, selection and product operations on neutro-

sophic relations constructed in the next section. Furthermore, the result of the generalized SELECT

statement is also a neutrosophic relation.

4.7.1 Infinite-Valued Conditions

In the generalized SELECT statement, we let the condition occurring in the where clause be infinite-

valued. The infinite values, except 〈1, 0〉 and 〈0, 1〉, arise essentially due to any nested subqueries.

For any arithmetic expressions E1 and E2, comparisons such as E1 ≤ E2 are simply 2-valued

conditions (〈1, 0〉 or 〈0, 1〉). Let ξ be a subquery of the form

(select . . . from . . . where . . .)

occurring in the where clause of a SELECT statement. And let R be the neutrosophic relation

on scheme Σ that the subquery ξ evaluates to. Then, conditions involving the subquery ξ evaluate

as follows.

1. The condition

exists ξ

evaluates to 〈α, β〉,

α = max{a}, a = R(t)+, for all t ∈ τ(Σ),
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β = min{b}, b = R(t)−, if R(t)+ + R(t)− ≤ 1, b = 1 − R(t)+, if R(t)+ + R(t)− > 1,

for all t ∈ τ(Σ).

2. For any tuple t ∈ τ(Σ), the condition

t in ξ

evaluates to φR(t).

3. If Σ contains exactly one attribute, then for any (scalar value) t ∈ τ(Σ), the condition

t > any ξ

evaluates to 〈α, β〉,

α = max{a}, a = R(k)+, if t > k, for some k ∈ R, (β = min{b}, b = R(k)−, if R(k)+ +

R(k)− ≤ 1,

b = 1 − R(k)+, if R(k)+ + R(k)− > 1), if t > k, for some k ∈ R;

α = 0, β = 1, otherwise.

An infinite-valued semantics for other operators, such as ≥any, =any, can be defined similarly.

Note that conditions involving such operators never evaluate to the value α, β, such that

α + β > 1.

4. If Σ contains exactly one attribute, then for any (scalar value) t ∈ τ(Σ), the condition

t > all ξ

evaluates to 〈α, β〉,

(α = min{a}, a = R(k)−, if R(k)++R(k)− ≤ 1, a = 1−R(k)+, if R(k)++R(k)− > 1), if t ≤

k,

for some k ∈ R, β = max{b}, b = R(k)+, if t ≤ k, for some k ∈ R;

α = 1, β = 0, otherwise.
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An infinite-valued semantics for other operators, such as ≥all, =all, can be defined similarly.

Note that conditions involving such operators never evaluate to the value 〈α, β〉, such that

α + β > 1.

We complete our infinite-valued semantics for conditions by defining the not, and and or

operators on them. Let C and D be any conditions, and value of C = 〈tc, fc〉 and value of

D = 〈td, fd〉. Then, the value of the condition not C is given by

not C = 〈fc, tc〉

while the value of the condition C and D is given by

C and D = 〈min tc, td,max fc, fd〉

and that of the condition C or D is given by

C or D = 〈max tc, td,min fc, fd〉

The duality of and and or is evident from their formulas. It is interesting to note the following

algebraic laws exhibited by the above infinite-valued operators:

1. Double Complementation Law:

not ( not C) = C

2. Identity and Idempotence Laws:

C and 〈1, 0〉 = C and C = C

C or 〈0, 1〉 = C or C = C

3. Commutativity Laws:

C and D = D and C

C or D = D or C
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4. Associativity Laws:

C and (D and E) = (C and D) and E

C or (D or E) = (C or D) or E

5. Distributivity Laws:

C and (D or E) = (C and D) or (Cand E)

C or (D and E) = (C or D) and (Cor E)

6. De Morgan Laws:

not (C and D) = ( not C) or ( not D)

not (C or D) = ( not C) and ( not D)

We are now ready to define the selection operator on neutrosophic relations.

Let R be a neutrosophic relation on scheme Σ, and C be an infinite-valued condition on tuples of

Σ denoted 〈tC(t), fC(t)〉. Then, the selection of R by C, denoted σ̂C(R), is a neutrosophic relation

on scheme Σ, given by

(σ̂C(R))(t) = 〈minR(t)+, tC(t),max R(t)−, fC(t)〉.

The above definition is similar to that of the and operator given earlier.

Since performing a simple union is impossible within a SELECT statement, SQL provides a

union operator among subqueries to achieve this. We end this section with an infinite-valued

semantics of union.

