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Interval Routing Schemes1

P. Fraigniaud2 and C. Gavoille2

Abstract. Interval routing was introduced to reduce the size of routing tables: a router finds the direction
where to forward a message by determining which interval contains the destination address of the message,
each interval being associated to one particular direction. This way of implementing a routing function is quite
attractive but very little is known about the topological properties that must satisfy a network to support an
interval routing function with particular constraints (shortest paths, limited number of intervals associated to
each direction, etc.). In this paper we investigate the study of the interval routing functions. In particular, we
characterize the set of networks which support alinear or alinear strict interval routing function with only one
interval per direction. We also derive practical tools to measure the efficiency of an interval routing function
(number of intervals, length of the paths, etc.), and we describe large classes of networks which supportoptimal
(linear) interval routing functions. Finally, we derive the main properties satisfied by the popular networks
used to interconnect processors in a distributed memory parallel computer.
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1. Introduction. Given a network of processors (such as the one of a distributed mem-
ory parallel computer), the way of routing messages among the processors is character-
ized, on one hand, by the routingmode(store-and-forward, circuit-switched, wormhole,
. . . ) and, on the other hand, by the routingfunctionwhich determines the paths between
the sources and the destinations. This paper focuses on the second parameter.

The routing function is generally implemented locally on the routers. The route of
a message from its source to its destination is determined using a header attached to
the message, and which contains information that will allow the intermediate routers to
know where to forward the message. In this paper we are interested in routing functions
which use only the destination address of the message to find the route.

As soon as a router receives a message, it looks at the header to read the destination,
and then determines the output port which will be used to forward the message toward
its destination. There are mainly two ways of determining the output port from the
destination address:

1. Application of an algorithm.
2. Consultation of a routing table.
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The first case is generally used when the topology of the interconnection network
is fixed, and simple. For instance, it is easy to implement locally theXY-routing on a
mesh or on a torus, and thee-cube routing on the hypercube: the output port is found by
comparing the current address of the router with the address of the destination.

However, if the structure of the interconnection network is fixed but complicated
(a pancake graph, an undirected de Bruijn graph, etc.), it could be difficult to derive
a “simple algorithmic way” to compute the paths locally (especially if one insists on
shortest paths). By asimple algorithm, we mean an algorithm whose execution time and
space for implementing it on the router are both small. If the interconnection network
has no particular structure, it can even be impossible to derive any kind of algorithm.
A solution to these problems is obtained by the use of routing tables which are stored
locally on each router. The main requirement for these tables is to be as small as possible
(for instance, a size of2(n) for a network ofn processors is not realistic as soon as the
number of processors becomes large).

Compact routing has already been intensively studied (see, for instance, [2], [11], and
[12]). There exist many solutions to compress the size of the routing tables. The usual
approach consists in grouping the destination addresses which correspond to the same
output port, and encoding the group so that it will be is easy to check whether or not a
destination address belongs to a given group. A very popular solution of that kind is the
use of intervals [26]. Intervals are indeed very simple to code (it is sufficient to store the
bounds of each interval), and at most two comparisons are necessary to check whether a
destination address belongs to an interval. This kind of routing is used, for instance, on
the C104 routing chip [7], [21] ofINMOS.

Interval routing is very attractive by its simplicity. Unfortunately, it is not always
simple to fix a global labeling of the nodes so that intervals can be easily set for each
output port of each router, especially if one insists on shortest paths or other particular
properties.

The notion of interval routing was introduced by Santoro and Khatib in [26]. They
have mainly shown that any directed acyclic graph can support an interval routing func-
tion with shortest paths, and with only one interval per output port. Moreover, if the
digraph is not acyclic, they have shown that there exists an interval routing function
such that the maximum length of the route between two vertices is at most twice the
diameter. Van Leeuwen and Tan [30] have studied the problem for undirected graphs.
They have shown that any graph supports an interval routing function with one interval
per output port. They have given simple examples of graphs (trees, complete graphs,
rings, meshes,. . . ) which support an interval routing function with one interval per out-
put port and where all routes are shortest paths. They have also studied the number of
intervals per output port that requires a shortest path interval routing function on tori.
In [3] Bakker et al. introduced a particular class of interval routing functions, namely
linear interval routing schemes. They characterized trees which support such a routing
scheme with only one interval per output port, and where all the routes are shortest
paths. They listed simple examples of graphs which support a linear interval routing
function with shortest paths, and graphs which do not support such a scheme. They
showed that the hypercube and thed-dimensional meshes support a linear interval rout-
ing function with shortest paths. Finally, Bakker et al. also studied linear interval routing
schemes, but with constraints on the neighbor-to-neighbor communication costs. This
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problem was introduced by Frederickson and Janardan in [10], in the field of interval
routing.

In this paper we investigate interval routing in depth. In particular, we focus on the
topological properties that a graph must satisfy in order to support an interval routing
function with some particular given properties. Note that this work has direct practical in-
terest for the construction of interconnection networks for distributed memory computers
based on C104 routing chips [7].

In Section 2 we define precisely what an interval routing function is. We focus on
some parameters which are directly related to this definition: the number of intervals per
output port, the kinds of intervals (linear or cyclic), and the way of checking whether the
current address is the destination (strict interval routing function).

In Section 3 we study the minimum number of intervals that must be associated to
each output port of a given network to support a (linear) interval routing function. It was
known that one interval per output port is enough for cyclic intervals [30], but very little
was known about linear intervals. We characterize the networks which support a linear
interval routing function with at most one interval per output port. We also characterize
the graphs which support a strict linear interval routing function with at most one interval
per output port.

In Section 4 we study the length of the routes generated by a (linear) interval routing
function. First we study the networks which support a (linear) interval routing function
generating shortest paths. Then we study the tradeoff between the maximum length of
the paths generated by a routing function and the number of intervals which are used per
output port.

Finally, in Section 5, we study properties that satisfy graphs which are interesting
either for the practical design of interconnection networks, or for some algorithmic points
of view: ring, mesh, hypercube, cube-connected-cycle, shuffle-exchange,. . . (see [9] and
[20]).

2. Statement of the Problem. We are interested in parallel distributed memory multi-
computers composed of processing elements (PEs) connected to routers in a one-to-one
fashion. This last hypothesis is not restrictive since most of the results of this paper can
be generalized in the case where more than one PE can be connected to a same router, or
where no PE is connected to some routers. As usual, the network is modeled by a graph
G = (V, E) whose set of verticesV represents the routers, and whose set of edgesE
represents the communication links between the routers. We assume that the links are
bidirectional (that is, if a routerx is able to send messages to one of its neighborsy, then
y is also able to send messages tox), and, therefore, we deal with undirected graphs
(or symmetric digraphs) only. Of course, we are only interested in connected networks,
so all the statements of this paper assume that the graphs are connected (there is a path
between any couple of vertices). Also, we always consider finite graphs which are simple
(there is at most one edge between two vertices) and loopless. An edge of extremitiesx
andy is therefore denoted by(x, y).

For any vertexx ∈ V , we denote by out(x) the set of edges of extremityx, that is
out(x) = {(x, y) ∈ E}. We get|out(x)| = deg(x), the degree ofx. Each router, that is
each vertexx of G, is connected to the memory of its associated PE by a communication
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link. We denote this link by mem(x). We define a routing function as follows:

DEFINITION 1 (Routing Function). Arouting function Ron a graphG = (V, E) is a
set of functions

R= {Rx | x ∈ V, Rx: V → out(x) ∪mem(x)}

such that, for any couple of verticesx, y ∈ V , there exists a sequence of vertices
x = x0, . . . , xk = y such that, for everyi ∈ {0, . . . , k − 1}, Rxi (y) = (xi , xi+1), and
Ry(y) = mem(y).

This definition understands that we only consider routing functions which are con-
nected. Assume a routerx receives a message whose destination address isy. If y = x,
then the message is sent to the local memory of the PE connected tox via mem(x). If
y 6= x, then the message is forwarded on the communication link of out(x) determined
by Rx(y). We focus now on routing functions that are defined using intervals:

DEFINITION 2 (Interval). An interval of {1, . . . ,n} denoted by [a, b], wherea, b ∈
{1, . . . ,n}, is the set of integersi satisfying{

a ≤ i ≤ b if a ≤ b (linear interval),
a ≤ i ≤ n or 1≤ i ≤ b if a > b (cyclic interval).

If a = b we denote by [a] the interval [a,a]. We also denote by ]a, b] (resp. [a, b[ )
the interval [a, b] − {a} (resp. [a, b] − {b}). ∅ and [ ] both refer to the empty interval.
Informally, an interval routing function on a graph ofn vertices is defined as follows.
First, label the vertices by integers from 1 ton in a one-to-one manner. Then, for each
vertexx, associate intervals to each edgee∈ out(x). The number of intervals associated
to e∈ out(x) on x is denoted byk(x, e). A message located onx, and of destinationy, is
routed byy throughe∈ out(x) if and only if y belongs to one of the intervals associated
to e on x.

