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Abstract

Detailed architectural simulators suffer from a long de-
velopment cycle and extremely long evaluation times. This
longstanding problem is further exacerbated in the multi-
core processor era. Existing solutions address the simula-
tion problem by either sampling the simulated instruction
stream or by mapping the simulation models on FPGAS;
these approaches achieve substantial simulation speedups
while simulating performancein a cycle-accurate manner.

This paper proposes interval simulation which takes a
completely different approach: interval simulation raises
the level of abstraction and replaces the core-level cycle-
accurate simulation model by a mechanistic analytical
model. The analytical model estimates core-level perfor-
mance by analyzing intervals, or the timing between two
miss events (branch mispredictions and TLB/cache misses);
the miss events are determined through simulation of the
memory hierarchy, cache coherence protocol, interconnec-
tion network and branch predictor. By raising the level of
abstraction, interval simulation reduces both devel opment
time and evaluation time.

Our experimental results using the SPEC CPU2000 and
PARSEC benchmark suites and the M5 multi-core simula-
tor, show good accuracy up to eight cores (average error
of 4.6% and max error of 11% for the multi-threaded full-
system workloads), while achieving a one order of magni-
tude simulation speedup compared to cycle-accurate simu-
lation. Moreover, interval smulation is easy to implement:
our implementation of the mechanistic analytical model in-
cursonly one thousand lines of code. Its high accuracy, fast
simulation speed and ease-of-use make interval simulation
a useful complement to the architect’ s toolbox for exploring
system-level and high-level micro-architecture trade-offs.

1 Introduction

days or weeks to run to completion, even on today'’s fastest
machines and simulators. Culling a large design space
through architectural simulation of complete benchmark ex
ecutions thus simply is infeasible. While this is alreadetr

for single-core processor simulation, the current trend to
wards multi-core processors only exacerbates the problem.
As the number of cores on a multi-core processor increases,
simulation speed has become a major concern in computer
architecture research and development. Second, devglopin
an architectural simulator is tedious, costly and very time
consuming. Architectural simulators typically model the
microprocessor in a cycle-accurate way, however, thisl leve
of detail is not always appropriate, nor is it called for. For
example, early in the design process when the design space
is being explored and the high-level microarchitecturesis b
ing defined, too much detail only gets in the way. Or, when
studying trade-offs in the memory hierarchy, cache coher-
ence protocol or interconnection network of a multi-core
processor, cycle-accurate core-level simulation may eot b
needed.

Researchers and computer designers are well aware of
the multi-core simulation problem and have been propos-
ing various fast simulation methodologies, such as sampled
simulation [1, 8, 30, 32] and hardware-accelerated simula-
tion using FPGAs [4, 26, 27, 31]. Although these method-
ologies increase simulation speed and have their placein th
architect’s toolbox, they model the multi-core processdrs
a high level of detail which impacts development time and
which may not be needed for many practical research and
development studies.

This paper takes a completely different approach and
aims at raising the level of abstraction in architectunaisi
lation. The key challenge in raising the level of abstrattio
in multi-core simulation is how to cope with the tight per-
formance entanglement between co-executing threads. Co-
executing threads affect each other’s performance through
inter-thread synchronization and cache coherence, as well

Architectural simulation is an invaluable tool in a com- as through shared resources such as on-chip caches, on-
puter architect’'s toolbox for evaluating design tradesoff chip interconnection network, off-chip bandwidth and main
and novel research ideas. However, architectural simula-memory. Changes in the microarchitecture may change

tion faces two major limitations. First, it is extremely #&m

which parts of the threads execute together. This change, in

consuming: simulating an industry-standard benchmark forits turn, may lead to different thread interleavings and dif
a single microprocessor design point easily takes a coupleferent conflict behavior in the shared resources, which may
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lead to different relative progress rates for the co-exagut

threads. This tight performance entanglement between co-é v ; — —

executing threads and the microarchitecture makes it hard §

to raise the level of abstraction in multi-core simulation. ° >
This paper presentsiterval simulation, a novel, fast, interval 1 interval 2 interval 3

