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As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain,
imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been
proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number. However, there are fewer
reliable operations for INSs, as well as the INS aggregation operators and decisionmakingmethod. For this purpose, the operations
for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy
sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation
operators are developed.Then, amethod formulticriteria decisionmaking problems is explored applying the aggregation operators.
In addition, an example is provided to illustrate the application of the proposed method.

1. Introduction

Zadeh proposed his remarkable theory of fuzzy sets (FSs in
short) in 1965 [1] to encounter different types of uncertainties.
Since then, it has been applied successfully in various fields
[2]. As the traditional fuzzy set uses one single value 𝜇𝐴(𝑥) ∈[0, 1] to represent the grade of membership of the fuzzy set
A defined on a universe, it cannot handle some cases where𝜇𝐴 is hard to be defined by a specific value. So interval valued
fuzzy sets (IVFSs) were introduced by Turksen [3]. And to
cope with the lack of knowledge of nonmembership degrees,
Atanassov introduced intuitionistic fuzzy sets (IFSs in short)
[4–7], an extension of Zadeh’s FSs. In addition, Gau and
Buehrer [8] defined vague sets. Later on, Bustince pointed
out that vague sets and Atanassov’s IFSs are mathematically
equivalent objects [9]. As for the present, IFSs have been
widely applied in solvingmulticriteria decisionmaking prob-
lems [10–14], neural networks [15, 16], medical diagnosis [17],
color region extraction [18, 19],market prediction [20], and so
forth.

IFSs took into account themembership degree, nonmem-
bership degree, and degree of hesitation simultaneously. So

IFSs are more flexible and practical in addressing the fuzzi-
ness and uncertainty than the traditional FSs. Moreover, in
some actual cases, the membership degree, nonmembership
degree, and hesitation degree of an element in the IFSmay not
be a specific number. Hence, it was extended to the interval
valued intuitionistic fuzzy sets (IVIFSs in brief) [21]. To
handle the situations where people are hesitant in expressing
their preference over objects in a decision making process,
hesitant fuzzy sets (HFSs) were introduced by Torra [22] and
Torra and Narukawa [23].

Although the FSs theory has been developed and general-
ized, it can not deal with all sorts of uncertainties in different
real physical problems. Some types of uncertainties such as
the indeterminate information and inconsistent information
can not be handled. For example [24], when we ask about the
opinion of an expert about a certain statement, he or she may
say that the possibility that the statement is true is 0.5, that
the statement is false is 0.6, and the degree that he or she is
not sure is 0.2.This issue is beyond the scope of FSs and IFSs.
Therefore, some new theories are required.

Smarandache coined neutrosophic logic and neutro-
sophic sets (NSs) in 1995 [25, 26]. A NS is a set where each
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element of the universe has a degree of truth, indetermi-
nacy, and falsity, respectively, and which lies in ]0−, 1+[, the
nonstandard unit interval [27]. Obviously, it is the extension
to the standard interval [0, 1] in IFSs. And the uncertainty
present here, that is, indeterminacy factor, is independent of
truth and falsity values while the incorporated uncertainty is
dependent on the degrees of belongingness and nonbelong-
ingness in IFSs [28]. And for the aforementioned example, by
means of NSs, it can be expressed as 𝑥(0.5, 0.2, 0.6).

However, without being specified, it is difficult to apply in
the real applications. Hence, the single valued neutrosophic
set (SVNS)was proposed,which is an instance ofNSs [24, 28].
Furthermore, the information energy of SVNSs, correlation
and correlation coefficient of SVNSs, and a decision making
method by the use of SVNSs were presented [29]. In addition,
Ye also introduced the concept of simplified neutrosophic sets
(SNSs), which can be described by three real numbers in the
real unit interval [0, 1], and proposed a multicriteria decision
making method using aggregation operators for SNSs [30].
Majumdar and Samant introduced a measure of entropy of a
SVNS [28].

In fact, sometimes the degree of truth, falsity, and inde-
terminacy of a certain statement can not be defined exactly
in the real situations but denoted by several possible interval
values. So the interval neutrosophic set (INS) was required,
similar to IVIFS.Wang et al. proposed the concept of INS and
gave the set-theoretic operators of INS [31]. The operations
of INS were discussed in [32]; yet the comparison methods
were not seen there. Furthermore, Ye defined the Hamming
and Euclidean distances between INSs and proposed the
similarity measures between INSs based on the relationship
between similarity measures and distances [33]. However, in
some cases, the INS operations in [31] might be irrational.
For instance, the sum of any element and the maximum
value should be equal to the maximum one, while it does not
hold with the operations in [31]. In addition, to the best of
our knowledge, the existing literatures do not put forward
the INS aggregation operators and decision making method,
which were vitally important for INSs to be utilized in
the real situations in scientific and engineering applications.
Therefore, the operations and comparison approach between
interval neutrosophic numbers (INNs) and the aggregation
operators for INSs are defined in this paper to be used.
Thus, a multicriteria decision making method is established
based on the proposed operators; an illustrative example
is given to demonstrate the application of the proposed
method.

The rest of the paper is organized as follows. Section 2
briefly introduces interval numbers, properties of t-norm
and t-conorm, and concepts and operations of NSs, SNSs,
and INSs. And the operations and comparison approach
for INSs are defined on the basis of the IVIFS theory
in Section 3. The INN aggregation operators are given
and a decision making method is developed for INSs
by means of the INN aggregation operators in Section 4.
In Section 5, an illustrative example is presented to illus-
trate the proposed method and the comparison analysis
and discussion are given. Finally, Section 6 concludes the
paper.

2. Preliminaries

In this section, some basic concepts and definitions related
to INSs, including interval numbers, t-norm and t-conorm,
and the definitions and operations of NSs, SNSs, and INSs
are introduced, which will be utilized in the rest of the paper.

2.1. Interval Numbers andTheirOperations. Interval numbers
and their operations are of utmost importance to explore the
operations for INSs. So some definitions and operations of
interval numbers are given below.

Definition 1 (see [34–37]). Let 𝑎 = [𝑎𝐿, 𝑎𝑈] = {𝑥 | 𝑎𝐿 ≤ 𝑥 ≤𝑎𝑈}, and then 𝑎 is called an interval number. In particular, if0 ≤ 𝑎𝐿 ≤ 𝑥 ≤ 𝑎𝑈, then 𝑎 is reduced to a positive interval
number.

Consider any two interval numbers 𝑎 = [𝑎𝐿, 𝑎𝑈] and �̃� =[𝑏𝐿, 𝑏𝑈], and then their operations are defined as follows:

(1) 𝑎 = �̃� ⇔ 𝑎𝐿 = 𝑏𝐿, 𝑎𝑈 = 𝑏𝑈;
(2) 𝑎 + �̃� = [𝑎𝐿 + 𝑏𝐿, 𝑎𝑈 + 𝑏𝑈];
(3) 𝑎 − �̃� = [𝑎𝐿 − 𝑏𝑈, 𝑎𝑈 − 𝑏𝐿];
(4) 𝑎 × �̃� = [min{𝑎𝐿𝑏𝐿, 𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈}, max{𝑎𝐿𝑏𝐿,𝑎𝐿𝑏𝑈, 𝑎𝑈𝑏𝐿, 𝑎𝑈𝑏𝑈}];
(5) 𝑘𝑎 = [𝑘𝑎𝐿, 𝑘𝑎𝑈], 𝑘 > 0.

Definition 2 (see [37]). Let 𝑎 = [𝑎𝐿, 𝑎𝑈] and �̃� = [𝑏𝐿, 𝑏𝑈],𝑙𝑎 = 𝑎𝑈−𝑎𝐿 and 𝑙𝑏 = �̃�𝑈−�̃�𝐿, and then the degree of possibility
of 𝑎 ≥ �̃� is formulated by

𝑝 (𝑎 ≥ �̃�) = max{1 −max(�̃�𝑈 − 𝑎𝐿𝑙𝑎 + 𝑙𝑏 , 0) , 0} . (1)

Suppose that there are 𝑛 interval numbers 𝑎𝑖 =[𝑎𝐿𝑖 , 𝑎𝑈𝑖 ] (𝑖 = 1, 2, . . . , 𝑛) and each interval number 𝑎𝑖 is
compared to all interval numbers 𝑎𝑗 (𝑗 = 1, 2, . . . , 𝑛) by using
(1), namely,

𝑝𝑖𝑗 = 𝑝 (𝑎𝑖 ≥ 𝑎𝑗) = max{1 −max(𝑎𝑈𝑗 − 𝑎𝐿𝑖𝑙𝑎𝑖 + 𝑙𝑎𝑗 , 0) , 0} . (2)

Then a complementary matrix can be constructed as
follows:

𝑃 = [[[[
[

𝑝11 𝑝12 ⋅ ⋅ ⋅ 𝑝1𝑛𝑝21 𝑝22 ⋅ ⋅ ⋅ 𝑝2𝑛
...𝑝𝑛1 𝑝𝑛2 ⋅ ⋅ ⋅ 𝑝𝑛𝑛

]]]]
]
, (3)

where 𝑝𝑖𝑗 ≥ 0, 𝑝𝑖𝑗 + 𝑝𝑗𝑖 = 1, 𝑝𝑖𝑖 = 0.5.
2.2. t-Norm and t-Conorm. The t-norm and its dual t-
conorm play an important role in the construction of oper-
ation rules and averaging operators of INSs. Here, some basic
concepts are introduced.

Definition 3 (see [38, 39]). A function 𝑇 : [0, 1] × [0, 1] →[0, 1] is called t-norm if it satisfies the following conditions:
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(1) ∀𝑥 ∈ [0, 1], 𝑇(1, 𝑥) = 𝑥;
(2) ∀𝑥, 𝑦 ∈ [0, 1], 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥);
(3) ∀𝑥, 𝑦, 𝑧 ∈ [0, 1], 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧);
(4) if 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦, then 𝑇(𝑥, 𝑦) ≤ 𝑇(𝑥, 𝑦).

Definition 4 (see [38, 39]). A function 𝑆 : [0, 1] × [0, 1] →[0, 1] is called t-conorm if it satisfies the following conditions:

(1) ∀𝑥 ∈ [0, 1], 𝑆(0, 𝑥) = 𝑥;
(2) ∀𝑥, 𝑦 ∈ [0, 1], 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥);
(3) ∀𝑥, 𝑦, 𝑧 ∈ [0, 1], 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧);
(4) if 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦, then 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑥, 𝑦).

Definition 5 (see [38, 39]). A t-norm function 𝑇(𝑥, 𝑦) is
called Archimedean t-norm if it is continuous and 𝑇(𝑥, 𝑥) <𝑥 for all 𝑥 ∈ (0, 1). An Archimedean t-norm is called
strictly Archimedean t-norm if it is strictly increasing in each
variable for𝑥, 𝑦 ∈ (0, 1). A t-conorm function 𝑆(𝑥, 𝑦) is called
Archimedean t-conorm if it is continuous and 𝑆(𝑥, 𝑥) > 𝑥 for
all 𝑥 ∈ (0, 1). An Archimedean t-conorm is called strictly
Archimedean t-conorm if it is strictly increasing in each
variable for 𝑥, 𝑦 ∈ (0, 1).

It is well known [39, 40] that a strict Archimedean t-norm
can be expressed via its additive generator 𝑘 as 𝑇(𝑥, 𝑦) =𝑘−1(𝑘(𝑥) + 𝑘(𝑦)) and similarly applied to its dual t-conorm𝑆(𝑥, 𝑦) = 𝑙−1(𝑙(𝑥) + 𝑙(𝑦)) with 𝑙(𝑡) = 𝑘(1 − 𝑡). We observe that
an additive generator of a continuous Archimedean t-norm
is a strictly decreasing function 𝑘 : [0, 1] → [0,∞).

There are some well-knownArchimedean t-conorms and
t-norms [41].