For instance, in Figure 1 we have indicated two interval routing functions for the
same graph. The labels of the vertices are different, so it is for the intervals. A message
sent byA to D will follow the pathABEDusing the interval routing function depicted
on the left-hand side of Figure 1, and the pathAD using the function of the right-hand
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Fig. 1.Two interval routing functions for the same network.
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side of Figure 1. These two interval routing functions are very different. The function
on the left has many drawbacks: nonshortest paths, two intervals on the same edge for
the vertexD, cyclic intervals on verticesC andE, the edge(A, D) is never used from
A, andE contains its own label in the interval associated to(E, D). The function on
the right offers many good properties: shortest paths, one nonempty interval per edge on
each vertex, linear intervals only, and no interval contains the label of the local vertex.

More formally, we define an interval routing function as follows:

DEFINITION 3 (Interval Routing Function). LetG = (V, E) be a graph ofn vertices.
An interval routing functionon G is a routing functionR= {Rx | x ∈ V} on G defined
by

1. a one-to-one functionL: V → {1, . . . ,n} which labels the vertices ofG,
2. a set of intervalsI = {I 1

x,e, . . . , I k(x,e)
x,e | x ∈ V, e ∈ out(x), k(x, e) ≥ 1} such that

the setsIx,e =
⋃k(x,e)

i=1 I i
x,e, x ∈ V , e∈ out(x), satisfy

• union property:(
⋃

e∈out(x) Ix,e) ∪ {L(x)} = {1, . . . ,n},
• disjunction property:∀e, e′ ∈ out(x), e 6= e′ ⇒ Ix,e ∩ Ix,e′ = ∅,

and satisfying

Rx(y) =
{

mem(x) if y = x,
e∈ out(x) such that L(y) ∈ Ix,e otherwise.

An interval routing function is denoted by a couple(L, I) which satisfies the condi-
tions of Definition 3. For practical reasons, it might be interesting to restrict the definition,
and to allow the use of linear intervals only (see [3]). This notion is particularly useful
to derive results on networks built by a cartesian product (as hypercubes and torus).

DEFINITION 4 (Linear Interval Routing Function). Alinear interval routing function is
an interval routing functionR= (L, I) whereI contains linear intervals only.

In Figure 1 the function on the right-hand side is linear and the function on the
left-hand side is not linear.

Again, for practical reasons related to the design of the router, it is important to
distinguish the case where intervals contain the local address from the case where they
do not. Indeed, if an interval contains the local address, then a preprocessing must be
implemented to check whether the destination address is the current address before using
the intervals. On the contrary, if we know that no interval contains the local address, then
we can associate an interval to the memory link, and there is no distinction between this
link and the other. Moreover, as we will see later, and as is the case for linear intervals,
this notion is particularly interesting for the construction of interval routing functions on
networks obtained by a cartesian product.

DEFINITION 5 (Strict Interval Routing Function). An interval routing functionR =
(L, I) is strict if ∀x ∈ V, ∀e∈ out(x), L(x) /∈ Ix,e.

In Figure 1 the function on the right-hand side is strict, but the one on the left-hand
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side is not strict (see vertexE). Strict interval routing functions have been considered
in [10] by Frederickson and Janardan, whereas Bakker et al., in [3], considered nonstrict
linear interval routing functions.

3. Compact Interval Routing Scheme. Definition 3 is general in the sense that every
routing function on a graphG can be expressed by an interval routing function. Indeed,
for any routing functionR onG, choose any vertex-labelingL. Then, for every vertexx,
associate the set of intervalsIx,e = [x1] ∪ [x2] ∪ · · · ∪ [xk(x,e)] to each edgee∈ out(x),
where{x1, x2, . . . , xk(x,e)} is the list of labels of destinations whose messages usee to
leavex applyingR. However, such a use of interval routing is close to the use of routing
tables. Since interval routing has been introduced to reduce the memory space used on
the routers, we are interested in limiting the number of intervals per edge on each vertex.
Idealy, one would like to have at most one interval per edge on each vertex yielding a
memory space of sizeO(d logn) bits per router of degreed. More formally, we define
compactnessas follows:

DEFINITION 6 (Compactness). LetR = (L, I) be an interval routing function on a
graphG. Thecompactnessof R is defined by maxx∈V maxe∈out(x) k(x, e).

In other words, the compactness ofR is the maximum taken over all the verticesx of
the maximum taken over all the edgeseof extremityx of the number of intervals neces-
sary to list the destinations for whiche will be used fromx. Note that one might object
that maxx∈V

∑
e∈out(x) k(x, e) would be a more appropriated parameter for measuring

the size of the local tables. However, it is much more tricky to deal with this parameter,
and the reader will be convinced soon that compactness, as described in Definition 6,
allows us to derive strong results with many practical applications.

NOTATIONS. For any integerk ≥ 1, we denote byk-IRS the class of graphs supporting
an interval routing function of compactness at mostk. Similarly we denote byk-LIRS
the class of graphs supporting a linear interval routing function of compactness at mostk.
Also k-(L)IRS strict denotes the class of graphs which support a strict (linear) interval
routing function of compactness at mostk.

3.1. A Previous Result. First, very good news due to van Leeuwen and Tan [30]:

THEOREM1 [30]. All graphs belong to1-IRS strict.

We briefly recall their proof.

PROOF. Let r be any vertex ofV(G), and consider a spanning treeT of G rooted atr .
We defineL by a depth-first labeling from the rootr with L(r ) = 1, and performing by
increasing order. For any vertexx of T , let l x = maxL(y) over all the verticesy which
belong to the subtree ofT of root x.

We assign the empty interval∅ to both extremities of all the edges ofG which do
not belong toT . For each edgee= (x, y), wherey is a child ofx in T (if it exists), we
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assign the interval [L(y), l y] to e on x. For each edgee = (x, y) of T wherey is the
father ofx (if it exists), we assign the interval ]l x,L(x)[ to e in x.

Clearly, such an interval routing function is strict.

Note that any path constructed by the routing function defined as in the proof of
Theorem 1 is embedded in a tree. Hence, the length of this path is necessary less than
twice the depth of the tree. However, it might be too far to be a shortest path between
the source and the destination. This strongly moderates the good news!

We now characterize the graphs that belong to 1-LIRS. First, we give the following:

COROLLARY 1. All graphs belong to2-LIRS strict.

PROOF. Every (strict) interval routing function of compactnessk on a graphG can be
transformed in a (strict) linear interval routing function onG of compactness at most
k + 1 by splitting each cyclic interval into two linear intervals. Therefore, for every
integerk ≥ 1, k-IRS⊂ (k+1)-LIRS, andk-IRS strict⊂ (k+1)-LIRS strict.

3.2. Characterization of1-LIRS. Clearly, there exist graphs which do not belong to
1-LIRS. For instance, consider the graph of Figure 2 (that we term the Y-graph), and
assume that there exists a linear interval routing functionR with compactness 1 on this
graph. Then there exists a branch such that neither the vertexx in the middle of the
branch, nor the vertexy at the extremity of the same branch is labeled 1 or 7. We calle
the edge betweenx and the centerz. Necessarily, the corresponding intervalIx,e must
contain 1 and 7, thusIx,e = [1, 7], andy is not reachable fromx: a contradiction. Below,
we characterize the graphs that belong to 1-LIRS.

Recall that an edgeeof a graphG = (V, E) is a bridge if and only ifG′ = (V, E−{e})
is a disconnected graph.

DEFINITION 7. A lithium-graphis a graph with three bridges that connect a same con-
nected component (thekernel) with three other distinct connected components (the
electrons) of at least two vertices.

Y-graph lithium-graph weak lithium-graph

z

x

y

Kernel
Electrons

Fig. 2.The Y-graph, a lithium-graph, and a weak lithium-graph.
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Figure 2 shows the general form of a lithium-graph. The Y-graph is a typical example
of a lithium-graph, the smallest one actually. We can get the following lemma easily by
the same arguments which show that the Y-graph/∈ 1-LIRS:

LEMMA 1. If G is a lithium-graph, then G /∈ 1-LIRS.

In fact, we get:

THEOREM2. G ∈ 1-LIRS⇔ G is not a lithium-graph.

We have to show that any graph which is not a lithium-graph belongs to 1-LIRS. To
do that, we need some preliminary results. In the following, we assume thatG has at
least three vertices, since otherwiseG ∈ 1-LIRS strict, andG is not a lithium-graph.

LEMMA 2. Every2-edge-connected graph G= (V, E) belongs to1-LIRSstrict. More-
over, for any two vertices x and y of G, there exists a linear strict interval routing function
R= (L, I) of compactness1 satisfying:

(i) L(x) = 1;
(ii) ∀z ∈ V,L(z) < L(y), ∀(z, u) ∈ E: L(y) ∈ Iz,(z,u) ⇒ |V | ∈ Iz,(z,u);

(iii) let z be the vertex such thatL(z) = |V |,∃(z, u) ∈ E,L(u) ≤ L(y),and Iz,(z,u) = ∅.