accurate and easy-to-implement (multi-core) simulation
paradigm. Interval simulation reduces both simulatioretim
and simulator development complexity. Interval simula-
tion raises the level of abstraction in the individual cores
compared to detailed simulation: a mechanistic analytical
model [11] drives the timing simulation of the individual
cores without the detailed tracking of individual instiocls ~  |evel analytical models with detailed simulation to accel-
through the cores’ pipeline stages. The basis for the modelerate multi-core simulation. The challenge for doing so is
is that miss events (branch mispredictions, cache and TLBto predict the timing for each individual instruction, nast
misses) divide the smooth streaming of instructions thhoug  average performance across all instructions as is donein an
the pipeline into so called intervals. Branch predictormme  alytical modeling [11] — estimating the timing per individ-
ory hierarchy, cache coherence and interconnection n&twor yal instruction is required in order to accurately model-syn
simulators determine the miss events; the analytical modelchronization, cache coherence, conflict behavior in shared
derives the timing for each interval. The cooperation be- resources, etc. Besides this major contribution, the paper
tween the mechanistic analytical model and the miss eventalso contributes to interval modeling in a number of sig-
simulators enables the modeling of the tight performance nificant ways: (i) it models overlapping miss events (e.g.,
entanglement between co-executing threads on multi-corel-cache misses and branch mispredictions overlapped by
processors. long-latency loads) — a second-order effect — prior work
Using both (multi-programmed) SPEC CPU2000 work- on the other hand focused on first-order effects (isolated
loads as well as the multi-threaded PARSEC benchmarkmiss events and overlapping long-latency loads) and did not
suite, and the M5 full-system simulator, we evaluate ac- model overlap effects between I-cache misses and branch
curacy and simulation speed compared to detailed cycle-mispredictions versus long-latency load misses; (ii) ithho
level simulation. In terms of simulation speed, we attain a els serializing instructions and runs full-system cod#; i
one order of magnitude improvement compared to detailedproposes the ‘old window approach’ to estimate the branch
simulation. The error with respect to detailed simulation resolution time, window drain time and effective dispatch
is 5.9% on average for the single-threaded SPEC CPU200Gate during simulation — prior work estimates the criti-
benchmarks (max error of 16%); for the multi-threaded full- cal path length through an offline profiling step; and (iv)
system PARSEC benchmarks, the average error is 4.6%t models multi-threaded execution including inter-ttdea
across single-, dual-, quad- and eight-core processorgonfi synchronization and cache coherence.
urations (max error of 11%). In addition, we demonstrate
that interval simulation yields similar performance trend 2
and design decisions in practical research studies when tra
ing off the number of processor cores versus cache space
versus memory bandwidth. Finally, the analytical coreslev
timing models simplify multi-core simulation development
substantially. Our version of the interval simulator con-
tains approximately 1K lines of C code to implement the

Figure 1. Interval analysis analyzes perfor-
mance on an interval basis determined by
disruptive miss events.

Interval Analysis

Interval simulation builds on a recently developed mech-
anistic analytical performance model, interval analy$i|
which we briefly revisit here. With interval analysis, execu
tion time is partitioned into discrete intervals by disriupt

miss events such as cache misses, TLB misses and branch

analytical model. This is a dramatic reduction in complex-
ity compared to the M5 out-of-order core simulator which
comprises approximately 28K lines of code.

The goal of interval simulation is not to replace detailed
cycle-by-cycle simulation. Instead, we view interval sim-
ulation as a useful complement that offers high simulation

mispredictions. The basis for the model is that an out-of-
order processor is designed to smoothly stream instrugtion
through its various pipelines and functional units. Under
optimal conditions (no miss events), the processor sustain
a level of performance more-or-less equal to its pipeline
front-enddispatch width — we refer to dispatch as the point

speed and short simulator development time at slightly lessof entering the instructions from the front-end pipelintoin

accuracy. Interval simulation is envisioned as a fast sim-
ulation technique to quickly explore the design space of
multi-core processor architectures and make high-level mi
croarchitecture and system-level trade-offs; detailedesy

the reorder buffer and issue queues.

The interval behavior is illustrated in Figure 1, which
shows the number of dispatched instructions on the vertical
axis versus time on the horizontal axis. By dividing exe-

accurate simulation can then be used to explore a region ofcution time into intervals, one can analyze the performance

interest.
The key contribution of this paper is to combine core-

behavior of the intervals individually. In particular, ooan,
based on the type of interval (the miss event that termi-



nates it), describe and determine the performance penalty

per miss event:

e For anl-cachemiss(or I-TLB miss), the penalty equals
the miss delay, i.e., the time to access the next level in
the memory hierarchy.

For abranch misprediction, the penalty equals the time

between the mispredicted branch being dispatched and

new instructions along the correct control flow path be-
ing dispatched. This penalty includes the branch reso-
lution time plus the front-end pipeline depth.

Upon along-latency load miss, i.e., a last-level L2 D-
cache load miss or a D-TLB load miss, the proces-
sor back-end will stall because of the reorder buffer
(ROB), issue queue, or rename registers getting ex-
hausted. As a result, dispatch will stall. When the
miss returns from memory, instructions at the ROB
head will be committed, and new instructions will en-
ter the ROB. The penalty for a long-latency D-cache
miss thus equals the time between dispatch stalling
upon a full ROB and the miss returning from mem-
ory. This penalty can be approximated by the mem-
ory access latency. In case multiple independent long-
latency load misses make it into the ROB simultane-
ously, both will overlap their execution, thereby expos-
ing memory-level parallelism (MLP) [5], provided that

a sufficient number of outstanding long-latency loads
are supported by the hardware. The penalty of multiple
overlapping long-latency loads thus equals the penalty
for an isolated long-latency load. In case of dependent
long-latency loads, their penalties serialize.

