

Interval timed coloured Petri nets and their analysis

Citation for published version (APA):
Aalst, van der, W. M. P. (1992). Interval timed coloured Petri nets and their analysis. (Computing science notes;
Vol. 9217). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/395c98f3-371b-4991-9815-d069f311393e

Eindhoven University of Technology

Depanment of Mathematics and Computing Science

Interval timed coloured Petri nets
and their analysis

by

W.M.P. van der Aalst

Computing Science Note 92/17
Eindhoven, September 1992

92/17

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published el~ewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Interval timed coloured Petri nets
and their analysis

W.M.P. van der Aalst*
Eindhoven University of Technology

Dept. of Mathematics and Computing Science

Abstract

Practical experiences show that only timed and coloured Petri nets are capa­
ble of modelling large and complex real-time systems. This is the reason we
present the Interval Timed Coloured Petri Net (ITCPN) model. An interval
timed coloured Petri net is a coloured Petri net extended with time; time is in
tokens and transitions determine a delay for each produced token. This delay
is specified by an upper and lower bound, i.e. an interval. The ITCPN model
allows the modelling of the dynamic behaviour of large and complex systems,
without losing the possibility of formal analysis. In addition to the existing
analysis techniques for coloured Petri nets, we propose a new analysis method
to analyse the temporal behaviour of the net. This method constructs a reduced
reachability graph and exploits the fact that delays are described by an interval.

1 Introduction

Petri nets have been widely used for the modelling and analysis of concurrent systems
(Reisig [22]). There are several factors which contribute to their success: the graphical
nature, the ability to model parallel and distributed processes in a natural manner,
the simplicity of the model and the firm mathematical foundation. Nevertheless, the
basic Petri net model is not suitable for the modelling of many systems encountered
in logistics, production, communication, flexible manufacturing and information pro­
cessing. Petri nets describing real systems tend to be complex and extremely large.
Sometimes it is even impossible to model the behaviour of the system accurately. To
solve these problems many authors propose extensions of the basic Petri net model.

Several authors have extended the basic Petri net model with coloured or typed tokens
([8], [12], [13], [9], [10]). In these models tokens have a value, often referred to as
'colour'. There are several reasons for such an extension. One of these reasons is the

'This research is supported by IPL-TUE/TNO

1

fact that (uncoloured) Petri nets tend to become too large to handle. Another reason
is the fact that tokens often represent objects or resources in the modelled system. As
such, these objects may have attributes, which are not easily represented by a simple
Petri net token. These 'coloured' Petri nets allow the modeller to make much more
succinct and manageable descriptions, therefore they are called high-level nets.

Other authors have proposed a Petri net model with explicit quantitative time (e.g.
[25], [21], [17], [16], [9], [23]). We call these models timed Petri net models.

In our opinion, only timed and coloured Petri nets are suitable for the modelling
of large and complex real-time systems. Although there seems to be a consensus of
opinion on this matter, only a few timed coloured Petri net models have been proposed
in literature (e.g. Van Hee et al. [9], Morasca [19]). Moreover, even fewer methods
have been developed for the analysis of the temporal behaviour of these nets. This is
one of the reasons we propose the Interval Timed Coloured Petri Net (ITCPN) model
and an analysis method, called MTSRT, based on this model.
The ITCPN model uses a rather new timing mechanism where time is associated
with tokens. This timing concept has been adopted from Van Hee et al. ([9]). In
the ITCPN model we attach a timestamp to every token. This timestamp indicates
the time a token becomes available. Associating time with tokens seems to be the
natural choice for high-level Petri nets, since the colour is also associated with tokens.
The enabling time of a transition is the maximum timestamp of the tokens to be
consumed. Transitions are eager to fire (i.e. they fire as soon as possible), therefore
the transition with the smallest enabling time will fire first. Firing is an atomic action,
thereby producing tokens with a timestamp of at least the firing time. The difference
between the firing time and the timestamp of such a produced token is called the
firing delay. The (firing) delay of a produced token is specified by an upper and lower
bound, i.e. an interval.

Instead of using 'interval timing', we could have used a Petri net model with fixed
delays or stochastic delays.
Petri nets with fixed (deterministic) delays have been proposed in [25], [21], [23] and
[9J. They allow for simple analysis methods but are not very expressive, because in a
real system the durations of most activities are variable.
One way to model this variability, is to assume certain delay distributions, i.e. to use
a timed Petri net model with delays described by probability distributions. These
nets are called stochastic Petri nets ([7], [16], [15]). Analysis of stochastic Petri nets
is possible (in theory), since the reachability graph can be regarded, under certain
conditions, as a Markov chain or a semi-Markov process. However, these conditions
are severe: all firing delays have to be sampled from an exponential distribution or
the topology of the net has to be of a special form (Ajmone Marsan et al. [15]). Since
there are no general applicable analysis methods, several authors resorted to using
simulation to study the behaviour of the net (see section 4).
To avoid these problems, we propose delays described by an interval specifying an

2

upper and lower bound for the duration of the corresponding activity. On the one
hand, interval delays allow for the modelling of variable delays, on the other hand, it is
not necessary to determine some artificial delay distribution (as opposed to stochastic
delays). Instead, we have to specify bounds. These bounds can be used to verify time
constraints. This is very important when modelling time-critical systems, i.e. real­
time systems with 'hard' deadlines. These hard (real-time) deadlines have to be met
for a safe operation of the system. An acceptable behaviour of the system depends not
only on the logical correctness of the results, but also on the time at which the results
are produced. Examples of such systems are: real-time computer systems, process
controllers, communication systems, flexible manufacturing systems and just-in-time
manufacturing systems.

