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Interval timed coloured Petri nets 
and their analysis 

W.M.P. van der Aalst* 
Eindhoven University of Technology 

Dept. of Mathematics and Computing Science 

Abstract 

Practical experiences show that only timed and coloured Petri nets are capa­
ble of modelling large and complex real-time systems. This is the reason we 
present the Interval Timed Coloured Petri Net (ITCPN) model. An interval 
timed coloured Petri net is a coloured Petri net extended with time; time is in 
tokens and transitions determine a delay for each produced token. This delay 
is specified by an upper and lower bound, i.e. an interval. The ITCPN model 
allows the modelling of the dynamic behaviour of large and complex systems, 
without losing the possibility of formal analysis. In addition to the existing 
analysis techniques for coloured Petri nets, we propose a new analysis method 
to analyse the temporal behaviour of the net. This method constructs a reduced 
reachability graph and exploits the fact that delays are described by an interval. 

1 Introduction 

Petri nets have been widely used for the modelling and analysis of concurrent systems 
(Reisig [22]). There are several factors which contribute to their success: the graphical 
nature, the ability to model parallel and distributed processes in a natural manner, 
the simplicity of the model and the firm mathematical foundation. Nevertheless, the 
basic Petri net model is not suitable for the modelling of many systems encountered 
in logistics, production, communication, flexible manufacturing and information pro­
cessing. Petri nets describing real systems tend to be complex and extremely large. 
Sometimes it is even impossible to model the behaviour of the system accurately. To 
solve these problems many authors propose extensions of the basic Petri net model. 

Several authors have extended the basic Petri net model with coloured or typed tokens 
([8], [12], [13], [9], [10]). In these models tokens have a value, often referred to as 
'colour'. There are several reasons for such an extension. One of these reasons is the 
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fact that (uncoloured) Petri nets tend to become too large to handle. Another reason 
is the fact that tokens often represent objects or resources in the modelled system. As 
such, these objects may have attributes, which are not easily represented by a simple 
Petri net token. These 'coloured' Petri nets allow the modeller to make much more 
succinct and manageable descriptions, therefore they are called high-level nets. 

Other authors have proposed a Petri net model with explicit quantitative time (e.g. 
[25], [21], [17], [16], [9], [23]). We call these models timed Petri net models. 

In our opinion, only timed and coloured Petri nets are suitable for the modelling 
of large and complex real-time systems. Although there seems to be a consensus of 
opinion on this matter, only a few timed coloured Petri net models have been proposed 
in literature (e.g. Van Hee et al. [9], Morasca [19]). Moreover, even fewer methods 
have been developed for the analysis of the temporal behaviour of these nets. This is 
one of the reasons we propose the Interval Timed Coloured Petri Net (ITCPN) model 
and an analysis method, called MTSRT, based on this model. 
The ITCPN model uses a rather new timing mechanism where time is associated 
with tokens. This timing concept has been adopted from Van Hee et al. ([9]). In 
the ITCPN model we attach a timestamp to every token. This timestamp indicates 
the time a token becomes available. Associating time with tokens seems to be the 
natural choice for high-level Petri nets, since the colour is also associated with tokens. 
The enabling time of a transition is the maximum timestamp of the tokens to be 
consumed. Transitions are eager to fire (i.e. they fire as soon as possible), therefore 
the transition with the smallest enabling time will fire first. Firing is an atomic action, 
thereby producing tokens with a timestamp of at least the firing time. The difference 
between the firing time and the timestamp of such a produced token is called the 
firing delay. The (firing) delay of a produced token is specified by an upper and lower 
bound, i.e. an interval. 

Instead of using 'interval timing', we could have used a Petri net model with fixed 
delays or stochastic delays. 
Petri nets with fixed (deterministic) delays have been proposed in [25], [21], [23] and 
[9J. They allow for simple analysis methods but are not very expressive, because in a 
real system the durations of most activities are variable. 
One way to model this variability, is to assume certain delay distributions, i.e. to use 
a timed Petri net model with delays described by probability distributions. These 
nets are called stochastic Petri nets ([7], [16], [15]). Analysis of stochastic Petri nets 
is possible (in theory), since the reachability graph can be regarded, under certain 
conditions, as a Markov chain or a semi-Markov process. However, these conditions 
are severe: all firing delays have to be sampled from an exponential distribution or 
the topology of the net has to be of a special form (Ajmone Marsan et al. [15]). Since 
there are no general applicable analysis methods, several authors resorted to using 
simulation to study the behaviour of the net (see section 4). 
To avoid these problems, we propose delays described by an interval specifying an 
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upper and lower bound for the duration of the corresponding activity. On the one 
hand, interval delays allow for the modelling of variable delays, on the other hand, it is 
not necessary to determine some artificial delay distribution (as opposed to stochastic 
delays). Instead, we have to specify bounds. These bounds can be used to verify time 
constraints. This is very important when modelling time-critical systems, i.e. real­
time systems with 'hard' deadlines. These hard (real-time) deadlines have to be met 
for a safe operation of the system. An acceptable behaviour of the system depends not 
only on the logical correctness of the results, but also on the time at which the results 
are produced. Examples of such systems are: real-time computer systems, process 
controllers, communication systems, flexible manufacturing systems and just-in-time 
manufacturing systems. 