PROOF. We proceed iteratively: at each step we consider a subgraphH = (VH , EH )

of G containingx and y, and a linear strict interval routing function onH satisfying
properties (i)–(iii). We successively update this construction, keeping the good properties
and adding one or more vertices toH until |VH | = |V |. We detail below the initialization
of our construction, and then the way to update our construction.

Initialization. If x 6= y, then, from Menger’s theorem, letP1 and P2 be two edge-
disjoint paths fromx to y. It is actually possible to find such paths inG such that if they
have a certain number of common verticesu1, . . . ,ur−1 distinct fromx andy, then these
vertices are encountered in the same order going fromx to y on P1, and onP2. Thus, let
u0 = x, ur = y, and, fori ∈ {0, . . . , r − 1}, letCi be the cycle composed of the pathP1

from ui to ui+1, and the pathP2 from ui+1 to ui .
If x = y, then letC0 be a cycle ofG (of at least three vertices) going throughx. Set

u0 = x = y = u1.
Let H = (VH , EH ) be the subgraph ofG obtained by union of theCi ’s. We label the

vertices ofH as follows (see Figure 3(a)–(c)): setL(x) = 1, and label clockwise the
vertices ofC0 in increasing order. If there is more than one cycle, then start fromu1, and
label clockwise the vertices ofC1 in increasing order. Repeat this operation considering
successively the cyclesCi , i = 2, . . . , r − 1, until all the vertices of theCi ’s are labeled.

Now, we set the intervals as follows (see Figure 3(d)). LetnH be the number of
vertices ofH . Let ni be the number of vertices of the cycleCi , for i ∈ {0, . . . , r − 1}.
Consider any cycleCi , for i ∈ {0, . . . , r − 1}. Let z be any vertex ofCi . Let e+ (resp.
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e−) be the clockwise (resp. counterclockwise) edge of out(z) onCi . We set

Iz,e+ =
{

]L(z), nH ] if z 6= ui+1 or ui+1 = y,
]L(z),

∑i
j=0 nj − i ] if z= ui+1 and ui+1 6= y,

and

Iz,e− =
{

[1,L(z)[ if z 6= ui ,
∅ if z= ui .

That this labeling and the setting of these intervals yield a strict linear interval routing
function onH can be easily checked. Concerning the three properties, (i) is satisfied
(L(x) = 1). Now, if L(z) < L(y), thenL(y) can belong toIz,e+ only. If Iz,e+ =
]L(z), nH ], then (ii) is satisfied; ifIz,e+ = ]L(z),

∑i
j=0 nj − i ], thenL(y) cannot belong

to Iz,e+ . Thus (ii) is satisfied. Finally, by definition, ifz is the vertex labelednH , Iz,e+ =
]nH ,

∑r−1
j=0 nj − r + 1] = ]nH , nH ] = ∅, and thus (iii) is also satisfied.

Updating. Let H be a subgraph ofG with nH < |V | vertices, and containing vertices
x and y. Let R = (L, I) be a linear strict interval routing function onH satisfying
conditions (i)–(iii). There exists a pathP = (v0, v1, . . . , vk, vk+1), k ≥ 1, in G such that
v0 ∈ VH , vk+1 ∈ VH , andvi /∈ VH , for everyi ∈ {1, . . . , k}. ConsiderH ′ = H ∪ P,
and assumeL(v0) < L(vk+1). Consider the following labelingL′ of the vertices ofH ′:
for v ∈ VH , if L(v) ≤ L(v0), thenL′(v) = L(v), otherwiseL′(v) = L(v) + k. For
i ∈ {1, . . . , k}, L′(vi ) = L(v0)+ i .

We update the intervals ofI as follows: letv ∈ VH , and lete ∈ EH be an edge
incident tov. AssumeIv,e = [a, b], we set

I ′v,e =
[a, b] if b < L(v0),

[a, b+ k] if a ≤ L(v0) ≤ b,
[a+ k, b+ k] if L(v0) < a.
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Now we have to fix the intervals on the pathP. Letebe the edge ofP of extremityv0, we
setI ′v0,e = [L′(v1),L′(vk)]. Let e be the edge ofP of extremityvk+1, we setI ′vk+1,e = ∅.
Let e= (vi , vi+1), i ∈ {1, . . . , k}, we setI ′vi ,e = [L′(vi+1), nH + k]. Let e= (vi−1, vi ),
i ∈ {1, . . . , k}, we setI ′vi ,e = [1,L′(vi−1)]. It is easy to check thatR′ = (L′, I ′) is a linear
strict interval routing function onH ′. Properties (i) and (iii) are of course still satisfied.
Assumev ∈ VH , e ∈ EH , and Iv,e = [a, b]. If L′(y) ∈ I ′v,e, thenb ≥ L(v0) because
otherwiseL′(y)would be strictly less thanL(v0), thusL′(y) = L(y) andb = |V |which
is impossible ifb < L(v0). There are two cases: eitherL(y) ≤ L(v0), orL(y) > L(v0).
In both cases, ifL′(y) ∈ I ′v,e, thenL(y) ∈ Iv,e andb = nH , that isnH + k ∈ I ′v,e. It is
also easy to check that property (ii) also holds for the intervals onP. ThusR′ satisfies
property (ii) onH ′.

Let H = H ′, and repeat this process untilnH = |V |.

LEMMA 3. Let G ∈ 1-LIRS strict. Let H be the graph obtained from G by adding a
set of independent vertices S of G such that, for all x ∈ S, x is connected to only one
vertex of G. Then H∈ 1-LIRS.

PROOF. Let R= (L, I) be a strict linear interval routing function onG. For any vertex
x in G, we denote byν(x) the number of vertices ofS which are connected tox in
H = (V ′, E′), V ′ = V ∪ S. Then we define the labelingL′ of the vertices ofH as
follows. For anyx ∈ V , L′(x) = L(x) +∑y∈V |L(y)<L(x) ν(y). If x is connected top
vertices ofS in H , namelys1, . . . , sp, thenL′(si ) = L′(x) + i for all i ∈ {1, . . . , p}.
An interval [L(u),L(v)] ∈ I is transformed in an interval [L′(u),L′(v) + ν(v)] ∈ I ′.
Finally, we set new intervals inI ′: Ix,(x,si ) = [L′(si )] and Isi ,(si ,x) = [1, |V ′|].

Now, we can state our proof:

PROOF OFTHEOREM2. Let G = (V, E) be a graph which is not a lithium-graph. We
say that an edge ofE is astrongbridge if it is a bridge (that is, a cut-edge) that splits
G into two connected components, each of at least two vertices. We decomposeG, by
deletion of all the strong bridges ofE, in the maximum number of connected components
G0, . . . ,Gk, wherek ≥ 0 is the total number of strong bridges ofG. Note that some
components may contain only one vertex.

SinceG is not a lithium-graph, each componentGi is connected to at most two
other components. Therefore, we can assume thatG is a “path” of Gi ’s of the form
G0 − G1 − · · · − Gk. Let xi ∈ V(Gi ) and yi−1 ∈ V(Gi−1) be the vertices such that
the strong bridges are the edges(yi−1, xi ), i ∈ {1, . . . , k}. We also definex0 = y0 and
yk = xk.

For everyi ∈ {0, . . . , k}, let G′i be the graph obtained fromGi by removing all the
vertices of degree 1 inG, and letG′ = ⋃k

i=0 G′i . From Lemma 2, eachG′i ∈ 1-LIRS
strict and, more precisely, a strict linear interval routing functionRi = (Li , Ii ) on G′i
can be found such that

(i) Li (xi ) = 1,
(ii) ∀z ∈ V(G′i ),Li (z) < Li (yi ), ∀(z, u) ∈ E(G′i ): Li (yi ) ∈ Iz,(z,u) ∈ Ii ⇒ |V(G′i )|
∈ Iz,(z,u),
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(iii) let z be the vertex such thatLi (z) = |V(G′i )|, ∃(z, u) ∈ E(G′i ),Li (u) ≤ Li (yi ),
and Iz,(z,u) = ∅ ∈ Ii .

From the routing functionsRi = (Li , Ii ) on theG′i ’s, i ∈ {1, . . . , k}, a strict linear
interval routing functionR = (L, I) on G′ can be defined as follows. Letz be any
vertex ofG′, and leti be such thatz is a vertex ofG′i . We setL(z) by a simple shift
of Li (z): L(z) = Li (z) +

∑i−1
j=0 |V(G′j )|. The intervals ofIi are shifted similarly by

adding
∑i−1

j=0 |V(G′j )| to both extremities excepted in the following cases: if one of the
two extremities is 1, this extremity is unchanged; if one of the two extremities is|V(G′i )|,
we set this extremity to|V(G′)|. We also replace the empty intervalsIz,(z,u) defined by
property (iii) by Iz,(z,u) = ]L(z), |V(G′)|]. Finally, we setIxi ,(xi ,yi−1) = [1,L(xi )[ and
I yi−1,(yi−1,xi ) = ]

∑i−1
j=0 |V(G′j )|, |V(G′)|], for everyi ∈ {1, . . . , k}.