To our knowledge, only one other model has been presented in literature which also
uses delays specified by an interval. This model was presented by Merlin in [17, 18]. In
this model the enabling time of a transition is specified by a minimal and a maximal
time. Another difference with our model is the fact that Merlin's model is not a high­
level Petri net model because of the absence of typed (coloured) tokens. Compared to
our model, Merlin's model has a rather complex formal semantics, which was presented
in [5] by Berthomieu and Diaz. This is caused by a redundant state space (marking and
enabled transitions are represented separately) and the fact that they use a relative
time scale and allow for multiple enabledness of transitions. An additional advantage
of our approach is the fact that our semantics closely correspond to the intuitive
interpretation of the dynamical behaviour of a timed Petri net.

The main purpose of this paper is to present a high-level Petri net model extended with
interval timing which allows for new methods of analysis. In section 2 we introduce the
ITCPN model. The formal definition and semantics are given in section 3. Section 4
deals with the analysis of interval timed coloured Petri nets. In this section, we
introduce a new and powerful analysis method.

2 Interval timed coloured Petri nets

We use an example to introduce the notion of interval timed coloured Petri nets.
Figure 1 shows an ITCPN composed of four places (P;n,Pbusy,Plree and Pout) and
two transitions (t, and t2). At any moment, a place contains zero or more tokens,
drawn as black dots. In the ITCPN model, a token has three attributes: a position,
a value and a timestamp, i.e. we can use the tuple ((p,v),x) to denote a token in
place P with value v and timestamp x. The value of a token is often referred to as the
token colour. Each place has a colour set attached to it which specifies the set of
allowed values, i.e. each token residing in place P must have a colour (value) which is
a member of the colour set of p.
The ITCPN shown in figure 1 represents a jobshop, jobs. arrive via place p;n and leave
the system via place pout. The jobshop is composed of a number of machines. Each
machine is represented by a token which is either in place Plree or in place Pbusy. There

3

((Piree,M1),0)

Piree [0,0]

((Pin, J1), 1)

Pin
[1,3]

Pbusy
[0,0]

Pout

Figure 1: An interval timed coloured Petri net

are three colour sets M = {M1, M2, .. } and :r = {J1, J2, .. } and M x :r. Colour set
:r (job types) is attached to place Pin and place Pout, colour set M (machine types)
is attached to place Piree' Colour set M x:r is attached to place Pbusy.
Places and transitions are interconnected by arcs. Each arc connects a place and a
transition in precisely one direction. Transition tl has two input places (Pin and Piree)
and one output place (Pbu,y). Transition tz has one input place (Pbusy) and two output
places (Piree and Pou,)'
Places are passive components, while transitions are the active components. Transi­
tions cause state changes. A transition is called enabled if there are 'enough' tokens
on each of its input places. In other words, a transition is enabled if all input places
contain (at least) the specified number of tokens (further details will be given later).
An enabled transition may occur (fire) at time x if all the tokens to be consumed
have a timestamp not later than time x. The enabling time of a transition is the
maximum timestamp of the tokens to be consumed. Because transitions are eager to
fire, a transition with the smallest enabling time will fire first.
Firing a transition means consuming tokens from the input places and producing
tokens on the output places. If, at any time, more than one transition is enabled,
then any of the several enabled transitions may be 'the next' to fire. This leads to a
non-deterministic choice if several transitions have the same enabling time.
Firing is an atomic action, thereby producing tokens with a timestamp of at least
the firing time. The difference between the firing time and the timestamp of such a
produced token is called the firing delay. This delay is specified by an interval, i.e.
only delays between a given upper bound and a given lower bound are allowed. In
other words, the delay of a token is 'sampled' from the corresponding delay interval.
Note that the term 'sampled' may be confusing, because the modeller does not specify
a probability distribution, merely an upper and lower bound.
Moreover, it is possible that the modeller specifies a delay interval which is too wide,
because of a lack of detailed information. In this case, the actual delays (in the real
system) only range over a part of the delay interval.
The number of tokens produced by the firing of a transition may depend upon the
values of the consumed tokens. Moreover, the values and delays of the produced tokens

4

may also depend upon the values of the consumed tokens. The relation between the
multi-set of consumed tokens and the multi-set of produced tokens is described by
the transition function. Function F(t,) specifies transition t, in the net shown in
figure 1:

dom(F(t,)) = {(Pin,j) + (Piree,m) I j E.:J and mE M}

For j E .:J and m E M, we have:'

The domain of F(t,) describes the condition on which transition t, is enabled, i.e. t,
is enabled if there is (at least) one token in place Pin and one token in P iree. This
means that transition t, may occur if there is a job waiting and one of the machines
is free. Note that, in this case, the enabling of a transition does not depend upon the
values of the tokens consumed. The enabling time of transition t, depends upon the
timestamps of the tokens to be consumed. If t, occurs, it consumes one token from
place Pin and one token from Piree and it produces one token for place Pbusy. The
colour of the produced token is a pair (m,j), where m represents the machine and j
represents the job. The delay of this token is an arbitrary value between 1 and 3, e.g.
2.55 or 4/3.
Transition t2 is specified as follows:

dom(F(t2)) = {(Pbusy, (m,j)) I j E.:J and mE M}

For j E .:J and m E M, we have:

F(t2)((PbUSy,(m,j))) = ((Piree,m), [0,0]) + ((Pout,j), [0,0])

Transition t2 represents the completion of a job. If t2 occurs, it consumes one token
from place Pbusy and it produces two tokens (one for Piree and one for Pou,) both with
a delay equal to zero.

3 Formal definition

In this section we define interval timed coloured Petri nets in mathematical terms,
such as functions, multi-sets and relations.

3.1 Multi-sets

A multi-set, like a set, is a collection of elements over the same subset of some universe.
However, unlike a set, a multi-set allows multiple occurrences of the same element.
Another word for multi-set is bag. Bag theory is a natural extension of set theory
(Jensen [13]).