To our knowledge, only one other model has been presented in literature which also 
uses delays specified by an interval. This model was presented by Merlin in [17, 18]. In 
this model the enabling time of a transition is specified by a minimal and a maximal 
time. Another difference with our model is the fact that Merlin's model is not a high­
level Petri net model because of the absence of typed (coloured) tokens. Compared to 
our model, Merlin's model has a rather complex formal semantics, which was presented 
in [5] by Berthomieu and Diaz. This is caused by a redundant state space (marking and 
enabled transitions are represented separately) and the fact that they use a relative 
time scale and allow for multiple enabledness of transitions. An additional advantage 
of our approach is the fact that our semantics closely correspond to the intuitive 
interpretation of the dynamical behaviour of a timed Petri net. 

The main purpose of this paper is to present a high-level Petri net model extended with 
interval timing which allows for new methods of analysis. In section 2 we introduce the 
ITCPN model. The formal definition and semantics are given in section 3. Section 4 
deals with the analysis of interval timed coloured Petri nets. In this section, we 
introduce a new and powerful analysis method. 

2 Interval timed coloured Petri nets 

We use an example to introduce the notion of interval timed coloured Petri nets. 
Figure 1 shows an ITCPN composed of four places (P;n,Pbusy,Plree and Pout) and 
two transitions (t, and t2). At any moment, a place contains zero or more tokens, 
drawn as black dots. In the ITCPN model, a token has three attributes: a position, 
a value and a timestamp, i.e. we can use the tuple ((p,v),x) to denote a token in 
place P with value v and timestamp x. The value of a token is often referred to as the 
token colour. Each place has a colour set attached to it which specifies the set of 
allowed values, i.e. each token residing in place P must have a colour (value) which is 
a member of the colour set of p. 
The ITCPN shown in figure 1 represents a jobshop, jobs. arrive via place p;n and leave 
the system via place pout. The jobshop is composed of a number of machines. Each 
machine is represented by a token which is either in place Plree or in place Pbusy. There 
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((Piree,M1),0) 

Piree [0,0] 

((Pin, J1), 1) 

Pin 
[1,3] 

Pbusy 
[0,0] 

Pout 

Figure 1: An interval timed coloured Petri net 

are three colour sets M = {M1, M2, .. } and :r = {J1, J2, .. } and M x :r. Colour set 
:r (job types) is attached to place Pin and place Pout, colour set M (machine types) 
is attached to place Piree' Colour set M x:r is attached to place Pbusy. 
Places and transitions are interconnected by arcs. Each arc connects a place and a 
transition in precisely one direction. Transition tl has two input places (Pin and Piree) 
and one output place (Pbu,y). Transition tz has one input place (Pbusy) and two output 
places (Piree and Pou,)' 
Places are passive components, while transitions are the active components. Transi­
tions cause state changes. A transition is called enabled if there are 'enough' tokens 
on each of its input places. In other words, a transition is enabled if all input places 
contain (at least) the specified number of tokens (further details will be given later). 
An enabled transition may occur (fire) at time x if all the tokens to be consumed 
have a timestamp not later than time x. The enabling time of a transition is the 
maximum timestamp of the tokens to be consumed. Because transitions are eager to 
fire, a transition with the smallest enabling time will fire first. 
Firing a transition means consuming tokens from the input places and producing 
tokens on the output places. If, at any time, more than one transition is enabled, 
then any of the several enabled transitions may be 'the next' to fire. This leads to a 
non-deterministic choice if several transitions have the same enabling time. 
Firing is an atomic action, thereby producing tokens with a timestamp of at least 
the firing time. The difference between the firing time and the timestamp of such a 
produced token is called the firing delay. This delay is specified by an interval, i.e. 
only delays between a given upper bound and a given lower bound are allowed. In 
other words, the delay of a token is 'sampled' from the corresponding delay interval. 
Note that the term 'sampled' may be confusing, because the modeller does not specify 
a probability distribution, merely an upper and lower bound. 
Moreover, it is possible that the modeller specifies a delay interval which is too wide, 
because of a lack of detailed information. In this case, the actual delays (in the real 
system) only range over a part of the delay interval. 
The number of tokens produced by the firing of a transition may depend upon the 
values of the consumed tokens. Moreover, the values and delays of the produced tokens 
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may also depend upon the values of the consumed tokens. The relation between the 
multi-set of consumed tokens and the multi-set of produced tokens is described by 
the transition function. Function F(t,) specifies transition t, in the net shown in 
figure 1: 

dom(F(t,)) = {(Pin,j) + (Piree,m) I j E.:J and mE M} 

For j E .:J and m E M, we have:' 