Let ξ1 and ξ2 be subqueries that evaluate, respectively, to neutrosophic relations R1 and R2 on

scheme Σ. Then, the subquery

ξ1 union ξ2

evaluates to the neutrosophic relation R on scheme Σ given by

R(t) = 〈max R1(t)+, R2(t)+,minR1(t)−, R2(t)−〉
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An intuitive appreciation of the union operator can be obtained as follows: Given a tuple t, since

we believed that it is present in the relation R1 with confidence R1(t)
+ and that it is present in the

relation R2 with confidence R2(t)
+, we can now believe that the tuple t is present in the ”either-

R1-or-R2” relation with confidence which is equal to the larger of R1(t)
+ and R2(t)

+. Using the

same logic, we can now believe in the absence of the tuple t from the ”either-R1-or-R2” relation

with confidence which is equal to the smaller (because t must be absent from both R1 and R2 for

it to be absent from the union) of R1(t)
− and R2(t)

−.

4.7.2 An Example

Let us now consider an example illustrating some infinite-valued computations. We use the neu-

trosophic relation EVAL on scheme {I,Q} of the item-category evaluation as example.

Consider the query:

W hat items showed contradictory evaluation of some category of quality?

A SELECT statement for this query is:

select I

from EVAL where not ((I,Q) in EVAL)

One possible evaluation method for the above query in ordinary 2-valued SQL is to produce the

I attribute of those rows of EVAL that satisfy the where condition. Since the where condition

in the above case is exactly that row not be in EVAL, in 2-valued logic the above query will produce

an empty answer.

In infinite-valued logic, however, the where condition needs to be evaluated, to one of infinite

possible values, for every possible row with attributes Σ = (I,Q). The result is then combined

with EVAL according to the semantics of p, on which σ̂ is performed to produce the resulting

neutrosophic relation.

Therefore, for each of the 6 rows in τ(Σ), we first evaluate the where condition C:

Now, σ̂(EV AL) according to the definition of σ̂ evaluates to the neutrosophic relation:

Finally, π̂ of the above is the neutrosophic relation:
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(I,Q) C = not ((I,Q) inEV AL)

(I1, q1) 〈0.2, 0.9〉

(I1, q2) 〈0.0, 1.0〉

(I1, q3) 〈0.8, 0.1〉

(I2, q1) 〈1.0, 1.0〉

(I2, q2) 〈0.0, 0.0〉

(I2, q3) 〈0.3, 0.8〉

I1 q1 〈0.2, 0.9〉

I1 q2 〈0.0, 0.1〉

I1 q3 〈0.1, 0.8〉

I2 q1 〈1.0, 1.0〉

I2 q3 〈0.3, 0.8〉

I1 〈0.1, 0.8〉

I2 〈1.0, 0.0〉
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Chapter 5

SOFT SEMANTIC WEB SERVICES AGENT

Web services technology is critical for the success of business integration and other application fields such

as bioinformatics. However, there are two challenges facing the practicality of Web services: (a) efficient

location of the Web service registries that contain the requested Web services and (b) efficient retrieval of the

requested services from these registries with high quality of service (QoS). The main reason for this problem is

that current Web services technology is not semantically oriented. Several proposals have been made to add

semantics to Web services to facilitate discovery and composition of relevant Web services. Such proposals

are being referred to as Semantic Web services (SWS). However, most of these proposals do not address

the second problem of retrieval of Web services with high QoS. In this chapter, we propose a framework

called Soft Semantic Web Services Agent (soft SWS agent) for providing high QoS Semantic Web services

using soft computing methodology. Since different application domains have different requirements for QoS,

it is impractical to use classical mathematical modeling methods to evaluate the QoS of semantic Web

services. We use neutrosophic neural networks with Genetic Algorithms (GA) as our study case. Simulation

results show that the soft SWS agent methodology is extensible and scalable to handle fuzzy, uncertain and

inconsistent QoS metrics effectively.

5.1 Introduction

Web services are playing an important role in e-business application integration and other appli-

cation fields such as bioinformatics. So it is crucial for the success of both service providers as

well as service consumers to provide and invoke the high quality of service (QoS) Web services.

Unfortunately, current Web services technologies such as SOAP (Simple Object Access Protocol)

[13], WSDL (Web Services Description Language) [17], UDDI (Universal Description, Discovery

and Integration) [15], ebXML (Electronic Business XML Initiative) [5], XLANG [19], WSFL (Web

Services Flow Language) [18], BPEL4WS (Business Process Execution Language for Web Services)
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[2], and BSML (Bioinformatic Sequence Markup Language) [1] are all syntax-oriented with little or

no semantics associated with them. Computer programs may read and parse them, but with little

or no semantic information associated with these technologies, the computer programs can do little

to reason and infer knowledge about the Web services.