(1) Let 𝑘(𝑡) = − log 𝑡, 𝑙(𝑡) = − log(1 − 𝑡), 𝑘−1(𝑡) = 𝑒−𝑡, and𝑙−1(𝑡) = 1 − 𝑒−𝑡. Then algebraic t-conorm and t-norm
are obtained:

𝑆 (𝑥, 𝑦) = 1 − (1 − 𝑥) (1 − 𝑦) , 𝑇 (𝑥, 𝑦) = 𝑥𝑦. (4)

(2) Let 𝑘(𝑡) = log((2−𝑡)/𝑡), 𝑙(𝑡) = log((2−(1−𝑡))/(1−𝑡)),𝑘−1(𝑡) = 2/(𝑒𝑡 + 1), and 𝑙−1(𝑡) = 1 − (2/(𝑒𝑡 + 1)). Then
Einstein t-conorm and t-norm are obtained:

𝑆 (𝑥, 𝑦) = 𝑥 + 𝑦1 + 𝑥𝑦 , 𝑇 (𝑥, 𝑦) = 𝑥𝑦1 + (1 − 𝑥) (1 − 𝑦) . (5)

(3) Let 𝑘(𝑡) = log((𝛾 − (1 − 𝛾)𝑡)/𝑡), 𝑙(𝑡) = log((𝛾 − (1 −𝛾)(1 − 𝑡))/(1 − 𝑡)), 𝑘−1(𝑡) = 𝛾/(𝑒𝑡 + 𝛾 − 1), and 𝑙−1(𝑡) =1 − (𝛾/(𝑒𝑡 + 𝛾 − 1)), 𝛾 > 0. Then Hamacher t-conorm
and t-norm are obtained:

𝑆 (𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 − (1 − 𝛾) 𝑥𝑦1 − (1 − 𝛾) 𝑥𝑦 ,
𝑇 (𝑥, 𝑦) = 𝑥𝑦𝛾 + (1 − 𝛾) (𝑥 + 𝑦 − 𝑥𝑦) , 𝛾 > 0. (6)

2.3. Definitions and Operations of NSs and SNSs

Definition 6 (see [31]). Let 𝑋 be a space of points (objects),
with a generic element in 𝑋 denoted by 𝑥. A NS 𝐴 in 𝑋
is characterized by a truth-membership function 𝑇𝐴(𝑥), an
indeterminacy-membership function 𝐼𝐴(𝑥), and a falsity-
membership function𝐹𝐴(𝑥). 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and𝐹𝐴(𝑥) are real
standard or nonstandard subsets of ]0−, 1+[; that is, 𝑇𝐴(𝑥) :𝑋 → ]0−, 1+[, 𝐼𝐴(𝑥) : 𝑋 → ]0−, 1+[, and 𝐹𝐴(𝑥) : 𝑋 →]0−, 1+[. There is no restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥),
and 𝐹𝐴(𝑥), so 0− ≤ sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤ 3+.
Definition 7 (see [31]). A NS 𝐴 is contained in the other NS𝐵, denoted by 𝐴 ⊆ 𝐵, if and only if inf 𝑇𝐴(𝑥) ≤ inf 𝑇𝐵(𝑥),
sup𝑇𝐴(𝑥) ≤ sup𝑇𝐵(𝑥), inf 𝐼𝐴(𝑥) ≤ inf 𝐼𝐵(𝑥), sup 𝐼𝐴(𝑥) ≤
sup 𝐼𝐵(𝑥), inf 𝐹𝐴(𝑥) ≤ inf 𝐹𝐵(𝑥), and sup𝐹𝐴(𝑥) ≤ sup𝐹𝐵(𝑥)
for 𝑥 ∈ 𝑋.

Since it is difficult to apply NSs to practical problems, Ye
reduced NSs of nonstandard intervals into a kind of SNSs of
standard intervals that will preserve the operations of NSs
[30].

Definition 8 (see [30]). Let 𝑋 be a space of points (objects),
with a generic element in 𝑋 denoted by 𝑥. A NS 𝐴 in 𝑋 is
characterized by 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥), which are single
subintervals/subsets in the real standard [0, 1]; that is,𝑇𝐴(𝑥) :𝑋 → [0, 1], 𝐼𝐴(𝑥) : 𝑋 → [0, 1], and 𝐹𝐴(𝑥) : 𝑋 → [0, 1].
Then, a simplification of 𝐴 is denoted by

𝐴 = {⟨𝑥, 𝑇𝐴 (𝑥) , 𝐼𝐴 (𝑥) , 𝐹𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (7)

which is called a SNS. It is a subclass of NSs.

The operational relations of SNSs are also defined in [30].

Definition 9 (see [30]). Let𝐴 and 𝐵 be two SNSs. For any 𝑥 ∈𝑋,
(1) 𝐴+𝐵 = ⟨𝑇𝐴(𝑥)+𝑇𝐵(𝑥)−𝑇𝐴(𝑥) ⋅𝑇𝐵(𝑥), 𝐼𝐴(𝑥)+𝐼𝐵(𝑥)−𝐼𝐴(𝑥) ⋅ 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) + 𝐹𝐵(𝑥) − 𝐹𝐴(𝑥) ⋅ 𝐹𝐵(𝑥)⟩,
(2) 𝐴 ⋅ 𝐵 = ⟨𝑇𝐴(𝑥) ⋅ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ⋅ 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ⋅ 𝐹𝐵(𝑥)⟩,
(3) 𝜆 ⋅ 𝐴 = ⟨1 − (1 − 𝑇𝐴(𝑥))𝜆, 1 − (1 − 𝐼𝐴(𝑥))𝜆, 1 − (1 −𝐹𝐴(𝑥))𝜆⟩, 𝜆 > 0,
(4) 𝐴𝜆 = ⟨𝑇𝜆𝐴(𝑥), 𝐼𝜆𝐴(𝑥), 𝐹𝜆𝐴(𝑥)⟩, 𝜆 > 0.
There are some limitations in Definition 9.(1) In some situations, the operations, such as 𝐴 + 𝐵 and𝐴 ⋅ 𝐵, as given in Definition 9, might be irrational. This will

be shown in the example below.
For example, let two simplified neutrosophic numbers

(SNNs) 𝑎 = ⟨0.5, 0.5, 0.5⟩ and 𝑏 = ⟨1, 0, 0⟩. Obviously, 𝑏 =⟨1, 0, 0⟩ is the maximum of SNSs. It is notable that the sum
of any number and the maximum number should be equal to
the maximum one. However, according to (1) in Definition 9,𝑎+𝑏 = ⟨1, 0.5, 0.5⟩ ̸= 𝑏. Hence, (1) does not hold and so do the
other equations in Definition 9. It shows that the operations
above are incorrect.(2) In addition, the similaritymeasure for SNSs in [30] on
the basis of the operations does not satisfy any cases.



4 The Scientific World Journal

For instance, let the alternatives 𝑎1 = ⟨0.1, 0, 0⟩, 𝑎2 =⟨0.9, 0, 0⟩ and the ideal alternative 𝑎∗ = ⟨1, 0, 0⟩. According
to the decisionmakingmethod based on the cosine similarity
measure for SNSs under the simplified neutrosophic environ-
ment in [30], we can obtain that 𝑆1(𝑎1, 𝑎∗) = 1, 𝑆2(𝑎2, 𝑎∗) =1; that is, the alternative 𝑎1 is equal to the alternative 𝑎2.
However, for 𝑇𝑎2(𝑥) > 𝑇𝑎1(𝑥), 𝐼𝑎2(𝑥) > 𝐼𝑎1(𝑥), and 𝐹𝑎2(𝑥) >𝐹𝑎1(𝑥), it is clear that the alternative 𝑎2 is superior to the
alternative 𝑎1.
2.4. Definitions and Operations of INSs

Definition 10 (see [31]). Let 𝑋 be a space of points (objects)
with generic elements in 𝑋 denoted by 𝑋. An INS 𝐴
in 𝑋 is characterized by a truth-membership function𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and
a falsity-membership function 𝐹𝐴(𝑥). For each point 𝑥 in𝑋, we have that 𝑇𝐴(𝑥) = [inf 𝑇𝐴(𝑥), sup𝑇𝐴(𝑥)], 𝐼𝐴(𝑥) =[inf 𝐼𝐴(𝑥), sup 𝐼𝐴(𝑥)], 𝐹𝐴(𝑥) = [inf 𝐹𝐴(𝑥), sup𝐹𝐴(𝑥)] ⊆[0, 1], and 0 ≤ sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤ 3, 𝑥 ∈ 𝑋.
We only consider the subunitary interval of [0, 1]. It is the
subclass of a NS. Therefore, all INSs are clearly NSs.

Definition 11 (see [31]). An INS 𝐴 is contained in the other
INS 𝐵, 𝐴 ⊆ 𝐵, if and only if

inf 𝑇𝐴(𝑥) ≤ inf 𝑇𝐵(𝑥), sup𝑇𝐴(𝑥) ≤ sup𝑇𝐵(𝑥),
inf 𝐼𝐴(𝑥) ≥ inf 𝐼𝐵(𝑥), sup 𝐼𝐴(𝑥) ≥ sup 𝐼𝐵(𝑥),
inf 𝐹𝐴(𝑥) ≥ inf 𝐹𝐵(𝑥) and sup𝐹𝐴(𝑥) ≥ sup𝐹𝐵(𝑥),

for any 𝑥 ∈ 𝑋.
Definition 12 (see [31]). Two INSs 𝐴 and 𝐵 are equal, written
as 𝐴 = 𝐵, if and only if 𝐴 ⊆ 𝐵 and 𝐴 ⊇ 𝐵.
Definition 13 (see [31]). The addition of two INSs 𝐴 and 𝐵 is
an INS 𝐶, written as 𝐶 = 𝐴 + 𝐵, whose truth-membership,
indeterminacy-membership, and falsity-membership func-
tions are related to those of 𝐴 and 𝐵 by

inf 𝑇𝐶 = min(inf 𝑇𝐴 + inf 𝑇𝐵, 1), sup𝑇𝐶 =
min(sup𝑇𝐴 + sup𝑇𝐵, 1),
inf 𝐼𝐶 = min(inf 𝐼𝐴+inf 𝐼𝐵, 1), sup 𝐼𝐶 = min(sup 𝐼𝐴+
sup 𝐼𝐵, 1),
inf 𝐹𝐶 = min(inf 𝐹𝐴 + inf 𝐹𝐵, 1), sup𝐹𝐶 =
min(sup𝐹𝐴 + sup𝐹𝐵, 1),

for all 𝑥 in𝑋.
As to be known, when 𝐵 = ⟨0, 1, 1⟩, it should satisfy𝐴 + 𝐵 = 𝐴 and 𝐴 ⋅ 𝐵 = 𝐵 for B being the minimum

value of INSs. And when 𝐵 = ⟨1, 0, 0⟩, as the largest element
of INSs, it should satisfy 𝐴 + 𝐵 = 𝐵 and 𝐴 + 𝐵 = 𝐴.
Let 𝐵 = ⟨1, 0, 0⟩. That is inf 𝑇𝐵 = sup𝑇𝐵 = 1, inf 𝐼𝐵 =
sup 𝐼𝐵 = 0, and inf 𝐹𝐵 = sup𝐹𝐵 = 0. According to
Definition 13, inf 𝑇𝐶 = 1, sup𝑇𝐶 = 1, inf 𝐼𝐶 = inf 𝐼𝐴,
sup 𝐼𝐶 = sup 𝐼𝐴, inf 𝐹𝐶 = inf 𝐹𝐴, and sup𝐹𝐶 = sup𝐹𝐴; that is,𝐴 + 𝐵 = ⟨[1, 1], [inf 𝐼𝐴, sup 𝐼𝐴], [inf 𝐹𝐴, sup𝐹𝐴]⟩ ̸= 𝐵, so that
Definition 13 does not hold.

Definition 14 (see [31]). The Cartesian product of two INSs𝐴 defined on the universe 𝑋1 and 𝐵 defined on the uni-
verse 𝑋2 is an INS 𝐶, written as 𝐶 = 𝐴 ⋅ 𝐵, whose
truth-membership, indeterminacy-membership, and falsity-
membership functions are related to those of 𝐴 and 𝐵
by

inf 𝑇𝐶(𝑥, 𝑦) = inf 𝑇𝐴(𝑥) + inf 𝑇𝐵(𝑦) − inf 𝑇𝐴(𝑥) ⋅
inf 𝑇𝐵(𝑦),
sup𝑇𝐶(𝑥, 𝑦) = sup𝑇𝐴(𝑥) + sup𝑇𝐵(𝑦) − sup𝑇𝐴(𝑥) ⋅
sup𝑇𝐵(𝑦),
inf 𝐼𝐶(𝑥, 𝑦) = inf 𝐼𝐴(𝑥) ⋅ inf 𝐼𝐵(𝑦), sup 𝐼𝐶(𝑥, 𝑦) =
sup 𝐼𝐴(𝑥) ⋅ sup 𝐼𝐵(𝑦),
inf 𝐹𝐶(𝑥, 𝑦) = inf 𝐹𝐴(𝑥) ⋅ inf 𝐹𝐵(𝑦), sup𝐹𝐶(𝑥, 𝑦) =
sup𝐹𝐴(𝑥) ⋅ sup𝐹𝐵(𝑦),

for all 𝑥 in𝑋1, 𝑦 in𝑋2.
Being similar toDefinition 13, Definition 14 does not hold

in some cases.Therefore, new operation rules for INSs should
be explored.

