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Abstract: In this paper, we consider the problem involved when designing the interval observer for
the system described by a linear discrete-time model under external disturbances and measurement
noises. To solve this problem, we used the reduced order model of the initial system, which is
insensitive or has minimal sensitivity to the disturbances. The relations involved in designing
the interval observer, which has minimal dimensions and estimates the prescribed linear function
of the original system state vector, were obtained. The theoretical results were illustrated by a
practical example.

Keywords: linear models; estimation; interval observers; identification canonical form

1. Introduction

The problem of estimating the system state vector is critical in many practical applica-
tions. The main problems involved in designing an estimator are the system complexity
and different uncertainties (external disturbances, measurement noises, and unknown
parameters). Sliding mode observers can solve this problem [1–3] in some cases; however,
under uncertainties, the estimation error is never equal to zero. This problem has recently
been solved based on interval observers, which are used to evaluate the dynamic system
state. One advantage of interval observers is that they can take into account many types of
uncertainties in the system under consideration.

Different kinds of observers have been developed for many types of models: for
continuous-time linear and non-linear [4–11], discrete-time [12,13], time delay [14,15],
switched system [16,17], and singular [14]; the stability of interval observers was studied
in [18]. Moreover, they have been successfully applied to solve many practical prob-
lems [19–21]. Exhaustive reviews are in [15,22,23].

It should be noted that all of the above-mentioned papers consider the full-state
vector interval estimation problem. Unlike these papers, the uniqueness of the present
paper is that the interval observers were constructed for estimating the prescribed linear
function of the original system state vector. As a result, the suggested approach has fewer
computational complexities than those considered in the above-mentioned papers. Such
a solution may be useful in some practical applications where only the prescribed linear
function of the state vector is necessary. Our approach is close to that of functional interval
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observers considered in [24–27], which enable estimating specified linear functions of the
vector of state.

The main contributions of this paper are as follows: (i) unlike [15,23], where the
interval observer was designed based on the original system, the reduced order model of
the system was used to design the observer that allows accelerating the measurement results
processing; (ii) unlike [15,23], where the full-state vector was estimated, the suggested
approach allows for estimating the prescribed components of the state vector, which may
be useful in some practical applications; (iii) the reduced order model is invariant with
respect to the disturbance or has minimum sensitivity that allows reducing the interval
width and increasing estimation accuracy; (iv) finally, identifying the canonical form (to
design the interval observers) enabled obtaining simple designing procedures.

2. The Main Models

Consider the linear system described by the difference equations

x(t + 1) = Fx(t) + Gu(t) + Lρ(t),
y(t) = Hx(t) + v(t).

(1)

Here, x ∈ Rn, u ∈ Rm, y ∈ Rl are vectors of state, control, and output; F ∈ Rn×n, G ∈ Rn×l ,
H ∈ Rl×n, and L ∈ Rn×p are known constant matrices; ρ(t) ∈ Rp is the disturbance,
one assumes that ρ(t) is an unknown bounded function, and maxi |ρi(t)| ≤ ρ∗; v(t) is
the measurement noise; one assumes that v(t) ∈ Rl is a bounded unknown function and
maxi |vi(t)| ≤ v∗.

The problem is to design an interval observer of minimal dimensions generating two
functions z(t) and z(t), such that z(t) ≤ z(t) ≤ z(t) for all t ≥ 0 where z(t) is determined
by a known matrix M ∈ Rs×n as z(t) = Mx(t). For two vectors, x1, x2, and matrices,
A1, A2, the inequalities x1 ≤ x2 and A1 ≤ A2 are understood element-wise.

The solution is based on the reduced-order model

x∗(t + 1) = F∗x∗(t) + G∗u(t) + J∗Hx(t) + L∗ρ(t),
z(t) = Hzx∗(t) + Qy0(t),

(2)

where x∗ ∈ Rk is the state vector, F∗, G∗, J∗, L∗, Q, and Hz are matrices of appropriate
dimensions to be determined, the variable y0 is defined below.