With these labeling and intervals, property (i) ensures that the route from a vertex in
G′i to a vertex ofG′j , j < i , goes throughxi , leavesG′i by the strong bridge(xi , yi−1),
then goes toxi−1, leavesG′i−1 by the strong bridge(xi−1, yi−2), etc. Property (ii) ensures
that the route from a vertexz in G′i , with L(z) ≤ L(yi ), to a vertex ofG′j , j > i , goes
throughyi and leavesG′i by the strong bridge(yi , xi+1). Property (iii) ensures that the
route from a vertexz in G′i , with L(z) > L(yi ), to a vertex ofG′j , j > i , goes through
the vertex of the highest label inG′i , then reaches a vertex ofG′i with a label smaller
thanyi , then goes throughyi and leavesG′i by the strong bridge(yi , xi+1), then goes to
yi+1 and leavesG′i+1 by the strong bridge(yi+1, xi+2), etc. We getG′ ∈ 1-LIRS strict.

We conclude the proof by adding the vertices of degree 1 and applying Lemma 3.

The characterization of Theorem 2 gives an easy way to determine whether a graph
supports a linear interval routing function of compactness 1. From a time complexity
point of view, checking whether a graph is a lithium-graph is polynomial. Moreover, the
reader can check that Theorem 2 gives anO(n2) algorithm to derive an interval routing
function(L, I) on a graph which belongs to 1-LIRS. Therefore, it is quite easy to know
if a graph belongs to 1-LIRS or not. For instance:

COROLLARY 2. Every interval graph belongs to1-LIRS.

Recall that an interval graph [15] is a graph in which each vertex is an interval ofR,
and where edges are pairs of intervals which intersect.

PROOF. Let aỸ-graph be a particular case of lithium-graphs for which there exist three
bridges which connect a same connected component (the kernel) with three distinct
connected components (the electrons) ofexactlytwo vertices. Note that the vertices of
the kernel which connect each electron with the kernel can be distinct or not. It is easy to
check that anỹY-graph is not an interval graph (see [15] and [16]). Any lithium-graph
has aỸ-graph as an induced subgraph, and any induced subgraph of an interval graph is
an interval graph. Therefore a lithium-graph is not an interval graph, that is equivalent
to saying that any interval graph belongs to 1-LIRS (from Theorem 2).

Note that the cycle ofn vertices,Cn, for n ≥ 4, is not an interval graph [16]. However,
Cn ∈ 1-LIRS by a trivial application of Theorem 2. Therefore, the class 1-LIRS is not
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reduced to interval graphs. In fact, this class contains most of the usual networks consid-
ered for interconnecting PEs of a distributed memory computer. Therefore, the result of
Theorem 2 is quite good news: it means that the use of cyclic intervals is not necessary
to build an interval routing function on usual networks.

Now we characterize the graphs which belong to 1-LIRS strict.

3.3. Characterization of1-LIRS Strict

DEFINITION 8. A weak lithium-graphis a graph with a least three bridges which con-
nect the same connected component (the kernel) with three other distinct connected
components (the electrons).

Any lithium-graph is a weak lithium-graph. A lithium-graph is indeed a weak lithium-
graph where each of the electrons has at least two vertices (see Figure 2).

THEOREM3. G ∈ 1-LIRS strict⇔ G is not a weak lithium-graph.

PROOF. (⇒) AssumeG ∈ 1-LIRS strict, and suppose thatG is a weak lithium-graph.
Consider the vertices of the electrons which connect the electrons to the kernel. Neces-
sarily, one of these vertices is not labeled 1 norn (wheren is the number of vertices of
G). We call this vertexx, and lete be the bridge betweenx and the kernel. The interval
Ix,e is equal to [1, n] otherwise the routing function would be not connected. However,
since 1< L(x) < n, we get thatIx,e containsL(x), a contradiction.
(⇐) If G is not a weak lithium-graph, then it is not a lithium-graph and we can

decomposeG as in the proof of Theorem 2 to obtain a “path”G0 − G1 − · · · − Gk,
where theGi ’s are connected by strong bridges. SinceG is not a weak lithium-graph,
we get deg(x) 6= 1 for every vertexx of Gi , i ∈ {1, . . . , k − 1}. Now, there is at most
one vertex of degree 1 inG0 andGk if k ≥ 1, and there are at most two such vertices if
k = 0. This means that we can decomposeG in a “path”{x}−G′0−G1−· · ·−G′k−{y}
wherex (resp.y) is the vertex of degree 1 ofG0 (resp.Gk) if it exists, andG′0 (resp.
G′k) is obtained fromG0 (resp.Gk) by removingx (resp.y). We can apply the same
construction as in the proof of Theorem 2 on the “path”{x}−G′0−G1−· · ·−G′k−{y}.
Since each component has edge-connectivity 2, the constructed routing function uses
only strict linear intervals (from Lemma 2).

Theorem 3 has a direct simple consequence on the cartesian product. Recall that the
cartesian product of a graphG by a graphH is the graph denoted byG×H , whose
vertices are elements of the cartesian productV(G)×V(H), and whose edges are the
pairs{(x, y), (x′, y′)} such that either(x, x′) ∈ E(G) or (y, y′) ∈ E(H).

COROLLARY 3. Let G and H be two graphs of at least two vertices, then G×H ∈ 1-
LIRS strict.

Theorem 8 later takes advantage of Theorem 3 in a more significant way.
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3.4. Interval Routing With Extended Labels. The memory space complexity of a router
of degreed implementing an interval routing function of compactnessk is bounded
by O(kd logn) bits. One can argue that classes of graphs supporting interval routing
functions with certain properties like compactness, strictness, shortest paths, etc., might
be limited by the space labeling of the vertices. We define an interval routing function
with extended labelson ann-vertex graph as an interval routing function whose labels
are taken in{1, . . . ,nc}, for some constantc ≥ 1. Standard interval routing schemes
correspond toc = 1. Clearly, any router implementing an interval routing function with
extended labels still has a memory space ofO(kd logn) bits because all the integers
can be stored in at most

⌈
c log2 n

⌉ = O(logn) bits. Hence, it is natural to ask whether
a larger labeling space allows us to increase the power of the standard interval routing
scheme in term of routing ability. We answer this question negatively by the following
theorem:

THEOREM4. Let G be a graph of order n, and let m be an integer such that m≥ n. Let
R= (L, I) be an interval routing function on G with labels taken in{1, . . . ,m}. There
exists an interval routing function R′ on G such that:

• the set of routing paths induced by R′ is the same as the one induced by R;
• the compactness of R′ is at most the compactness of R;
• the linear and strictness properties of the intervals of R are preserved for the intervals

of R′.

PROOF. We defineR′ = (L, I) on G = (V, E) as follows: for everyx ∈ V , L′(x) is
the rank ofL(x) in the ordered setL(V) of all the labels of vertices ofV . For every
interval I = [a, b] of I, we construct an intervalI ′ of I ′ as follows. First, we definea′

andb′ (if they exist) as the boundaries of the largest interval [a′, b′] such that [a′, b′] ⊂ I ,
and [a′, b′] ⊂ L(V). For everyi ∈ L(V), let L−1(i ) denote the unique vertexx such
thatL(x) = i , and letψ(i ) = L′(L−1(i )). We set

I ′ =
{∅ if a′ andb′ do not exist,

[ψ(a′), ψ(b′)] otherwise.

By construction,ψ is a strict increasing function on the setL(V). Thus for every interval
[α, β] ⊂ L(V), ψ([α, β]) = {ψ(i ) | i ∈ [α, β]} = [ψ(α), ψ(β)]. For everyx ∈ V ,
L(x) ∈ I ⇔ L(x) ∈ [a′, b′] ⇔ ψ(L(x)) ∈ ψ([a′, b′]) ⇔ L′(x) ∈ [ψ(a′), ψ(b′)] =
I ′. Therefore, for everyx, y ∈ V , Rx(y) = R′x(y) (we get of coursex = y⇔ L′(x) =
L′(y)), that is, the set of induced routing paths is the same for both routing functions
R and R′. Since, for everyx ∈ V , L(x) ∈ I ⇔ L′(x) ∈ I ′, the union and disjunction
properties are clearly satisfied, as the linearity and the strictness of each interval. Finally,
I ′ is composed of at most one interval (that can be removed ifI ′ = ∅). Thus the
compactness ofR′ is not greater than that ofR.

3.5. Summary. Figure 4 summarizes the results we obtained in this section. In the
following section we study the length of the paths induced by an interval routing function.
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1-LIRS 1-IRS strict = all graphs1-LIRS strict

lithiums

interval graphs

Fig. 4.Classes 1-IRS strict, 1-LIRS and 1-LIRS strict.

4. Efficiency of an Interval Routing Scheme. We have characterized graphs that
support a (linear) interval routing function of compactness 1. Both constructions of
Theorems 1 and 2 do not necessarily produce shortest paths between the sources and
the destinations. In this section we study the tradeoff between the compactness of the
routing and the length of the induced paths.