The domain of F( t,) describes the condition on which transition t, is enabled, i.e. t, 
is enabled if there is (at least) one token in place Pin and one token in P iree. This 
means that transition t, may occur if there is a job waiting and one of the machines 
is free. Note that, in this case, the enabling of a transition does not depend upon the 
values of the tokens consumed. The enabling time of transition t, depends upon the 
timestamps of the tokens to be consumed. If t, occurs, it consumes one token from 
place Pin and one token from Piree and it produces one token for place Pbusy. The 
colour of the produced token is a pair (m,j), where m represents the machine and j 
represents the job. The delay of this token is an arbitrary value between 1 and 3, e.g. 
2.55 or 4/3. 
Transition t2 is specified as follows: 

dom(F(t2)) = {(Pbusy, (m,j)) I j E.:J and mE M} 

For j E .:J and m E M, we have: 

F(t2)((PbUSy,(m,j))) = ((Piree,m), [0,0]) + ((Pout,j), [0,0]) 

Transition t2 represents the completion of a job. If t2 occurs, it consumes one token 
from place Pbusy and it produces two tokens (one for Piree and one for Pou,) both with 
a delay equal to zero. 

3 Formal definition 

In this section we define interval timed coloured Petri nets in mathematical terms, 
such as functions, multi-sets and relations. 

3.1 Multi-sets 

A multi-set, like a set, is a collection of elements over the same subset of some universe. 
However, unlike a set, a multi-set allows multiple occurrences of the same element. 
Another word for multi-set is bag. Bag theory is a natural extension of set theory 
(Jensen [13]). 

1 Note that (Pin, j) + (PI"" m) and ((Pbu,y, (m, j)), [1, 3]) are multi-sets, see section 3.1. 
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Definition 1 (multi-sets) 
A multi-set b, over a set A is a function from A to IN, i.e. b E A --> IN. 2 If a E A 
then b(a) is the number of occurrences of a in the multi-set b. AMs is the set of all 
multi-sets over A. The empty multi-set is denoted by 0A (or 0). We often represent 
a multi-set bEAMS by the formal sum:3 

L b(a)a 
aEA 

Consider for example the set A = {a, b, c, .. }, the multi-sets 3a, a + b + c + d, 1a + 
2b + 3c + 4d and 0A are members of AMS. 

Definition 2 
We now introduce some operations on multi-sets. Most of the set operators can be 
extended to multi-sets in a rather straightforward way. Suppose A a set, b}, b2 E A MS 
and q E A: 

q E b, iff b1(q)::: 1 
b1 .:; b2 iff V'aEA b1(a) .:; b2(a) 
b1 = b2 iff b1 .:; b2 and b2 .:; b1 

b1 + b2 = L (b1 (a) + b2(a»a 
aEA 

b1 - b2 = L «b1(a) - b2 (a» max 0) a 
aEA 

#b1 = L b1(a) 
aEA 

See Jensen [13, 14] for more details. 

(membership) 
(inclusion) 
(equality) 
(summation) 

(subtraction) 

(cardinality of a finite multi-set) 

3.2 Definition of interval timed coloured Petri nets 

The ITCPN model presented in this paper is analogous to the model described in 
[3]. However, in this paper we give a definition which is closer to the definition of 
Coloured Petri Nets (CPN), see Jensen [12, 13, 14]. 
Nearly all timed Petri net models use a continuous time domain, so do we. 

Definition 3 
TS is the time set, TS = {x E IR I x::: O}, i.e. the set of all non-negative reals. 
INT = {[y,z] E TS X TS I y':; z}, represents the set of all closed intervals. 
If x E TS and [y, z] E I NT, then x E [y, z] iff y .:; x .:; z. 

We define an interval timed coloured Petri nets as follows: 

'IN = {a, 1,2, .. } 
3Th is notation has been adopted from Jensen [13J. 
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Definition 4 (ITCPN) 
An Interval Timed Coloured Petri Net is a five tuple ITCPN = (E, P, T, C, F) 
satisfying the following requirements: 

(i) E is a finite set of types, called colour sets. 

(ii) P is a finite set of places. 

(iii) T is a finite set of transitions. 

(iv) C is a colour function. It is defined from Pinto E, i.e. C E P -+ E. 

(v) CT = {(p, v) I p E·P /I. v E C(p)} is the set of all possible coloured tokens. 

(vi) F is the transition function. It is defined from T into functions. If t E T, 
then: 4 

F(t) E CTMS -f (CT X INT)Ms 

(i) E is a set of types. Each type is a set of colours which may be attached to one 
of the places. 

(ii) and (iii) The places and transitions are described by two disjoint sets, i.e. 
pnT = 0. 

(iv) Each place pEP has a set of allowed colours attached to it and this means 
that a token residing in p must have a value v which is an element of this set, i.e. 
v E C(p). 

(v) CT is the set of all coloured tokens, i.e. all pairs (p, v) where p is the position 
of the token and v is the value of the token. 