3. Operations and Comparison Approach
for INSs

3.1. Operations for INSs. Xu defined some operations of inter-
val valued intuitionistic fuzzy numbers [42]. Based on these
operations and preliminaries in Section 2, the operations of
two INSs can be defined as follows.

Definition 15. Let two INNs 𝐴 = ⟨[inf 𝑇𝐴,
sup𝑇𝐴], [inf 𝐼𝐴, sup 𝐼𝐴], [inf 𝐹𝐴, sup𝐹𝐴]⟩, 𝐵 = ⟨[inf 𝑇𝐵,
sup𝑇𝐵], [inf 𝐼𝐵, sup 𝐼𝐵], [inf 𝐹𝐵, sup𝐹𝐵]⟩, and 𝜆 > 0. The
operations for INNs are defined based on the Archimedean
t-conorm and t-norm as below:

(1)

𝜆𝐴 = ⟨[𝑙−1 (𝜆𝑙 (inf 𝑇𝐴)) , 𝑙−1 (𝜆𝑙 (sup𝑇𝐴))] ,
[𝑘−1 (𝜆𝑘 (inf 𝐼𝐴)) , 𝑘−1 (𝜆𝑘 (sup 𝐼𝐴))] ,
[𝑘−1 (𝜆𝑘 (inf 𝐹𝐴)) , 𝑘−1 (𝜆𝑘 (sup𝐹𝐴))]⟩ ;

(8)

(2)

𝐴𝜆 = ⟨[(𝑘−1 (𝜆𝑘 (inf 𝑇𝐴))) , (𝑘−1 (𝜆𝑘 (sup𝑇𝐴)))] ,
[𝑙−1 (𝜆𝑙 (inf 𝐼𝐴)) , 𝑙−1 (𝜆𝑙 (sup 𝐼𝐴))] ,
[𝑙−1 (𝜆𝑙 (inf 𝐹𝐴)) , 𝑙−1 (𝜆𝑙 (sup𝐹𝐴))]⟩ ;

(9)



The Scientific World Journal 5

(3)

𝐴 + 𝐵
= ⟨[𝑙−1 (𝑙 (inf 𝑇𝐴) + 𝑙 (inf 𝑇𝐵)) ,

𝑙−1 (𝑙 (sup𝑇𝐴) + 𝑙 (sup𝑇𝐵))] ,
[𝑘−1 (𝑘 (inf 𝐼𝐴) + 𝑘 (inf 𝐼𝐵)) ,
𝑘−1 (𝑘 (sup 𝐼𝐴) + 𝑘 (sup 𝐼𝐵))] ,
[𝑘−1 (𝑘 (inf 𝐹𝐴) + 𝑘 (inf 𝐹𝐵)) ,
𝑘−1 (𝑘 (sup𝐹𝐴) + 𝑘 (sup𝐹𝐵))]⟩ ;

(10)

(4)

𝐴 ⋅ 𝐵
= ⟨[𝑘−1 (𝑘 (inf 𝑇𝐴) + 𝑘 (inf 𝑇𝐵)) ,

𝑘−1 (𝑘 (sup𝑇𝐴) + 𝑘 (sup𝑇𝐵))] ,
[𝑙−1 (𝑙 (inf 𝐼𝐴) + 𝑙 (inf 𝐼𝐵)) ,
𝑙−1 (𝑙 (sup 𝐼𝐴) + 𝑙 (sup 𝐼𝐵))] ,
[𝑙−1 (𝑙 (inf 𝐹𝐴) + 𝑙 (inf 𝐹𝐵)) ,
𝑙−1 (𝑙 (sup𝐹𝐴) + 𝑙 (sup𝐹𝐵))]⟩ .

(11)

Let 𝐴 and 𝐵 be both INNs. If we assign its generator 𝑘 a
specific form, specific operations for INSs will be obtained.
When 𝑘(𝑥) = − log(𝑥), we have

(5)

𝜆𝐴 = ⟨[1 − (1 − inf 𝑇𝐴)𝜆, 1 − (1 − sup𝑇𝐴)𝜆] ,
[(inf 𝐼𝐴)𝜆, (sup 𝐼𝐴)𝜆] ,
[(inf 𝐹𝐴)𝜆, (sup𝐹𝐴)𝜆]⟩ ;

(12)

(6)

𝐴𝜆 = ⟨[(inf 𝑇𝐴)𝜆, (sup𝑇𝐴)𝜆] ,
[1 − (1 − inf 𝐼𝐴)𝜆, 1 − (1 − sup 𝐼𝐴)𝜆] ,
[1 − (1 − inf 𝐹𝐴)𝜆, 1 − (1 − sup𝐹𝐴)𝜆]⟩ ;

(13)

(7)

𝐴 + 𝐵 = ⟨[inf 𝑇𝐴 + inf 𝑇𝐵 − inf 𝑇𝐴 ⋅ inf 𝑇𝐵,
sup𝑇𝐴 + sup𝑇𝐵 − sup𝑇𝐴 ⋅ sup𝑇𝐵] ,

[inf 𝑇𝐴 ⋅ inf 𝐼𝐵, sup 𝐼𝐴 ⋅ sup 𝐼𝐵] ,
[inf 𝐹𝐴 ⋅ inf 𝐹𝐵, sup𝐹𝐴 ⋅ sup𝐹𝐵]⟩ ; (14)

(8)

𝐴 ⋅ 𝐵 = ⟨[inf 𝑇𝐴 ⋅ inf 𝑇𝐵, sup𝑇𝐴 ⋅ sup𝑇𝐵] ,
[inf 𝑇𝐴 + inf 𝐼𝐵 − inf 𝑇𝐴 ⋅ inf 𝐼𝐵,
sup 𝐼𝐴 + sup 𝐼𝐵 − sup 𝐼𝐴 ⋅ sup 𝐼𝐵] ,
[inf 𝐹𝐴 + inf 𝐹𝐵 − inf 𝐹𝐴 ⋅ inf 𝐹𝐵,
sup𝐹𝐴 + sup𝐹𝐵 − sup𝐹𝐴 ⋅ sup𝐹𝐵]⟩ .

(15)

Theorem 16. Let three INNs 𝐴 = ⟨[inf 𝑇𝐴,
sup𝑇𝐴], [inf 𝐼𝐴, sup 𝐼𝐴], [inf 𝐹𝐴, sup𝐹𝐴]⟩, 𝐵 = ⟨[inf 𝑇𝐵,
sup𝑇𝐵], [inf 𝐼𝐵, sup 𝐼𝐵], [inf 𝐹𝐵, sup𝐹𝐵]⟩, 𝐶 = ⟨[inf 𝑇𝐶,
sup𝑇𝐶], [inf 𝐼𝐶, sup 𝐼𝐶], [inf 𝐹𝐶, sup𝐹𝐶]⟩, and then the
following equations are true:

(1) 𝐴 + 𝐵 = 𝐵 + 𝐴,
(2) 𝐴 ⋅ 𝐵 = 𝐵 ⋅ 𝐴,
(3) 𝜆(𝐴 + 𝐵) = 𝜆𝐴 + 𝜆𝐵, 𝜆 > 0,
(4) (𝐴 ⋅ 𝐵)𝜆 = 𝐴𝜆 + 𝐵𝜆, 𝜆 > 0,
(5) 𝜆1𝐴 + 𝜆2𝐴 = (𝜆1 + 𝜆2)𝐴, 𝜆1 > 0, 𝜆2 > 0,
(6) 𝐴𝜆1 ⋅ 𝐴𝜆2 = 𝐴(𝜆1+𝜆2), 𝜆1 > 0, 𝜆2 > 0,
(7) (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶),
(8) (𝐴 ⋅ 𝐵) ⋅ 𝐶 = 𝐴 ⋅ (𝐵 ⋅ 𝐶).

Proof. (1), (2), (7), and (8) are obvious; thus we prove the
others:

(3)

𝜆 (𝐴 + 𝐵) = 𝜆 ⋅ ⟨[𝑙−1 (𝑙 (inf 𝑇𝐴) + 𝑙 (inf 𝑇𝐵)) ,
𝑙−1 (𝑙 (sup𝑇𝐴) + 𝑙 (sup𝑇𝐵))] ,
[𝑘−1 (𝑘 (inf 𝐼𝐴) + 𝑘 (inf 𝐼𝐵)) ,
𝑘−1 (𝑘 (sup 𝐼𝐴) + 𝑘 (sup 𝐼𝐵))] ,

[𝑘−1 (𝑘 (inf 𝐹𝐴) + 𝑘 (inf 𝐹𝐵)) ,
𝑘−1 (𝑘 (sup𝐹𝐴) + 𝑘 (sup𝐹𝐵))]⟩

= ⟨[𝑙−1 (𝜆𝑙 (𝑙−1 (𝑙 (inf 𝑇𝐴) + 𝑙 (inf 𝑇𝐵)))) ,
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𝑙−1 (𝜆𝑙 (𝑙−1 (𝑙 (sup𝑇𝐴) + 𝑙 (sup𝑇𝐵))))] ,
[𝑘−1 (𝜆𝑘 (𝑘−1 (𝑘 (inf 𝐼𝐴) + 𝑘 (inf 𝐼𝐵)))) ,
𝑘−1 (𝜆𝑘 (𝑘−1 (𝑘 (sup 𝐼𝐴) + 𝑘 (sup 𝐼𝐵))))] ,
[𝑘−1 (𝜆𝑘 (𝑘−1 (𝑘 (inf 𝐹𝐴) + 𝑘 (inf 𝐹𝐵)))) ,
𝑘−1 (𝜆𝑘 (𝑘−1 (𝑘 (sup𝐹𝐴) + 𝑘 (sup𝐹𝐵))))]⟩

= ⟨[𝑙−1 (𝜆 (𝑙 (inf 𝑇𝐴) + 𝑙 (inf 𝑇𝐵))) ,
𝑙−1 (𝜆 (𝑙 (sup𝑇𝐴) + 𝑙 (sup𝑇𝐵)))] ,
[𝑘−1 (𝜆 (𝑘 (inf 𝐼𝐴) + 𝑘 (inf 𝐼𝐵))) ,
𝑘−1 (𝜆 (𝑘 (sup 𝐼𝐴) + 𝑘 (sup 𝐼𝐵)))] ,
[𝑘−1 (𝜆 (𝑘 (inf 𝐹𝐴) + 𝑘 (inf 𝐹𝐵))) ,
𝑘−1 (𝜆 (𝑘 (sup𝐹𝐴) + 𝑘 (sup𝐹𝐵)))]⟩

= ⟨[𝑙−1(𝜆𝑙 (inf 𝑇𝐴) + 𝜆𝑙 (inf 𝑇𝐵)) ,
𝑙−1(𝜆𝑙 (sup𝑇𝐴) + 𝜆𝑙 (sup𝑇𝐵))] ,
[𝑘−1(𝜆𝑘 (inf 𝐼𝐴) + 𝜆𝑘 (inf 𝐼𝐵)) ,
𝑘−1(𝜆𝑘 (sup 𝐼𝐴) + 𝜆𝑘 (sup 𝐼𝐵))] ,
[𝑘−1(𝜆𝑘 (inf 𝐹𝐴) + 𝜆𝑘 (inf 𝐹𝐵)) ,
𝑘−1(𝜆𝑘 (sup𝐹𝐴) + 𝜆𝑘 (sup𝐹𝐵))]⟩

= 𝜆𝐴 + 𝜆𝐵

(16)

(4)

(𝐴 ⋅ 𝐵)𝜆 = (⟨[𝑘−1 (𝑘 (inf 𝑇𝐴) + 𝑘 (inf 𝑇𝐵)) ,
𝑘−1 (𝑘 (sup𝑇𝐴) + 𝑘 (sup𝑇𝐵))] ,
[𝑙−1 (𝑙 (inf 𝐼𝐴) + 𝑙 (inf 𝐼𝐵)) ,
𝑙−1 (𝑙 (sup 𝐼𝐴) + 𝑙 (sup 𝐼𝐵))] ,
[𝑙−1 (𝑙 (inf 𝐹𝐴) + 𝑙 (inf 𝐹𝐵)) ,
𝑙−1 (𝑙 (sup𝐹𝐴) + 𝑙 (sup𝐹𝐵))]⟩)𝜆