Current research trend is to add semantics to the Web services framework to facilitate the

discovery, invocation, composition, and execution monitoring of Web services. Web services with

explicit semantic annotation are called Semantic Web services (SWS). Several projects are underway

to try to reach such a goal. For example, OWL-S (previously DAML-S [3] from OWL Services

Coalition [9]) uses OWL based ontology for describing Web services. METEOR-S [88] follows the

way that relates concepts in WSDL to DAML+OIL ontologies in Web services description, and then

provides an interface to UDDI that allows querying based on ontological concepts. The Internet

Reasoning Service (IRS-II) [74] is a Semantic Web services framework, which allows applications

to semantically describe and execute Web services. IRS-II is based on the UPML framework [76].

The Web Service Modeling Framework (WSMF) [52] provides a model for describing the various

aspects related to Web services. Its main goal is to fully enable e-commerce by applying Semantic

Web technology to Web services.

In our vision, with the maturing of semantic Web services technologies, there will be a prolif-

eration of public and/or private registries for hosting and querying semantic Web services based

on specific ontologies. Currently, there are many public and private UDDI registries advertising

numerous similar Web services with different QoS. For example, GenBank [6], XEMBL [20], and

OmniGene [8] all provide similar Web services with different quality of services. There are two chal-

lenges existing for automatic discovery and invocation of Web services. One is the efficient location

of service registries advertising requested Web services and the another is the efficient retrieval of

the requested services from these registries with the highest quality of service (QoS). The semantic

Web services technologies that we mentioned above can be exploited to solve the first challenge.

For the second challenge, we believe that the QoS of semantic Web services should cover both func-

tional and non-functional properties. Functional properties include the input, output, conditional

output, pre-condition, access condition, and the effect of service [14]. These functional properties

can be characterized as the capability of the service [21]. Non-functional properties include the
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availability, accessibility, integrity, performance, reliability, regulatory, security, response time and

cost [14] of the Web service.

Several matchmaking schemes have already been proposed to match the service requestor’s

requirements with service provider’s advertisement [58, 96, 79]. These schemes basically try to

solve the capability matching problem. Here, we must be aware that on the one hand, the degree

of capability matching and non-functional properties are all fuzzy, and on the other hand, different

application domains have different requirements on non-functional properties. As a consequence, it

is not flexible to use classical mathematical modeling methods to evaluate the QoS of semantic Web

services. Although there are several existing QoS models [42, 53, 55, 57, 60, 84, 91, 85, 106], none

of them are suitable for the requirements considered in this chapter. These QoS models are based

on precise QoS metrics and specific application domains. They cannot handle fuzzy and uncertain

QoS metrics.

In this chapter, we propose a framework called soft semantic Web services agent (soft SWS

agent) to provide high QoS semantic Web services based on specific domain ontology such as gnome.

The soft SWS agent could solve the forementioned two challenges effectively and efficiently. The soft

SWS agent itself is implemented as a semantic Web service and comprises of six components: (a)

Registries Crawler, (b) Repository, (c) Inquiry Server, (d) Publish Server, (e) Agent Communication

Server, and (f) Intelligent Inference Engine. The core of the soft SWS agent is Intelligent Inference

Engine (IIE). It uses soft computing technologies to evaluate the entire QoS of semantic Web

services using both functional and non-functional properties. In this chapter, we use semantic Web

services for bioinformatics as a case study. We employ neutrosophic neural networks with Genetic

Algorithms (GA) for the IIE component of our soft SWS agent. The case study illustrates the

flexibility and reliability of soft computing methodology for handling fuzzy and uncertain linguistic

information. For example, capability of a Web service is fuzzy. It is unreasonable to use crisp values

to describe it. So we can use several linguistic variables such as a ”little bit low” and ”a little bit

high” to express the capability of services.

The chapter is organized as follows. In section 2, we present the necessary background of the

QoS model, semantic Web services, and soft computing methodology. In section 3, we provide the

architecture of the extensible soft SWS agent. In section 4, we present the design of the neutrosophic
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neural network with GA and simulation results. In section 5, we present related work, and finally,

in section 6, we present conclusions and possibilities for future research.

5.2 Background

This section details the background material related to this research. We cover traditional Web

services, semantic Web, semantic Web services, soft computing methodology, and the QoS model.

5.2.1 Traditional Web services

Web services are modular, self-describing, and self-contained applications that are accessible over

the internet [47]. The core components of the Web services infrastructure are XML based standards

like SOAP, WSDL, and UDDI. SOAP is the standard messaging protocol for Web services. SOAP

messages consist of three parts: an envelope that defines a framework for describing what is in a

message and how to process it, a set of encoding rules for expressing instances of application-defined

datatypes, and a convention for representing remote procedure calls and responses. WSDL is an

XML format to describe Web services as collections of communication endpoints that can exchange

certain messages. A complete WSDL service description provides two pieces of information: an

application-level service description (or abstract interface), and the specific protocol-dependent

details that users must follow to access the service at a specified concrete service endpoint. The

UDDI specifications offer users a unified and systematic way to find service providers through a

centralized registry of services that is roughly equivalent to an automated online “phone directory”

of Web services. UDDI provides two basic specifications that define a service registry’s structure and

operation. One is a definition of the information to provide about each service and how to encode

it and the other is a publish and query API for the registry that describes how this information

can be published and accessed.