Remark 1. Model (2) is essentially part of system (1); therefore, we used the term J∗Hx(t) other
than J∗y(t) to take into account measurement noise due to y(t) = Hx(t) + v(t). The term J∗y(t)
will be used in the interval observer (12).

The best solution from the interval width point of view is when the disturbance ρ(t)
does not affect the model. Clearly, the variable y0 in (2) must be insensitive to ρ(t) as well.
To satisfy the last demand, consider the matrix L0 with a maximal number of rows, such that
L0L = 0. Then the vector x′ = L0x is insensitive to ρ(t) and y0 = N1x′ = N1L0x with some
matrix N1. On the other hand, y0 is a part of the output vector y, then y0 = N2y(t) = N2Hx
with some matrix N2. Then one has the equation N1L0 = N2H with a solution, if

rank
(

L0
H

)
< rank(L0) + rank(H).

If this condition is satisfied, the equation N1L0 = N2H in the form

(N1 − N2)

(
L0
H

)
= 0

has a solution with the matrices N1 and N2 of maximal rank, and one may set y0(t) :=
N2Hx(t) = N2y(t).
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One assumes that there exists the matrix Φ ∈ Rk×n, such that x∗(t) = Φx(t). It is
known [3,28] that this matrix satisfies the equations

ΦF = F∗Φ + J∗H,
G∗ = ΦG,
L∗ = ΦL.

(3)

The second equation in (2) with z(t) = Mx(t) can be presented as

M = HzΦ + QN2H = (Hz Q)

(
Φ

N2H

)
. (4)

The equation has a solution when

rank
(

Φ
N2H

)
= rank

 Φ
N2H

M

. (5)

3. The Reduced Order Model Design

We construct the model invariant with respect to the disturbance ρ(t) when L∗ =
ΦL = 0. Based on (3) and (4), one may obtain conditions that allow checking whether such
a solution exists. Since L0 is such that L0L = 0, then Φ = NL0 for matrix N. The first
condition is of the form [3,28]

rank

 L0F
H
L0

 < rank(L0F) + rank
(

H
L0

)
. (6)

To obtain the second one, replace (2) Φ with NL0 and transform it:

M = (HzN Q)

(
L0

N2H

)
.

The equation is solvable when

rank
(

L0F
N2H

)
= rank

 L0F
N2H

M

. (7)

If conditions (6) and (7) are satisfied, one can design the model invariant with respect
to the disturbance. If (7) is not satisfied, one has to analyze the rows of the matrix M
based on (7) and compose from them matrix M0, satisfying the condition (7). Then the
interval observer invariant (with respect to the disturbance that estimates the variable
z0(t) = M0x) is designed. The rest of the rows of matrix M are composed in matrix M∗,
and the robust interval observer estimating the variable z∗(t) = M∗x(t) is constructed
based on the methods described in Section 6. If (6) is not satisfied, one has to use the robust
solution as well.

To design the reduced order model, one specifies the matrix F∗ ∈ Rk×k in the identifi-
cation canonical form (ICF)

F∗ =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . .
0 0 0 . . . 0

. (8)

Note that the main requirement for an observer is stability. Since the matrix (8) has zero
eigenvalues, the stability of the discrete-time linear model with (8) is achieved without any
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feedback. It is known for the discrete-time system [15] that to design the interval observer,
the matrix F∗ should be stable and nonnegative; therefore, ICF (8) is preferable since it
satisfies both conditions.

