
1

Interval Type-2 Fuzzy Neural Networks for
Multi-Label Classification

Dayong Tian, Feifei Li, Yiwen Wei

Abstract—Prediction of multi-dimensional labels plays an im-
portant role in machine learning problems. We found that the
classical binary labels could not reflect the contents and their
relationships in an instance. Hence, we propose a multi-label
classification model based on interval type-2 fuzzy logic. In the
proposed model, we use a deep neural network to predict the
type-1 fuzzy membership of an instance and another one to
predict the fuzzifiers of the membership to generate interval
type-2 fuzzy memberships. We also propose a loss function to
measure the similarities between binary labels in datasets and
interval type-2 fuzzy memberships generated by our model. The
experiments validate that our approach outperforms baselines on
multi-label classification benchmarks.

Index Terms—Interval type-2 fuzzy logic, structured predic-
tion, multi-dimensional labels, multi-label classification.

I. INTRODUCTION

MUlti-label classification (MLC) aims at predicting
multiple labels by exploring the dependencies

among labels. It has been widely used in natural language
processing [10] and computer vision [40].

Classical MLC models make binary predictions. That
is, they use 0 and 1 to indicate the categorizations.
However, intuitively, human has fuzzy discrimination on an
instance(Fig. 1).

When categorizing these four images in Fig. 1, human
observers may consider the semantic relationships between
flowers or women in the images and hence they may give
fuzzy estimations of their categories. For image (a), it
apparently belongs to flower. For (b), someone may consider
the woman is the main content while others may consider
woman and flower are of the same importance. For (c), we
human can make sure that the image belongs to the woman
category and the flower is just a decoration. However, the
flower occupies a considerably large area in the image.
A MLC model may also consider that it belongs to flower
category in certain degree. For (d), human observers’ opinions
may be contradictory again because someone may consider
the woman holds the flower in front of her face so she
probably want to show a special species of flower, while
someone may consider that the flower is just an ordinary one
and the main content of the image is still the woman.

Almost in all datasets, instances are directly labeled by 0 or
1, which cannot effectively represent humans’ fuzzy judgment.

This work was supported in part by Natural Science Foundation of Shaanxi
Province under Grant 2020JQ-197.

Dayong Tian and Feifei Li are with the School of Electronics and Infor-
mation, Northwestern Polytechnical University, Xi’an, 710071, P.R. China.

Yiwen Wei is with the School of Physics and Optoelectronic Engineering,
Xidian University, Xi’an, 71000, P.R. China.

Interval type-2 fuzzy logic is capable of representing different
human opinions on categorization. It is the motivation that
we explore how to build a fuzzy-logic-based model for MLC.

In uni-label classification, probability and type-1 fuzzy

(flower, woman) a b c d
Labels in Dataset (1,0) (1,1) (1,1) (1,1)

Type-1 Fuzzy Labels (1,0) (0.7,0.3) (0.2,0.8) (0.3,0.7)
Type-2 Fuzzy Labels ([1,1],[0,0]) ([0.5,0.9],[0.2,0.4]) ([0.1,0.3],[0.7,0.9]) ([0.1,0.7],[0.2,0.9])

Fe
at

ur
e

Sp
ac

e
Fig. 1. Illustration of different types of labels. The labels in dataset are
binary. Type-1 fuzzy labels may be generated from the judgment of a
human expert. Type-2 fuzzy labels may be generated from the several human
experts’ judgment. To visualize the feature extraction of a learning model,
say convolutional neural network, we assume the extracted features are two-
dimensional. The images’ features are plotted in the feature space.

logic are a little bit confusing. Softmax is widely used in
neural networks for uni-label classification. The output of
softmax can be explained as the probability of an instance
belonging to a category. Someone can “illegally” explain the
probabilities as type-1 fuzzy memberships. If we are working
on uni-label classification, there is few numerical difference
between these two explanations. For example, we can explain
Fig. 1 as this. The probability of the image (a) belonging to
flower category is maximum, so the image is belonging to
flower category. The membership of the image (b) belonging
to woman category is maximum. If we must make a decision
on which category it belongs to, we have to categorize the
image into woman category.

However, if we are interested in multi-label classifications,
there is a key difference between probabilities and fuzzy logic.
We should examine the joint probability (Fig. 2). Instead, we
can explain the outputs of a neural network as type-1 fuzzy
memberships. Although we give a reasonable explanation
to the outputs, type-1 fuzzy logic is not fuzzy [36]. Hence,
interval type-2 fuzzy logic is used here. We believe that
the more categories an instance belongs to, the fuzzier
its memberships are. Therefore, we use the number of its
categories to control the fuzziness of its memberships (Fig. 2).
By introducing interval type-2 fuzzy logic, we need design

ar
X

iv
:2

30
2.