1 Note that (Pin, j) + (PI"" m) and ((Pbu,y, (m, j)), [1, 3]) are multi-sets, see section 3.1.

5

Definition 1 (multi-sets)
A multi-set b, over a set A is a function from A to IN, i.e. b E A --> IN. 2 If a E A
then b(a) is the number of occurrences of a in the multi-set b. AMs is the set of all
multi-sets over A. The empty multi-set is denoted by 0A (or 0). We often represent
a multi-set bEAMS by the formal sum:3

L b(a)a
aEA

Consider for example the set A = {a, b, c, .. }, the multi-sets 3a, a + b + c + d, 1a +
2b + 3c + 4d and 0A are members of AMS.

Definition 2
We now introduce some operations on multi-sets. Most of the set operators can be
extended to multi-sets in a rather straightforward way. Suppose A a set, b}, b2 E A MS
and q E A:

q E b, iff b1(q)::: 1
b1 .:; b2 iff V'aEA b1(a) .:; b2(a)
b1 = b2 iff b1 .:; b2 and b2 .:; b1

b1 + b2 = L (b1 (a) + b2(a»a
aEA

b1 - b2 = L «b1(a) - b2 (a» max 0) a
aEA

#b1 = L b1(a)
aEA

See Jensen [13, 14] for more details.

(membership)
(inclusion)
(equality)
(summation)

(subtraction)

(cardinality of a finite multi-set)

3.2 Definition of interval timed coloured Petri nets

The ITCPN model presented in this paper is analogous to the model described in
[3]. However, in this paper we give a definition which is closer to the definition of
Coloured Petri Nets (CPN), see Jensen [12, 13, 14].
Nearly all timed Petri net models use a continuous time domain, so do we.

Definition 3
TS is the time set, TS = {x E IR I x::: O}, i.e. the set of all non-negative reals.
INT = {[y,z] E TS X TS I y':; z}, represents the set of all closed intervals.
If x E TS and [y, z] E I NT, then x E [y, z] iff y .:; x .:; z.

We define an interval timed coloured Petri nets as follows:

'IN = {a, 1,2, .. }
3Th is notation has been adopted from Jensen [13J.

6

Definition 4 (ITCPN)
An Interval Timed Coloured Petri Net is a five tuple ITCPN = (E, P, T, C, F)
satisfying the following requirements:

(i) E is a finite set of types, called colour sets.

(ii) P is a finite set of places.

(iii) T is a finite set of transitions.

(iv) C is a colour function. It is defined from Pinto E, i.e. C E P -+ E.

(v) CT = {(p, v) I p E·P /I. v E C(p)} is the set of all possible coloured tokens.

(vi) F is the transition function. It is defined from T into functions. If t E T,
then: 4

F(t) E CTMS -f (CT X INT)Ms

(i) E is a set of types. Each type is a set of colours which may be attached to one
of the places.

(ii) and (iii) The places and transitions are described by two disjoint sets, i.e.
pnT = 0.

(iv) Each place pEP has a set of allowed colours attached to it and this means
that a token residing in p must have a value v which is an element of this set, i.e.
v E C(p).

(v) CT is the set of all coloured tokens, i.e. all pairs (p, v) where p is the position
of the token and v is the value of the token.

(vi) The transition function specifies each transition in the ITCPN. For a transition t,
F(t) specifies the relation between the multi-set of consumed tokens and the multi-set
of produced tokens. The domain of F(t) describes the condition on which transition
t is enabled. Note that the produced tokens have a delay specified by an interval. In
this paper, we require that both the multi-set of consumed tokens and the multi-set
of produced tokens contain finitely many elements.
Apart from the interval timing and a transition function instead of incidence functions,
this definition resembles the definition of a CP-matrix (see Jensen [12, 14]).

3.3 Dynamic behaviour of interval timed coloured Petri nets

The five tuple (E, P, T, C, F) specifies the static structure of an ITCPN. In the re­
mainder of this section we define the behaviour of an interval timed coloured Petri
net, i.e. the semantics of the ITCPN model.

4 ArB denotes the set of all partial functions from A to B.

7

Definition 5
A state is defined as a multi-set of coloured tokens each bearing a timestamp. S is
the state space, i.e. the set of all possible states:

S = (CT X TS)MS

The marking of an ITCPN in state s E S is the 'untimed' token distribution:
M(s) E CTMS and

M(s) = s(((p, v), x)) (p, v)
((p,v),x)ECTxTS

A state of the ITCPN is a multi-set of coloured tokens bearing a timestamp, i.e. a
multi-set of tuples ((p,v),x) (p E P, v E C(p) and x E TS). The state shown in
figure 1 is ((Pin, Jl), 1) + ((Piree, Ml),O), that is a state with one token in Pin with
value Jl and one token in Piree with value M1. The token in Pin bears timestamp 1,
the token in P iree bears timestamp 0.

Definition 6
An event is a triple (t, bin, bout), which represents the possible firing of transition
t while removing the tokens specified by the multi-set bin and adding the tokens
specified by the multi-set bout. E is the event set:

E = T x (CT X TS)MS x (CT X TS)MS

An event e = (t, bin, bout) represents the firing of t while consuming the tokens specified
by bin and producing the tokens specified by bout. If ((p, v), x) E bin, then e consumes
a token from P with value v and timestamp x. If ((p', v'), x') E bout, then e produces a
token for p' with value v' and delay x'. Note that x' is relative to the firing time and
x' is a member of one of the delay intervals specified by F(t)(bin). To select arbitrary
members of these delay intervals, we need the specialization concept.