Chains of dependentinstructions, L1 data cache misse
and long-latency functional unit instructions (divide,
multiply, etc.), or store instructions, may cause a re-
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if (I-cache miss)

core_sim_time += miss_latency;

(branch misprediction)

core_sim_time += branch_resolution_time +
frontend_pipeline_depth;

(long-latency load) {

core_sim time += miss_latency;

scan all insns in window and resolve independent miss events;

if

¢

(serializing insn)
core_sim time += window_drain_time;

Figure 2. Schematic view of the multi-core in-
terval simulation framework.

branch is correctly predicted by the branch predictor. The
memory hierarchy simulator models the entire memory hi-
erarchy. This includes cache coherence, private (percore
caches and TLBs, as well as the shared last-level caches, in-
terconnection network, off-chip bandwidth and main mem-
ory. The memory hierarchy simulator is invoked for each
I-cache/TLB or D-cache/TLB access and returns the (miss)

éatency.

The multi-core interval simulator models the timing for
the individual cores. The simulator maintains a ‘window’

source (e.g., reorder buffer, issue queue, physical reg-Of instructions for each simulated core, see Figure 2. This

ister file, write buffer, etc.) to fill up. Aresource stall

as a result of it may (eventually) stall dispatch. The
penalty or the number of cycles where dispatch stalls
due to a resource stall are attributed to the instruction
at the ROB head, i.e., the instruction blocking commit
and thereby stalling dispatch.

3

3.1 Framework overview and basic idea

Multi-core Interval Simulation

The multi-core interval simulation paradigm is drawn
schematically in Figure 2. A functional simulator supplies
instructions to the multi-core interval simulator whichess
interval analysis for driving the timing of the individual

window of instructions corresponds to the reorder buffer of
a superscalar out-of-order processor, and is used to deter-
mine miss events that are overlapped by long-latency load
misses. The functional simulator feeds instructions ihie t
window at the window tail. Core-level progress (i.e., tim-
ing simulation) is derived by considering the instructidn a
the window head. In case of an I-cache miss, we increase
the core simulated time by the miss latency. In case of a
branch misprediction, we increase the core simulated time
by the branch resolution time plus the front-end pipeline
depth. In case of a long-latency load (i.e., a last-leveheac
miss or cache coherence miss), we add the miss latency to
the core simulated time, and we scan the window for in-
dependent miss events (cache/TLB misses and branch mis-
predictions) that are overlapped by the long-latency load —

cores. The miss events are handled by branch predictor anédecond-order effects. For a serializing instruction, wd ad

memory hierarchy simulators. The branch predictor simu-
lator models the branch predictors in the individual cores
and is invoked upon the execution of a branch instruction.
The branch predictor simulator returns whether or not a

the window drain time to the simulated core time. If none
of the above cases applies, we dispatch instructions at the
effective dispatch rate. Having determined the impact of
the instruction at the window head on the core’s progress,



we remove the instruction from the window and feed it into later; the front-end pipeline depth is a microarchitecpae

the so called ‘old window'. The old window is used to de- rameter and is known.

rive the dependence chains of instructions and their impact  For stores and non-overlapped loads (line 31), we access
on the branch resolution time, window drain time, and the the memory hierarchy (i.e., caches, TLBs, and main mem-
effective dispatch rate in the absence of miss events, as wery, including the cache coherence protocol) (line 32). In

explain in detail in the following section. case of a long-latency load, we incur a miss penalty (i.e.,
the miss latency) which is added to the per-core simulated
3.2 Detailed algorithm time (line 50).

Serializing instructions cause the core to drain the win-
We refer to the high-level pseudocode given in Figure 3 dow prior to their execution. Therefore, upon a serializing
for a more detailed description of multi-core interval simu  instruction, we increase the per-core simulated time with
lation. The interval simulator iterates across all corethin the penalty for emptying the old instruction window (lines
multi-core processor (line 2), and proceeds with the simu- 56-59).
lation as long as there are instructions to be simulateé (lin

3); if not, the simulator quits (line 71). ) ) )
) g ( ) Overlapping miss events. A long-latency load may hide

) ) ) ] latencies by other subsequent (independent) miss events —
Multi-core simulated time versus per-core simulated  second-order effects. We therefore consider all instoncti

time. The interval simulator simulates cycle per cycle, in the window from head to tail (line 35) upon a long-
and keeps track of the multi-core simulated time as well as |atency load and consider four cases (lines 35-49).

the per-core simulated time. The multi-core simulated time  \ne access the I-cache and I-TLB for each instruction in