10
43

0v
1

 [
cs

.L
G

]
 2

1
Fe

b
20

23

2

0.70

0.30

0.80

Classifier
Output

Uni-label
Classification

0.36

0.24

0.40

Softmax
�(� = 3|�) = 0.40

�(� = 2|�) = 0.24

�(� = 1|�) = 0.36

Joint
Distribution

1 0 0
0.14

1 0 1
0.62

Multi-label
Classification

�(�1 = 1, �2 = 0, �3 = 0|�) = 0.14

�(�1 = 1, �2 = 0, �3 = 1|�) = 0.62

Type-1 Fuzzy
Label

Type-2
Fuzzy Label

0.70

0.30

0.80

[0.60,
0.80]

[0.20,
0.40]

[0.70,
0.90]

Fig. 2. The differences among probabilities, type-1 fuzzy logic and interval type-2 fuzzy logic. Suppose we have L categories. In the multi-label classification
case, we examine the joint probabilities of all elements in the label powerset which is defined as a set of all possible label combinations. Hence, there are 2L

label combinations. If we directly explain the output of the classifier as type-1 or type-2 fuzzy predictions, we only need to examine L fuzzy memberships.

the loss function of the classifier to measure the dissimilarities
between interval type-2 fuzzy labels and binary labels.

The overall scheme of our model is illustrated in Fig. 3. The
following of this paper is organized as follows. In Section II,
related works are briefly reviewed. The preliminaries are given
in Section III. The formulation of our models is shown in
Section IV. In Section V, we report the experimental results of
our method. The conclusive remarks are given in Section VI.

II. RELATED WORKS

An intuitive way for MLC is using classifier chains [30]
which decomposes a multi-label classification into a series
of binary classifications. The subsequent binary classifiers are
built on the prediction of preceding ones. Recurrent neural
networks (RNN) and convolutional neural networks (CNN)
are used in classifier chains [40].

The MLC can be also transformed to a label ranking
problem. Label ranking based methods use L(L − 1)/2 bi-
nary classifiers for pairwise comparisons between each label
pair [17]. Wang et al. [43] proposed an efficient learning
algorithm for solving multi-label ranking problem which is
used to model facial action unit recognition task.

Random k-Labelsets [37][42] methods build multi-class
sub-models on random subsets of labels, and then learn single-
label classifier for the prediction of each element in the
powerset of this subset. Lo et al. [26] proposed a basis
expansions model for MLC. The basis function is a label
powerset classifier trained on a random k-labelset. The authors
derive an analytic solution to learn the expansion coefficients
which minimize the error between the prediction and the
groundtruth. Mutual information is incorporated to evaluate the
redundancy level and imbalance level of each k-labelset [41].

K-nearest neighbor (KNN), another classical machine learn-
ing method, is combined with maximum a posteriori (MAP)

principle to determine the label set of an unseen in-
stance [49]. Dimension reduction methods can be also used for
MLC [6][11][21]. Xu et al.[45] proposed a probabilistic class
saliency estimation approach for calculating the projection
matrix in linear discriminant analysis for dimension reduction.
Decision tree can be built recursively based on a multi-label-
entropy based information gain criterion [14]. A set of support
vector machines can be optimized to minimize an empirical
ranking loss for MLC [16]. The correlation labels can be
encoded as constrains for MLC [19].

Aligning embeddings of data features and labels in a latent
space is a popular trend in MLC. Yeh et al. [46] use canonical
correlation analysis to combine two autoencoders for features
and labels to build a label-correlation sensitive loss function.
However, the learned latent space is not smooth so small
perturbations can lead to totally different decoding results.
Similar decoded targets cannot be guaranteed even though
the embeddings of features and labels are close in the latent
space [2]. Bai et al. [2] substitute the autoencoders with
variational autoencoders so the deterministic latent spaces
become probabilistic latent spaces. KL-divergence is used to
align the Gaussian latent spaces and the sampling process
enforces smoothness. Sundar et al. [33] adopt the β-VAE
for similar purposes. These methods assume a uni-modal
Gaussian latent space, which may cause over-regularization
and posterior collapse [15][44]. Li et al. [25] proposed a deep
label-specific feature learning model to bind the label and
local visual region in images and they use two variant graph
convolutional networks to capture the relationships among
labels. Tan et al. [34] link the manifolds of instance and
label spaces, which facilitates using topological relationship
of the manifolds in the instance space to guide the manifold
construction of the label space.