A solution insensitive to the disturbance is based on Equation [29,30]

( Φ1 −J∗1 . . . −J∗k )(V(k) L(k)) = 0, (9)

where

V(k) =


Fk

HFk−1

. . .
H

,

L(k) =


L FL . . . Fk−1L
0 HL . . . HFk−2L

. . . . . . . . . . . .
0 0 . . . 0

;

the matrix V(k) allows designing model (2), L(k) provides insensitivity to the disturbance.
Equation (9) has a nonzero solution, if

rank(V(k) L(k)) < n + lk. (10)

To design the model, minimal k is determined from (10), the row (Φ1 − J∗1 . . . − J∗k) from
(9), and then based on the relations

ΦiF = Φi+1 + J∗i H, i = 1, . . . , k− 1,
ΦkF = J∗k H,

(11)

obtained from (8) and (3), the matrix Φ is found; here, Φi and J∗i are the ith rows of the
matrix Φ and J∗, i = 1, . . . , k, respectively. Finally, condition (5) is checked. If it is satisfied,
the matrices Hz and Q are found from (4) and G∗ from (3). If (5) is not satisfied, one has to
find another solution of (9) with the former or incremented k.

4. Interval Observer Design

Model (2) is the basis to design the observer, which is specified in the form

x∗(t + 1) = F∗x∗(t) + G∗u(t) + J∗y(t)− |J∗|Ekv∗,
x∗(t + 1) = F∗x∗(t) + G∗u(t) + J∗y(t) + |J∗|Ekv∗,

z(t) = Hzx∗(t) + Qy0(t),
z(t) = Hzx∗(t) + Qy0(t),

x∗(0) = x∗0, x∗(0) = x∗0,

(12)

where Ek = (1 1 . . . 1)T ∈ Rk×1, the elements of the matrix |A| are absolute values of
the corresponding elements of A; it is assumed that x∗(0) ∈ [x∗0, x∗0] for some known
x∗0, x∗0 ∈ Rk.

Theorem 1. If Hz ≥ 0 and x∗(0) ≤ x∗(0) ≤ x∗(0), then for the observer (12) for t ≥ 0, it follows

x∗(t) ≤ x∗(t) ≤ x∗(t),
z(t) ≤ z(t) ≤ z(t).

(13)

Proof. Consider the estimation errors

e∗(t) = x∗(t)− x∗(t), e∗(t) = x∗(t)− x∗(t),
ez(t) = z(t)− z(t), ez(t) = z(t)− z∗(t).

(14)



Symmetry 2022, 14, 2131 5 of 11

It follows from (2) and (12)

e∗(t + 1) = F∗e∗(t) + J∗(Hx(t)− y(t)) + |J∗|Ekv∗ = F∗e∗(t)− J∗v(t) + |J∗|Ekv∗,
e∗(t + 1) = F∗e∗(t) + J∗(y(t)− Hx(t)) + |J∗|Ekv∗ = F∗e∗(t) + J∗v(t) + |J∗|Ekv∗.

(15)

Since x∗(0) ≤ x∗(0) ≤ x∗(0), then e∗(0) ≥ 0 and e∗(0) ≥ 0. Note that in (15) |J∗|Ekv∗ ±
J∗v(t) ≥ 0 for all t ≥ 0 and F∗ ≥ 0. As a result, solutions of (15) under e∗(0), e∗(0) ≥ 0
are nonnegative element-wise, which is, for all t ≥ 0 one has e∗(t), e∗(t) ≥ 0 [15]. It
follows from (14) that for all t ≥ 0 x∗(t) ≤ x∗(t) ≤ x∗(t). If Hz ≥ 0, then the relation
z(t) = Hzx∗(t) + Qy0(t) and the observer (12) yield

ez(t) = z(t)− z(t) = Hzx∗(t) + Qy0(t)− (Hzx∗(t) + Qy0(t)) = Hze∗(t),
ez(t) = z(t)− z∗(t) = Hzx∗(t) + Qy0(t)− (Hzx∗(t) + Qy0(t)) = Hze∗(t).

Taking into account e∗(t), e∗(t) ≥ 0, and Hz ≥ 0, we obtain from the last equations ez(t) and
ez(t) ≥ 0, which are equivalent to z(t) ≤ z(t) ≤ z(t). The theorem has been proved.