= ⟨[𝑘−1 (𝜆𝑘 (𝑘−1 (𝑘 (inf 𝑇𝐴) + 𝑘 (inf 𝑇𝐵)))) ,
𝑘−1 (𝜆𝑘 (𝑘−1 (𝑘 (sup𝑇𝐴) + 𝑘 (sup𝑇𝐵))))] ,
[𝑙−1 (𝜆𝑙 (𝑙−1 (𝑙 (inf 𝐼𝐴) + 𝑙 (inf 𝐼𝐵)))) ,
𝑙−1 (𝜆𝑙 (𝑙−1 (𝑙 (sup 𝐼𝐴) + 𝑙 (sup 𝐼𝐵))))] ,

[𝑙−1 (𝜆𝑙 (𝑙−1 (𝑙 (inf 𝐹𝐴) + 𝑙 (inf 𝐹𝐵)))) ,
𝑙−1 (𝜆𝑙 (𝑙−1 (𝑙 (sup𝐹𝐴) + 𝑙 (sup𝐹𝐵))))]⟩

= ⟨[𝑘−1 (𝜆 (𝑘 (inf 𝑇𝐴) + 𝑘 (inf 𝑇𝐵))) ,
𝑘−1 (𝜆 (𝑘 (sup𝑇𝐴) + 𝑘 (sup𝑇𝐵)))] ,
[𝑙−1 (𝜆 (𝑙 (inf 𝐼𝐴) + 𝑙 (inf 𝐼𝐵))) ,
𝑙−1 (𝜆 (𝑙 (sup 𝐼𝐴) + 𝑙 (sup 𝐼𝐵)))] ,
[𝑙−1 (𝜆 (𝑙 (inf 𝐹𝐴) + 𝑙 (inf 𝐹𝐵))) ,
𝑙−1 (𝜆 (𝑙 (sup𝐹𝐴) + 𝑙 (sup𝐹𝐵)))]⟩

= ⟨[𝑘−1 (𝜆𝑘 (inf 𝑇𝐴) + 𝜆𝑘 (inf 𝑇𝐵)) ,
𝑘−1 (𝜆𝑘 (sup𝑇𝐴) + 𝜆𝑘 (sup𝑇𝐵))] ,
[𝑙−1 (𝜆𝑙 (inf 𝐼𝐴) + 𝜆𝑙 (inf 𝐼𝐵)) ,
𝑙−1 (𝜆𝑙 (sup 𝐼𝐴) + 𝜆𝑙 (sup 𝐼𝐵))] ,
[𝑙−1 (𝜆𝑙 (inf 𝐹𝐴) + 𝜆𝑙 (inf 𝐹𝐵)) ,
𝑙−1 (𝜆𝑙 (sup𝐹𝐴) + 𝜆𝑙 (sup𝐹𝐵))]⟩

= 𝐴𝜆 ⋅ 𝐵𝜆

(17)

(5)

𝜆1𝐴 + 𝜆2𝐴
= ⟨[𝑙−1 (𝜆1𝑙 (inf 𝑇𝐴)) , 𝑙−1 (𝜆1𝑙 (sup𝑇𝐴))] ,

[𝑘−1 (𝜆1𝑘 (inf 𝐼𝐴)) , 𝑘−1 (𝜆1𝑘 (sup 𝐼𝐴))] ,
[𝑘−1 (𝜆1𝑘 (inf 𝐹𝐴)) , 𝑘−1 (𝜆1𝑘 (sup𝐹𝐴))]⟩

⊕ ⟨[𝑙−1 (𝜆2𝑙 (inf 𝑇𝐴)) , 𝑙−1 (𝜆2𝑙 (sup𝑇𝐴))] ,
[𝑘−1 (𝜆2𝑘 (inf 𝐼𝐴)) , 𝑘−1 (𝜆2𝑘 (sup 𝐼𝐴))] ,
[𝑘−1 (𝜆2𝑘 (inf 𝐹𝐴)) , 𝑘−1 (𝜆2𝑘 (sup𝐹𝐴))]⟩

= ⟨[𝑙−1 (𝑙 (𝑙−1 (𝜆1𝑙 (inf 𝑇𝐴))) + 𝑙 (𝑙−1 (𝜆2𝑙 (inf 𝑇𝐴)))) ,
𝑙−1 (𝑙 (𝑙−1 (𝜆1𝑙 (sup𝑇𝐴))) + 𝑙 (𝑙−1 (𝜆2𝑙 (sup𝑇𝐴))))] ,
[𝑘−1 (𝑘 (𝑘−1 (𝜆1𝑘 (inf 𝐼𝐴)))

+𝑘 (𝑘−1 (𝜆2𝑘 (inf 𝐼𝐴)))) ,
𝑘−1 (𝑘 (𝑘−1 (𝜆1𝑘 (sup 𝐼𝐴)))

+𝑘 (𝑘−1 (𝜆2𝑘 (sup 𝐼𝐴))))] ,
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[𝑘−1 (𝑘 (𝑘−1 (𝜆1𝑘 (inf 𝐹𝐴)))
+𝑘 (𝑘−1 (𝜆2𝑘 (inf 𝐹𝐴)))) ,

𝑘−1 (𝑘 (𝑘−1 (𝜆1𝑘 (sup𝐹𝐴)))
+𝑘 (𝑘−1 (𝜆2𝑘 (sup𝐹𝐴))))]⟩

= ⟨[𝑙−1 (𝜆1𝑙 (inf 𝑇𝐴) + 𝜆2𝑙 (inf 𝑇𝐴)) ,
𝑙−1 (𝜆1𝑙 (sup𝑇𝐴) + 𝜆2𝑙 (sup𝑇𝐴))] ,
[𝑘−1 (𝜆1𝑘 (inf 𝐼𝐴) + 𝜆2𝑘 (inf 𝐼𝐴)) ,
𝑘−1 (𝜆1𝑘 (sup 𝐼𝐴) + 𝜆2𝑘 (sup 𝐼𝐴))] ,
[𝑘−1 (𝜆1𝑘 (inf 𝐹𝐴) + 𝜆2𝑘 (inf 𝐹𝐴)) ,
𝑘−1 (𝜆1𝑘 (sup𝐹𝐴) + 𝜆2𝑘 (sup𝐹𝐴))]⟩

= ⟨[𝑙−1 ((𝜆1 + 𝜆2) 𝑙 (inf 𝑇𝐴)) ,
𝑙−1 ((𝜆1 + 𝜆2) 𝑙 (sup𝑇𝐴))] ,
[𝑘−1 ((𝜆1 + 𝜆2) 𝑘 (inf 𝐼𝐴)) ,
𝑘−1 ((𝜆1 + 𝜆2) 𝑘 (sup 𝐼𝐴))] ,
[𝑘−1 ((𝜆1 + 𝜆2) 𝑘 (inf 𝐹𝐴)) ,
𝑘−1 ((𝜆1 + 𝜆2) 𝑘 (sup𝐹𝐴))]⟩

= (𝜆1 + 𝜆2) 𝐴
(18)

(6)

𝐴𝜆1 ⋅ 𝐴𝜆2
=⟨[𝑘−1 (𝜆1𝑘 (inf 𝑇𝐴)) , 𝑘−1 (𝜆1𝑘 (sup𝑇𝐴))] ,

[𝑙−1 (𝜆1𝑙 (inf 𝐼𝐴)) , 𝑙−1 (𝜆1𝑙 (sup 𝐼𝐴))] ,
[𝑙−1 (𝜆1𝑙 (inf 𝐹𝐴)) , 𝑙−1 (𝜆1𝑙 (sup𝐹𝐴))]⟩

⋅ ⟨[𝑘−1 (𝜆2𝑘 (inf 𝑇𝐴)) , 𝑘−1 (𝜆2𝑘 (sup𝑇𝐴))] ,
[𝑙−1 (𝜆2𝑙 (inf 𝐼𝐴)) , 𝑙−1 (𝜆2𝑙 (sup 𝐼𝐴))] ,
[𝑙−1 (𝜆2𝑙 (inf 𝐹𝐴)) , 𝑙−1 (𝜆2𝑙 (sup𝐹𝐴))]⟩

= ⟨[𝑘−1 (𝑘 (𝑘−1 (𝜆1𝑘 (inf 𝑇𝐴)))
+𝑘 (𝑘−1 (𝜆2𝑘 (inf 𝑇𝐴)))) ,

𝑘−1 (𝑘 (𝑘−1 (𝜆1𝑘 (sup𝑇𝐴)))
+𝑘 (𝑘−1 (𝜆2𝑘 (sup𝑇𝐴))))] ,

[𝑙−1 (𝑙 (𝑙−1 (𝜆1𝑙 (inf 𝐼𝐴)))
+𝑙 (𝑙−1 (𝜆2𝑙 (inf 𝐼𝐴)))) ,

𝑙−1 (𝑙 (𝑙−1 (𝜆1𝑙 (sup 𝐼𝐴)))
+𝑙 (𝑙−1 (𝜆2𝑙 (sup 𝐼𝐴))))] ,

[𝑙−1 (𝑙 (𝑙−1 (𝜆1𝑙 (inf 𝐹𝐴)))
+ 𝑙 (𝑙−1 (𝜆2𝑙 (inf 𝐹𝐴)))) ,

𝑙−1 (𝑙 (𝑙−1 (𝜆1𝑙 (sup𝐹𝐴)))
+𝑙 (𝑙−1 (𝜆2𝑙 (sup𝐹𝐴))))]⟩

= ⟨[𝑘−1 (𝜆1𝑘 (inf 𝑇𝐴) + 𝜆2𝑘 (inf 𝑇𝐴)) ,
𝑘−1 (𝜆1𝑘 (sup𝑇𝐴) + 𝜆2𝑘 (sup𝑇𝐴))] ,
[𝑙−1 (𝜆1𝑙 (inf 𝐼𝐴) + 𝜆2𝑙 (inf 𝐼𝐴)) ,
𝑙−1 (𝜆1𝑙 (sup 𝐼𝐴) + 𝜆2𝑙 (sup 𝐼𝐴))] ,
[𝑙−1 (𝜆1𝑙 (inf 𝐹𝐴) + 𝜆2𝑙 (inf 𝐹𝐴)) ,
𝑙−1 (𝜆1𝑙 (sup𝐹𝐴) + 𝜆2𝑙 (sup𝐹𝐴))]⟩

= ⟨[𝑘−1 ((𝜆1 + 𝜆2) 𝑘 (inf 𝑇𝐴)) ,
𝑘−1 ((𝜆1 + 𝜆2) 𝑘 (sup𝑇𝐴))] ,
[𝑙−1 ((𝜆1 + 𝜆2) 𝑙 (inf 𝐼𝐴)) ,
𝑙−1 ((𝜆1 + 𝜆2) 𝑙 (sup 𝐼𝐴))] ,
[𝑙−1 ((𝜆1 + 𝜆2) 𝑙 (inf 𝐹𝐴)) ,
𝑙−1 ((𝜆1 + 𝜆2) 𝑙 (sup𝐹𝐴))]⟩

= 𝐴𝜆1+𝜆2 .

(19)

Example 17. Assume that𝐴 = ⟨[0.7, 0.8], [0.0, 0.1], [0.1, 0.2]⟩,𝐵 = ⟨[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]⟩, and 𝜆 = 2. When 𝑘(𝑥) =− log(𝑥), then
(1) 2 ⋅ 𝐴 = ⟨[0.91, 0.96], [0, 0.01], [0.01, 0.04]⟩;
(2) 𝐴2 = ⟨[0.49, 0.64], [0, 0.19], [0.19, 0.36]⟩;
(3) 𝐴 + 𝐵 = ⟨[0.82, 0.90], [0, 0.05], [0.03, 0.08]⟩;
(4) 𝐴 ⋅ 𝐵 = ⟨[0.28, 0.40], [0.20, 0.37], [0.37, 0.52]⟩.
INSs are the extension of SVNSs or SNSs. Assume that

inf 𝑇𝐴(𝑥) = sup𝑇𝐴(𝑥), inf 𝐼𝐴(𝑥) = sup 𝐼𝐴(𝑥), inf 𝐹𝐴(𝑥) =
sup𝐹𝐴(𝑥), inf 𝑇𝐵(𝑥) = sup𝑇𝐵(𝑥), inf 𝐼𝐵(𝑥) = sup 𝐼𝐵(𝑥),
and inf 𝐹𝐵(𝑥) = sup𝐹𝐵(𝑥), and then the two INSs 𝐴 =⟨𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)⟩ and 𝐵 = ⟨𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)⟩ are
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reduced to SNSs and SVNSs. According to Definition 15 and
Theorem 16, the SNS or SVNS operations can be obtained.