(vi) The transition function specifies each transition in the ITCPN. For a transition t, 
F( t) specifies the relation between the multi-set of consumed tokens and the multi-set 
of produced tokens. The domain of F(t) describes the condition on which transition 
t is enabled. Note that the produced tokens have a delay specified by an interval. In 
this paper, we require that both the multi-set of consumed tokens and the multi-set 
of produced tokens contain finitely many elements. 
Apart from the interval timing and a transition function instead of incidence functions, 
this definition resembles the definition of a CP-matrix (see Jensen [12, 14]). 

3.3 Dynamic behaviour of interval timed coloured Petri nets 

The five tuple (E, P, T, C, F) specifies the static structure of an ITCPN. In the re­
mainder of this section we define the behaviour of an interval timed coloured Petri 
net, i.e. the semantics of the ITCPN model. 

4 ArB denotes the set of all partial functions from A to B. 
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Definition 5 
A state is defined as a multi-set of coloured tokens each bearing a timestamp. S is 
the state space, i.e. the set of all possible states: 

S = (CT X TS)MS 

The marking of an ITCPN in state s E S is the 'untimed' token distribution: 
M(s) E CTMS and 

M(s) = s( ((p, v), x)) (p, v) 
((p,v),x)ECTxTS 

A state of the ITCPN is a multi-set of coloured tokens bearing a timestamp, i.e. a 
multi-set of tuples ((p,v),x) (p E P, v E C(p) and x E TS). The state shown in 
figure 1 is ((Pin, Jl), 1) + ((Piree, Ml),O), that is a state with one token in Pin with 
value Jl and one token in Piree with value M1. The token in Pin bears timestamp 1, 
the token in P iree bears timestamp 0. 

Definition 6 
An event is a triple (t, bin, bout), which represents the possible firing of transition 
t while removing the tokens specified by the multi-set bin and adding the tokens 
specified by the multi-set bout. E is the event set: 

E = T x (CT X TS)MS x (CT X TS)MS 

An event e = (t, bin, bout) represents the firing of t while consuming the tokens specified 
by bin and producing the tokens specified by bout. If ((p, v), x) E bin, then e consumes 
a token from P with value v and timestamp x. If ((p', v'), x') E bout, then e produces a 
token for p' with value v' and delay x'. Note that x' is relative to the firing time and 
x' is a member of one of the delay intervals specified by F(t)(bin ). To select arbitrary 
members of these delay intervals, we need the specialization concept. 

Definition 7 (Specialization) 
To relate multi-sets of tokens bearing timestamps with multi-sets of tokens bearing 
(time) intervals, we define the specialization relation, <l <:::: (CT x TS)MS x 
(CT x I NT)MS. For b E (CT x T S)MS and b E (CT x I NT)MS, b <l b if and only 
if each token in b corresponds to exactly one token in b, such that they are in the 
same place, have the same value and the timestamp of the token in b is in the (time) 
interval of the token in 1. 
More formally: b <l b if and only if (b = 0 and b = 0) or 

:i((p,v),x)Eb :i((p,v),[y,z])Eb (x E [y,z]) and (b- ((p,v),x)) <l (b- (p,v), [y,z])) 

Consider for example: 
0<l0 
((Pin, Jl), 1) <l «Pin, Jl), [0.5, 1.5]) 
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((Pin, J1), 1) + 2 ((PITee, M1), 0) <1 ((Pin, J1), [0.5, 1.5]) + 2 ((PITee, M1), [0, 1]) 

Note that ((Pin, J1), 1) is not a specialization of ((Pin, J2), [0.5, 1.5]), because the 
values of the two tokens differ. 
If b <1 b, then there exists a bijection between the tokens in b and the tokens in b such 
that each token in b corresponds to exactly one token in b which is in the same place, 
has the same value and a 'matching' time-interval. 

Definition 8 
An event (t, bin, bout) E E is enabled in state s E S iff: 

(ii) M(bin) E dom(F(t)) 

(iii) bout <1 F(t)(M(bin )) 

An event is enabled iff: 
(i) The tokens to be consumed are present in the current state. 
(ii) A transition is enabled if there are 'enough' tokens on each of its input places, 

this is specified by the domain of F(t). Note that the enabling may depend upon the 
values of the tokens to be consumed, but not on their timestamps. 

(iii) The number and values of the tokens to be produced are determined by the 
multi-set F(t)(M(bin )). This multi-set also specifies upper and lower bounds for the 
delays of these tokens. 

Definition 9 
The enabling time of an event (t, bin, bout) E E is the maximum of all the time­
stamps of the tokens consumed, i.e. 

ET( (t, bin, bout)) = max x 
((P.v).x)Ebin 

An enabled event is time enabled iff no other enabled events have a smaller enabling 
time. 

If an event is time enabled, it may occur. In fact, a transition fires as soon as possible 
(transitions are 'eager'). Although the time domain is continuous (T S = {x E IR I x ~ 
O}), time progresses discontinuously. 

Definition 10 
The model time of a state s E S is the minimum of all enabling times, i.e. 