Remark 2. When Hz ≤ 0, then

z(t) = Hzx∗(t) + Qy0(t),
z(t) = Hzx∗(t) + Qy0(t).

(16)

It follows from (16)

ez(t) = z(t)− z(t) = Hzx∗(t) + Qy0(t)− (Hzx∗(t) + Qy0(t)) = −Hze∗(t),
ez(t) = z(t)− z∗(t) = Hzx∗(t) + Qy0(t)− (Hzx∗(t) + Qy0(t)) = −Hze∗(t).

Taking into account Hz ≤ 0, we obtain ez(t), ez(t) ≥ 0.

If Hz is an oscillating matrix, the main result is retained but relations become more
complicated. Let Hz be a row matrix; we assume without loss of generality that the first
p elements of Hz are positive and the rest of them are negative: Hz = (H+

z H−z ) where
H+

z ≥ 0 and H−z ≤ 0. In this case

z(t) = H+
z x∗p(t) + H−z xk−p

∗ (t) + Qy0(t),

where x∗p(t) and xk−p
∗ (t) are the sub-vectors of vectors x∗(t) and x∗(t) containing the first

p and the last k− p elements, respectively. Then

ez(t) = z(t)− z(t) = H+
z x∗p(t) + H−z xk−p

∗ (t) + Qy0(t)− (H+
z x∗p(t) + H−z xk−p

∗ (t) + Qy0(t))

= H+
z e∗p(t)− H−z ek−p

∗ (t).

Since H+
z ≥ 0 and H−z ≤ 0, then ez(t) ≥ 0.

Let Hz be of the form

Hz =

(
H+

z
H−z

)
,

where H+
z ≥ 0 and H−z ≤ 0. In this case,

z(t) =
(

H+
z x∗(t)

H−z x∗(t)

)
+ Qy0(t).

Then

ez(t) =
(

H+
z

H−z

)
x∗(t) + Qy0(t)−

((
H+

z x∗(t)
H−z x∗(t)

)
+ Qy0(t)

)
=

(
H+

z e∗(t)
H−z e∗(t)

)
≥ 0.
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If Hz contains rows Hzj of the form Hzj = (H+
zj H−zj ), the corresponding formulas are

combinations of two considered cases.

Remark 3. Note that the inequality x∗(0) ≤ x∗(0) ≤ x∗(0) for system (15) yields the relations
e∗(t) ≥ 0, e∗(t) ≥ 0 for all t ≥ 0. The properties of the matrix F∗ allow us to state that these
relations will be true, even though x∗(0) ≤ x∗(0) ≤ x∗(0) is not true since system (15) with the
matrix F∗ "forgets" the initial conditions for t ≥ k. Really, denote v0(t) = |J∗|Ekv∗ ± J∗v(t) ≥ 0
and consider the first equation in (15); solution (15) can be represented as

e∗(t) = Ft
∗e∗(0) +

t−1

∑
i=0

Ft−i−1
∗ v0(i).

Since Fk
∗ = 0, then the value e∗(t) for t ≥ k depends on the term ∑t−1

i=0 Ft−i−1
∗ v0(i), which is

nonnegative by structure. As a result, e∗(t) ≥ 0 for all t ≥ k. It can be shown by the analogy for
the relation e∗(t) ≥ 0 for all t ≥ k.

5. Robust Solution

If condition (10) is not true for all k < n, the model invariant with respect to the
disturbance cannot be designed. The model having minimal sensitivity can be constructed
as follows.