Modeling label correlation is another popular research
area in MLC. Structured prediction energy networks
(SPENs) [3][4] optimize the sum of local unary potentials

3

B
ottleneck

Encoder Decoder

Fuzziness
Initializer

Input Data Reconstructed Data

Fuzzifier Estimator
Ty

pe
-1

 F
uz

zy
 L

ab
el

s

Ty
pe

-2
 F

uz
zy

 L
ab

el
s

1 ⋯ 0
⋮ ⋱ ⋮
1 ⋯ 1

Binary
Labels

Loss

D
ef

uz
zi

fic
at

io
n

1 ⋯ 0
⋮ ⋱ ⋮
1 ⋯ 1

Binary
Predictions

Fig. 3. The scheme of our method. The input data are used to train two neural networks, a fuzziness intializer and a fuzzifier estimator. The fuzziness intializer
is used to generate type-1 fuzzy labels. The output of the bottleneck of the autoencoder is used as an input of a fuzzifier estimator. The estimated fuzzifiers are
incorporated into type-1 fuzzy labels to generate interval type-2 fuzzy labels. Then, we design a loss function to measure the dissimilarities between binary
labels in original dataset and generated interval type-2 fuzzy labels. The loss function is used to train the parameters of the fuzziness intializer. Finally, the
interval type-2 fuzzy labels are defuzzified to binary predictions. All metrics in our experiments are computed based the binary predictions and groundtruth
binary labels.

and a global potential are trained with a SVM loss. However,
the alternating optimization approach suffers from instabilities
during training. Tu et al. [38] proposed several strategies to
stabilize the joint training of structured prediction of SPENs.
The deep value network (DVN) [20] trains a similar energy
network by fitting the task cost function. Zhang et al. [48] pro-
posed cross-coupling aggregation strategy to simultaneously
exploit the label correlation and handle class-imbalance issue.
Ma et al. [27] assume the instances can be clustered into
different groups so that the label correlations can be modeled
within each sub-group.

Input convex neural networks (ICCNs) [1] design potentials
which are convex with respect to the labels so that inference
optimization will be able to reach global optimum. Bi et
al. [7] use a probabilistic model exploiting the multi-label
correlations. Lanchantin et al. [24] propose label message
passing (LaMP) neural networks for MLC. LaMP treats labels
as nodes on a label-interaction graph and computes the hidden
representation of each label node conditioned on the input
using attention-based neural message passing. Chen et al. [12]
adopt graph convolutional network (GCN). Each node on the
graph is represented by word embeddings of a label. The GCN
is learned to map this label graph into a set of inter-dependent
object classifiers. These classifiers are applied to the image
descriptors extracted by another sub-net, enabling the whole
network to be end-to-end trainable.

Zhang et al. [50] predict labels using a deep neural network
in a way that respects the set structure of the problem. Patel et
al. [29] exploit the taxonomic relationships among labels using
box embeddings [39]. Brukhim et al. [9] use cardinality [35]
of labels as constraints for training the classifier.

III. PRELIMINARIES

We consider the setting of assigning L labels y =
(y1, . . . , yL) to an input x ∈ Rd, where d is the dimension
of instance features. The true label (which is binary) of x is
denoted as y∗. The fuzziness of y is controlled by fuzzifier m
and m. That is, x is belonged to the i-th category in a degree
of [y

m
i , y

m
i]. Almost all datasets provide binary labels. To

compute the metrics for comparison, we will generate binary
predicted labels ŷ based on y. ŷ’s are the final predictions of
our model. The notations are listed in Table I.

TABLE I
NOTATIONS

notations spaces descriptions
x Rd Instance feature vector
y [0, 1]L Estimated type-1 fuzzy label vector
y∗ {0, 1}L Groundtruth binary label vector
ȳ RL Temporary result for defuzzification
ŷ {0, 1}L Estimated binary label vector
m R+ Fuzzifier for lower bound
m R+ Fuzzifier for upper bound
d N+ Dimension of feature vectors
L N+ Dimension of label vectors

α, β, γ R Learned parameters
η, λ R+ Preset hyperparameters

IV. FORMULATION

In this section, we will explain our models in details. There
are three main components in our model. First, there is a
deep neural network used as a fuzziness initializer to generate

4

initial labels. Second, we use another network to predict the
fuzzifier m and m. Third, we design an algorithm to compare
the interval type-2 labels and binary labels.