IVIFSs are an instance of NSs. Let inf 𝐼𝐴 = sup 𝐼𝐴 = 0,
inf 𝐼𝐵 = sup 𝐼𝐵 = 0, sup𝑇𝐴+sup𝐹𝐴 ≤ 1, and sup𝑇𝐵+sup𝐹𝐵 ≤1. Then the two INSs 𝐴 = ⟨𝑇𝐴, 𝐼𝐴, 𝐹𝐴⟩ and 𝐵 = ⟨𝑇𝐵, 𝐼𝐵, 𝐹𝐵⟩
are reduced to IVIFSs. According to Definition 15, when𝑘(𝑥) = − log(𝑥), the following equations can be obtained:

(1) 𝐴 + 𝐵 = ⟨[inf 𝑇𝐴 + inf 𝑇𝐵 − inf 𝑇𝐴 ⋅ inf 𝑇𝐵, sup𝑇𝐴 +
sup𝑇𝐵 − sup𝑇𝐴 ⋅ sup𝑇𝐵],[inf 𝐹𝐴 ⋅ inf 𝐹𝐵, sup𝐹𝐴 ⋅
sup𝐹𝐵]⟩,

(2) 𝐴 ⋅ 𝐵 = ⟨[inf 𝑇𝐴 ⋅ inf 𝑇𝐵, sup𝑇𝐴 ⋅ sup𝑇𝐵], [inf 𝐹𝐴 +
inf 𝐹𝐵 − inf 𝐹𝐴 ⋅ inf 𝐹𝐵, sup𝐹𝐴 + sup𝐹𝐵 − sup𝐹𝐴 ⋅
sup𝐹𝐵]⟩,

(3) 𝜆 ⋅ 𝐴 = ⟨[1 − (1 − inf 𝑇𝐴)𝜆, 1 − (1 − sup𝑇𝐴)𝜆],[(inf 𝐹𝐴)𝜆, (sup𝐹𝐴)𝜆]⟩,
(4) 𝐴𝜆 = ⟨[(inf 𝑇𝐴)𝜆, (sup𝑇𝐴)𝜆], [1−(1−inf 𝐹𝐴)𝜆, 1−(1−

sup𝐹𝐴)𝜆]⟩,
which coincides with the operations of IVIFSs in [42]. It
indicates that the same principles of INSs inDefinition 15 also
adapt to IVIFSs. In fact, when the indeterminacy factor i is
replaced by 𝜋 = 1 − 𝑇 − 𝐹, the NS is an IFS.

3.2. Comparison Rules. Based on the score function and
accuracy function of IVIFSs, the score function, accuracy
function, and certainty function of an INN 𝐴 are defined.

Definition 18. Let the INN 𝐴 =⟨[inf 𝑇𝐴, sup𝑇𝐴], [inf 𝐼𝐴, sup 𝐼𝐴], [inf 𝐹𝐴, sup𝐹𝐴]⟩, and
then

(1) 𝑠(𝐴) = [inf 𝑇𝐴 + 1 − sup 𝐼𝐴 + 1 − sup𝐹𝐴, sup𝑇𝐴 + 1 −
inf 𝐼𝐴 + 1 − inf 𝐹𝐴],

(2) 𝑎(𝐴) = [min{inf 𝑇𝐴 − inf 𝐹𝐴, sup𝑇𝐴 −
sup𝐹𝐴},max{inf 𝑇𝐴 − inf 𝐹𝐴, sup𝑇𝐴 − sup𝐹𝐴}],

(3) 𝑐(𝐴) = [inf 𝑇𝐴, sup𝑇𝐴],
where 𝑠(𝐴), 𝑎(𝐴), and 𝑐(𝐴) represent the score function,
accuracy function, and certainty function of the INN 𝐴,
respectively.

The score function is an important index in ranking
INNs. For an INN A, the bigger the truth-membership TA

is, the greater the INS is. And the less the indeterminacy-
membership IA is, the greater the INS is. Similarly, the smaller
the false-membershipFA is, the greater the INS is. At the same
time, inf 𝑇𝐴(𝑥), sup𝑇𝐴(𝑥), inf 𝐼𝐴(𝑥), sup 𝐼𝐴(𝑥), inf 𝐹𝐴(𝑥),
sup𝐹𝐴(𝑥) ⊆ [0, 1], so the score function s(A) is defined as
shown above. For the accuracy function, if the difference
between truth and falsity is bigger, then the statement is
surer. That is, the larger the values of T, I, and F are, the
more the accuracy of the INS is. So the accuracy function
is given above. As to the certainty function, the value of
truth-membership TA is bigger, and it means more certainty
of the INS.

Example 19. Assume that𝐴 = ⟨[0.7, 0.8], [0.0, 0.1],[0.1, 0.2]⟩,
and 𝐵 = ⟨[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]⟩, and then

(1) 𝑠(𝐴) = [2.4, 2.7], 𝑠(𝐵) = [1.7, 2.0],
(2) 𝑎(𝐴) = [0.6, 0.6], 𝑎(𝐵) = [0.1, 0.1],
(3) 𝑐(𝐴) = [0.7, 0.8], 𝑐(𝐵) = [0.4, 0.5].

On the basis of Definition 18, the method to compare INNs
can be defined as follows.

Definition 20. Let 𝐴 and 𝐵 be two INNs. The comparison
approach can be defined as follows.

(1) If 𝑝(𝑠(𝐴) ≥ 𝑠(𝐵)) > 0.5, then 𝐴 is greater than 𝐵; that
is, 𝐴 is superior to 𝐵, denoted by 𝐴 ≻ 𝐵.

(2) If 𝑝(𝑠(𝐴) ≥ 𝑠(𝐵)) = 0.5 and 𝑝(𝑎(𝐴) ≥ 𝑎(𝐵)) > 0.5,
then 𝐴 is greater than 𝐵; that is, 𝐴 is superior to 𝐵,
denoted by 𝐴 ≻ 𝐵.

(3) If 𝑝(𝑠(𝐴) ≥ 𝑠(𝐵)) = 0.5, 𝑝(𝑎(𝐴) ≥ 𝑎(𝐵)) = 0.5, and𝑝(𝑐(𝐴) ≥ 𝑐(𝐵)) > 0.5, then𝐴 is greater than 𝐵; that is,𝐴 is superior to 𝐵, denoted by 𝐴 ≻ 𝐵.
(4) If 𝑝(𝑠(𝐴) ≥ 𝑠(𝐵)) = 0.5, 𝑝(𝑎(𝐴) ≥ 𝑎(𝐵)) = 0.5, and𝑝(𝑐(𝐴) ≥ 𝑐(𝐵)) = 0.5, then 𝐴 is equal to 𝐵; that is, 𝐴

is indifferent to 𝐵, denoted by 𝐴 ∼ 𝐵.
Example 21. Let 𝐴 and 𝐵 be two INNs.(1) Assume that 𝐴 = ⟨[0.7, 0.8], [0.0, 0.1], [0.1, 0.2]⟩
and 𝐵 = ⟨[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]⟩. Referring to
Definition 18, 𝑠(𝐴) = [2.4, 2.7], 𝑠(𝐵) = [1.7, 2.0], 𝑎(𝐴) =[0.6, 0.6], 𝑎(𝐵) = [0.1, 0.1], 𝑐(𝐴) = [0.7, 0.8], and 𝑐(𝐵) =[0.4, 0.5]. According to Definition 20, 𝑝(𝑠(𝐴) ≥ 𝑠(𝐵)) = 1 >0.5. Therefore, 𝐴 ≻ 𝐵.(2) Assuming that 𝐴 = ⟨[0.6, 0.7], [0.3, 0.4], [0.4, 0.5]⟩
and 𝐵 = ⟨[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]⟩, referring to
Definition 18, 𝑠(𝐴) = [1.7, 2.0], 𝑠(𝐵) = [1.7, 2.0], 𝑎(𝐴) =[0.2, 0.2], 𝑎(𝐵) = [0.1, 0.1], 𝑐(𝐴) = [0.6, 0.7], and 𝑐(𝐵) =[0.4, 0.5]. According to Definition 20, 𝑝(𝑠(𝐴) ≥ 𝑠(𝐵)) = 0.5,𝑝(𝑎(𝐴) ≥ 𝑎(𝐵)) = 1 > 0.5. Therefore, 𝐴 ≻ 𝐵.(3) For two INNs 𝐴 = ⟨[0.6, 0.7], [0.3, 0.4], [0.4, 0.5]⟩
and 𝐵 = ⟨[0.4, 0.5], [0.3, 0.4], [0.2, 0.3]⟩, referring to
Definition 18, 𝑠(𝐴) = [1.7, 2.0], 𝑠(𝐵) = [1.7, 2.0], 𝑎(𝐴) =[0.2, 0.2], 𝑎(𝐵) = [0.2, 0.2], 𝑐(𝐴) = [0.6, 0.7], and 𝑐(𝐵) =[0.4, 0.5]. According to Definition 20, 𝑝(𝑠(𝐴) ≥ 𝑠(𝐵)) = 0.5,𝑝(𝑎(𝐴) ≥ 𝑎(𝐵)) = 0.5, and 𝑝(𝑐(𝐴) ≥ 𝑐(𝐵)) = 1 > 0.5.
Therefore, 𝐴 ≻ 𝐵.
4. INN Aggregation Operators and Their

Applications to Multicriteria Decision
Making Problems

In this section, applying the INS operations, we present
aggregation operators for INNs and propose a method for
multicriteria decision making by means of the aggregation
operators.
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4.1. INN Aggregation Operators

Definition 22. Let 𝐴𝑗 = ⟨𝑇𝐴𝑗 , 𝐼𝐴𝑗 , 𝐹𝐴𝑗⟩ (𝑗 = 1, 2, . . . , 𝑛) be a
collection of INNs, and let INNWA : INN𝑛 → INN,

INNWA𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = 𝑤1𝐴1 + 𝑤2𝐴2 + ⋅ ⋅ ⋅ + 𝑤𝑛𝐴𝑛
= 𝑛∑
𝑗=1
𝑤𝑗𝐴𝑗;

(20)

then INNWA is called the interval neutrosophic number
weighted averaging operator of dimension 𝑛, where 𝑊 =(𝑤1, 𝑤2, . . . , 𝑤𝑛) is the weight vector of 𝐴𝑗(𝑗 = 1, 2, . . . , 𝑛),
with 𝑤𝑗 ≥ 0(𝑗 = 1, 2, . . . , 𝑛) and ∑𝑛𝑗=1 𝑤𝑗 = 1.
Theorem 23. Let 𝐴𝑗 = ⟨𝑇𝐴𝑗 , 𝐼𝐴𝑗 , 𝐹𝐴𝑗⟩ (𝑗 = 1, 2, . . . , 𝑛) be a
collection of INNs, and 𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be the weight
vector of 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛), with 𝑤𝑗 ≥ 0 (𝑗 = 1, 2, . . . , 𝑛)
and∑𝑛𝑗=1 𝑤𝑗 = 1; then their aggregated result using the INNWA

operator is also an INN, and

INNWA𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛)
= ⟨[𝑙−1 (𝑤1𝑙 (inf 𝑇𝐴1) + 𝑤2𝑙 (inf 𝑇𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑙 (inf 𝑇𝐴𝑛)) ,
𝑙−1 (𝑤1𝑙 (sup𝑇𝐴1) + 𝑤2𝑙 (sup𝑇𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑙 (sup𝑇𝐴𝑛))] ,
[𝑘−1 (𝑤1𝑘 (inf 𝐼𝐴1) + 𝑤2𝑘 (inf 𝐼𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑘 (inf 𝐼𝐴𝑛)) ,
𝑘−1 (𝑤1𝑘 (sup 𝐼𝐴1) + 𝑤2𝑘 (sup 𝐼𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑘 (sup 𝐼𝐴𝑛))] ,
[𝑘−1 (𝑤1𝑘 (inf 𝐹𝐴1) + 𝑤2𝑘 (inf 𝐹𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑘 (inf 𝐹𝐴𝑛)) ,
𝑘−1 (𝑤1𝑘 (sup𝐹𝐴1) + 𝑤2𝑘 (sup𝐹𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑘 (sup𝐹𝐴𝑛))]⟩ ,

(21)

where 𝑘 is the additive generator of Archimedean t-norm that
is used in the operations of INSs and 𝑙(𝑥) = 𝑘(1 − 𝑥).