The contribution of the disturbance in the model (2) can be evaluated by the norm
‖ΦL‖F of the matrix ΦL, one can present it as ‖( Φ1 −J∗1 . . . −J∗k )L(k)‖F [28]. We
will minimize the norm ‖( Φ1 −J∗1 . . . −J∗k )L(k)‖F under the condition

( Φi −J∗1 . . . −J∗k )V(k) = 0. (17)

The problem will be solved if one finds several linearly independent solutions (17)
and collects them in the matrix

B =

 Φ(1)
1 −J(1)∗1 . . . −J(1)∗k

. . .
Φ(n∗)

1 −J(n∗)∗1 . . . −J(n∗)∗k

, (18)

the number of all solutions for some k is denoted by n∗. If w = (w1 . . . wn∗) is an arbitrary
vector of weight coefficients, then wB is a solution as well. One has to find the vector w
under the condition ‖w‖ = 1, such that the norm ‖wBL(k)‖F is minimal.

The problem is solved by a singular value decomposition of the matrix BL(k) : BL(k) =
ULΣLVL [31]. One has to use the first transposed column of the matrix UL for a vector
of coefficients w = (w1 . . . wn∗). A singular value decomposition implies that the norm
‖wBL(k)‖F is equal to the minimum singular value σ1.

Finally, one has to find the row (Φ1 −J∗1 . . . −J∗k) = wB, then the matrix Φ
based on (11), and set G∗ := ΦG, L∗ := ΦL.

Due to the addend L∗ρ in (2), the interval observer under v 6= 0, ρ 6= 0, and Hz ≥ 0
becomes

x∗(t + 1) = F∗x∗(t) + G∗u(t) + J∗y(t)− |J∗|Ekv∗ − |L∗|Ekρ∗,
x∗(t + 1) = F∗x∗(t) + G∗u(t) + J∗y(t) + |J∗|Ekv∗ + |L∗|Ekρ∗,

z(t) = Hzx∗(t) + Qy0(t),
z(t) = Hzx∗(t) + Qy0(t),

x∗(0) = x∗0, x∗(0) = x∗0.

Equation (15) is corrected as well:

e∗(t + 1) = F∗e∗(t)− J∗v(t) + |J∗|Ekv∗ + L∗ρ + |L∗|Ekρ∗,
e∗(t + 1) = F∗e∗(t) + J∗v(t) + |J∗|Ekv∗ − L∗ρ + |L∗|Ekρ∗.
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Clearly, the relations (13) follow from Theorem 1 and relation |L∗|Ekρ∗ ± L∗ρ ≥ 0.

6. Interval Estimation of the Vector x(t)

The suggested approach to the interval estimation of the variable z(t) can be used to
obtain the estimate of the full vector x(t) as follows. We assume that matrix H is of full
row–rank and

H = (H0 0), y(t) = H0x(1)(t) + v(t), x(t) =

(
x(1)(t)
x(2)(t)

)
,

H0 is a nonsingular matrix. Let us define

y(t) = y(t)− Elv∗, y(t) = y(t) + Elv∗,
x(1)(t) = H−1

0 y(t), x(1)(t) = H−1
0 y(t).

(19)

Then

e(1)(t) = x(1)(t)− x(1)(t) = H−1
0 (y(t)− v(t))− H−1

0 y(t) = H−1
0 (Elv∗ − v(t)),

e(1)(t) = x(1)(t)− x(1)(t) = H−1
0 y(t)− H−1

0 (y(t)− v(t)) = H−1
0 (Elv∗ + v(t)).

Assuming that H−1
0 ≥ 0, it follows from Elv∗ ± v(t) ≥ 0 that e(1)(t) ≥ 0, e(1)(t) ≥ 0 and

x(1)(t) ≤ x(1)(t) ≤ x(1)(t). As a result, the variable x(1)(t) under the condition H−1
0 ≥ 0 is

estimated based on (19) and the disturbance ρ(t) does not affect this estimate.

Remark 4. The condition H−1
0 ≥ 0 is satisfied in practical important cases when the vector x(1) is

measured by sensors and H0 = H−1
0 = Il .

The estimate of the variable x(2) is given by the observer (12). Set z(t) := x(2)(t) =
M(2)x(t) for matrix M(2) and checks the condition (5) to clarify if it is possible to design
the observer invariant with respect to the disturbance. Then depending on the results, one
constructs an insensitive or robust observer.