Definition 7 (Specialization)
To relate multi-sets of tokens bearing timestamps with multi-sets of tokens bearing
(time) intervals, we define the specialization relation, <l <:::: (CT x TS)MS x
(CT x I NT)MS. For b E (CT x T S)MS and b E (CT x I NT)MS, b <l b if and only
if each token in b corresponds to exactly one token in b, such that they are in the
same place, have the same value and the timestamp of the token in b is in the (time)
interval of the token in 1.
More formally: b <l b if and only if (b = 0 and b = 0) or

:i((p,v),x)Eb :i((p,v),[y,z])Eb (x E [y,z]) and (b- ((p,v),x)) <l (b- (p,v), [y,z]))

Consider for example:
0<l0
((Pin, Jl), 1) <l «Pin, Jl), [0.5, 1.5])

8

((Pin, J1), 1) + 2 ((PITee, M1), 0) <1 ((Pin, J1), [0.5, 1.5]) + 2 ((PITee, M1), [0, 1])

Note that ((Pin, J1), 1) is not a specialization of ((Pin, J2), [0.5, 1.5]), because the
values of the two tokens differ.
If b <1 b, then there exists a bijection between the tokens in b and the tokens in b such
that each token in b corresponds to exactly one token in b which is in the same place,
has the same value and a 'matching' time-interval.

Definition 8
An event (t, bin, bout) E E is enabled in state s E S iff:

(ii) M(bin) E dom(F(t))

(iii) bout <1 F(t)(M(bin))

An event is enabled iff:
(i) The tokens to be consumed are present in the current state.
(ii) A transition is enabled if there are 'enough' tokens on each of its input places,

this is specified by the domain of F(t). Note that the enabling may depend upon the
values of the tokens to be consumed, but not on their timestamps.

(iii) The number and values of the tokens to be produced are determined by the
multi-set F(t)(M(bin)). This multi-set also specifies upper and lower bounds for the
delays of these tokens.

Definition 9
The enabling time of an event (t, bin, bout) E E is the maximum of all the time­
stamps of the tokens consumed, i.e.

ET((t, bin, bout)) = max x
((P.v).x)Ebin

An enabled event is time enabled iff no other enabled events have a smaller enabling
time.

If an event is time enabled, it may occur. In fact, a transition fires as soon as possible
(transitions are 'eager'). Although the time domain is continuous (T S = {x E IR I x ~
O}), time progresses discontinuously.

Definition 10
The model time of a state s E S is the minimum of all enabling times, i.e.

MT(s) = min{ ET(e) leE E and e is enabled in state s}

The model time only changes if something happens. Note that an enabled event e is
time enabled in state s iff ET(e) = MT(s).

9

If (t, bin, bout) E E an enabled event, then a timestamp in bout represents the delay of
the token instead of an absolute timestamp. Therefore we need a function to 'scale'
timestamps.

Definition 11
Function SC E « CT x T S)MS X T S) -+ (CT x T S)MS scales the timestamps in
a multi-set of timed coloured tokens. For bE (CT X TS)MS and y E TS, we have:

SC(b,y) = L b(((p, v), x)) ((p, v), x + y)
({p,v),x)ECTxTS

A time enabled event e in state s may occur at time ET(e) = MT(s).

Definition 12
When an enabled event (t, bin, bout) is time enabled in state s" it may occur, i.e.
transition t fires while removing the tokens specified by bin and adding the tokens
specified by bout.
If (t, bin, bout) occurs in state 8" then the net changes into the state 82, defined by:

State 82 is said to be directly reachable from 8, by the occurrence of event e =
(t, bin, bout), this is also denoted by:

Moreover, s, ----+ 82 means that there exists a time enabled event e such that 8, ~ 82'

Transitions fire as soon as possible, i.e. if an event occurs, then it occurs at its enabling
time.

Definition 13
A firing sequence is a sequence of states and events:

State Sn is reachable from s, iff there exists a firing sequence of finite length starting
in 8, and ending in 8 n :

An important property of the ITCPN model is the mono tonicity of time, i.e. time
can only move forward.

Theorem 1 (Monotonicity)
If 8" S2 E Sand 8, ----+ 82, then MT(8,) ::; MT(S2)'

10

Proof
Let s" S2 E Sand e = (t, bin, bout) E E such that s, ---.:..... S2.
ET(e) = MT(S1) and S2 = (s, - bin) + SC(bout,ET(e)).
Deleting tokens (bin) may disable events, but it will never enable new ones.
Adding tokens (SC(bout,ET(e))) may enable new events. However, in this case these
events have an enabling time of at least ET(e).
Since MT(S2) is the minimum of all enabling times, we have MT(S2) 2: MT(S1).
o

In [3], we prove a number of other properties of the ITCPN model (e.g. progressive­
ness, etc.). In that monograph we also show how to model other timed Petri nets (e.g.
Merlin's timed Petri nets) in terms of our model.

4 An analysis method

In this section we present an approach to verify certain properties and to calculate
bounds for all sorts of performance measures. This approach is based on an analy­
sis method, called Modified Transition System Reduction Technique (MTSRT), which
generates a reduced reachability graph. The MTSRT method can be applied to arbi­
trary ITCPNs.
Existing techniques which can be used to analyse the dynamic behaviour of timed and
coloured Petri nets, may be subdivided into three classes: simulation, reachability
analysis and Markovian analysis.
Simulation is a technique to analyse a system by conducting controlled experiments.
Because simulation does not require difficult mathematical techniques, it is easy to
understand for people with a non-technical background. Simulation is also a very
powerful analysis technique, since it does not set additional restraints. However,
sometimes simulation is expensive in terms of the computer time necessary to obtain
reliable results. Another drawback is the fact that (in general) it is not possible to
use simulation to prove that the system has the desired set of properties.
Recent developments in computer technology stimulate the use of simulation for the
analysis of timed coloured Petri nets. The increased processing power allows for the
simulation of large nets. Modern graphical screens are fast and have a high resolution.
Therefore, it is possible to visualize a simulation graphically (i.e. animation).
Reachability analysis is a technique which constructs a reachability graph, sometimes
referred to as reachability tree or occurrence graph (cf. Jensen [12, 14]). Such a
reachability graph contains a node for each possible state and an arc for each possible
state change. Reachability analysis is a very powerful method in the sense that it
can be used to prove all kinds of properties. Another advantage is the fact that it
does not set additional restraints. Obviously, the reachability graph needed to prove
these properties may, even for small nets, become very large (and often infinite). If we
want to inspect the reachability graph by means of a computer, we have to solve this
problem. This is the reason several authors developed reduction techniques (Hubner
et al. [I1J and Valmari [24]). Unfortunately, it is not known how to apply these