Let 𝑘(𝑥) = − log(𝑥). Then 𝑙(𝑥) = − log(1 − 𝑥), 𝑘−1(𝑥) =𝑒−𝑥, and 𝑙−1(𝑥) = 1 − 𝑒−𝑥. And the aggregated result using the
INNWA operator in Theorem 23 can be represented by

INNWA𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛)
= ⟨[1 − 𝑛∏

𝑖=1
(1 − inf 𝑇𝐴𝑖)𝑤𝑖 , 1 − 𝑛∏

𝑖=1
(1 − sup𝑇𝐴𝑖)𝑤𝑖] ,

[ 𝑛∏
𝑖=1

inf 𝐼𝑤𝑖𝐴𝑖 ,
𝑛∏
𝑖=1

sup 𝐼𝑤𝑖𝐴𝑖] ,
[ 𝑛∏
𝑖=1

inf 𝐹𝑤𝑖𝐴𝑖 ,
𝑛∏
𝑖=1

sup𝐹𝑤𝑖𝐴𝑖]⟩ ,
(22)

where 𝑊 = (𝑤1, 𝑤2, ..., 𝑤𝑛) is the weight vector of 𝐴𝑗 (𝑗 =1, 2, . . . , 𝑛), with 𝑤𝑗 ∈ [0, 1] and ∑𝑛𝑗=1 𝑤𝑗 = 1.
Proof. By using the mathematical induction on 𝑛we have the
following.(1) For 𝑛 = 2, since
𝑤1𝐴1 + 𝑤2𝐴2
= ⟨[𝑙−1 (𝑤1𝑙 (inf 𝑇𝐴1)) , 𝑙−1 (𝑤1𝑙 (sup𝑇𝐴1))] ,

[𝑘−1 (𝑤1𝑘 (inf 𝐼𝐴1)) , 𝑘−1 (𝑤1𝑘 (sup 𝐼𝐴1))] ,
[𝑘−1 (𝑤1𝑘 (inf 𝐹𝐴1)) , 𝑘−1 (𝑤1𝑘 (sup𝐹𝐴1))]⟩
⊕ ⟨[𝑙−1 (𝑤2𝑙 (inf 𝑇𝐴2)) , 𝑙−1 (𝑤2𝑙 (sup𝑇𝐴2))] ,

[𝑘−1 (𝑤2𝑘 (inf 𝐼𝐴2)) , 𝑘−1 (𝑤2𝑘 (sup 𝐼𝐴2))] ,
[𝑘−1 (𝑤2𝑘 (inf 𝐹𝐴2)) , 𝑘−1 (𝑤2𝑘 (sup𝐹𝐴2))]⟩

= ⟨[𝑙−1 (𝑙 (𝑙−1 (𝑤1𝑙 (inf 𝑇𝐴1)))
+𝑙 (𝑙−1 (𝑤2𝑙 (inf 𝑇𝐴2)))) ,

𝑙−1 (𝑙 (𝑙−1 (𝑤1𝑙 (sup𝑇𝐴1)))
+𝑙 (𝑙−1 (𝑤2𝑙 (sup𝑇𝐴2))))] ,

[𝑘−1 (𝑘 (𝑘−1 (𝑤1𝑘 (inf 𝐼𝐴1)))
+𝑘 (𝑘−1 (𝑤2𝑘 (inf 𝐼𝐴2)))) ,

𝑘−1 (𝑘 (𝑘−1 (𝑤1𝑘 (sup 𝐼𝐴1)))
+𝑘 (𝑘−1 (𝑤2𝑘 (sup 𝐼𝐴2))))] ,

[𝑘−1 (𝑘 (𝑘−1 (𝑤1𝑘 (inf 𝐹𝐴1)))
+𝑘 (𝑘−1 (𝑤2𝑘 (inf 𝐹𝐴2)))) ,

𝑘−1 (𝑘 (𝑘−1 (𝑤1𝑘 (sup𝐹𝐴1)))
+𝑘 (𝑘−1 (𝑤2𝑘 (sup𝐹𝐴2))))]⟩

= ⟨[𝑙−1 (𝑤1𝑙 (inf 𝑇𝐴1) + 𝑤2𝑙 (inf 𝑇𝐴2)) ,
𝑙−1 (𝑤1𝑙 (sup𝑇𝐴1) + 𝑤2𝑙 (sup𝑇𝐴2))] ,
[𝑘−1 (𝑤1𝑘 (inf 𝐼𝐴1) + 𝑤2𝑘 (inf 𝐼𝐴2)) ,



10 The Scientific World Journal

𝑘−1 (𝑤1𝑘 (sup 𝐼𝐴1) + 𝑤2𝑘 (sup 𝐼𝐴2))] ,
[𝑘−1 (𝑤1𝑘 (inf 𝐹𝐴1) + 𝑤2𝑘 (inf 𝐹𝐴2)) ,
𝑘−1 (𝑤1𝑘 (sup𝐹𝐴1) + 𝑤2𝑘 (sup𝐹𝐴2))]⟩ ,

(23)

then

SNNWA𝑤 (𝐴1, 𝐴2)
= 𝑤1𝐴1 + 𝑤2𝐴2
= ⟨[𝑙−1 (𝑤1𝑙 (inf 𝑇𝐴1) + 𝑤2𝑙 (inf 𝑇𝐴2)) ,

𝑙−1 (𝑤1𝑙 (sup𝑇𝐴1) + 𝑤2𝑙 (sup𝑇𝐴2))] ,
[𝑘−1 (𝑤1𝑘 (inf 𝐼𝐴1) + 𝑤2𝑘 (inf 𝐼𝐴2)) ,
𝑘−1 (𝑤1𝑘 (sup 𝐼𝐴1) + 𝑤2𝑘 (sup 𝐼𝐴2))] ,

[𝑘−1 (𝑤1𝑘 (inf 𝐹𝐴1) + 𝑤2𝑘 (inf 𝐹𝐴2)) ,
𝑘−1 (𝑤1𝑘 (sup𝐹𝐴1) + 𝑤2𝑘 (sup𝐹𝐴2))]⟩ .

(24)

(2) If (21) holds for 𝑛 = 𝑘; that is,
SNNWA𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑘)
= ⟨[

[𝑙
−1( 𝑘∑
𝑗=1
𝑤𝑗𝑙 (inf 𝑇𝐴𝑗)) ,

𝑙−1( 𝑘∑
𝑗=1
𝑤𝑗𝑙 (sup𝑇𝐴𝑗))]] ,

[
[𝑘
−1( 𝑘∑
𝑗=1
𝑤𝑗𝑘 (inf 𝐼𝐴𝑗)) ,

𝑘−1( 𝑘∑
𝑗=1
𝑤𝑗𝑘 (sup 𝐼𝐴𝑗))]] ,

[
[𝑘
−1( 𝑘∑
𝑗=1
𝑤𝑗𝑘 (inf 𝐹𝐴𝑗)) ,

𝑘−1( 𝑘∑
𝑗=1
𝑤𝑗𝑘 (sup𝐹𝐴𝑗))]]⟩ ,

(25)

then, if 𝑛 = 𝑘 + 1, we have
SNNWA𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑘, 𝐴𝑘+1)
= ⟨[

[𝑙
−1(𝑙(𝑙−1( 𝑘∑

𝑗=1
𝑤𝑗𝑙 (inf 𝑇𝐴𝑗))

+ 𝑙 (𝑙−1 (𝑤𝑘+1𝑙 (inf 𝑇𝐴𝑘+1))))) ,

𝑙−1(𝑙(𝑙−1( 𝑘∑
𝑗=1
𝑤𝑗𝑙 (sup𝑇𝐴𝑗))

+ 𝑙 (𝑙−1 (𝑤𝑘+1𝑙 (sup𝑇𝐴𝑘+1)))))]] ,

[
[𝑘
−1(𝑘(𝑘−1( 𝑘∑

𝑗=1
𝑤𝑗𝑘 (inf 𝐼𝐴𝑗))

+ 𝑘 (𝑘−1 (𝑤𝑘+1𝑘 (inf 𝐼𝐴𝑘+1))))) ,

𝑘−1(𝑘(𝑘−1( 𝑘∑
𝑗=1
𝑤𝑗𝑘 (sup 𝐼𝐴𝑗))

+ 𝑘 (𝑘−1 (𝑤𝑘+1𝑘 (sup 𝐼𝐴𝑘+1)))))]] ,

[
[𝑘
−1(𝑘(𝑘−1( 𝑘∑

𝑗=1
𝑤𝑗𝑘 (inf 𝐹𝐴𝑗)))

+ 𝑘 (𝑘−1 (𝑤𝑘+1𝑘 (inf 𝐹𝐴𝑘+1)))) ,

𝑘−1(𝑘(𝑘−1( 𝑘∑
𝑗=1
𝑤𝑗𝑘 (sup𝐹𝐴𝑗)))

+ 𝑘 (𝑘−1 (𝑤𝑘+1𝑘 (sup𝐹𝐴𝑘+1))))]]⟩

= ⟨[
[𝑙
−1(𝑘+1∑
𝑗=1
𝑤𝑗𝑙 (inf 𝑇𝐴𝑗)) ,

𝑙−1(𝑘+1∑
𝑗=1
𝑤𝑗𝑙 (sup𝑇𝐴𝑗))]] ,

[
[𝑘
−1(𝑘+1∑
𝑗=1
𝑤𝑗𝑘 (inf 𝐼𝐴𝑗)) ,

𝑘−1(𝑘+1∑
𝑗=1
𝑤𝑗𝑘 (sup 𝐼𝐴𝑗))]] ,

[
[𝑘
−1(𝑘+1∑
𝑗=1
𝑤𝑗𝑘 (inf 𝐹𝐴𝑗)) ,
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𝑘−1(𝑘+1∑
𝑗=1
𝑤𝑗𝑘 (sup𝐹𝐴𝑗))]]⟩ ;

(26)

that is, (29) holds for 𝑛 = 𝑘 + 1. Thus, (29) holds for all 𝑛.
Then, we have

SNNWA𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛)
= ⟨[

[𝑙
−1( 𝑛∑
𝑗=1
𝑤𝑗𝑙 (inf 𝑇𝐴𝑗)) ,

𝑙−1( 𝑛∑
𝑗=1
𝑤𝑗𝑙 (sup𝑇𝐴𝑗))]] ,

[
[𝑘
−1( 𝑛∑
𝑗=1
𝑤𝑗𝑘 (inf 𝐼𝐴𝑗)) ,

𝑘−1( 𝑛∑
𝑗=1
𝑤𝑗𝑘 (sup 𝐼𝐴𝑗))]] ,

[
[𝑘
−1( 𝑛∑
𝑗=1
𝑤𝑗𝑘 (inf 𝐹𝐴𝑗)) ,

𝑘−1( 𝑛∑
𝑗=1
𝑤𝑗𝑘 (sup𝐹𝐴𝑗))]]⟩ ,

(27)

which completes the proof.

It is obvious that the INNWG operator has the following
properties.

(1) Idempotency: let 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛) be a collec-
tion of INNs. If all 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛) are equal,
that is, 𝐴𝑗 = 𝐴, for all 𝑗 ∈ {1, 2, . . . , 𝑛}, then
INNWA𝑤(𝐴1, 𝐴2, . . . , 𝐴𝑛) = 𝐴.

(2) Boundedness: assume that 𝐴𝑗 (𝑗 = 1, 2, . . .,𝑛) is a collection of INNs and 𝐴− = ⟨min𝑗𝑇𝐴𝑗(𝑥),
max𝑗𝐼𝐴𝑗(𝑥),max𝑗𝐹𝐴𝑗(𝑥)⟩, 𝐴+ = ⟨max𝑗𝑇𝐴𝑗(𝑥),
min𝑗𝐼𝐴𝑗(𝑥),min𝑗𝐹𝐴𝑗(𝑥)⟩, for all 𝑗 ∈ {1, 2, . . . , 𝑛}, and
then 𝐴− ⊆ INNWA𝑤(𝐴1, 𝐴2, . . . , 𝐴𝑛) ⊆ 𝐴+.