5.2.2 Semantic Web

The current Web is just a collection of documents which are human readable but not machine

processable. In order to remedy this disadvantage, the concept of semantic Web is proposed to add
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semantics to the Web to facilitate the information finding, extracting, representing, interpreting

and maintaining. “The semantic Web is an extension of the current Web in which information is

given well-defined meaning, better enabling computers and people to work in cooperation” [35].

The core concept of semantic Web is ontology. “Ontology is a set of knowledge terms, including the

vocabulary, the semantic interconnections, and some simple rules of inference and logic for some

particular topic” [59]. There are many semantic Web technologies available today, such as RDF

[12], RDFS [10], DAML+OIL [4] and OWL [16]. The description logics are used as the inference

mechanism for current semantic Web technologies. There are some drawbacks in the description

logics [86]. It cannot handle fuzziness and uncertainty associated with concept membership. The

current research trend is to combine soft computing with semantic Web [92, 93, 64, 50].

5.2.3 Semantic Web Services

The industry is proposing Web services to transform the Web from “passive state”–repository of

static documents to “positive state”–repository of dynamic services. Unfortunately, the current Web

services standards are not semantic-oriented. They are awkward for service discovery, invocation,

composition, and monitoring. So it is natural to combine the semantic Web with Web services, the

so-called semantic Web services. Several projects have been initiated to design the framework for

semantic Web services such as OWL-S, IRS-II, WSMF and METEOR-S.

For example, OWL-S 1.0 which is based on OWL is the upper ontology for services. It has

three subontologies: ServiceProfile, ServiceModel and ServiceGrounding. The service profile tells

“what the service does”; this is, it gives the types of information needed by a service-seeking

agent to determine whether the service meets its needs. The service model tells “how the service

works”; that is, it describes what happens when the service is carried out. A service grounding

specifies the details of how an agent can access a service. Typically a grounding will specify a

communication protocol, message formats, and other service-specific details such as port numbers

used in contacting the service. In addition, the grounding must specify, for each abstract type

specified in the ServiceModel, an unambiguous way of exchanging data elements of that type with

the service.
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5.2.4 Soft Computing Methodology

“Soft computing differs from conventional (hard) computing in that, unlike hard computing, it

is tolerant of imprecision, uncertainty, partial truth, and approximations” [101]. The principal

constituents of soft computing are fuzzy logic, neural networks, and generic algorithms. More and

more technologies will join into the soft computing framework in the near future. Fuzzy logic

is primarily concerned with handling imprecision and uncertainty, neural computing focuses on

simulating human being’s learning process, and genetic algorithms simulate the natural selection

and evolutionary processes to perform randomized global search. Each component of soft computing

is complementary to each other. Using combinations of several technologies such as fuzzy-neural

systems will generally get better solutions.

5.2.5 QoS Model

Different applications generally have different requirements of QoS dimensions. Rommel [84] and

Stalk and Hout [91] investigate the features with which successful companies assert themselves in the

competitive world markets. Their result showed that success is based on three essential dimensions:

time, cost and quality. [55] associates eight dimensions with quality, including performance and

reliability. Software systems quality of service has been extensively studied in [42, 57, 60, 106]. For

middleware systems, Frlund and Koisinen [53] present a set of practical dimensions for distributed

object systems reliability and performance, which include TTR (time to repair), TTF (time to

failure), availability, failure masking, and server failure. Gardaso, Miller, Sheth and Arnold [54]

propose a QoS model for workflows and Web services processes based on four dimensions: time,

cost, reliability and fidelity.

In this paper, we construct a QoS model for semantic Web services. It is composed of the

following dimensions: capability, response time, and trustworthiness. In order to be more precise,

we give our definitions of the three dimensions as follows:

1. The capability of a semantic Web service can be defined as the degree to which its func-

tional properties match with the required functional properties of the semantic Web service

requestor;
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2. The response time of a semantic Web service represents the time that elapses between service

requests arrival and the completion of that service request. Response time is the sum of

waiting time and actual processing time;

3. The trustworthiness of a semantic Web services is the extent to which it is consistent, reliabile,

competent, and honest.