11

techniques to timed coloured Petri nets.
For timed coloured Petri nets with certain types of stochastic delays it is possible to
translate the net into a continuous time Markov chain. This Markov chain can be
used to calculate performance measures like the average number of tokens in a place
and the average firing rate of a transition.
If all the delays are sampled from a negative exponential probability distribution, then
it is easy to translate the timed coloured Petri net into a continuous time Markov
chain. Several authors attempted to increase the modelling power by allowing other
kinds of delays, for example mixed deterministic and negative exponential distributed
delays, and phase-distributed delays (see Ajmone Marsan et al. [15]). Nearly all
stochastic Petri net models (and related analysis techniques) do not allow for coloured
tokens, because the increased modelling power is offset by computational difficulties.
This is the reason stochastic high-level Petri nets are often used in a simulation context
only.

Besides the aforementioned techniques to analyse the behaviour of timed coloured
Petri nets, there are several analysis techniques for Petri nets without 'colour' or
explicit 'time'.

An interesting way to analyse a coloured Petri net is to calculate (or verify) place and
transition invariants. Place and transition invariants can be used to prove properties
of the modelled system. Intuitively, a place invariant assigns a weight to each token
such that the weighted sum of all tokens in the net remains constant during the
execution of any firing sequence. By calculating these place invariants we find a set
of equations which characterizes all reachable states. Transition invariants are the
duals of place invariants and the main objective of calculating transition invariants is
to find firing sequences with no 'effects'.
Note that we can calculate these invariants for timed coloured Petri nets (e.g. an
ITCPN). However, in this case, we do not really use the timing information. Therefore,
in general, these invariants do not characterize the dynamic behaviour of the system.
On the other hand, they can be used to verify properties which are time independent.
For more information about the calculation of invariants in a coloured Petri net, see
Jensen [12, 14].

In our ITCPN model, a delay is described by an interval rather than a fixed value
or some delay distribution. On the one hand, interval delays allow for the modelling
of variable delays, on the other hand, it is not necessary to determine some artificial
delay distribution (as opposed to stochastic delays). Instead, we have to specify
bounds. These bounds are used to specify and to verify time constraints. This is very
important when modelling time-critical systems, i.e. real-time systems with 'hard'
deadlines. These deadlines have to be met for a safe operation of the system. An
acceptable behaviour of the system depends not only on the logical correctness of the
results, but also on the time at which the results are produced. Therefore, we are
interested in techniques to verify these deadlines and to calculate upper and lower

12

•

S11 S12 S'3 Sli

S'2' S122 Slit Stij

Figure 2: A reachability graph

bounds for all sorts of performance criteria.

4.1 Reachability graphs

In section 3.3, we defined the behaviour of an ITCPN. The definitions of that section
can be used to construct the so-called reachability graph. The basic idea of a
reachability graph is to organize all reachable markings in a graph, where each node
represents a state and each arc represents an event transforming one state into another
state.
Consider for example the reachability graph shown in figure 2. Suppose that s, is the
initial state of the ITCPN we want to consider. This state is connected to a number of
states Sll, S'2, S'3, .. reachable from s, by the firing of some transition, i.e. s, --> s,..
These states are called the 'successors' (or children) of the s,. Repeating this process
produces the graphical representation of the reachability graph, see figure 2. Such a
reachability graph contains all relevant information about the dynamic behaviour of
the system. If we are able to generate this graph, we can answer' any' kind of question
about the behaviour of the system.

Obviously such a reachability graph may, even for small nets, become very large (often
infinite). Many authors have presented analysis techniques for the efficient calculation
of a reachability graph of an untimed coloured Petri net (e.g. [24], [13], [11], [6]). In
this section we focus on the reachability graph of an ITCPN.

In general the number of reachable states of an ITCPN (given an initial state) is
infinite. This is mainly caused by the fact that we use interval timing. Consider an
enabled transition. In general, there is an infinite number of allowed firing delays, all
resulting in a different state. Consider for example the ITCPN shown in figure 3. If
transition t occurs, then it consumes one token from PI and it produces one token for

13

e)----.J

PI

Figure 3: An ITCPN

P2 and one token for P3' The delay intervals are given in the figure. Suppose the initial
state is such that there is one token in PI with timestamp O. The number of successors
of this state is infinite, because all states with one token in P2 having a timestamp
x E [1,2J and one token in P3 having a timestamp Y E [3,4J are reachable. It may
seem unreasonable that this simple example corresponds to a reachability graph with
an infinite number of states. This is the reason we developed the Modified Transition
System Reduction Technique described in this section. This technique generates the
reachability graph and uses, for computational reasons only, alternative definitions for
the dynamic behaviour of an ITCPN.

4.2 Reducing the reachability graph of an ITCPN

The Modified Transition System Reduction Technique (MTSRT) uses alternative def­
initions for the dynamic behaviour of an ITCPN, i.e. the MTSRT method uses al­
ternative semantics. The main difference between these definitions and the original
ones is the fact that we attach a time-interval to every token instead of a timestamp,
i.e. S = (CT x I NT)Ms. We will show that, using these semantics, it is possible
to calculate the set of reachable states (or at least a relevant subset). Since, the
reachability graph of the ITCPN using these alternative semantics is much smaller
and more coarsely grained than the original one, we call it the reduced reachabil­
ity graph. Every state in the reduced reachability graph corresponds to a (infinite)
number of states in the original reachability graph. One may think of these states as
equivalence or state classes. One state class s E S corresponds to the set of all states
being a specialization of s, i.e. {s E Sis <l s}. Informally speaking, state classes are
defined as the union of 'similar' states having the same token distribution (marking)
but different timestamps (within certain bounds).