MT( s) = min{ ET( e) leE E and e is enabled in state s} 

The model time only changes if something happens. Note that an enabled event e is 
time enabled in state s iff ET(e) = MT(s). 
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If (t, bin, bout) E E an enabled event, then a timestamp in bout represents the delay of 
the token instead of an absolute timestamp. Therefore we need a function to 'scale' 
timestamps. 

Definition 11 
Function SC E « CT x T S)MS X T S) -+ (CT x T S)MS scales the timestamps in 
a multi-set of timed coloured tokens. For bE (CT X TS)MS and y E TS, we have: 

SC(b,y) = L b( ((p, v), x)) ((p, v), x + y) 
({p,v),x)ECTxTS 

A time enabled event e in state s may occur at time ET(e) = MT(s). 

Definition 12 
When an enabled event (t, bin, bout) is time enabled in state s" it may occur, i.e. 
transition t fires while removing the tokens specified by bin and adding the tokens 
specified by bout. 
If (t, bin, bout) occurs in state 8" then the net changes into the state 82, defined by: 

State 82 is said to be directly reachable from 8, by the occurrence of event e = 
(t, bin, bout), this is also denoted by: 

Moreover, s, ----+ 82 means that there exists a time enabled event e such that 8, ~ 82' 

Transitions fire as soon as possible, i.e. if an event occurs, then it occurs at its enabling 
time. 

Definition 13 
A firing sequence is a sequence of states and events: 

State Sn is reachable from s, iff there exists a firing sequence of finite length starting 
in 8, and ending in 8 n : 

An important property of the ITCPN model is the mono tonicity of time, i.e. time 
can only move forward. 

Theorem 1 (Monotonicity) 
If 8" S2 E Sand 8, ----+ 82, then MT( 8,) ::; MT( S2)' 
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Proof 
Let s" S2 E Sand e = (t, bin, bout) E E such that s, ---.:..... S2. 
ET(e) = MT(S1) and S2 = (s, - bin) + SC(bout,ET(e)). 
Deleting tokens (bin) may disable events, but it will never enable new ones. 
Adding tokens (SC(bout,ET(e))) may enable new events. However, in this case these 
events have an enabling time of at least ET( e). 
Since MT(S2) is the minimum of all enabling times, we have MT(S2) 2: MT(S1). 
o 

In [3], we prove a number of other properties of the ITCPN model (e.g. progressive­
ness, etc.). In that monograph we also show how to model other timed Petri nets (e.g. 
Merlin's timed Petri nets) in terms of our model. 

4 An analysis method 

In this section we present an approach to verify certain properties and to calculate 
bounds for all sorts of performance measures. This approach is based on an analy­
sis method, called Modified Transition System Reduction Technique (MTSRT), which 
generates a reduced reachability graph. The MTSRT method can be applied to arbi­
trary ITCPNs. 
Existing techniques which can be used to analyse the dynamic behaviour of timed and 
coloured Petri nets, may be subdivided into three classes: simulation, reachability 
analysis and Markovian analysis. 
Simulation is a technique to analyse a system by conducting controlled experiments. 
Because simulation does not require difficult mathematical techniques, it is easy to 
understand for people with a non-technical background. Simulation is also a very 
powerful analysis technique, since it does not set additional restraints. However, 
sometimes simulation is expensive in terms of the computer time necessary to obtain 
reliable results. Another drawback is the fact that (in general) it is not possible to 
use simulation to prove that the system has the desired set of properties. 
Recent developments in computer technology stimulate the use of simulation for the 
analysis of timed coloured Petri nets. The increased processing power allows for the 
simulation of large nets. Modern graphical screens are fast and have a high resolution. 
Therefore, it is possible to visualize a simulation graphically (i.e. animation). 
Reachability analysis is a technique which constructs a reachability graph, sometimes 
referred to as reachability tree or occurrence graph (cf. Jensen [12, 14]). Such a 
reachability graph contains a node for each possible state and an arc for each possible 
state change. Reachability analysis is a very powerful method in the sense that it 
can be used to prove all kinds of properties. Another advantage is the fact that it 
does not set additional restraints. Obviously, the reachability graph needed to prove 
these properties may, even for small nets, become very large (and often infinite). If we 
want to inspect the reachability graph by means of a computer, we have to solve this 
problem. This is the reason several authors developed reduction techniques (Hubner 
et al. [I1J and Valmari [24]). Unfortunately, it is not known how to apply these 
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techniques to timed coloured Petri nets. 
For timed coloured Petri nets with certain types of stochastic delays it is possible to 
translate the net into a continuous time Markov chain. This Markov chain can be 
used to calculate performance measures like the average number of tokens in a place 
and the average firing rate of a transition. 
If all the delays are sampled from a negative exponential probability distribution, then 
it is easy to translate the timed coloured Petri net into a continuous time Markov 
chain. Several authors attempted to increase the modelling power by allowing other 
kinds of delays, for example mixed deterministic and negative exponential distributed 
delays, and phase-distributed delays (see Ajmone Marsan et al. [15]). Nearly all 
stochastic Petri net models (and related analysis techniques) do not allow for coloured 
tokens, because the increased modelling power is offset by computational difficulties. 
This is the reason stochastic high-level Petri nets are often used in a simulation context 
only. 