4.1. Optimal Interval Routing Schemes

DEFINITION 9 (Optimality). Let R be a routing function on a graphG. R is optimal
if and only if the route built byR between any pair source–destination is of minimum
length.

NOTATION. For every integerk ≥ 1, we denote byk-IRS∗ the class of graphs which
support an optimal interval routing function of compactness at mostk. Similarly we
denote byk-LIRS∗ the class of graphs which support an optimal linear interval routing
function of compactness at mostk.

DEFINITION 10 (Compactness of a Graph). Thecompactnessof a graphG is the min-
imum taken over all the optimal interval routing functionsR on G of the compactness
of R. Similarly, thelinear-compactnessof G is the minimum taken over all the optimal
linear interval routing functionsR on G of the compactness ofR.

In other words, the (linear-)compactness of a graphG is the smallest integerk such that
G ∈ k-(L)IRS∗. The compactness ofG is an important parameter, since it measures the
efficiency in term of memory complexity, of interval representations of optimal routing
functions onG.

Frederickson and Janardan have showed in [10] that outer-planar graphs, that is, a
subclass of planar graphs including trees, belong to 1-IRS∗ strict. In the following we
present two large classes of graphs of compactness 1.
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Fig. 5.Setting the intervals of a routing function on an interval graph.

4.1.1. Families of Graphs Belonging to1-(L)IRS∗

THEOREM5. Every unit interval graph belongs to1-LIRS∗strict.

A unit interval graph [16] is an interval graph in which all the intervals representing
the vertices have the same length.

PROOF. Let G be any unit interval graph of ordern > 1. Each vertexx of G is
represented by a unit intervalJx ⊂ R. For any vertexx let α(x) andβ(x) be such
that Jx = [α(x), β(x)]. We construct an optimal strict linear interval routing function
R= (L, I) as follows.

We label the vertices from left to right based on the ranks of theα(x). Letx be any ver-
tex ofG, then letxmin (resp.xmax) be the vertex satisfyingα(xmin) = miny6=x,Jy∩Jx 6=∅ α(y)
(resp.α(xmax) = maxy6=x,Jy∩Jx 6=∅ α(y)).

Assume first thatxmin 6= xmax. Then letKmin = [1,L(xmin)] andKmax= [L(xmax), n].
Moreover, for any neighbory of x distinct fromxmin andxmax, setKy = [L(y)]. Then
setIx,(x,xmin) = Kmin, Ix,(x,xmax) = Kmax, andIx,(x,y) = Ky (see Figure 5). We get that, for
anyy (if it exists),Kmin∩ Ky = Kmax∩ Ky = Kmin∩ Kmax= ∅. That is, the disjunction
property is satisfied. Moreover,Kmin ∪ Kmax ∪ (

⋃
y Ky) = [1, n]. That is, the union

property is also satisfied. Finally the intervalsKmin, Kmax, andKy do not containL(x).
If xmin = xmax, then eitherL(x) = 1 orL(x) = n. In the former case (resp. latter

case), the interval of the unique edge of extremityx is ]1, n] (resp. [1, n[ ).
Now, we prove the propertyPk: for everyk, the routing function defined above builds

a shortest path between any two vertices at distance at mostk.P1 is true. AssumePk′ is
true for allk′ ∈ {1, . . . , k− 1}, and letx andy be two vertices at distancek > 1. Since
all the intervals are of the same length, ifL(x) < L(y), thenxmax is on a shortest path
betweenx andy, andy ∈ Kmax; otherwiseL(x) > L(y), andxmin is on a shortest path
betweenx andy, andy ∈ Kmin. ThusPk is true sincePk−1 is true.

Note thatC4 ∈ 1-LIRS∗ strict but C4 is not a unit interval graph. Similarly, the
complete bipartite graphK1,3 ∈ 1-LIRS∗ but is not a unit interval graph. Note also that
there are interval graphs which do not belong to 1-LIRS∗ as, for instance, the graph on
Figure 6(a). Indeed, assume it belongs to 1-LIRS∗. Then letx andy be two vertices, both
different from 1 and 7.Ix,(x,z) must contain 1 and 7, thusIx,(x,z) = [1, 7], and the route
from x to y is not a shortest path: a contradiction. Of course, it is easy to generalize the
class of graphs on which such an argument can be applied. However, at the present time,
no characterization of 1-LIRS∗ and 1-IRS∗ is known.
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Fig. 6. (a) An interval graph which does not belong to 1-LIRS∗, and (b) a circular-arc graph which does not
belong to 1-IRS∗.

Recently, Narayanan and Shende have shown [22] that all interval graphs belong to
1-IRS∗ strict. We give below another class of graphs belonging to 1-IRS∗ strict.

The reader can easily check thatC5 /∈ 1-LIRS∗ (this result is proved in [3] and is
proved again later in this paper for anyCn, n ≥ 5). On the other hand, one can also check
that Cn ∈ 1-IRS∗ for everyn. This is a consequence of a more general result. Recall
thatG is a circular-arc graph if there exists a circleC such that each vertexx of G can
be represented by an arccx of C, and two verticesx andy of G are adjacent if and only
if cx ∩ cy 6= ∅. A unit circular-arc graph [16] is a circular-arc graph such that all arcs
representing the vertices have the same length.

THEOREM6. Every unit circular-arc graph belongs to1-IRS∗strict.

PROOF. Let G be a unit circular-arc graph. IfG is a unit interval graph, thenG ∈ 1-
LIRS∗ strict from Theorem 5. AssumeG is not a unit interval graph. Consider a circular
representation ofG on the trigonometric circle. Once this representation is fixed, we
can set an angleθ ∈ [0, 2π [ as a measure of the length of the arcs representing the
vertices. Each vertexx can also be represented by an angleθx ∈ [0, 2π [ (for instance,
the angle between the horizontal axis and the line joining the center of the circle to the
middle of the arc representingx), and two verticesx andy are adjacent if and only if
(θx − θy) mod 2π is either in [0, θ ] ∩ [0, π ] or in [2π − θ, 2π ] ∩ [π, 2π ].

We label each vertexx by its rank in the set of all the angles{θy | y ∈ V(G)}.
We set the intervals as follows. Letx ∈ V(G), and letz be the vertex at distance

the eccentricity ofx (that is, the maximum distance betweenx and any other vertex
of G) counterclockwise which maximizes the angleθz − θx. Then letx− (resp.x+) be
the neighbor ofx maximizing θy − θx (resp.θx − θy ) among the neighborsy of x.
SinceG is not an interval graph,x− 6= x+. We setIx,(x,x+) = ]L(z),L(x+)], Ix,(x,x−) =
[L(x−),L(z)], and, for every neighbory of x distinct fromx+ andx−, set Ix,(x,y) =
[L(y)]. The union and the disjunction properties are clearly satisfied, andL(x) does not
belong toIx,e, ∀e∈ out(x).

As in the proof of Theorem 5, that the paths built by the routing function are shortest
paths can be verified by induction on the length of the paths.

Note thatK1,3 ∈ 1-IRS∗ strict but K1,3 is not a unit circular-arc graph. Note also
that there are graphs in 1-IRS∗ strict which are not circular-arc graphs: for instance, the
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Y-graph. Moreover, there are circular-arc graphs which do not belong to 1-IRS∗. For
instance, consider the graph of Figure 6(b). Assume it belongs to 1-IRS∗, and consider
the intervalIa,(a,g). This interval must containL(g) andL(d), but neitherL(b) norL( f ).
Similarly, Ic,(c,g) must containL(g) andL( f ), but neitherL(b) norL(d). Finally, Ie,(e,g)

must containL(g) andL(b), but neitherL(d) nor L( f ). All these conditions cannot
hold simultaneously.

4.1.2. Tools to Recognize Optimal Routing Schemes. The two following results are
useful for knowing whether a graph belongs tok-(L)IRS∗ for a fixedk. We recall the
definition of a subgraph of shortest paths:

DEFINITION 11 (Subgraphs of Shortest Paths). A graphG′ is a subgraph of shortest
pathsof a graphG if and only if G′ is a partial subgraph ofG, and all the shortest paths
of G between any pair of vertices ofG′ are contained inG′.

THEOREM7. For every integer k≥ 1,and for every class of graphsG equal to k-LIRS∗

strict, k-LIRS∗, k-IRS∗strict, or k-IRS∗,

G ∈ G ⇒ ∀G′ subgraph of shortest paths of G, G′ ∈ G.

Theorem 7 says that the compactness of a graph is always at least the compactness of
any of its subgraphs of shortest paths. Note that sinceG is a subgraph of shortest paths
of itself, the converse property of Theorem 7 is of course satisfied.

PROOF. Let G′ be a subgraph of shortest paths ofG ∈ G. Let m = |V(G)| and
n = |V(G′)|. Let R be an optimal interval routing function onG. We show thatG′

supports an optimal interval routing functionR′ which makesG′ ∈ G. Since all the
shortest paths between any pair of vertices ofG′ are wholly contained inG′, R is an
optimal interval routing onG′ with extended labels taken in{1, . . . ,m}, m ≥ n. From
Theorem 4, there exists an interval routing functionR′ onG′ which has the same induced
routing paths, the same compactness, and the same linear and strictness properties asR.
ThereforeG′ belongs to the same class asG.