5.3 Architecture of Extensible Soft SWS Agent

The extensible soft SWS agent can provide high QoS semantic Web services based on specific

ontology. The extensible SWS agent uses centralized client/server architecture internally. But

itself can also be and should be implemented as a semantic Web service based on specific service

ontology. The extensible soft SWS agent comprises of six components: (a) Registries Crawler;

(b) SWS Repository; (c) Inquiry Server; (d) Publish Server; (e) Agent Communication Server; (f)

Intelligent Inference Engine. The high level architecture of the extensible soft SWS agent is shown

in Figure 1. Each of the components is described next.

Registry 1
 Registry 2
 Registry 3
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Intelligent
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Engine
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User
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Figure 5.1: Architecture of the Extensible Soft SWS Agent
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5.3.1 Registries Crawler

As we pointed out before, the current UDDI registry only supports keyword based search for the

Web services description. Under the Semantic Web environment, UDDI registry must be extended

to be ontology-compatible which supports semantic matching of semantic Web services’ capabilities.

One possible way is to map the OWL-S service profiles into current UDDI registry’s data structure.

Semantic Web service providers will publish the service profiles of semantic Web services in the

public or private specific service ontology-oriented UDDI registries or directly on their semantic

Web sites. The specific ontology based semantic Web services registries crawler has two tasks:

1. Accessing these public and private specific service ontology-oriented UDDI registries using

UDDI query API to fetch the service profiles, transforming them into the format supported

by our repository, and storing them into the repository using the publish API of our repository;

2. Crawling the semantic Web sites hosting the specific ontology based semantic Web services

directly to get the service profiles, transforming them into the format supported by the repos-

itory, and storing them into repository using the publish API for the repository.

The registries crawler should be multithreaded and should be available 24x7. The registries crawler

must also be provided the information of highest level specific service ontology before its execution.

5.3.2 SWS Repository

The specific ontology based semantic Web servcies repository will store service profiles of semantic

Web services. The architecture of repository is shown in Figure 2.

The internal communication module provides the communication interface between the reposi-

tory and the registries crawler, inquiry server, publish server, and the agent communication server.

If a message is an advertisement, the internal communication module sends it to the OWL-S/UDDI

transformer that constructs a UDDI service description using information about the service provider

and the service name. The result of publishing with the UDDI is a reference ID of the service. This

ID combined with the capability description and non-functional properties of the advertisement are

sent to the OWL-S matching engine that stores the advertisement for capability matching. If a
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Figure 5.2: Architecture of Repository

message is a query, the internal communication module sends the request to the OWL-S matching

engine that performs the capability matching. After calculating the degree of capability, the OWL-

S matching engine will feed the degree of capability and non-functional properties to the intelligent

inference engine to get the entire Quality of Servie (QoS). The service with highest QoS will be

selected. The result of the selection is the advertisement of the providers selected and a reference

to the UDDI service record. The combination of UDDI records and advertisements is then sent

to the inquiry server. If the required service does not exist, OWL-S matching engine will transfer

the query to the agent communication server through the internal communication module. The

matching algorithm used by OWL-S matching engine is based on the modified algorithm described

in [77]. The modified algorithm considers not only the inputs, outputs, preconditions and effects,

but also service name.
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5.3.3 Inquiry Server

The specific ontology based semantic Web services inquiry server provides two kinds of query

interface: a programmatic API to other semantic Web services or agents and a Web-based interface

for the human user. Both interfaces support keyword oriented query as well as capability oriented

searches.

For capability oriented query, the inquiry server transforms the service request profile into the

format supported by the repository such as OWL-S service profile and sends the query message to

the internal communication module of the repository. The internal communication module sends

the service profile to the OWL-S matching engine and returns back the requested advertisement to

the inquiry server and then on to the service requestor. The process is shown in Figure 5.3:
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Internal

Communication


Module


OWL-S
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Intelligent

Inference


Engine


Figure 5.3: Capability oriented query

For the keyword oriented queries, the inquiry server will directly send the query string to the

internal communication module as a query message and the internal communication module sends
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the query string to the UDDI Registry and returns back the requested UDDI records to the inquiry

server and then on to the service requestor. The process is shown in Figure 5.4:
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Figure 5.4: Keyword oriented query

We use SOAP as a communication protocol between service requestors and the inquiry server.

5.3.4 Publish Server

The specific ontology based semantic Web services publish server provides the publishing service for

other agents and human users. It has two kinds of interface. One is the programmatic API to other

semantic Web services or agents and another is for the human user which is Web-based. The publish

server will transform the service advertisement into the format supported by the repository such

as OWL-S service profile and sends the publish message to the internal communication module.