Besides the aforementioned techniques to analyse the behaviour of timed coloured 
Petri nets, there are several analysis techniques for Petri nets without 'colour' or 
explicit 'time'. 

An interesting way to analyse a coloured Petri net is to calculate (or verify) place and 
transition invariants. Place and transition invariants can be used to prove properties 
of the modelled system. Intuitively, a place invariant assigns a weight to each token 
such that the weighted sum of all tokens in the net remains constant during the 
execution of any firing sequence. By calculating these place invariants we find a set 
of equations which characterizes all reachable states. Transition invariants are the 
duals of place invariants and the main objective of calculating transition invariants is 
to find firing sequences with no 'effects'. 
Note that we can calculate these invariants for timed coloured Petri nets (e.g. an 
ITCPN). However, in this case, we do not really use the timing information. Therefore, 
in general, these invariants do not characterize the dynamic behaviour of the system. 
On the other hand, they can be used to verify properties which are time independent. 
For more information about the calculation of invariants in a coloured Petri net, see 
Jensen [12, 14]. 

In our ITCPN model, a delay is described by an interval rather than a fixed value 
or some delay distribution. On the one hand, interval delays allow for the modelling 
of variable delays, on the other hand, it is not necessary to determine some artificial 
delay distribution (as opposed to stochastic delays). Instead, we have to specify 
bounds. These bounds are used to specify and to verify time constraints. This is very 
important when modelling time-critical systems, i.e. real-time systems with 'hard' 
deadlines. These deadlines have to be met for a safe operation of the system. An 
acceptable behaviour of the system depends not only on the logical correctness of the 
results, but also on the time at which the results are produced. Therefore, we are 
interested in techniques to verify these deadlines and to calculate upper and lower 
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bounds for all sorts of performance criteria. 

4.1 Reachability graphs 

In section 3.3, we defined the behaviour of an ITCPN. The definitions of that section 
can be used to construct the so-called reachability graph. The basic idea of a 
reachability graph is to organize all reachable markings in a graph, where each node 
represents a state and each arc represents an event transforming one state into another 
state. 
Consider for example the reachability graph shown in figure 2. Suppose that s, is the 
initial state of the ITCPN we want to consider. This state is connected to a number of 
states Sll, S'2, S'3, .. reachable from s, by the firing of some transition, i.e. s, --> s,.. 
These states are called the 'successors' (or children) of the s,. Repeating this process 
produces the graphical representation of the reachability graph, see figure 2. Such a 
reachability graph contains all relevant information about the dynamic behaviour of 
the system. If we are able to generate this graph, we can answer' any' kind of question 
about the behaviour of the system. 

Obviously such a reachability graph may, even for small nets, become very large (often 
infinite). Many authors have presented analysis techniques for the efficient calculation 
of a reachability graph of an untimed coloured Petri net (e.g. [24], [13], [11], [6]). In 
this section we focus on the reachability graph of an ITCPN. 

In general the number of reachable states of an ITCPN (given an initial state) is 
infinite. This is mainly caused by the fact that we use interval timing. Consider an 
enabled transition. In general, there is an infinite number of allowed firing delays, all 
resulting in a different state. Consider for example the ITCPN shown in figure 3. If 
transition t occurs, then it consumes one token from PI and it produces one token for 
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P2 and one token for P3' The delay intervals are given in the figure. Suppose the initial 
state is such that there is one token in PI with timestamp O. The number of successors 
of this state is infinite, because all states with one token in P2 having a timestamp 
x E [1,2J and one token in P3 having a timestamp Y E [3,4J are reachable. It may 
seem unreasonable that this simple example corresponds to a reachability graph with 
an infinite number of states. This is the reason we developed the Modified Transition 
System Reduction Technique described in this section. This technique generates the 
reachability graph and uses, for computational reasons only, alternative definitions for 
the dynamic behaviour of an ITCPN. 

4.2 Reducing the reachability graph of an ITCPN 

The Modified Transition System Reduction Technique (MTSRT) uses alternative def­
initions for the dynamic behaviour of an ITCPN, i.e. the MTSRT method uses al­
ternative semantics. The main difference between these definitions and the original 
ones is the fact that we attach a time-interval to every token instead of a timestamp, 
i.e. S = (CT x I NT)Ms. We will show that, using these semantics, it is possible 
to calculate the set of reachable states (or at least a relevant subset). Since, the 
reachability graph of the ITCPN using these alternative semantics is much smaller 
and more coarsely grained than the original one, we call it the reduced reachabil­
ity graph. Every state in the reduced reachability graph corresponds to a (infinite) 
number of states in the original reachability graph. One may think of these states as 
equivalence or state classes. One state class s E S corresponds to the set of all states 
being a specialization of s, i.e. {s E Sis <l s}. Informally speaking, state classes are 
defined as the union of 'similar' states having the same token distribution (marking) 
but different timestamps (within certain bounds). 