isincremented every cycle (line 74). The per-core simdlate iye window past the long-latency load (line 36). We mark
time is adjusted depending on the progress of the in.dividualthe instruction meaning that the 1-cache/TLB access (a po-
core, e.g., in case of a miss event, the per-core simulateqentja| |-cache/TLB miss) is hidden by the long-latencydoa
time is augmented by the appropriate penalty. Only in case__ ihis is done through the_over | apped variable. This
the per-core simulated time equals the multi-core simdlate \eans that the I-cache/TLB access has occurred and should
time, we need to simulate the cycle for the given core (line ot incur any additional penalty when it appears at the win-
6). In case the per-core simulated time is larger than the 4o head (line 12). In other words, the I-cache/TLB ac-
multi-core simulated time (which can happen because 0f cess/miss is hidden underneath the long-latency load.
miss events as we will describe next), we do not need 10 \ue follow the same procedure for branches and loads if
simulate the cycle for the given core. This could be viewed ¢ pranch/load is independent of the long-latency loael (se
as event-driven simulation at the core level. lines 38—41 and 43-45, respectively). Independence means
that there are no direct or indirect dependences (through
Instruction dispatch. As long as the core has dispatched registers or memory) between the branch/load and the long-
fewer instructions than theffective dispatch rate in the ~ latency load, and there appears no memory barrier between
given cycle, we continue simulating instructions (line 7). the two loads in the dynamic instruction stream. A branch
(We will describe how we compute the effective dispatch or load that depends on a long-latency load serializes with
rate later.) The core-level simulation then considers the the long-latency load and therefore does not get executed
instruction at the window head (line 9) and determines its underneath the long-latency load.
(potential) miss penalty (lines 11 to 59). We increment the  In case we reach a serializing instruction while scanning
number of dispatched instructions (line 62), remove the in- the window upon a long-latency load, we break out of the
struction from the window, and insert the instruction in the loop and stop scanning the window (line 47). The serializ-
old window (lines 64). We subsequently enter a new in- ing instruction causes the window to be drained.
struction in the window at the tail pointer (line 65).

Branch resolution time, window drain time and effec-

Miss events. We access the I-cache and I-TLB (line 13). tive dispatch rate. An important component in interval
If this instruction is an I-cache miss or an |-TLB miss, we simulation is to estimate the critical path length in the old
add the miss latency to the per-core simulated time (line 15) window. The critical path length is used for computing (i)
(We will explain the purpose of lines 12 and 16 later.) the branch resolution time, (ii) the window drain time upon

The timing impact of a branch misprediction is fairly a serializing instruction, and (iii) the effective dispatate.
similar to an I-cache/TLB miss. We access the branch pre-For computing the critical path length, we consider a data
dictor (line 22). If the branch is mispredicted (line 23), flow modelthat computes the earliest possible issue time for
we add the branch penalty to the per-core simulated time.each instruction in the old window given its dependences
The branch penalty is computed as the sum of the branchand execution latency. This is done as follows. For each in-
resolution time and front-end pipeline depth (lines 24:25) struction in the old window, we keep track of its execution
We will explain how we estimate the branch resolution time latency (including the L1 D-cache miss latency), its issue
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insns_di spat ched = 0;
while ((core_simtime [i] == nulti_core_simtinme) &&
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}
I

Ise {

(i nsns_di spatched < eff_dispatch_rate(i)) {
consi der insn at w ndow head;

/* handl e |-cache and |-TLB */

if (!'l_overlapped) {

| m ss_latency = | cache_and_| TLB_access();
| if (lcache_or_I TLB miss) {

| core_simtime [i] += m ss_|atency;

| enpty_ol d_wi ndow() ;
|

}

/* handl e branch prediction */
if (branch && !br_overl apped) {
| branch_predi ctor_access();

| if (branch_m sprediction) {

| core_simtime [i] += branch_resolution_tinme() +
| frontend_pi pel i ne_dept h;

| enpty_ol d_wi ndow() ;
|}
}

/* handl e | oads and stores */
if (store || (load & ! D overlapped)) {
m ss_l atency = Dcache_and_DTLB_access();

f (long_l atency_l oad) {
for (all insns in w ndow fromhead to tail) {
| | _overlapped = 1; |_cache_and_I TLB access();

if (branch && independent of |ong-latency |oad) {
br_overl apped = 1; branch_predictor_access();
if (branch_m sprediction) break;

}

I

I

I

I

I

| if (load && independent of |ong-latency |oad) {
| D overl apped = 1; Dcache_and_DTLB access();
(.

I

I

if (serializing instruction) break;

core_simtinme [i] += mss_|atency;

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| enpty_ol d_wi ndow() ;
}

[
[
[
|
|
[
[
[
|
|
[
[
|
|
|
[
[
|
|
|
|
}

/* handl e serializing instructions */

if (serializing instruction) {
core_simtime [i] += enpty_wi ndow_ | atency();
enpty_ol d_wi ndow() ;

/+ dispatch insn */
i nsns_di spat ched++;

advance_wi ndow_head_poi nter _and_i nsert _i nsn_i n_ol d_w ndow() ;
enter_new_i nsn_at _w ndow_t ai | _poi nter_and_advance_tai |l _pointer();

f (core_simtine [i] == multi_core_simtine)

core_simtime [i]++;

finish_sinulation();

mul ti_core_simtime++;

Figure 3. High-level pseudocode for multi-core interval si mulation.



time, and its output dependences, i.e., the register(sjttha Processor core

writes or the cache line that it writes in case of a store. For| ROB 256 entries

h instruction that is inserted at the old window tail, we | ou e 128 entries
each ins B " ! ) ! ! load-store queue 128 entries
compute its issue time as the maximum issue time of the| store buffer 64 entries
instructions that it depends upon plus the instruction&-ex | processor width decode, dispatch and commit 4 wide
cution time. We also keep track of the old window’s ‘head issue 6 wide
time’ and ‘tail time’. The new tail time is computed as the . . fetch 8 wide o