7. Example

Consider the discrete-time model of the electric servo-actuator of the manipulator:

x1(t + 1) = k1x2(t) + x1(t),
x2(t + 1) = k2x3(t) + x2(t) + ρ(t),
x3(t + 1) = k3x2(t) + k4x3(t) + k5u(t),

y1(t) = x1(t) + v1(t),
y2(t) = x3(t) + v2(t),

(20)

where the coefficients k1÷ k5 describe the sampling time and the servo-actuator parameters;
the addend ρ(t) is explained by the external loading moment. The following matrices
describe this model:

F =

 1 k1 0
0 1 k2
0 k3 k4

, G =

 0
0
k5

, H =

(
1 0 0
0 0 1

)
, L =

 0
1
0

.
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Construct the interval observer estimating the variable x2(t) with M = (0 1 0).
Since the disturbance enters in the equation for x2(t), the model will be sensitive to the
disturbance, and one may set in (9) L(k) = 0 and obtain with k = 1 the equation

(Φ − J∗)


1 k1 0
0 1 k2
0 k3 k4
1 0 0
0 0 1

 = 0.

Its solution is Φ = (1/k1 − 1 0) and J∗ = (1/k1 − k2) that gives G∗ = 0 and L∗ = −1. It
can be shown that condition (5) is satisfied and Hz = −1, Q = (1/k1 0).

The model is given by

x∗(t + 1) = (1/k1)H1x(t)− k2H2x(t)− ρ(t),
z(t) = −x∗(t) + (1/k1)y1(t).

The interval observer is based on this model and is described as follows:

x∗(t + 1) = (1/k1)y1(t)− k2y2(t)− (1/k1)v∗1 − k2v∗2 − ρ∗,
x∗(t + 1) = (1/k1)y1(t)− k2y2(t) + (1/k1)v∗1 + k2v∗2 + ρ∗,

z(t) = −x∗(t) + (1/k1)y1(t),
z(t) = −x∗(t) + (1/k1)y1(t).

(21)

The variables x1(t) and x3(t) can be estimated according to (19):

x1(t) = y1(t)− v∗1, x3(t) = y2(t)− v∗2,
x1(t) = y1(t) + v∗1, x3(t) = y2(t) + v∗2.

Comparing the obtained results with those that were previously obtained for this
example in [15] and other similar papers, one can conclude that the suggested approach
gives a simpler observer and an interval with a smaller width.

Consider for the simulation, the model (20), and the observer (21); the control u(t) =
0.2sin(t/100), the measurement noises v1(t), v2(t), and ρ(t) are random processes evenly
distributed on [−0.01, 0.01]. Set for simplicity k1 = k2 = k5 = 1, k3 = k4 = −1; v∗1 = v∗2 =
ρ∗ = 0.01. Simulation results are shown in Figures 1 and 2, where the functions x2(t) and
its estimates z(t) and z(t) are presented for x∗(0) = 0. In Figure 1, the initial conditions
are x∗(0) = −0.05 and x∗(0) = 0.05, in Figure 2 x∗(0) = 0.05 and x∗(0) = −0.05. Crossing
two graphs in Figure 2 corresponds to Remark 3.
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Figure 1. Graphs of the variable x2(t) and its estimates z(t) and z(t) with x∗(0) = −0.05 and
x∗(0) = 0.05.

Figure 2. Graphs of the variable x2(t) and its estimates z(t) and z(t) with x∗(0) = 0.05 and x∗(0) =
−0.05.

8. Conclusions

The problem surrounding the interval observer design for dynamic systems (described
by linear discrete-time models under disturbance and measurement noises) was studied
in this paper. To solve the problem, the reduced order model of the initial system, which
is invariant (or has minimal sensitivity) to the disturbance was used. Such a model is
realized in the identification canonical form. The relations to design the interval observer
of minimal dimension, which estimates the prescribed linear function of the state vector of
the initial system, were obtained.
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