In the remainder of this section we redefine the behaviour of an interval timed coloured 
Petri net, i.e. we give alternative semantics of the ITCPN model. 
In section 4.3, we will show how these two semantics relate to each other. We will see 
that the alternative definitions given in this section can be used to answer questions 
about the behaviour of the ITCPN (as specified in section 3.3). 
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Definition 14 
A state class is defined as a multi-set of coloured tokens each bearing a time-interval. 
S is the state space:s 

S = (CT X INT)Ms 

An event is a triple (t, bin, bout), which represents the possible firing of transition 
t while removing the tokens specified by the multi-set bin and adding the tokens 
specified by the multi-set bout. E is the event set: 

E = T x (CT X INT)Ms x (CT X INT)Ms 

Note that tokens bear time-intervals instead of timestamps. 

Definition 15 
An event (t, bin, bout) E E is enabled in state class s E S iff: 

(ii) M(bin ) E dom(F(t)) 

(iii) bout = F(t)(M(bin )) 

The point of time a token becomes available is specified by an interval, therefore it is 
impossible to specify the enabling time of an event. However, it is possible to give an 
upper and lower bound for the enabling time of an event e E E. 

Definition 16 
The minimum and maximum enabling time of an event (t, bin, bout) E E are 
defined as follows: 

ET min ((t, bin, bout)) max y 
( (p,v),[y,z])Eb'n 

max z 
((p,v) ,[y,z])Eb'n 

ET max((t, bin, bout)) = 

An enabled event e is time enabled iff the minimum enabling time of e is smaller 
than the maximum enabling time of any other enabled event. 

If (t, bin, bout) E E an enabled event, then a time-interval in bout represents the delay 
interval of the token instead of an absolute time-interval. Therefore we need a function 
to 'scale' time-intervals. 

5Symbols superscripted by a horizontal line are associated with the alternative semantics, this to 
avoid confusion. 
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Definition 17 
Function SC E (( CT X I NT)Ms X I NT) -> (CT X I NT)Ms scales the time-intervals 
in a multi-set of timed coloured tokens. For bE (CT X INT)Ms and [y,z] E INT, 
we have: 

SC(b, [y, z]) - b( ((p, v), [y', Z/])) ((p, v), [X' + X, y' + y]) 
((p,v),[y',z'])ECTx I NT 

A time enabled event e in state class 5 may occur at a time between ETmin(e) and 
MTmax(5) = min{ETmax(e) leE E and e is enabled in 5}. 

Definition 18 
When an enabled event (t, bin, bout) is time enabled in state class 51 E S, it may 
occur, i.e. transition t fires while removing the tokens specified by bin and adding 
the tokens specified by baut . 
If (t, bin, bout) occurs in state class 51, then the net changes into the state class 52 E S, 
defined by: 

82 = (81- bin) + SC(bout , [ETmin((t,bin,baut)),MTmax(51)]) 

State class 52 is said to be directly reachable from 81 by the occurrence of event 
e = (t, bin, bout), this is also denoted by: 

Note that we use double arrows to denote possible state (class) changes given the 
alternative semantics of an ITCPN. If we use the definitions given in this section for 
the generation of the reachability graph, then we obtain the reduced reachability 
graph. Comparing these definitions with the definitions given in section 3.3 shows 
that all differences stem from the fact that the alternative semantics associate a time­
interval (instead of a timestamp) with each token. As a result of these intervals, the 
enabling time of an event and the model time of a state class are both characterized 
by an upper and lower bound, etc. 

4.3 Soundness 

The alternative definitions of section 4.2 have been given for computational reasons. 
However, calculating the reduced reachability graph only makes sense if the reduced 
reachability graph can be used to deduce properties of the reachability graph which 
represents the behaviour of the ITCPN. Therefore, we investigate the relation between 
the two reachability graphs. Examples indicate that such a relation exists. 
It is easy to see that the two reachability graphs are not equivalent. Moreover, there 
is no sensible morphism between them (see [3]). However, state 5 E S and state class 
s E S seem to be 'related' if 8 is a specialization of s (i.e. 5 <l s). Recall that 8 <l s if 
and only if each token in 5 corresponds to exactly one token in s, such that they are 
in the same place, have the same value and the timestamp of the token in s is in the 
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Figure 4: The soundness property 

(time) interval of the token in 8 (see definition 7). 

Theorem 2 (Soundness) 
Let (E, P, T, C, F) be an ITCPN and 81,82 E S such that 81 ---> 82' If 81 E Sand 
81 <l 81, then there exists a state class 82 E 5 such that 81 ===9 82 and 82 <l 82. 

Proof 6 

Let 81,82 E S, 81 E Sand e E E such that 81 --"-. 82 and 81 <l 81. Now we have to 
prove that there exists an e such that 81 ~ 82 and 82 <l 82 (see figure 4). 
Suppose e = (t, bin, bout) and let e = (t, bin, bout) where bout = F(t)(M(bin )) and bin 
such that bin::; 81 and bin <l bin (this is possible because 81 <l81 and bin::; sd. 