. fth . il ti dthei . fth functional units 4 integer, 4 load/store and 4 floating-point
maX|m_um oft e prewoys ta'.tlr.ne and the issue t'me. 0 t. € | functional unit latencies| load (2), mul (3), fp (4), div (20)
newly inserted instruction; similarly, the new head time is | fetch queue 16 entries
the maximum of the previous head time and the issue time| front-end pipeline depth 7 stages _
of the removed instruction. We then approximate the length| branch predictor 12Kbit local predictor, 32-entry RAS,

e ; ; o ; 8-way set-assoc 2K-entry BTB
of the critical path in the old window as the tail time minus
the head time. This is an approximation of the real critical Memory subsystem
) o pp . ; L1 I-cache 32KB 4-way set-assoc 64B line size
path in the old window. However, computing the real crit- | | 1 p-cache 32KB 4-way set-assoc 64B line size
ical path would require walking the old window for every | L2 cache unified, 4MB 8-way set-assoc 64B line sizg,
newly inserted instruction, which is time-consuming and 12 cycles access latency
which is why we use the above approximation. We found | coherence protocol MOESI .
the approximation to be accurate for our purpose, as we will| Ton Memory 150 cycle access time
pp purp ! memory bandwidth 10.6GB/s peak bandwidth

demonstrate in the evaluation section.
Once we have computed the critical path length, we can  Table 1. Baseline processor core model as-
compute the maximum possible execution rate through the  sumed in our experimental setup; simulated
old window. Using Little’s Law, we compute the execu- CMP architectures share the L2 cache.
tion rate as window size divided by the critical path length.
This reflects the fact that the out-of-order processor canno
process instructions faster than dictated by the critieshp
length. The effective dispatch rate then equals the minimumates a dynamic instruction stream, including user-level an
of this execution rate and the designed dispatch width. Thesystem-level code, that is subsequently fed into the timing
branch resolution time is computed as the longest chain ofsimulator. This implies that interval simulation does not
dependent instructions (including their execution lates)c ~ simulate along mispredicted paths, and may lead to differen
leading to the mispredicted branch, starting from the headthread interleavings than what may happen in real systems.
pointer in the old window. The window drain time is com- A more accurate approach is to build a timing-directed sim-
puted as the maximum of (i) the number of instructions in ulator in which the timing simulator directs the functional
the old window divided by the processor’s dispatch width, simulator along mispredicted paths and determines thread
and (ii) the length of the critical execution path in the old interleavings. This could be done by having the functional
window. simulator operate at the window head rather than at the win-
dow tail as is currently done. Unfortunately, timing-dired

] simulators are more difficult to develop because it requires
Interval length effect.  Interval length (the number of in- checkpoint-and-rollback capability in the functional sim
structions between two subsequent miss events) has a sigator and because it more tightly couples the functionatsim
nificant impact on overall performance. In particular for yjator with the timing simulator. In our current implemen-
a mispredicted branch, a short interval implies a short de-tatjon we opted for functional-first simulation becausetf i
pendence path to the branch (i.e., short branch resolutiongzse of development — this is a trade-off in development
time); a long interval on the other hand implies a longer time, evaluation time and accuracy — and our evaluation
branch resolution time. A similar effect occurs for sedali  shows good accuracy against the cycle-accurate M5 sim-

ing instructions: a serializing instruction causes thérirs ~ yjator. We plan on implementing timing-directed interval
tion window to be drained. Window drain time is correlated sjmuylation as part of our future work.

with the interval length prior to the serializing instrumti,

i.e., the completely filled window takes longer to drain than .

a partially filled window. In order to model the dependence 4 EXperimental Setup
of interval length on the branch resolution time and window

drain time, we empty the old window upon a miss event (see B€nchmarks. We use two benchmark suites, namely
lines 16, 26, 30 and 58). SPEC CPU2000 and PARSEC. We use all of the SPEC

CPU2000 benchmarks with the reference inputs in our ex-

perimental setup. The binaries of the CPU2000 benchmarks
Functional-first simulation.  Our currentimplementation  were taken from the SimpleScalar website; these binaries
of interval simulation employs a functional-first simutati were compiled for Alpha using aggressive compiler opti-
approach. This means that the functional simulator gener-mizations. We considered 100M simulation points as deter-
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Figure 4. Evaluating interval simulation in a step-by-step manner: evaluating the modeling accuracy

of the (a) effective dispatch rate, (b) I-cache/TLB, (c) bra  nch prediction and (d) L2 cache.

mined by SimPoint [28] in all of our experiments in order chip bandwidth for accessing main memory, and we assume
to limit overall cycle-accurate simulation time — this isex a MOESI cache coherence protocol. We run up to 8 cores;
actly the problem tackled by interval simulation. In adufiti physical memory constraints limited us from running larger
to the single-threaded user-level SPEC CPU benchmarksmulti-core processor configurations.