The internal communication module sends the transformed OWL-S service profile to the OWL-

S/UDDI transformer. The OWL-S/UDDI transformer will map the OWL-S service profile into

UDDI registries data structure, and store the OWL-S service profile and reference ID of service

into OWL-S matching engine. The process is shown in Figure 5.5:
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Figure 5.5: Publish service advertisement

If the advertised semantic Web services are not in the domain of the soft SWS agent, the internal

communication server will transfer the advertisements to the agent communication server which will

try to publish the advertisements into other soft SWS agents. SOAP is used as a communication

protocol between service publisher and the publisher server.

5.3.5 Agent Communication Server

The soft semantic Web services agent communication server uses a certain communication protocol

such as Knowledge Query and Manipulation Language (KQML) and Agent Communication Lan-

guage (ACL) to communicate with other soft SWS agents. If the current soft SWS agent cannot

fulfill the required services (query and publish), the agent communication server is responsible for

transfering the requirements to other soft SWS agents, getting results back, and conveying the

results back to the service requestors. The current KQML and ACL should be extended to be



92

ontology-compatible to facilitate the semantic oriented communication.

5.3.6 Intelligent Inference Engine

The intelligent inference engine (IIE) is the core of the soft SWS agent. The soft SWS agent

is extensible because IIE uses soft computing methodology to calculate the QoS of the semantic

Web services with multidimensional QoS metrics. IIE gets the degree of capability matching and

non-functional properties’ values from OWL-S matching engine and returns back the whole QoS

to OWL-S matching engine. In the next section, we show the design of an IIE using neutrosophic

logic, neural networks, and genetic algorithms.

5.3.7 Design of Intelligent Inference Engine

This section shows one implementation of IIE based on neutrosophic logic, neural network and

genetic algorithm. A schematic diagram of the four-layered neutrosophic neural network is shown

in Figure 3. Nodes in layer one are input nodes representing input linguistic variables. Nodes in

layer two are membership nodes. Membership nodes are truth-membership node, indeterminacy-

membership node and falsity-membership node, which are responsible for mapping an input lin-

guistic variable into three possibility distributions for that variable. The rule nodes reside in layer

three. The last layer contains the output variable nodes [65].

As we mentioned before, the metrics of QoS of Semantic Web services are multidimensional.

For illustration of specific ontology based Semantic Web services for bioinformatics, we decide to

use capability, response time and trustworthiness as our inputs and whole QoS as output. The

neutrosophic logic system is based on TSK model.

5.3.8 Input neutrosophic sets

Let x represent capability, y represent response time and z represent trustworthiness. We scale the

capability, response time and trustworthiness to [0,10] respectively. The graphical representation

of membership functions of x, y, and z are shown in Figure 4.
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Figure 5.6: Schematic diagram of Neutrosophic Neural Network
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5.3.9 Neutrosophic rule bases

Here, we design the neutrosophic rule base based on the TSK model. A neutrosophic rule is shown

below:

IF x is I1 and y is I2 and z is I3 THEN O is ai,1 ∗ x + ai,2 ∗ y + ai,3 ∗ Z + ai,4.

where, I1, I2 and I3 are in low, middle, and high respectively and i in [1,27]. There are totally

27 neutrosophic rules. The ai,j are consequent parameters which will be obtained by training phase

of neutrosophic neural network using genetic algorithm.

5.3.10 Design of deneutrosophication

Suppose, for certain inputs x, y and z, there are m fired neutrosophic rules. To calculate the firing

strength of jth rule, we use the formula:

W j = W j
x ∗ W j

y ∗ W j
z , (5.1)

where

W j
x = (0.5 ∗ tx(x) + 0.35 ∗ (1 − fx(x)) + 0.025 ∗ ix(x) + 0.05),

W j
y = (0.5 ∗ ty(y) + 0.35 ∗ (1 − fy(y)) + 0.025 ∗ iy(y) + 0.05),

W j
z = (0.5 ∗ tz(z) + 0.35 ∗ (1 − fz(z)) + 0.025 ∗ iz(z) + 0.05),

where tx, fx, ix, ty, fy, iy , tz, fz, iz , are the truth-membership, falsity-membership, indeterminacy-

membership of neutrosophic inputs x, y, z, respectively.

So the crisp output is:

O =

m∑

j=1

W j ∗ (aj,1 ∗ x + aj,2 ∗ y + aj,3 ∗ z + aj,4)/(

m∑

j=1

W j) (5.2)

5.3.11 Genetic algorithms

GA is a model of machine learning which derives its behavior form a metaphor of the processes

of evolution in nature. This is done by creation within a machine of a population of individuals

represented by chromosomes. Here we use real-coded scheme. Given the range of parameters
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(coefficients of linear equations in TSK model), the system uses the derivate-free random search-

GA to learn to find the near optimal solution by the fitness function through the training data.