(3) Monotonity: assuming that 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛)
is a collection of INNs, if 𝐴𝑗 ⊆ 𝐴∗𝑗 , for𝑗 ∈ {1, 2, . . . , 𝑛}, then INNWA𝑤(𝐴1, 𝐴2, . . . , 𝐴𝑛) ⊆
INNWA𝑤(𝐴∗1, 𝐴∗2, . . . , 𝐴∗𝑛).

Definition 24. Let 𝐴𝑗 = ⟨𝑇𝐴𝑗 , 𝐼𝐴𝑗 , 𝐹𝐴𝑗⟩ (𝑗 = 1, 2, . . . , 𝑛) be a
collection of INNs, and let INNWG : INN𝑛 → INN,

INNWG𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = 𝑛∏
𝑗=1
𝐴𝑤𝑖𝑗 ; (28)

then INNWG is called an interval neutrosophic number
weighted geometric operator of dimension 𝑛, where 𝑊 =(𝑤1, 𝑤2, . . . , 𝑤𝑛) is the weight vector of 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛),
with 𝑤𝑗 ≥ 0 (𝑗 = 1, 2, . . . , 𝑛) and ∑𝑛𝑗=1 𝑤𝑗 = 1.
Theorem 25. Let 𝐴𝑗 = ⟨𝑇𝐴𝑗 , 𝐼𝐴𝑗 , 𝐹𝐴𝑗⟩ (𝑗 = 1, 2, . . . , 𝑛) be a
collection of INNs, and one has the following result by using
Definition 15:

𝐼𝑁𝑁𝑊𝐺𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛)
= ⟨[𝑘−1 (𝑤1𝑘 (inf 𝑇𝐴1) + 𝑤2𝑘 (inf 𝑇𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑘 (inf 𝑇𝐴𝑛)) ,
𝑘−1 (𝑤1𝑘 (sup𝑇𝐴1) + 𝑤2𝑘 (sup𝑇𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑘 (sup𝑇𝐴𝑛))] ,
[𝑙−1 (𝑤1𝑙 (inf 𝐼𝐴1) + 𝑤2𝑙 (inf 𝐼𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑙 (inf 𝐼𝐴𝑛)) ,
𝑙−1 (𝑤1𝑙 (sup 𝐼𝐴1) + 𝑤2𝑙 (sup 𝐼𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑙 (sup 𝐼𝐴𝑛))] ,
[𝑙−1 (𝑤1𝑙 (inf 𝐹𝐴1) + 𝑤2𝑙 (inf 𝐹𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑙 (inf 𝐹𝐴𝑛)) ,
𝑙−1 (𝑤1𝑙 (sup𝐹𝐴1) + 𝑤2𝑙 (sup𝐹𝐴2) ⋅ ⋅ ⋅

+𝑤𝑛𝑙 (sup𝐹𝐴𝑛))]⟩ .

(29)

Assume that 𝑘(𝑥) = − log(𝑥), and then 𝑙(𝑥) = − log(1 − 𝑥),𝑘−1(𝑥) = 𝑒−𝑥, 𝑙−1(𝑥) = 1 − 𝑒−𝑥. The aggregated result using the
INNWG operator in Theorem 25 can be represented by

𝐼𝑁𝑁𝑊𝐺𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛)
= ⟨[ 𝑛∏

𝑖=1
inf 𝑇𝑤𝑖𝐴𝑖 ,

𝑛∏
𝑖=1

sup𝑇𝑤𝑖𝐴𝑖] ,
[1 − 𝑛∏

𝑖=1
(1 − inf 𝐼𝐴𝑖)𝑤𝑖 , 1 − 𝑛∏

𝑖=1
(1 − sup 𝐼𝐴𝑖)𝑤𝑖] ,

[1 − 𝑛∏
𝑖=1
(1 − inf 𝐹𝐴𝑖)𝑤𝑖 , 1 − 𝑛∏

𝑖=1
(1 − sup𝐹𝐴𝑖)𝑤𝑖]⟩ ,

(30)

where 𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) is the weight vector of 𝐴𝑗 (𝑗 =1, 2, . . . , 𝑛), with 𝑤𝑗 ∈ [0, 1] and ∑𝑛𝑗=1 𝑤𝑗 = 1.
Let 𝑘(𝑥) = log((2 − 𝑥)/𝑥), and then 𝑙(𝑥) = log((1 +𝑥)/(1 − 𝑥)), 𝑘−1(𝑥) = 2/(𝑒𝑥 + 1), and 𝑙−1(𝑥) = 1 − (2/(𝑒𝑥 +
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1)). The aggregated result using the INNWG operator in
Theorem 25 can be denoted by

INNWG𝑤 (𝐴1, 𝐴2, . . . , 𝐴𝑛)
= ⟨[

[
2∏𝑛𝑖=1 inf 𝑇𝑤𝑖𝐴𝑖∏𝑛𝑖=1(2 − inf 𝑇𝐴𝑖)𝑤𝑖 +∏𝑛𝑖=1 inf 𝑇𝑤𝑖𝐴𝑖 ,
2∏𝑛𝑖=1 sup𝑇𝑤𝑖𝐴𝑖∏𝑛𝑖=1(2 − sup𝑇𝐴𝑖)𝑤𝑖 +∏𝑛𝑖=1 sup𝑇𝑤𝑖𝐴𝑖

]
] ,

[
[
∏𝑛𝑖=1(1 + inf 𝐼𝐴𝑖)𝑤𝑖 −∏𝑛𝑖=1(1 − inf 𝐼𝐴𝑖)𝑤𝑖∏𝑛𝑖=1(1 + inf 𝐼𝐴𝑖)𝑤𝑖 +∏𝑛𝑖=1(1 − inf 𝐼𝐴𝑖)𝑤𝑖 ,
∏𝑛𝑖=1(1 + sup 𝐼𝐴𝑖)𝑤𝑖 −∏𝑛𝑖=1(1 − sup 𝐼𝐴𝑖)𝑤𝑖∏𝑛𝑖=1(1 + sup 𝐼𝐴𝑖)𝑤𝑖 +∏𝑛𝑖=1(1 − sup 𝐼𝐴𝑖)𝑤𝑖

]
] ,

[
[
∏𝑛𝑖=1(1 + inf 𝐹𝐴𝑖)𝑤𝑖 −∏𝑛𝑖=1(1 − inf 𝐹𝐴𝑖)𝑤𝑖∏𝑛𝑖=1(1 + inf 𝐹𝐴𝑖)𝑤𝑖 +∏𝑛𝑖=1(1 − inf 𝐹𝐴𝑖)𝑤𝑖 ,
∏𝑛𝑖=1(1 + sup𝐹𝐴𝑖)𝑤𝑖 −∏𝑛𝑖=1(1 − sup𝐹𝐴𝑖)𝑤𝑖∏𝑛𝑖=1(1 + sup𝐹𝐴𝑖)𝑤𝑖 +∏𝑛𝑖=1(1 − sup𝐹𝐴𝑖)𝑤𝑖

]
]⟩ ,
(31)

where𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) is the weight vector of 𝐴𝑗 (𝑗 =1, 2, . . . , 𝑛), with 𝑤𝑗 ∈ [0, 1] and ∑𝑛𝑗=1 𝑤𝑗 = 1.
Theorem 25 also can be proved by the mathematical

induction.
Similarly, it can be proved that the INNWG operator has

the same properties as the INNWA operator.

(1) Idempotency: let 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛) be a collec-
tion of INNs. If all 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛) are equal,
that is, 𝐴𝑗 = 𝐴, for all 𝑗 ∈ {1, 2, . . . , 𝑛}, then
INNWG𝑤(𝐴1, 𝐴2, . . . , 𝐴𝑛) = 𝐴.

(2) Boundedness: assume that 𝐴𝑗 (𝑗 =1, 2, . . . , 𝑛) is a collection of INNs and𝐴− = ⟨min𝑗𝑇𝐴𝑗(𝑥),max𝑗𝐼𝐴𝑗(𝑥),max𝑗𝐹𝐴𝑗(𝑥)⟩,𝐴+ = ⟨max𝑗𝑇𝐴𝑗(𝑥),min𝑗𝐼𝐴𝑗(𝑥),min𝑗𝐹𝐴𝑗(𝑥)⟩,
for all 𝑗 ∈ {1, 2, . . . , 𝑛}, and then 𝐴− ⊆
INNWG𝑤(𝐴1, 𝐴2, . . . , 𝐴𝑛) ⊆ 𝐴+.

(3) Monotonity: assuming that 𝐴𝑗 (𝑗 = 1, 2, . . . , 𝑛)
is a collection of INNs, if 𝐴𝑗 ⊆ 𝐴∗𝑗 , for𝑗 ∈ {1, 2, . . . , 𝑛}, then INNWG𝑤(𝐴1, 𝐴2, . . . , 𝐴𝑛) ⊆
INNWG𝑤(𝐴∗1, 𝐴∗2, . . . , 𝐴∗𝑛).

4.2. Multicriteria Decision Making Method Based on the INN
Aggregation Operators. Assume that there are m alternatives𝐴 = {𝑎1, 𝑎2, . . .,𝑎𝑚} and n criteria 𝐶 = {𝑐1, 𝑐2, . . .,𝑐𝑛}, whose
criterion weight vector is 𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛), where𝑤𝑗 ≥ 0 (𝑗 = 1, 2, . . . , 𝑛) and ∑𝑛𝑗=1 𝑤𝑗 = 1. Let 𝑅 =(𝑎𝑖𝑗)𝑚×𝑛 be the interval neutrosophic decision matrix, where𝑎𝑖𝑗 = ⟨𝑇𝑎𝑖𝑗 , 𝐼𝑎𝑖𝑗 , 𝐹𝑎𝑖𝑗⟩ is a criterion value, denoted by an INN,

where 𝑇𝑎𝑖𝑗 indicates the truth-membership function where

the alternative 𝑎𝑖 satisfies the criterion 𝑐𝑗, 𝐼𝑎𝑖𝑗 indicates the
indeterminacy-membership function where the alternative𝑎𝑖 satisfies the criterion 𝑐𝑗, and 𝐹𝑎𝑖𝑗 indicates the falsity-

membership function where the alternative 𝑎𝑖 satisfies the
criterion 𝑐𝑗.

In the following, a procedure to rank and select the most
desirable alternative(s) is given.

Step 1. Utilize the INNWA operator or the INNWG operator
to obtain the INN 𝑦𝑖 for the alternatives 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑚),
that is,

𝑦𝑖 = INNWA𝑤 (𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛) (32)

or

𝑦𝑖 = INNWG𝑤 (𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛) . (33)

Step 2. Calculate the score function value 𝑠(𝑦𝑖), the accuracy
function value 𝑎(𝑦𝑖), and the certainty function value 𝑐(𝑦𝑖) of𝑦𝑖 (𝑖 = 1, 2, . . . , 𝑚) by Definition 18, denoted by the function
matrix F:

𝐹 = [[[
[
𝑠 (𝑦1) 𝑎 (𝑦1) 𝑐 (𝑦1)𝑠 (𝑦2) 𝑎 (𝑦2) 𝑐 (𝑦2)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝑠 (𝑦𝑚) 𝑎 (𝑦𝑚) 𝑐 (𝑦𝑚)

]]]
]
. (34)

Step 3. Construct the possibility matrix 𝑃𝑠 of the score
function value 𝑠(𝑦𝑖) as follows, according to Definition 2:

𝑃𝑠 = [[[[
[

𝑝𝑠11 𝑝𝑠12 ⋅ ⋅ ⋅ 𝑝𝑠1𝑚𝑝𝑠21 𝑝𝑠22 ⋅ ⋅ ⋅ 𝑝𝑠2𝑚
...𝑝𝑠𝑚1 𝑝𝑠𝑚2 ⋅ ⋅ ⋅ 𝑝𝑠𝑚𝑚

]]]]
]
, (35)

where 𝑝𝑠𝑖𝑗 denotes the degree of possibility of 𝑠(𝑦𝑖) > 𝑠(𝑦𝑗),
and it satisfies 𝑝𝑠𝑖𝑗 ≥ 0, 𝑝𝑠𝑖𝑗 + 𝑝𝑠𝑗𝑖 = 1, and 𝑝𝑠𝑖𝑖 = 0.5. If𝑝𝑠𝑖𝑗 = 0.5 (𝑖 ̸= 𝑗), then calculate the degree of possibility of𝑎(𝑦𝑖) > 𝑎(𝑦𝑗), denoted by 𝑝𝑎𝑖𝑗. And if 𝑝𝑎𝑖𝑗 = 0.5 (𝑖 ̸= 𝑗), then
calculate the degree of possibility of 𝑐(𝑦𝑖) > 𝑐(𝑦𝑗), denoted by𝑝𝑐𝑖𝑗.
Step 4. Get the priority of the alternatives 𝑎𝑖 (𝑖 = 1, 2, . . . , 𝑚)
in accordance with 𝑝𝑠𝑖𝑗, 𝑝𝑎𝑖𝑗, and 𝑝𝑐𝑖𝑗, and choose the best
one, referring to Definition 20.