we also use the multi-threaded PARSEC benchmarks [2]
which spend a substantial fraction of their executiontime i g
system code. We use 9 of the 13 PARSEC benchmarks that
run on our simulator with the small input set and run each  We now evaluate interval simulation in terms of accu-
benchmark to completion; the number of dynamically ex- racy and simulation speed. Accuracy is evaluated through
ecuted instructions per benchmark varies between 500M toa number of experiments, and we consider single-threaded
13B instructions. The PARSEC benchmarks were compiled workloads, multi-program workloads, multi-threaded work
using the GNU C compiler for Alpha; we use aggressive loads, and a performance trend case study.

optimization, including- O3, loop unrolling and software

prefetching. 5.1 Single-threaded workloads

We first consider single-threaded workloads running on
Simulator. We use the M5 simulator [3] in all of our a single-core processor, and evaluate interval simulation
experiments; M5 was previously validated against real a step-by-step manner in order to understand where the er-
Compagq Alpha machines. The SPEC CPU benchmarksror sources are. For doing so, we consider the following
are run in user-level simulation mode, and the PARSEC experiments; each experiment evaluates a particular aspec
benchmarks are run in full-system simulation mode (Linux of interval simulation:

Evaluation

2.6.8.1). e Effective dispatch rate: We consider the branch pre-
dictor to be perfect (i.e., all branch predictions are cor-

Simulated processor configuration. Our baseline core rect), as well as the I-cache/TLB and L2 cache (i.e.,

microarchitecture is a 4-wide superscalar out-of-ordeeco all cache accesses are hits). The L1 D-cache is non-

see Table 1. When simulating a muti-core processor, we perfect. This setup aims at evaluating the accuracy of
assume that all cores share the L2 cache as well as the off-  the modeling of the effective dispatch rate.
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Figure 5. Evaluating the accuracy of interval
Figure 4 compares the IPC measured through detailed simulation for the single-threaded SPEC CPU
simulation versus the IPC estimated through interval sim-  benchmarks.
ulation for each of the above four experiments. Fig-
ure 4(a) and (b) shows that the effective dispatch rate and
I-cache/TLB behavior is modeled accurately: the average
error for both experiments is 1.8%. We observe slightly
higher errors for the branch prediction and L2 cache mod-
eling with average errors of 3.8% and 4.6%, respectively,
see Figure 4(c) and (d). The difficulty in predicting the
impact of branch mispredictions on performance is due to

estimating the branch resolution time. The branch resolu-forSTP and ANTT, respectively: the maximum error is 16%

tion time is the number of cycles between the mispredicted : ) .
branch being dispatched and the branch being resolved. In—.(ANTT for art). The important observation from Figure 6

terval simulation however approximates the branch resolu-'> that interval simulation tracks performance ”er.‘ds Very
tion time by the critical path leading to the mispredicted accurately. For example, we observe that STP improves

branch in the old window. This is an overestimation of the with 2 coplzs:mflf,_however, forb4 ttamdt_8”cog|es£ S-LI—ZP de—h
penalty if the critical path is partially executed by the éim creases an increases substantially due to Lz cache

the mispredicted branch enters the instruction window, or ZTa“ng' tVVe ?hbservr? ats_lmllar trend fart .and 8 cotpr)]les.
is an underestimation if critical path execution gets sldwe SO, System throughput IMProves as we Increase the num-

down because of resource contention. With respect to esti—Ioer t(I)f Clgprltes T?@C(;F]Whllﬁ AETL'SA&O_F_?ﬁeCted S|gn|f|-th
mating the performance impact of L2 cache misses, inter- cantly. Fortwoit on the other hand, Increases as the

val simulation tends to overestimate the penalty due to L2 number of copies is increased. These graphs show that in-

misses. Interval simulation basically assumes there are noterval simulation is capable of modeling conflict behavior

instructions dispatched underneath the L2 miss, however," shared caches accurately.

the processor may be dispatching instructions while the L2 .
miss is being resolved. 5.3 Multi-threaded workloads

_ Putting everything together, the average error for the  \we now consider the multi-threaded PARSEC bench-
single-threaded benchmarks equals 5.9%, see Figure 5; thenarks; these benchmarks incur inter-thread synchroniza-
maximum is bounded to 15.5%. The largest errors are dueijon and cache coherence effects, and are run in full-system

twolf, gcc andswim, and represent a diverse and interest-
ing subset. We report system throughput (STP), a system-
oriented performance metric, and average normalized job
turnaround time (ANTT), a user-oriented performance met-
ric [10]. The average error observed across all homoge-
neous and heterogeneous workloads equals 3.8% and 4.2%

to estimating the branch prediction penaltypy, applu, mode, i.e., the performance results include OS code. Fig-
art), and the L2 cache/TLB miss penalgduake, facerec, ure 7 shows normalized execution time as a function of
fma3d andlucas). the number of cores that the multi-threaded workload runs
on. The average error when comparing the estimated execu-
5.2 Multi-program workloads tion time obtained through interval simulation versus eycl

accurate simulation is 4.6%: the error is below 6% for most
The next step in our evaluation considers multi-program benchmarks, except fdluidanimate (11%). The impor-