1. Chromosome: The genes of each chromosome are 108 real numbers (there are 108 parameters

in the neutrosophic rule base) which are initially generated randomly in the given range. So

each chromosome is a vector of 108 real numbers.

2. Fitness function: The fitness function is defined as

E = 1/2
m∑

j=1

(di − oi)
2 (5.3)

3. Elitism: The tournament selection is used in the elitism process.

4. Crossover: The system will randomly select two parents among the population, then randomly

select the number of cross points, and simply exchange the corresponding genes among these

two parents to generate a new generation.

5. Mutation: For each individual in the population, the system will randomly select genes in the

chromosome and replace them with randomly generated real numbers in the given range.

5.3.12 Simulations

There are two phases for applying a fuzzy neural network: training and predicting. In the training

phase, we use 150 data entries as training data set. Each entry consists of three inputs and one

expected output. We tune the performance of the system by adjusting the size of population,

the number of generation and probability of crossover and mutation. Table 1 gives the part of

prediction results with several parameters for output o.

In Table 1, No. of generation = 10000, No. of population = 100, probability of crossover =

0.7, probability of mutation = 0.3. The maximum error of prediction result is 1.64. The total

prediction error for 150 entries of testing dataset is 19%. By our observation, designing reasonable

neutrosophic membership functions and choosing reasonable training data set which is based on
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Table 5.1: Prediction Result of Neutrosophic Neural Network

Input x Input y Input z Desired output Real output o

1 0 1 0 0.51

1 2 5 1 1.71

1 4 7 2 2.59

3 2 9 3 3.52

3 6 7 4 3.81

3 10 7 5 4.92

5 8 9 6 5.43

7 10 7 7 5.90

7 10 9 8 6.45

9 10 9 9 7.36

specific application domain can reduce the prediction error a lot. Here the example is just for

illustration.

5.4 Related Work

MWSDI (METEOR-S Web Service Discovery Infrastructure) is an infrastructure of registries for

semantic publication and discovery of Web services [98]. MWSDI supports creating registry feder-

ation by grouping registries that are mapped to the same node in Registries Ontology. MSWDI is

based on the P2P model, so the registries are considered as peers. In our work, the soft SWS agents

also can be regarded as peers. MWSDI uses the Registries Ontology to maintain a global view of

the registries, associated domains and uses this information during Web service publication and

discovery. The limitation of MWSDI is that it supports only capability matching of Web services

and does not consider non-functional properties of Web services. The soft SWS agent can be viewed

as an enhancement over MWSDI as it provides the service for discovering semantic Web services
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with the highest whole QoS.

The MWSDI approach annotates WSDL by associating its input and output types to domain

specific ontologies and uses UDDI structures to store the mapping of input and output types in

WSDL files to domain specific ontologies. It is similar to our work where we use OWL-S ontology

directly to enable the semantic description of Web services.

SWWS (Semantic Web enabled Web Services) proposes a semantic-oriented service Registry

which is similar to our idea [11]. It has five components: Profile Crawler, UDDI Integration Engine,

Registry API, Ontology Server and Query Interface. The service modelling ontology is stored in the

ontology server. All individual service descriptions are stored as instances of the service description

ontology and are also managed by the ontology server. SWWS does not support quality based

semantic Web services discovery.

OASIS/ebXML describes an architecture of service registry [7]. The registry provides a stable

store where information submitted by a submitting organization is made persistent. Such informa-

tion is used to facilitate ebXML based B2B partnerships and transactions. Submitted content may

be XML schema and documents, process descriptions, ebXML Core Components, context descrip-

tions, UML models, etc. It focuses mainly on the registry information model and discusses issues

like object replication, object relocation and lifecycle management for forming registry federation.

It does not use semantic Web and semantic Web services technologies.
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Chapter 6

CONCLUSIONS

How to model and reason with fuzzy, incomplete and even inconsistent information is an impor-

tant research topic. In this dissertation, we propose a general framework called interval neutrosophic

set to unify the fuzzy set, intuitionistic fuzzy set, paraconsistent set, etc. Based on the interval

neutrosophic sets, we introduce the interval neutrosophic logic, especially we define the syntax and

the semantics of the first order interval neutrosophic propositional logic and the first order interval

neutrosophic predicate logic. We also introduce the neutrosophic logic inference system based on

the first order interval neutrosophic predicate logic. We give two applications based on the interval

neutrosophic set and interval neutrosophic logic.

In chapter 2, we have presented an instance of neutrosophic set called the interval neutrosophic

set (INS). The interval neutrosophic set is a generalization of classic set, fuzzy set, interval valued

fuzzy set, intuitionistic fuzzy sets, interval valued intuitionistic fuzzy set, interval type-2 fuzzy

set [66] and paraconsistent set. The notions of containment, complement, N -norm, N -conorm,

relation, and composition have been defined on interval neutrosophic set. Various properties of set-

theoretic operators have been proved. In the next chapter, we will discuss the interval neutrosophic

logic and logic inference system based on interval neutrosophic set.