In the remainder of this section we redefine the behaviour of an interval timed coloured
Petri net, i.e. we give alternative semantics of the ITCPN model.
In section 4.3, we will show how these two semantics relate to each other. We will see
that the alternative definitions given in this section can be used to answer questions
about the behaviour of the ITCPN (as specified in section 3.3).

14

Definition 14
A state class is defined as a multi-set of coloured tokens each bearing a time-interval.
S is the state space:s

S = (CT X INT)Ms

An event is a triple (t, bin, bout), which represents the possible firing of transition
t while removing the tokens specified by the multi-set bin and adding the tokens
specified by the multi-set bout. E is the event set:

E = T x (CT X INT)Ms x (CT X INT)Ms

Note that tokens bear time-intervals instead of timestamps.

Definition 15
An event (t, bin, bout) E E is enabled in state class s E S iff:

(ii) M(bin) E dom(F(t))

(iii) bout = F(t)(M(bin))

The point of time a token becomes available is specified by an interval, therefore it is
impossible to specify the enabling time of an event. However, it is possible to give an
upper and lower bound for the enabling time of an event e E E.

Definition 16
The minimum and maximum enabling time of an event (t, bin, bout) E E are
defined as follows:

ET min ((t, bin, bout)) max y
((p,v),[y,z])Eb'n

max z
((p,v) ,[y,z])Eb'n

ET max((t, bin, bout)) =

An enabled event e is time enabled iff the minimum enabling time of e is smaller
than the maximum enabling time of any other enabled event.

If (t, bin, bout) E E an enabled event, then a time-interval in bout represents the delay
interval of the token instead of an absolute time-interval. Therefore we need a function
to 'scale' time-intervals.

5Symbols superscripted by a horizontal line are associated with the alternative semantics, this to
avoid confusion.

15

Definition 17
Function SC E ((CT X I NT)Ms X I NT) -> (CT X I NT)Ms scales the time-intervals
in a multi-set of timed coloured tokens. For bE (CT X INT)Ms and [y,z] E INT,
we have:

SC(b, [y, z]) - b(((p, v), [y', Z/])) ((p, v), [X' + X, y' + y])
((p,v),[y',z'])ECTx I NT

A time enabled event e in state class 5 may occur at a time between ETmin(e) and
MTmax(5) = min{ETmax(e) leE E and e is enabled in 5}.

Definition 18
When an enabled event (t, bin, bout) is time enabled in state class 51 E S, it may
occur, i.e. transition t fires while removing the tokens specified by bin and adding
the tokens specified by baut .
If (t, bin, bout) occurs in state class 51, then the net changes into the state class 52 E S,
defined by:

82 = (81- bin) + SC(bout , [ETmin((t,bin,baut)),MTmax(51)])

State class 52 is said to be directly reachable from 81 by the occurrence of event
e = (t, bin, bout), this is also denoted by:

Note that we use double arrows to denote possible state (class) changes given the
alternative semantics of an ITCPN. If we use the definitions given in this section for
the generation of the reachability graph, then we obtain the reduced reachability
graph. Comparing these definitions with the definitions given in section 3.3 shows
that all differences stem from the fact that the alternative semantics associate a time­
interval (instead of a timestamp) with each token. As a result of these intervals, the
enabling time of an event and the model time of a state class are both characterized
by an upper and lower bound, etc.

4.3 Soundness

The alternative definitions of section 4.2 have been given for computational reasons.
However, calculating the reduced reachability graph only makes sense if the reduced
reachability graph can be used to deduce properties of the reachability graph which
represents the behaviour of the ITCPN. Therefore, we investigate the relation between
the two reachability graphs. Examples indicate that such a relation exists.
It is easy to see that the two reachability graphs are not equivalent. Moreover, there
is no sensible morphism between them (see [3]). However, state 5 E S and state class
s E S seem to be 'related' if 8 is a specialization of s (i.e. 5 <l s). Recall that 8 <l s if
and only if each token in 5 corresponds to exactly one token in s, such that they are
in the same place, have the same value and the timestamp of the token in s is in the

16

(S,---» (S, ===9)

<l
81

e el

<l 0 - - --

Figure 4: The soundness property

(time) interval of the token in 8 (see definition 7).

Theorem 2 (Soundness)
Let (E, P, T, C, F) be an ITCPN and 81,82 E S such that 81 ---> 82' If 81 E Sand
81 <l 81, then there exists a state class 82 E 5 such that 81 ===9 82 and 82 <l 82.

Proof 6

Let 81,82 E S, 81 E Sand e E E such that 81 --"-. 82 and 81 <l 81. Now we have to
prove that there exists an e such that 81 ~ 82 and 82 <l 82 (see figure 4).
Suppose e = (t, bin, bout) and let e = (t, bin, bout) where bout = F(t)(M(bin)) and bin
such that bin::; 81 and bin <l bin (this is possible because 81 <l81 and bin::; sd.

Remains to prove that: (1) e is enabled, (2) e is time enabled and (3) 82 <l 82.

(1) Event e is enabled, because bin::; 81, M(bin) E dom(F(t)) and bout = F(t)(M(bin)).7
(2) ETmin(e) ::; ET(e) = MT(sd ::; MTmax (81), i.e. e is time enabled.
(3) Since Sl <l 81, bin <l bin and bout <l bout, we have that:
SC(bout , ET((t, bin, bout})) <l SC(bout , [ET mine (t, bin, bout}), MT max(8dJ) and
82 = (81 - bin) + SC(bout, ET((t, bin, bout})) is a specialization of
82 = (81 - bin) + SC(bou" [ETmin((t, bin, bout}), MTmax(8dJ), i.e. S2 <l 82'

o

This theorem tells us that if an event occurs which changes state Sl into 82, then
there is a corresponding event which changes any state class 81 that 'covers' SI into a
state class which 'covers' 82 (see figure 4). We say that the alternative semantics are
'sound'.