workloads, i.e., multiple single-threaded workloads co- tant observation is that interval analysis estimates thie pe
execute on a multi-core processor in which each core ex-formance trend with the number of cores accurately. For
ecutes one single-threaded workload. We evaluate a largeexample fowips, interval simulation accurately tracks that
set of both homogeneous and heterogeneous multi-progranperformance does not improve with an increasing number
workloads, and report a subset in Figure 6 due to space conof cores. The fact that performance does not scale with the
straints. The multi-program workloads that we are report number of cores is due to load imbalance and poor synchro-
are homogeneous workloads — multiple copies of the samenization behavior. For the other benchmarks, performance
benchmark run concurrently — generated fromef, art, improves with an increasing number of cores. Interval sim-
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Figure 6. Evaluating the accuracy of interval simulation fo r multi-program SPEC CPU workloads in
terms of STP (left) and ANTT (right) as a function of the numbe r of cores.
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Figure 7. Evaluating the accuracy of interval simulation fo r the multi-threaded full-system PARSEC
workloads as a function of the number of cores. Performance n umbers are normalized to detailed
cycle-accurate single-core simulation.

ulation tracks this trend accurately, inspite of the abtolu other benchmarks on the other hand, cache space is more

error, even foffluidanimate. important than processing power and memory bandwidth,
and hence, the dual-core processor outperforms the quad-
5.4 Performance trend case study core processor, seeanneal, vips andx264. This case

study illustrates that interval simulation leads to the eam

_We now consider a case study to illustrate the applica- . qsjons in practical high-level microarchitectursige
bility of interval simulation in a practical research study trade-offs

Our case study considers a performance trade-off as a result

of 3D stacking [19], and compares two processor architec- . .

tures. Our first processor architecture is a dual-core pro-2+2 Simulation speed
cessor with a 4MB L2 cache that is connected to external
DRAM through a 16-byte wide memory bus; our second

processor architecture is a quad-core processor that is con

nected to 3D stacked DRAM through a 128-byte memory pared to detailed simulation for the multi-program work-

bus and which does not have an L2 cache. External DRAM ads and multi-threaded workloads, respectively. The sim
is assumed to have a 150-cycle access latency; 3D—stacke5) : .  FESPECLVELy.
Ulation speedup is a factor 8 tox9for the multi-threaded

DRAM is assumed to have a 125-cycle access latency. The Kload d up to 15 for th It Kload
important observation from Figure 8 is that interval simula workioads, and up o Lotorthe mulli-program workioads.
tion leads to the same conclusions as detailed cycle-aecura

simulation. The quad-core processor leads to better perfor 6 Related Work

mance for a number of benchmarks, sucbadytrack, flu-

idanimate andswaptions; these benchmarks benefit from Detailed cycle-level simulation. Architects in industry
increased compute power and/or memory bandwidth. Forand academia rely heavily on cycle-level (and in some cases

Interval simulation is substantially faster than detailed
cycle-level simulation, see Figures 9 and 10, which show
the simulation speedup through interval simulation com-
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Figure 8. Evaluating interval simulation in a practical des
4MB L2 and external DRAM versus a quad-core processor with 3D
Performance numbers are normalized to detailed simulation

tion.
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Figure 9. Simulation speedup compared to
detailed cycle-accurate simulation for SPEC
CPU2000.
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true cycle-accurate) simulators. The limitation of cycle-
level simulation is that it is very time-consuming. Indystr
single-core simulators typically run at a speed of 1KHz to

ign trade-off: a dual-core processor with
-stacked DRAM and no L2 cache.
of the dual-core processor configura-

bate the problem even further because they have to simulate
multiple cores, and have to model inter-core communication
(e.g., cache coherence traffic) as well as resource coatenti

in shared resources. In addition, the development effort
and time of detailed simulators is a concern. For these rea-
sons, it is not uncommon that architects make simplifying
assumptions when simulating large multi-core and multi-
processor systems. A common assumption is to assume
that all cores execute one instruction per cycle (i.e., a non
memory IPC equal to one), see for example [13, 17, 22].
Interval simulation is an easy-to-implement, fast and more
accurate alternative for the one-IPC performance model.

Sampled simulation. The idea of sampled simulation is

to simulate a number of sampling units rather than the en-
tire dynamic instruction stream. The sampling units are
selected either randomly (Conte et al. [6]), or periodicall
(SMARTS, Wunderlich et al. [33]), or based on phase anal-
ysis (SimPoint, Sherwood et al. [28]). A humber of papers
have been working on sampled simulation of multi-threaded
and multi-core processors. Van Biesbrouck et al. [30] pro-
pose the co-phase matrix for speeding up sampled simulta-
neous multithreading (SMT) processor simulation running
multi-program workloads. Ekman and Stenstrom [8] make
the observation that fewer sampling units need to be taken
to estimate overall performance for larger multi-processo
systems than for smaller multi-processor systems in case
one is interested in aggregate performance only. Wenisch et
al. [32] obtained similar conclusions for throughput serve
workloads. Barr et al. [1] propose the Memory Timestamp
Record (MTR) to store microarchitecture state (cache and
directory state) at the beginning of a sampling unit as a
checkpoint. Interval simulation is orthogonal to sampled
simulation: sampled simulation reduces the number of in-
structions that need to be simulated; interval simulation o

10KHz; academic simulators typically run at tens to hun- the other hand models core-level performance through ana-
dreds of KIPS [4]. Multi-core processor simulators exacer- lytical modeling.