In chapter 3, we give the formal definitions of interval neutrosophic logic which are extension of

many other classical logics such as fuzzy logic, intuitionistic fuzzy logic and paraconsistent logics,

etc. Interval neutrosophic logic include interval neutrosophic propositional logic and first order

interval neutrosophic predicate logic. We call them classical (standard) neutrosophic logic. In the

future, we also will discuss and explore the non-classical (non-standard) neutrosophic logic such as

modal interval neutrosophic logic, temporal interval neutrosophic logic, etc. Interval neutrosophic

logic can not only handle imprecise, fuzzy and incomplete propositions but also inconsistent propo-

sitions without the danger of trivialization. The chapter also give one application based on the
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semantic notion of interval neutrosophic logic – the Interval Neutrosophic Logic Systems (INLS)

which is the generalization of classical FLS and interval valued fuzzy FLS. Interval neutrosophic

logic will have a lot of potential applications in computational Web intelligence [105]. For example,

current fuzzy Web intelligence techniques can be improved by using more reliable interval neutro-

sophic logic methods because T, I and F are all used in decision making. Such robust interval

neutrosophic logic methods can also be used in other applications such as medical informatics,

bioinformatics and human-oriented decision-making under uncertainty. In fact, interval neutro-

sophic sets and interval neutrosophic logic could be applied in the fields that fuzzy sets and fuzz

logic are suitable for, also the fields that paraconsistent logics are suitable for.

We have presented a generalization of fuzzy relations, intuitionistic fuzzy relations (interval-

valued fuzzy relations) and paraconsistent relations, called neutrosophic relations, in which we

allow the representation of confidence (belief and doubt) factors with each tuple. The algebra on

fuzzy relations is appropriately generalized to manipulate neutrosophic relations.

Various possibilities exist for further study in this area. Recently, there has been some work

in extending logic programs to involve quantitative paraconsistency. Paraconsistent logic programs

were introduced in [37] and probabilistic logic programs in [75]. Paraconsistent logic programs

allow negative atoms to appear in the head of clauses (thereby resulting in the possibility of dealing

with inconsistency), and probabilistic logic programs associate confidence measures with literals

and with entire clauses. The semantics of these extensions of logic programs have already been

presented, but implementation strategies to answer queries have not been discussed. We propose

to use the model introduced in chapter 4 in computing the semantics of these extensions of logic

programs. Exploring application areas is another important thrust of our research.

We developed two notions of generalising operators on fuzzy relations for neutrosophic rela-

tions. Of these, the stronger notion guarantees that any generalised operator is “well-behaved” for

neutrosophic relation operands that contain consistent information.

For some well-known operators on fuzzy relations, such as union, join, projection, we introduced

generalised operators on neutrosophic relations. These generalised operators maintain the belief

system intuition behind neutrosophic relations, and are shown to be “well-behaved” in the sense

mentioned above.



101

Our data model can be used to represent relational information that may be incomplete and

inconsistent. As usual, the algebraic operators can be used to construct queries to any database

systems for retrieving vague information.

In chapter 5, we discussed the design of an extensible soft SWS agent and gave one implemen-

tation of Intelligent Inference Engine. The soft SWS agent supports both keyword based discovery

as well as capability based discovery of semantic Web services. The primary motivation of our work

is to solve two challenges facing current Web services advertising and discovery techniques. One

is how to locate the registry hosting required Web service description and another is how to find

the required Web service with highest QoS in the located registry . The soft SWS agent solves

both these problems efficiently and effectively. The soft SWS agent is built upon semantic Web,

Web services, and soft computing technologies. The soft SWS agent could be used in WWW,

P2P, or Grid infrastructures. The soft SWS agent is flexible and extensible. With the evolution of

soft computing, more and more technology can be integrated into the soft SWS agent. We used

specific ontology based semantic Web services for bioinformatics and neutrosophic neural network

with genetic algorithm as our study case. The training time is short and training results are sat-

isfactory. The soft SWS agent will return the desired semantic Web services based on the entire

QoS of semantic Web services. In the future, we plan to extend the architecture of the soft SWS

agent to compute the entire QoS workflow of semantic Web services to facilitate the composition

and monitoring of complex semantic Web services and

apply it to semantic Web-based bioinformatics applications.

As the future work, we will find more application areas to which can apply the interval neutro-

sophic set and logic theory. We also plan to implement the whole system of the soft Semantic Web

Services agent.
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