5. Illustrative Example

In this section, an example for the multicriteria decision
making problem of alternatives is used as the demonstration
of the application of the proposed decision making method,
as well as the effectiveness of the proposed method.

Let us consider the decision making problem adapted
from [33]. There is an investment company, which wants
to invest a sum of money in the best option. There is a
panel with four possible alternatives to invest the money:(1) 𝐴1 is a car company; (2) 𝐴2 is a food company; (3) 𝐴3
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is a computer company; (4) 𝐴4 is an arms company. The
investment company must make a decision according to the
following three criteria: (1) 𝐶1 is the risk analysis; (2) 𝐶2
is the growth analysis; (3) 𝐶3 is the environmental impact
analysis, where 𝐶1 and 𝐶2 are benefit criteria and 𝐶3 is a

cost criterion. The weight vector of the criteria is given by𝑊 = (0.35, 0.25, 0.4). The four possible alternatives are to be
evaluated under the above three criteria by the form of INNs,
as shown in the following interval neutrosophic decision
matrix D:

𝐷 =
[[[
[
⟨[0.4, 0.5] , [0.2, 0.3] , [0.3, 0.4]⟩ ⟨[0.4, 0.6] , [0.1, 0.3] , [0.2, 0.4]⟩ ⟨[0.7, 0.9] , [0.2, 0.3] , [0.4, 0.5]⟩⟨[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]⟩ ⟨[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]⟩ ⟨[0.3, 0.6] , [0.3, 0.5] , [0.8, 0.9]⟩⟨[0.3, 0.6] , [0.2, 0.3] , [0.3, 0.4]⟩ ⟨[0.5, 0.6] , [0.2, 0.3] , [0.3, 0.4]⟩ ⟨[0.4, 0.5] , [0.2, 0.4] , [0.7, 0.9]⟩⟨[0.7, 0.8] , [0.0, 0.1] , [0.1, 0.2]⟩ ⟨[0.6, 0.7] , [0.1, 0.2] , [0.1, 0.3]⟩ ⟨[0.6, 0.7] , [0.3, 0.4] , [0.8, 0.9]⟩

]]]
]
. (36)

5.1. Procedures of Decision Making Based on INSs

Step 1. Utilize the INNWA operator or the INNWG operator
to obtain the INNs. The aggregation results based on the
INNWAoperator and the INNWGoperator are different, and
they are calculated separately. Here, let 𝑘(𝑥) = − log𝑥, which
means that the operations for INNs are based on algebraic t-
conorm and t-norm.

By using the INNWA operator, the alternatives matrix
AWA can be obtained:

𝐴𝑊𝐴
= [[[
[
⟨[0.5453, 0.7516] , [0.1682, 0.3000] , [0.3041, 0.4373]⟩⟨[0.4996, 0.6634] , [0.1552, 0.2885] , [0.3482, 0.4656]⟩⟨[0.3950, 0.5627] , [0.2000, 0.3366] , [0.4210, 0.5533]⟩⟨[0.6383, 0.7397] , [0.0000, 0.2071] , [0.2297, 0.4040]⟩

]]]
]
.

(37)

With the INNWG operator, the alternatives matrix AWG is
shown as follows:

𝐴𝑊𝐺
= [[[
[
⟨[0.5004, 0.6620] , [0.1761, 0.3000] , [0.3195, 0.4422]⟩⟨[0.4547, 0.6581] , [0.1861, 0.3371] , [0.5405, 0.6786]⟩⟨[0.3824, 0.5578] , [0.2000, 0.3419] , [0.5012, 0.7070]⟩⟨[0.6333, 0.7335] , [0.1555, 0.2570] , [0.5069, 0.6632]⟩

]]]
]
.

(38)

Step 2. Calculate the score function value, accuracy function
value, and certainty function value.

To the alternativesmatrixAWA, by usingDefinition 18, the
function matrix of AWA can be obtained:

𝐹𝑊𝐴
= [[[
[
[1.8080, 2.2793] [0.2412, 0.3143] [0.5453, 0.7516][1.7455, 2.1600] [0.1514, 0.1978] [0.4996, 0.6634][1.5051, 1.9417] [−0.0260, 0.0094] [0.3950, 0.5627][2.0272, 2.5100] [0.3357, 0.4086] [0.6383, 0.7397]

]]]
]
.

(39)

To the alternatives matrix AWG, by using Definition 20, the
function matrix of AWG is shown as follows:

𝐹𝑊𝐺

= [[[
[
[1.7582, 2.1664] [0.1809, 0.2198] [0.5004, 0.6620][1.4390, 1.9315] [−0.0858, −0.0205] [0.4547, 0.6581][1.3335, 1.8566] [−0.1492, −0.1188] [0.3824, 0.5578][1.7131, 2.0711] [0.0703, 0.1264] [0.6333, 0.7335]

]]]
]
.

(40)

Step 3. Construct the possibility matrix. Each interval num-
ber is compared to all interval numbers. Referring to
Definition 2, the possibilitymatrix of the score function value𝑠(𝑦𝑖) can be obtained. For 𝐹𝑊𝐴,

𝑃𝑠 𝑊𝐴 = [[[
[

0.5 0.6498 0.8527 0.26420.3974 0.5 0.7695 0.14800.1473 0.2305 0.5 00.7358 0.8520 1 0.5
]]]
]
. (41)

And, for 𝐹𝑊𝐺,
𝑝𝑠 𝑊𝐺 = [[[

[
0.5 0.8076 0.8943 0.59160.1924 0.5 0.5888 0.25680.1057 0.4112 0.5 0.16290.4084 0.7432 0.8371 0.5

]]]
]
. (42)

It is obvious that 𝑝𝑠𝑖𝑗 ̸= 0.5 (𝑖 ̸= 𝑗), so there is no need to
compute 𝑝𝑎𝑖𝑗 and 𝑝𝑐𝑖𝑗.
Step 4. Get the priority of the alternatives and choose the best
one.

According to Definition 20 and results in Step 3, for AWA,
we have 𝐴1 ≻ 𝐴2, 𝐴1 ≻ 𝐴3, 𝐴2 ≻ 𝐴3, 𝐴4 ≻ 𝐴1, and 𝐴4 ≻𝐴2. Therefore, the ranking of the four alternatives is 𝐴4, 𝐴1,𝐴2, and 𝐴3. Obviously, 𝐴4 is the best alternative.

Similarly, for AWG, we have 𝐴1 ≻ 𝐴2, 𝐴1 ≻ 𝐴3, 𝐴1 ≻ 𝐴4,𝐴2 ≻ 𝐴3, 𝐴4 ≻ 𝐴2, and 𝐴4 ≻ 𝐴3. Therefore, the ranking of
the four alternatives is 𝐴1, 𝐴4, 𝐴2, and 𝐴3. Obviously, 𝐴1 is
the best alternative.

When 𝑘(𝑥) = log((2 − 𝑥)/𝑥), for AWA, the ranking of the
four alternatives is still 𝐴4, 𝐴1, 𝐴2, and 𝐴3, as well as the
ranking 𝐴1, 𝐴4, 𝐴2, and 𝐴3 for AWG.
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5.2. Comparison Analysis and Discussion. In order to validate
the feasibility of the proposed decisionmakingmethod based
on the INN aggregation operators, a comparison analysis
will be conducted. In Section 5.1, the same example adapted
from [33] for the multicriteria decision making problem is
demonstrated based on the INN aggregation operators. This
analysis will be based on the same illustrative example.

There is no consensus on the best way to sequence INNs.
Ye proposed the similarity measures between INSs based on
the relationship between similarity measures and distances
and utilized the similarity measures between each alternative
and the ideal alternative to establish a multicriteria decision
making method for INSs in [33]. By contrast, we present the
aggregation operators for INNs and put forward a method
formulticriteria decisionmaking bymeans of the aggregation
operators.

With the same example, [33] gave two rankings of the four
alternatives with different similaritymeasures.The first one is𝐴4, 𝐴2, 𝐴3, and 𝐴1. The second one is 𝐴2, 𝐴4, 𝐴3, and 𝐴1.
Unlike the results in [33], we obtained the ranking sequences
as 𝐴4, 𝐴1, 𝐴2, 𝐴3 and 𝐴1, 𝐴4, 𝐴2, and 𝐴3. Obviously,
the results in [33] conflict with ours in this paper. And the
difference mainly lies in the position of 𝐴1.

Here, for convenience, the decision matrixD in Section 5
is denoted by

𝐷 = [[[
[
𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33𝑎41 𝑎42 𝑎43

]]]
]
. (43)

Certainly, the alternatives𝐴1 can be obtained by the decision
vector (𝑎11 𝑎12 𝑎13) with the associated weight vector𝑊 =(0.35, 0.25, 0.4). Firstly, consider 𝐴1 and 𝐴3. As can be
seen from the decision matrix D, the truth-membership,
the indeterminacy-membership, and the falsity-membership
satisfies

𝐼𝑎11 = 𝐼𝑎31 , 𝐹𝑎11 = 𝐹𝑎31 . (44)

And, with Definition 2, 𝑝(𝑇𝑎11 > 𝑇𝑎31) = 0.5, so 𝑇𝑎11 = 𝑇𝑎31 .
Therefore, 𝑎11 = 𝑎31. Similarly, it can obtained that 𝑎13 = 𝑎33
significantly. And byDefinitions 18 and 20, 𝑎12 < 𝑎32 with a bit
difference; that is, 𝑎12 is close to 𝑎32, so that, with the weighted
vector𝑊 = (0.35, 0.25, 0.4),𝐴1 ≻ 𝐴3. Thus there is a conflict
of sequences of 𝐴1 and 𝐴3 in [33].

Similarly, it is obvious that 𝑎21 < 𝑎41, 𝑎22 < 𝑎42,
and 𝑎23 < 𝑎43, so that with the associated weight vector𝑊 = (0.35, 0.25, 0.4), 𝐴1 ≺ 𝐴4, which is not coordinated
with the ranking of 𝐴2, 𝐴4, 𝐴3, and 𝐴1 in [33], while the
sequences of 𝐴1, 𝐴2 and 𝐴1, 𝐴3 obtained by the method
in this paper are consistent with the realities. Here are the
reasons for this. The difference between INSs is distorted. In
the similarity measures in [33], the distances between INSs
are calculated firstly and the difference was amplified in the
results because of criteria weights. This causes the distortion
of similarity between an alternative and the ideal alternative.
In addition, the ranking of all alternatives was determined
by the similarity, so that the degree of distortion can not be
reduced.However, the difference between INSs in themethod

proposed in this paper was reserved to the final calculation.
Combining the factors above, the final result produced by the
method proposed in this paper is more precise and reliable
than the result produced in [33].

6. Conclusion

INSs can be applied in addressing problems with uncertain,
imprecise, incomplete, and inconsistent information existing
in real scientific and engineering applications. However, as
a new branch of NSs, there is no enough research about
INSs. In particular, the existing literatures do not put forward
the aggregation operators and multicriteria decision making
method for INSs. Based on the related research achievements
in IVIFSs, we defined the operations of INSs. And the
approach to compare INNs was proposed. In addition, the
aggregation operators of INNWA and INNWG were given.
Thus, a multicriteria decision making method is established
based on the proposed operators. Utilizing the comparison
approach, the ranking of all alternatives can be determined
and the best one can be easily identified as well. The illus-
trative example demonstrates the application of the proposed
decision making method. Although there is no consensus on
the best way to sequence INNs, compared to the multicriteria
decision making method for INSs in [33], the illustrative
example shows that the final result produced by the method
proposed in this paper is more precise and reliable than the
result produced in [33]. In this way, the method proposed in
this paper can provide a reliable basis for INSs.
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