Remains to prove that: (1) e is enabled, (2) e is time enabled and (3) 82 <l 82. 

(1) Event e is enabled, because bin::; 81, M(bin) E dom(F(t)) and bout = F(t)(M(bin )).7 
(2) ETmin(e) ::; ET(e) = MT(sd ::; MTmax (81), i.e. e is time enabled. 
(3) Since Sl <l 81, bin <l bin and bout <l bout, we have that: 
SC(bout , ET( (t, bin, bout})) <l SC(bout , [ET mine (t, bin, bout}), MT max(8dJ) and 
82 = (81 - bin) + SC( bout, ET( (t, bin, bout})) is a specialization of 
82 = (81 - bin) + SC(bou" [ETmin( (t, bin, bout}), MTmax(8dJ), i.e. S2 <l 82' 

o 

This theorem tells us that if an event occurs which changes state Sl into 82, then 
there is a corresponding event which changes any state class 81 that 'covers' SI into a 
state class which 'covers' 82 (see figure 4). We say that the alternative semantics are 
'sound'. 

An implication of theorem 2 is that if 81 <l 81 and there exists a firing sequence 

81 ~ 82 ~ 83 ~ .. ~ Sn, then there exists a firing sequence 81 ~ 82 ~ 

6 A more formal proof is given in [3]. 
7 M(liin) = M(bin ), because bin <lbin . 
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33 e3 I •• ~ 3 n such that Sn <1 3n . For any state reachable from s, there is a related 
state class reachable from 3,. 

If we compare the reachability graph and the reduced reachability of an arbitrary 
ITCPN, then we see that all the state changes possible in the reachability graph are 
also possible in the reduced reachability. Note that the opposite does not hold, because 
of dependencies between tokens are not taken into account. Consider for example the 
net shown in figure 3. Suppose there is one token in pI with a time interval [0, 1 J and 
the other places are empty. In this case t fires between time 0 (ETm;n(e)) and time 1 
(MTmax{s)). The next state of the ITCPN using the alternative definitions given in 
section 4.2, will be the state with one token in p2 (with interval [1,3]) and one token 
in p3 (with interval [3,5]). This suggests that it is possible to have a token in p2 
with timestamp 1 and a token in p3 with timestamp 5. However, this is not possible, 
because these timestamps are related (i.e. they where produced at the same time). 
We say that the alternative semantics are not 'complete'. 

Despite the non-completeness, the soundness property allows us to answer various 
questions. We can prove that a system has a desired set of properties by proving it 
for the modified transition system. For example, we can use the reduced reachability 
graph to prove boundedness, absence of traps and siphons (deadlocks), etc. The re­
duced reachability graph may also be used to analyse the performance of the system 
modelled by an ITCPN. With performance we mean characteristics, such as: response 
times, occupation rates, transfer rates, throughput times, failure rates, etc. The MT­
SRT method can be used to calculate bounds for performance measures. Although 
these bounds are sound (i.e. safe) they do not have to be as tight as possible, because 
of possible dependencies between tokens (non-completeness). However, experimenta­
tion shows that the calculated bounds are often of great value and far from trivial. 
Moreover, we are able to answer questions which cannot be answered by simulation 
or the method proposed by Berthomieu et al. [5]. 
We have modelled and analysed many examples using the approach presented in 
this paper, see Van der Aalst [3, 2, IJ and Odijk [20]. To facilitate the analysis 
of real-life systems we have developed an analysis tool, called fAT ([3]). This tool 
also supports more traditional kinds of analysis such as the generation of place and 
transition invariants. IAT is part of the software package ExSpect (see Van Hee et al. 
[9] and Van der Aalst [3, 4]). 

5 Conclusion 

In this paper, we presented a coloured Petri net model extended with time. This 
ITCPN model uses a new timing mechanism where time is associated with tokens and 
transitions determine a delay specified by an interval. The formal semantics of the 
ITCPN model have been defined in section 3. The fact that time is in tokens results 
in transparent semantics and a compact state representation. Specifying each delay 
by an interval rather than a deterministic value or stochastic variable is promising, 
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since it is possible to model uncertainty without having to bother about the delay 
distribution. 

From the analysis point of view, the ITCPN model is also interesting, since interval 
timing allows for new analysis methods. In this paper, the MTSRT method has been 
described. This is a powerful analysis method, since it can be applied to arbitrary 
nets and answers a large variety of questions. This method constructs a reduced 
reachability graph. In such a graph a node corresponds to a set of (similar) states, 
instead of a single state. 

A lot of applications have been modelled and analysed using the approach described in 
this paper and the software package ExSpect which supports the MTSRT method. Ex­
perimentation shows that, in general, the results obtained using the MTSRT method 
are quite meaningful. A direction of further research is to incorporate other reduction 
techniques for coloured Petri nets into our approach (e.g. [24], [13], [11], [6]). 
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