An implication of theorem 2 is that if 81 <l 81 and there exists a firing sequence

81 ~ 82 ~ 83 ~ .. ~ Sn, then there exists a firing sequence 81 ~ 82 ~

6 A more formal proof is given in [3].
7 M(liin) = M(bin), because bin <lbin .

17

33 e3 I •• ~ 3 n such that Sn <1 3n . For any state reachable from s, there is a related
state class reachable from 3,.

If we compare the reachability graph and the reduced reachability of an arbitrary
ITCPN, then we see that all the state changes possible in the reachability graph are
also possible in the reduced reachability. Note that the opposite does not hold, because
of dependencies between tokens are not taken into account. Consider for example the
net shown in figure 3. Suppose there is one token in pI with a time interval [0, 1 J and
the other places are empty. In this case t fires between time 0 (ETm;n(e)) and time 1
(MTmax{s)). The next state of the ITCPN using the alternative definitions given in
section 4.2, will be the state with one token in p2 (with interval [1,3]) and one token
in p3 (with interval [3,5]). This suggests that it is possible to have a token in p2
with timestamp 1 and a token in p3 with timestamp 5. However, this is not possible,
because these timestamps are related (i.e. they where produced at the same time).
We say that the alternative semantics are not 'complete'.

Despite the non-completeness, the soundness property allows us to answer various
questions. We can prove that a system has a desired set of properties by proving it
for the modified transition system. For example, we can use the reduced reachability
graph to prove boundedness, absence of traps and siphons (deadlocks), etc. The re­
duced reachability graph may also be used to analyse the performance of the system
modelled by an ITCPN. With performance we mean characteristics, such as: response
times, occupation rates, transfer rates, throughput times, failure rates, etc. The MT­
SRT method can be used to calculate bounds for performance measures. Although
these bounds are sound (i.e. safe) they do not have to be as tight as possible, because
of possible dependencies between tokens (non-completeness). However, experimenta­
tion shows that the calculated bounds are often of great value and far from trivial.
Moreover, we are able to answer questions which cannot be answered by simulation
or the method proposed by Berthomieu et al. [5].
We have modelled and analysed many examples using the approach presented in
this paper, see Van der Aalst [3, 2, IJ and Odijk [20]. To facilitate the analysis
of real-life systems we have developed an analysis tool, called fAT ([3]). This tool
also supports more traditional kinds of analysis such as the generation of place and
transition invariants. IAT is part of the software package ExSpect (see Van Hee et al.
[9] and Van der Aalst [3, 4]).

5 Conclusion

In this paper, we presented a coloured Petri net model extended with time. This
ITCPN model uses a new timing mechanism where time is associated with tokens and
transitions determine a delay specified by an interval. The formal semantics of the
ITCPN model have been defined in section 3. The fact that time is in tokens results
in transparent semantics and a compact state representation. Specifying each delay
by an interval rather than a deterministic value or stochastic variable is promising,

18

since it is possible to model uncertainty without having to bother about the delay
distribution.

From the analysis point of view, the ITCPN model is also interesting, since interval
timing allows for new analysis methods. In this paper, the MTSRT method has been
described. This is a powerful analysis method, since it can be applied to arbitrary
nets and answers a large variety of questions. This method constructs a reduced
reachability graph. In such a graph a node corresponds to a set of (similar) states,
instead of a single state.

A lot of applications have been modelled and analysed using the approach described in
this paper and the software package ExSpect which supports the MTSRT method. Ex­
perimentation shows that, in general, the results obtained using the MTSRT method
are quite meaningful. A direction of further research is to incorporate other reduction
techniques for coloured Petri nets into our approach (e.g. [24], [13], [11], [6]).

References
[1] W.M.P. VAN DER AALST, Interval Timed Petri Nets and their analysis. Computing

Science Notes 91/09, Eindhoven University of Technology, Eindhoven, 1991.
[2] --, Modelling and Analysis of Complex Logistic Systems, in Proceedings of the IFIP

WG 5.7 Working Conference on Integration in Production Management Systems, Eind­
hoven, the Netherlands, 1992, pp. 203-218.

[3] --, Timed coloured Petri nets and their application to logistics, PhD thesis, Eind­
hoven University of Technology, Eindhoven, 1992.

[4] W.M.P. VAN DER AALST AND A.W. WALTMANS, Modelling logistic systems with
EXSPECT, in Dynamic Modelling of Information Systems, H.G. Sol and K.M. van
Hee, eds., Elsevier Science Publishers, Amsterdam, 1991, pp. 269-288.

[5] B. BERTHOMIEU AND M. DIAZ, Modelling and verification of time dependent systems
using Time Petri Nets, IEEE Transactions on Software Engineering, 17 (1991), pp. 259-
273.

[6] G. CHIOLA, C. DUTHEILLET, G. FRANCESCHINIS, AND S. HADDAD, On well-formed
coloured nets and their symbolic reachability graph, in Proceedings of the 11th Interna­
tional Conference on Applications and Theory of Petri Nets, Paris, June 1990, pp. 387-
41l.

[7] G. FLORIN AND S. NATKIN, Evaluation based upon Stochastic Petri Nets of the Max­
imum Throughput of a Full Duplex Protocol, in Application and theory of Petri nets
: selected papers from the first and the second European workshop, C. Girault and
W. Reisig, eds., vol. 52 of Informatik Fachberichte, Berlin, 1982, Springer-Verlag, New
York, pp. 280-288.

[8] H.J. GENRICH AND K. LAUTENBACH, System modelling with high level Petri nets,
Theoretical Computer Science, 13 (1981), pp. 109-136.

[9] K.M. VAN HEE, L.J. SOMERS, AND M. VOORHOEVE, Executable specifications for
distributed information systems, in Proceedings of the IFIP TC 8 / WG 8.1 Working
Conference on Information System Concepts: An In-depth Analysis, E.D. Falkenberg

19

and P. Lindgreen, eds., Namur, Belgium, 1989, Elsevier Science Publishers, Amsterdam,
pp. 139-156.