Theorem 7 is used to prove the next theorem that states results concerning cartesian
products. Such structures are particularly interesting for the design of networks of pro-
cessors (mesh, torus, hypercube,. . . ). In Section 5 we will see many applications of
Theorem 7.

THEOREM8. For every integer k≥ 1,

(i) G ∈ k-LIRS∗strict and H∈ k-LIRS∗strict ⇒ G×H ∈ k-LIRS∗strict;
(ii) G ∈ k-LIRS∗ and H ∈ k-LIRS∗strict ⇒ G×H ∈ k-LIRS∗;

(iii) G ∈ k-LIRS∗strict and H∈ k-IRS∗strict ⇒ G×H ∈ k-IRS∗strict;
(iv) G ∈ k-LIRS∗ and H ∈ k-IRS∗strict ⇒ G×H ∈ k-IRS∗;
(v) G /∈ k-LIRS∗ ⇒ G×H /∈ k-LIRS∗ for any graph H;
(vi) G /∈ k-IRS∗ ⇒ G×H /∈ k-IRS∗ for any graph H.
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Note that we were not able to derive similar conservative properties for the product
of two graphs belonging tok-IRS∗, or for the product of two graphs belonging tok-IRS∗

strict. The linear property, and the strictness of the intervals are two relevant character-
istics for cartesian products. To apply Theorem 8, one of the two graphs must support a
strict interval routing function, and the other graph must support a linear interval routing
function.

PROOF. The two last results (v) and (vi) are direct consequences of Theorem 7 since
the graphG×H containsG as a subgraph of shortest paths.

Let nG = |V(G)| andnH = |V(H)|.
To prove (i), letRG = (LG, IG) andRH = (LH , IH ) be the interval routing functions

defined on the graphsG andH , respectively, that makesG andH ∈ k-LIRS∗ strict. Let f
be the one-to-one functionf : [1, nG]×[1, nH ] 7→ [1, nG·nH ] defined by f (a, b) = a+
(b−1)·nG. We define the labelingLof the vertices ofG×H byL(z) = f (LG(x),LH (y)),
for every vertexz = (x, y) of G×H . Let z = (x, y) andz′ = (x′, y′) be two adjacent
vertices ofG×H , and lete= (z, z′). We set:

Iz,e =
{

[ f (a,LH (y)), f (b,LH (y))] if y = y′ where Ix,(x,x′) = [a, b] ∈ IG

[ f (1, c), f (nG, d)] if x = x′ where I y,(y,y′) = [c, d] ∈ IH

Clearly, if [a, b] ∩ [a′, b′] = ∅, then [f (a,LH (y)), f (b,LH (y))] ∩ [ f (a′,LH (y)),
f (b′,LH (y))] = ∅. Similarly, if [c, d] ∩ [c′, d′] = ∅, then [f (1, c), f (nG, d)] ∩
[ f (1, c′), f (nG, d′)] = ∅. Since H ∈ k-LIRS∗ strict, LH (y) /∈ [c, d], and thus
[ f (a,LH (y)), f (b,LH (y))]∩[ f (1, c), f (nG, d)] = ∅. Therefore, the disjunction prop-
erty is satisfied. It is trivial to check that the union property is also satisfied. The routing
functionR= (L, I) built onG×H as above routes messages as follows. The path from
a vertex(x, y) to a vertex(x′, y′) goes first inside thexth copy ofH toward the vertex
(x, y′). Then it goes inside they′th copy ofG toward(x′, y′). These two parts of the route
use shortest paths, thereforeG×H ∈ k-LIRS∗. SinceLG(x) /∈ [a, b], G×H ∈ k-LIRS∗

strict.
If LG is not strict, we only getG×H ∈ k-LIRS∗, and property (ii) holds. IfIH

contains a cyclic interval [c, d], then the interval [f (1, c), f (nG, d)] is also cyclic and
G×H ∈ k-IRS∗, that is property (iv) holds. Finally, ifLG is strict, we getG×H ∈ k-IRS∗

strict, and property (iii) holds.

Points (i) and (ii) of the previous theorem have been proved independently by Kranakis
et al. in [19].

Theorems 7 and 8 are basic tools for computing the compactness of graphs. A third
tool is described in Section 5. The last result of this section concerns the class of graphs
which possess an optimal interval routing function. It shows that, up to a small increase
of the compactness, an optimal strict interval routing function can always be designed.

PROPOSITION1. ∀k ≥ 1,

(i) G ∈ k-LIRS∗ ⇒ G ∈ (k+1)-LIRS∗strict;
(ii) G ∈ k-IRS∗ ⇒ G ∈ (k+1)-IRS∗strict.
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PROOF. Let G be a graph which supports an optimal nonstrict interval routing function
R = (L, I). Then, for any vertexx, there exists at most one edgee ∈ out(x) such that
an intervalIx,e contains the labelL(x). We transform the routing functionR in a strict
interval routing functionR′ = (L, I ′) in splitting all intervalsIx,e = [a, b] containing
the label of their local vertexx into two intervals [a,L(x)[ and ]L(x), b]. The routes
built by R andR′ are the same.

4.2. Fast and Compact Interval Routing Schemes. From a practical point of view, the
designer of a routing system must balance the hardware constraints with the efficiency of
the communications. Very fast communications may be required even up to a deficiency
in hardware constraints (mainly increasing the surface of the routers), or this surface
may be required to be as small as possible even up to degradation of the efficiency of
communication.

4.2.1. Minimum Time for a Fixed Compactness

DEFINITION 12 (Time). LetR be a routing function on a graphG.

• The timeof R is the maximum length of the paths built byR between any couple of
vertices.
• Thek-(linear)-timeof a graphG is the minimum taken over all the (linear) interval

routing functionsR on G of compactness at mostk, of thetimeof R.

The following result is a direct consequence of the proof of Theorem 1. It shows that
interval routing schemes are relatively efficient. Indeed, although graphs are not always
optimal as far as interval routing is concerned, it is possible to derive interval routing
functions which build paths of small maximum length in any graph.

COROLLARY 4. For every graph G of radius r, the1-timeof G is at most2r .

PROOF. In the proof of Theorem 1, construct the spanning treeT as a shortest paths
spanning tree of root any vertex of eccentricityr .

This result is particularly interesting for a graph whose diameter is 2r as, for instance,
the graphs of Figure 6. Note however that, in the routing scheme of Corollary 4, many
messages go through a single vertex (the root of the tree). Therefore, many contentions
might occur. This moderates the practical use of Corollary 4. Nevertheless, this upper
bound is the best that we can hope for in term of radius because, for everyr , there exists
a graph of radiusr and 1-time 2r . For example, a path of 2r + 1 vertices. Corollary 4
implies that the 1-time of a graph of diameterD is at most 2D. However, we do not
know if this upper bound is tight. Fork = 1 andk = 2, we summarize below the most
recent results aboutk-time as a function of the diameter.

THEOREM9. For every integer D,

• there exists a graph of diameter D of1-timeat least7D/4− 1 [29];
• there exists a graph of diameter D of2-timeat least5D/4− 1 [28].
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Fig. 7.A graph for which the constructive proof of Theorem 2 gives rise to a very inefficient routing function.

Many experimental results can be found in [17] where the author studies the 1-time
of some graphs of compactness at least 2, like the torus. Still in [17], general results on
the 3-time of arbitrary graphs are also presented.

Concerning linear interval routing schemes, the proof of Theorem 2 does not allow
us to derive a tight upper bound on the 1-linear-time of a graph. Furthermore, Figure 7
shows a graph of ordern for which the constructive proof of Theorem 2 gives rise to a
very inefficient routing function: its time isn − 4 (the route fromz to y does not pass
throughx), whereas its diameter is only 5. Clearly, it would have been possible to design
a much more efficient linear interval routing function for this graph (for example, using
a shortest paths spanning tree rooted inx).

We give below a lower bound on the maximum 1-linear-time of a graph which is not
a lithium-graph.

PROPOSITION2. For every integer D, there exists a nonlithium-graph of diameter D,
and of1-linear-timeat least2D − 1.

The proof of this proposition is a direct consequence of the following lemma.

LEMMA 4. ∀n ≥ 3, the1-linear-timeof Cn is n− 2.

PROOF. If n = 3 (resp. 4), then there exists an interval routing function which has a
time of 1 (resp. 2), and is the best that can be done (1 and 2 are the diameters ofC3 and
C4, respectively).

We show that, for everyn ≥ 5, the 1-linear-timeτ of Cn is≥ n−2. Assumeτ < n−2,
and letR = (L, I) be a linear interval routing function of timeτ . Let P be the path
y′-x′-t-x-y in Cn whereL(t) = 1. Letz be the vertex ofP which has the greatest label
among all the vertices ofP.