FPGA-accelerated simulation. FPGA-accelerated simu- box modeling. Ipek et al. [16] learn a model through neural
lation [4, 26, 27, 31] speeds up simulation by mapping networks, and Lee and Brooks [20] build a model through
timing models onto field-programmable gate-arrays (FP- regression modeling. Lee et al. [21] leverage regression
GAs). The timing models in FPGA-accelerated simulators modeling to predict multiprocessor performance running
are cycle-accurate, and the simulation speedup comes frommulti-program workloads. Hybrid mechanistic/empirical
exploiting fine-grain parallelism in the FPGA. Interval sim  modeling proposes a mechanistic performance formula in
ulation takes a different approach to speeding up simula-which the parameters are derived through empirical model-
tion by analytically modeling core-level performance. In ing, see the pipeline model by Hartstein and Puzak [14] as
fact, interval simulation could be used in conjunction with an example.

FPGA-accelerated simulation, i.e., the cycle-accurate ti
ing models could be replaced by analytical timing mod-
els. This would not only speedup FPGA-based simulation,
it would also shorten FPGA-model development time and
in addition it would also enable simulating larger computer
systems on a single FPGA.

7 Conclusion

This paper proposed interval simulation which raises the
level of abstraction in multi-core architectural simudati
Interval simulation replaces the core-level cycle-actaira
simulation model in a multi-core simulator by a mechanistic
Statistical simulation. Statistical performance modeling analytical model. The analytical model estimates coreillev
has a gained a lot of interest over the past few years. Stafperformance by dividing the execution in so called inter-
tistical simulation [7, 23, 25] speeds up architecturalisim  vals. The intervals are separated by miss events, i.e.chran
lation by providing short-running synthetic traces or denc  mispredictions, TLB misses and cache misses (e.g., conflict
marks that are representative for long-running benchmarks misses, coherence misses, etc.). The miss events are de-
This is done by profiling the execution of the original bench- termined through branch predictor and memory hierarchy
mark and capturing the key execution characteristics in thesimulation; the impact of these miss events on core-level
form of a statistical profile. A synthetic trace or bench- performance is determined through analytical modeling.
mark is then generated from this statistical profile. By  Using multi-program SPEC CPU2000 workloads as well
construction, the synthetic clone exhibits similar exeout  as multi-threaded PARSEC benchmarks, and the M5 full-
characteristics as the original benchmark. Nussbaum andsystem simulator, we demonstrate the accuracy of multi-
Smith [24] and Hughes and Li [15] apply the statistical core interval simulation: we report average errors around
simulation paradigm to multithreaded programs running on 4% for multi-program SPEC CPU2000 workloads; for the
shared-memory multiprocessor (SMP) systems. To do so,multi-threaded full-system PARSEC benchmarks, the aver-
they extended statistical simulation to model synchroniza age error is 4.6% (max error of 11%) for up to eight cores.
tion and accesses to shared memory. Genbrugge and EecKnterval simulation achieves a simulation speedup of one
hout [12] show what execution characteristics to measure inorder of magnitude compared to cycle-accurate simulation.
the statistical profile in order to be able to accurately sim- Moreover, interval simulation is easy to implement: our
ulate shared resources in multi-core processors. The keyimplementation of the analytical model is about one thou-
benefit of statistical simulation is that the synthetic @sn  sand lines of code, which is a dramatic reduction compared
dynamic instruction count is several orders of magnitude to a detailed cycle-level out-of-order processor simolati
smaller than is the case for the original benchmark, which model (e.g., 28 thousand lines of code for the out-of-order
leads to dramatic reductions in simulation time. Interval core model in M5).
simulation is orthogonal to statistical simulation: sttgal We believe that interval simulation is widely applica-
simulation reduces simulation time by reducing the number ble. We view interval simulation as a useful complement
of instructions that need to be simulated, whereas intervalto cycle-accurate simulation for design studies that do not
simulation reduces simulation time by raising the level of need cycle-accurate timing at the core level, e.g., when
abstraction in the simulation model. making design decisions in early stages of the design or
when making system-level and high-level microarchitec-
ture design trade-offs or when simulating very large sesver
Moreover, interval simulation is orthogonal to existingsi
ulation speedup approaches such as sampled simulation and
FPGA-accelerated simulation.

Analytical modeling. There are basically three ap-
proaches to analytical performance modeling: mechanis-
tic modeling, empirical modeling and hybrid mechanis-
tic/lempirical modeling. Mechanistic modeling [9, 11, 18,
29] constructs a model based on the mechanics of the target

processor, i.e., white-box modeling. The first-order core- Acknowledgements
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