[10] K.M. VAN HEE AND P.A.C. VERKOULEN, Integration of a Data Model and Petri
Nets, in Proceedings of the 12th International Conference on Applications and Theory
of Petri Nets, Aarhus, June 1991, pp. 41O-43l.

[11] P. HUBNER, A.M. JENSEN, L.O. JEPSEN, AND K. JENSEN, Reachability trees for high
level Petri nets, Theoretical Computer Science, 45 (1986), pp. 261-292.

[12] K. JENSEN, Coloured Petri Nets, in Advances in Petri Nets 1986 Part I: Petri Nets, cen­
tral models and their properties, W. Brauer, W. Reisig, and G. Rozenberg, eds., vol. 254
of Lecture Notes in Computer Science, Springer-Verlag, New York, 1987, pp. 248-299.

[13] --, Coloured Petri Nets: A High Level Language for System Design and Analysis, in
Advances in Petri Nets 1990, G. Rozenberg, ed., vol. 483 of Lecture Notes in Computer
Science, Springer-Verlag, New York, 1990, pp. 342-416.

[14] --, Coloured Petri Nets. Basic concepts, analysis methods and practical use., to
appear in EATCS monographs on Theoretical Computer Science, Springer-Verlag, New
York, 1992.

[15] M. AJMONE MARSAN, G. BALBO, A. BOBBIO, G. CHIOLA, G. CONTE, AND
A. CUMANI, On Petri Nets with Stochastic Timing, in Proceedings of the Interna­
tional Workshop on Timed Petri Nets, Torino, 1985, IEEE Computer Society Press,
pp.80-87.

[16] M. AJMONE MARSAN, G. BALBO, AND G. CONTE, A Class of Generalised Stochastic
Petri Nets for the Performance Evaluation of Multiprocessor Systems, ACM Transac­
tions on Computer Systems, 2 (1984), pp. 93-122.

[17J P. MERLIN, A Study of the Recoverability of Computer Systems, PhD thesis, University
of California, Irvine, California, 1974.

[18J P. MERLIN AND D.J. FABER, Recoverability of communication protocols, IEEE Trans­
actions on Communication, 24 (1976), pp. 1036-1043.

[19J S. MORASCA, M. PEZZE, AND M. TRUBIAN, Timed High-Level Nets, The Journal of
Real-Time Systems, 3 (1991), pp. 165-189.

[20J M. ODIJK, ITPN analysis of ExSpect specifications with respect to production logistics,
Master's thesis, Eindhoven University of Technology, Eindhoven, 1991.

[21] C. RAMCHANDANI, Performance Evaluation of Asynchronous Concurrent Systems by
Timed Petri Nets, PhD thesis, Massachusetts Institute of Technology, Cambridge, 1973.

[22J W. REISIG, Petri nets: an introduction, Prentice-Hall, Englewood Cliffs, 1985.
[23] J. SIFAKIS, Use of Petri Nets for performance evaluation, in Proceedings of the Third

International Symposium IFIP W.G. 7.3., Measuring, modelling and evaluating com­
puter systems (Bonn-Bad Godesberg, 1977), H. Beilner and E. Gelenbe, eds., Elsevier
Science Publishers, Amsterdam, 1977, pp. 75-93.

[24] A. VALMARI, Stubborn sets for reduced state space generation, in Proceedings of the
10th International Conference on Applications and Theory of Petri Nets, Bonn, June
1989.

[25] W.M. ZUBEREK, Timed Petri Nets and Preliminary Performance Evaluation, in Pro­
ceedings of the 7th annual Symposium on Computer Architecture, vol. 8(3) of Quarterly
Publication of ACM Special Interest Group on Computer Architecture, 1980, pp. 62-82.

20

In this series appeared:

90/1 W.P.de Roever-
B.B arringer-
C. Courcoubetis-D. Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Bee
P.M.P. Rambags

90/3 R. Gerth

90{4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J .M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Bee

90/10 M.J. van Diepen
K.M. van Bee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p. 23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A C. Verkoulen

90120 M.Rem

90/21 K.M. van Hee
P.AC. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.AM. Schoenmakers

91/04 E. v.d. Sluis
AF. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. IS.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... '!! p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
KM. van Hee

91/16 AJ.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
KM. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 AE. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 KM. van Hee
L.J. Somers
M. Yoorhoeve

91/24 AT.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
I.W. Klop
C. Palamidessi

92/01 I. Coenen
I. Zwters
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 I.C.M. Baeten
I.A. Bergstra

92/04 I.P.H.W.v.d.Eijnde

92/05 I.P.H.W.v.d.Eijnde

92/06 I.C.M. Baeten
I.A. Bergstra

92/07 R.P. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR Seljee

92/17 W.M.P. van der Aalst

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

92/18 R.Nederpeit
F. Kamarcddinc

92/19 I.C.M.Baeten
I.A.Bergstra
S.A.Smolka

92/20 F.Kamarcddine

92/21 F.Kamarcddinc

92/22 R. Nederpclt
F.Kamarcddine

92/23 F.Kamarcddine
E.Klcin

92/24 M.Codish
D.Oams
Eyal Yardeni

92/25 E.Poll

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-roundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

,
Nominalization, Predication and Type Containment, p. 40.

BOllum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logie for Fro, p. 15.

J5

	Abstract
	1. Introduction
	2. Interval timed coloured Petri nets
	3. Formal definition
	3.1 Multi-sets
	3.2 Definition of interval timed coloured Petri nets
	3.3 Dynamic behavior of interval timed coloured Petri nets
	4. An analysis method
	4.1 Reachability graphs
	4.2 Reducing the reachability grapgh of an ITCPN
	4.3 Soundness
	5. Conclusion
	References