If z= x, then the intervalIx′,(x′,t) must containL(t) andL(z) because, otherwise, the
time to reacht or z from x′ would be≥ n− 2 via the edge(x′, y′). For the same reason
Ix′,(x′,t) cannot containL(y′). However,L(y′) ∈ [L(t),L(z)] ⊂ Ix′,(x′,t): a contradiction.

If z = y, then the intervalIt,(t,x) must containL(x) andL(z), but notL(x′). If
L(x′) > L(x), thenL(x′) ∈ [L(x),L(z)]: a contradiction. IfL(x′) < L(x) < L(y′),
then we get another contradiction with the fact thatIt,(t,x′) must containL(x′) and
L(y′), but notL(x). Finally, if L(x′) < L(x), andL(y′) < L(x), then again we get a
contradiction becauseIx′,(x′,t) must containL(t) andL(x), but notL(y′).
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If z= x′, orz= y′, we obtain similar contradictions by reversing the roles of vertices
x, andy on one hand, andx′ andy′ on the other hand. Thusτ ≥ n− 2. Actually there
exists a strict linear interval routing function onCn of 1-linear-timen − 2: label the
vertices clockwise from 1 ton, setIi,(i,i+1) = [i +1, n] for 1 ≤ i < n, andIn,(n,1) = [1],
set Ii,(i,i−1) = [1, i − 1] for 1< i ≤ n, and setI1,(1,n) = [n].

Lemma 4 combined with Theorem 7 yields another proof of a result in [3]:

COROLLARY 5. Cn ∈ 1-LIRS∗ ⇔ n < 5 ⇔ Cn ∈ 1-LIRS∗strict.

Recent works in [4] have showed that the 1-linear-time of some graphs of diameterD
can be as bad asÄ(D2). However, finding tight bounds on the worst-case 1-linear-time of
a graph remains open. The following result allows, under some conditions, the derivation
of the time of a cartesian product of graphs.

THEOREM10. Let k be any integer, let G be a graph of k-linear-timetG, and let H be
a graph which supports an interval routing function R of compactness k andtime tH .
Then,

• if R is a strict interval routing function, then G×H has a k-timeat most tG + tH ;
• if R is a strict linear interval routing function, then G×H has a k-linear-timeat most

tG + tH .

PROOF. Consider the routing function constructed in the proof of Theorem 8. The two
conditions for the construction are satisfied:G ∈ k-LIRS∗, and the routing functionR
is strict. Clearly the time of this routing function is at mosttG + tH .

4.2.2. Minimum Compactness for an Optimal Time. For any graphG, let IRS(G) de-
note the compactness ofG, and let LIRS(G)denote its linear-compactness. The following
theorem improves a result stated in [30]:

THEOREM11. For every graph G of order n≥ 2, LIRS(G) ≤ n/2, and IRS(G) ≤
(n− 1)/2.

PROOF. It is always possible to design a routing table which correspond to a shortest
paths routing function. For any vertexx, there are at mostn−1 destinations associated to
an edge of out(x). These destinations can be encoded by at mostbn/2c linear intervals,
and by at mostb(n− 1)/2c cyclic intervals (recall that intervals are not necessarily
strict).

As for the time, it is possible to derive the value of the compactness of a cartesian
product of graphs.

THEOREM12. For any graphs G and H:

• max{LIRS(G), LIRS(H)} ≤ LIRS(G×H) ≤ max{LIRS(G), LIRS(H)+ 1};
• max{IRS(G), IRS(H)} ≤ IRS(G×H) ≤ max{LIRS(G), IRS(H)+ 1}.



176 P. Fraigniaud and C. Gavoille

PROOF. SinceG and H are both subgraphs of shortest paths ofG×H , it is a direct
consequence of Theorem 7 that LIRS(G×H) ≥ max{LIRS(G), LIRS(H)}, and that
IRS(G×H) ≥ max{IRS(G), IRS(H)}. Let kL = LIRS(H), and letkI = IRS(H).
From Proposition 1,H ∈ (kL +1)-LIRS∗ strict, andH ∈ (kI +1)-IRS∗ strict. Let
k = max{LIRS(G), kL + 1}, and letk′ = max{LIRS(G), kI + 1}. We have, on the one
hand,G ∈ k-LIRS∗ andH ∈ k-LIRS∗ strict, and, on the other hand,G ∈ k′-LIRS∗ and
H ∈ k′-IRS∗ strict. By application of Theorem 8, we get thatG×H ∈ k-LIRS∗ and
G×H ∈ k′-IRS∗.

The following result show that, unfortunately, there does not exist any constant upper
bound of the value of the compactness of a graph.

THEOREM13. ∀k ≥ 1, ∃G such that G/∈ k-LIRS∗.

PROOF. The graph drawn in Figure 6(a) provides an example fork = 1.
Let k ≥ 2, and consider the graphG composed of three isomorphic components

G1, G2, andG3, all connected to a single vertexu (see Figure 8). EachGi has three
“levels.” The first level is composed of 2k− 1 independent verticesx1, . . . , x2k−1, each
xi being connected tou. The second level is composed of

(2k−1
k−1

)
independent vertices

denoted(i1, . . . , i k−1), for 1 ≤ i1 < · · · < i k−1 ≤ 2k − 1. The vertex(i1, . . . , i k−1) is
connected to thek− 1 verticesxi1, . . . , xik−1. The third level is a complete graph of the
same number of vertices as in the second level. There is a one-to-one connection between
the second and the third level. We denote byn the order ofG. AssumeG ∈ k-LIRS∗,
and letR = (L, I) be the corresponding routing function. Consider the subgraphGi

such that none of its vertices is labeled 1 orn (say the graphG1 in Figure 8). Since the
xi ’s play the same role, assume thatL(x1) < · · · < L(x2k−1). Then consider the edgee
connecting the vertexz= (2, 4, 6, . . . ,2k−2) of the second level with its corresponding
vertex of the third level, denoted byy. From the structure ofG, we get that 1,n, and
L(x2i ) belong toI y,e, for everyi ∈ {1, . . . , k− 1}. Similarly,L(x2i−1) /∈ I y,e, for every

level 3y

complete graph

level 1

level 2(2,4)(1,2)

3G2G

u

5
x

4
x

3
x

2

G1

x
1

x

e
z

Fig. 8.A graph which does not belong to 3-LIRS∗.
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i ∈ {1, . . . , k}. Thus I y,e is composed of at leastk + 1 linear intervals: a contradiction.
ThusG /∈ k-LIRS∗.

COROLLARY 6. ∀k ≥ 1, ∃G such that G/∈ k-IRS∗.

PROOF. ∀k ≥ 2, (k−1)-IRS ⊂ k-LIRS. We complete the proof by applying Theo-
rem 13.

REMARK. The graph used in the proof of Theorem 13 hasn = 3(2k−1+2
(2k−1

k−1

)
)+1

vertices, that is2(4k/
√

k). Its compactness is thus at leastÄ(logn). Its diameter is 6,
and its maximum degree

(2k−1
k−1

) − 1 = 2(n). Many works deal with the asymptotic
behavior of the maximum compactness of a graph of ordern [6], [13], [14], [18], [19].
To our knowledge, the best results are a tight bound of2(n) for cubic graphs, and a
lower bound ofÄ(

√
n) for cubic planar graphs [14].

We are now ready to study the properties satisfied by the usual graphs considered as
candidates for interconnecting processors of parallel distributed memory computers.

5. Usual Networks. In this section we describe constructions of (linear) interval rout-
ing functions designed for many usual network as meshes, hypercubes, and shuffle-
exchange.

5.1. Paths, Cycles, and Complete Graphs. All these networks have already been con-
sidered in this paper. We refer to Lemma 4 and Corollary 5.Cn is a unit circular-arc graph.
The path withn verticesPn and the complete graphKn are both unit interval graphs.
According to Theorems 6 and 5,Cn ∈ 1-IRS∗ strict, whereasPn and Kn ∈ 1-LIRS∗

strict.

5.2. Meshes. In [3] it is proved that then-dimensional mesh belongs to 1-LIRS∗. The
following proposition simplifies their proof:

PROPOSITION3. The n-dimensional mesh Pd1×Pd2×· · ·×Pdn ∈ 1-LIRS∗strict.

PROOF. For everym, Pm belongs to 1-LIRS∗ strict. Thus, we can applyn − 1 times
Theorem 8.

5.3. Generalized Hypercubes. In [3] it is proved that then-dimensional binary hyper-
cube belongs to 1-LIRS∗. The following proposition generalizes this result:

PROPOSITION4. The generalized hypercube Hd
n , with n dimensions on an alphabet of

d ≥ 2 letters, belongs to1-LIRS∗strict.
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PROOF. The generalized hypercube is recursively defined byHd
1 = Kd and Hd

n =
Hd

n−1× Kd. That is,Hd
n = Kd × · · · × Kd, n times. Now,Kd ∈ 1-LIRS∗ strict, thus we

can apply Theorem 8n− 1 times.

5.4. Torus. In [3] it is shown that then-dimensional torusTn = Cd1×Cd2×· · ·×Cdn ∈ 1-
LIRS∗ if and only if di < 5 for everyi ∈ {1, . . . ,n}. The next theorem generalizes this
result.

THEOREM14. Let Tn = Cd1×Cd2×· · ·×Cdn be an n-dimensional torus such that
d1 ≤ · · · ≤ dn. We have:

(i) Tn ∈ 2-LIRS∗strict;
(ii) Tn ∈ 1-LIRS∗ ⇔ dn < 5 ⇔ Tn ∈ 1-LIRS∗strict;

(iii) Tn ∈ 1-IRS∗ ⇔ dn−1 < 5 ⇔ Tn ∈ 1-IRS∗strict.

PROOF. For anyn, Cn ∈ 1-IRS∗ strict. ThereforeCn ∈ 2-LIRS∗ strict, and thus, from
Theorem 8, we obtain (i). Result (ii) is obtained by application of Corollary 5 and
Theorem 8. Ifdn−1 < 5, thenTn−1 = Cd1×Cd2×· · ·×Cdn−1 ∈ 1-LIRS∗ strict (from
(ii)). SinceCdn ∈ 1-IRS∗ strict, we can apply Theorem 8. The reciprocal of (iii) is stated
in [24], i.e.,Cd1×Cd2 /∈ 1-IRS∗ for d1 ≥ 5.

5.5. A List of Usual Networks Which Do Not Belong to1-LIRS∗. In [30] van Leeuwen
and Tan asked the question whether there is an optimal interval routing function for
any arbitrary graph. Ruˇzička already answered this question in a negative way in [25]
by showing a graph of 1-time at least three-half its diameter. In this section we present
a list of graphs which are not in 1-LIRS∗. In Section 5.5.1 we use Theorem 7, and in
Section 5.5.2 we present a new tool for checking the optimality of an interval routing
function.

5.5.1. Using a Subgraph of Shortest Paths

PROPOSITION5. The following graphs do not belong to1-LIRS∗:

• theShuffle-Exchange [20], [27],SEn, ∀n ≥ 3;
• theCube-Connected-Cycle [23],CCCn, ∀n ≥ 2;
• theStar-Graph [1],Sn, ∀n ≥ 1.

PROOF. All these graphs contain a cycle of at least five vertices as a subgraph of shortest
paths. More precisely:

• For everyn ≥ 5,SEn containsC5 as a subgraph of shortest paths. Indeed, with the stan-
dard binary representation of the vertices,C5 = {01x10, 01x11, 1x110, x1101, x1100}
wherex = 1n−4. It is easy to check that it is a subgraph of shortest paths.SE4 contains
C7 as a subgraph of shortest paths, andSE3 /∈ 1-LIRS∗ as we see later in Proposition 6.
• For everyn ≥ 2, CCCn containsC8 as a subgraph of shortest paths.
• For everyn ≥ 1, Sn containsC6 as a subgraph of shortest paths.

Hence we get the result by applying Theorem 7 together with Lemma 4.
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5.5.2. A New Tool for Checking the Optimality of an Interval Routing Function. Let
R = (L, I) be an interval routing function on a graphG. We denote byTx,e the set of
labelsL(y) such that all the shortest paths between verticesx andy traverse the edge
e∈ out(x). For any subsetA of {1, . . . ,n}, we denote by [A] the smallest linear interval
which contains all the elements ofA, i.e., [A] = [minx∈A(x),maxx∈A(x)]. Of course,
if G ∈ 1-LIRS∗, then∀x ∈ V(G), ∀e 6= e′ ∈ out(x), Tx,e ∩ Tx,e′ = ∅ for any routing
function which makesG in 1-LIRS∗. In fact we can get a stronger result:

LEMMA 5. G ∈ 1-LIRS∗ ⇒ ∀x ∈ V(G), ∀e 6= e′ ∈ out(x), [Tx,e] ∩ [Tx,e′ ] = ∅ for
any routing function which makes G in1-LIRS∗.

PROOF. Let R = (L, I) be a linear interval routing function onG such thatG ∈ 1-
LIRS∗. Clearly, for any intervalIx,e ∈ I, [Tx,e] ⊂ Ix,e. We conclude by applying the
disjoint property.

For any two subsetsA andB of {1, . . . ,n}, we say thatA andB areseparableif and
only if [ A] ∩ [B] = ∅ (that is, either∀(a, b) ∈ A×B,a < b, or∀(a, b) ∈ A×B,a > b).
We denote byA | B the property “A andB are separable.” We get a method to prove that
a given graphG does not belong to 1-LIRS∗. It is sufficient to find a subsetV ′ of vertices
of V(G) such that the system of equationsTx,ei | Tx,ej , ∀x ∈ V ′ and∀ei 6= ej ∈ out(x),
leads to a contradiction whatever the labeling. Such a system of equations is said to be
inducedby V ′. It can be expressed independently of the labeling. The goal is to show
that there is no labeling compatible with the system. For instance:

PROPOSITION6. The following graphs do not belong to1-LIRS∗:

• theShuffle-ExchangeSE3;
• the6-directionalMesh (see Figure9(b));
• the8-directionalMesh (see Figure9(c));
• theButterfly [20], BFn, ∀n ≥ 2 (see Figure9(d));
• all the other graphs drawn in Figure9.
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Fig. 9.Some graphs which do not belong to 1-LIRS∗.
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PROOF. For the graphSE3, it is sufficient to prove that the graphG drawn in Figure 9(a)
is not in 1-LIRS∗. Indeed, this graph is a subgraph of the shortest paths ofSE3. Assume
that the vertices ofG have been arbitrary labeleda, b, . . . , f by an optimal linear interval
routing function of compactness 1. We then consider the system induced by the vertices
in gray in Figure 9(a):

in a: bc|de,
in b: a|c f,
in c: e|ab,
in d: a|ef,
in e: c|ad.

Assumeb < e : b < e
(a)H⇒ c < d

(e)H⇒ c < a
(b)H⇒ f < a

(d)H⇒ e < a
(c)H⇒ e < b :

contradiction (the assumptionb > e would also lead to a contradiction by symmetry).
Thus, from Theorem 7,SE3 /∈ 1-LIRS∗.

For everyn ≥ 3, BFn containsBF2 as a subgraph of shortest paths. SinceBF2 /∈ 1-
LIRS∗, by looking at the system induced by the three vertices in gray in Figure 9(d), we
get BFn /∈ 1-LIRS∗. For all the other graphs, the reader can check that the result holds
by looking at the system induced by the vertices in gray in Figure 9.

REMARK. An easy way to find a solution of a system{(Ai | Bi )i } obtained from graph
G is to consider a digraphRG associated to the system such that

V(RG) =
⋃

i

(Ai ∪ Bi ) and E(RG) =
⋃

i

{(a, b) ∈ Ai×Bi |a < b}.

We consider the transitive closureRG of RG. If RG possesses a cycle, thenG /∈ 1-LIRS∗.
If RG is acyclic, then it does not prove thatG ∈ 1-LIRS∗. However, sorting the vertices
of RG by outer degree can give indications about a possible labeling: label the vertex of
the smallest outer degree with 1, the vertex with the second smallest outer degree with 2,
and so on. With this method we found several labelings for the graphs in 1-LIRS∗ drawn
in Figure 10 (once the labeling is given, the interval setting is easy by using a greedy
algorithm). Using this approach, we found some counterexamples to the affirmation
stated in [3] that any combination of more than one square with one triangle sharing a
common face cannot be in 1-LIRS∗.

Even if Lemma 5 seems useful in general to determine whether a graph is in 1-LIRS∗

or not, one cannot hope to characterize the class 1-LIRS∗ completely with this method.
For instance, one cannot prove with this method whether the graph draw on Figure 9(e)
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Fig. 10.Some graphs which belong to 1-LIRS∗.
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does or does not belong to 1-LIRS∗. Indeed, the reader can check that any equation
system has a solution even if this graph does not belong to 1-LIRS∗. Indeed, fromx,
there are two possible equations:ab| uy or ab| vy, depending on the choice of the
shortest path of the routing function fromx to y. Assume the shortest path fromx to y
is fixed, and consider the equation system induced by the black vertices of the graph of
Figure 9(e) for both choices of the shortest path fromx to y. Whatever this choice is,
the corresponding system will be the same as the system induced be the gray vertices of
C5 (drawn in Figure 9(f)), which has no solution. Although Flammini recently proved
in [5] that answering whether a graphG does or does not belong to 2-LIRS∗ strict is
NP-complete, the full characterization of the class 1-LIRS∗ remains an open problem.

Note that the graph in Figure 9(b) contains the graph of Figure 6(b) as subgraph of
shortest paths. The graph of Figure 6(b) does not belong to 1-IRS∗, therefore 6-directional
meshes do not belong to 1-LIRS∗ neither to 1-IRS∗.

Acknowledgments. The authors are grateful to Eric Fleury, Jean-Claude K¨onig, and
Claudine Peyrat for many helpful remarks.
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