A. Fuzziness initializer

Indeed, we can use any classical classification neural net-
works as our fuzziness initializer. The key difference is the
activation functions of output layers. To generate the initial
guess of fuzzy membership value, we should use an activation
function whose value ranges from 0 to 1. Rather than using
Sigmoid function which may cause gradient vanishing and
slow convergence, we use the following activation function:{

g(x) = 0.5 + α
(
w>x− 1

L

(
1>x + 1>w

))
f(x) = max (0,min (1, g(x))) ,

(1)

where L is the dimension of vector x or w, and α is a learned
parameter which is initially set as 1. 1

L (x + w) can be treated
as bias term of the neuron. Eq. (1) is similar to the idea of
Batch Normalization (BN) [23]. BN learns two parameters β
and γ in

Z̃ = βZ + γ, (2)

to standardize mini-batches, where Z is the output of one
layer and Z̃ is the output of BN. γ in Eq. (2) is expected to
be a constant vector. However, when the neural network is
trained by mini-batch, it is impossible for γ to hold constant.
Hence, for each neuron, we minus the means of x and w. The
bias term of each neuron can vary according to mini-batched
data. What Eq. (1) really learns is a proper weight w that
makes w>x can be centered by 1

L (x + w). 0.5 in Eq. (1)
is used to shift the zero-centered outputs to 0.5-centered so
that we can use f(x) to generate values in interval [0, 1]. α
in Eq. (1) is similar to β in Eq. (2). It is used to change the
standard deviation of outputs to approximately 1. Therefore,
Eq. (1) can avoid gradient vanishing as BN.

B. Fuzzifier Estimator

Fuzziness estimator is used to estimate the fuzzifier of
predicted labels, i.e. m and m. As we discussed above, the
fuzziness is related to the number of categories an instance
belongs to, i.e. |y∗|. Hence, we use another neural network to
predict |y∗|. We denote the prediction of |y∗| as m̂ hereafter.

To estimate m̂, firstly, we train an autoencoder. Then, we
train a constrained linear regression model on the outputs of
the bottleneck of the autoencoder to estimate m̂ (Fig. 3).

We add a softmax layer on the bottleneck of the autoencoder
and we add a cross-entropy to the object function of the
autoencoder:

arg min
Θe,Θd

‖x− h (h (x; Θe) ; Θd)‖2F

+ηCE (S (h (x; Θe) , l)) ,
(3)

where h(x,Θe) is the function of encoder, h(x,Θd) is the
function of decoder, CE is cross entropy function, S is the
Softmax layer and η is a tuned parameter. l is an one-hot vector
which indicates the number of categories an instance belongs

to. If the i-th element of l is non-zero, it indicates that the
instance belongs to i categories. For example, if the original
label of an instance is [0, 1, 0], its l is [1, 0, 0] which indicates
the instance only belongs to one category. If the original label
of an instance is [1, 0, 1], its l is [0, 1, 0] which indicates the
instance belongs to two categories.

The reason why we do not directly train a classification
neural network to predict l is that we want to de-correlate
the neural networks we used for predicting y and l. This
idea comes from Random Forest which randomly chooses
subsets of variables to construct trees so that these trees are
less correlated. The Random Forest increases the bias of the
model while decreases the variance of the model. In our model,
although y and l are different supervision information, they
are correlated to each other. Furthermore, the neural networks
have the ability of predicting y or l using a few layers close to
the output, even when the inputs are the same. That is, if we
use the same random seed and structure for two deep neural
networks that predict y and l respectively, they may only
significantly differ in 1 or 2 layers close to the output. Using
autoencoder, the data themselves are another “supervision”
information for training so that those two neural networks are
possible to be more de-correlated.

After the autoencoder is trained, we use the bottleneck’s
outputs to train a simple linear regression model. The label
is the number of categories an instance belongs to, i.e. |y∗|.
We use the output of the linear regression model as m̂. We
set m = m̂/|y∗| and m = m̂/L. Note that |y∗| ≤ L and
0 ≤ y ≤ 1. Therefore, m ≥ m and ym ≤ ym. For a special
case when m = m, the fuzzifier estimator believes the instance
only belongs to one category. There is no fuzziness at all in
this case.

C. Loss Function

Traditional loss functions for structured learning can be
cross entropy, F1 measure, etc. Our model generates interval
type-2 fuzzy labels for data. However, the real labels for the
data are generally binary. Hence, we should make a judgment
on the differences between the predicted labels y and real
labels y∗. An intuitive way is using the middle point of each
interval [y

m
i , y

m
i]. Then, the traditional loss functions can be

applied. The problem is that two different intervals may have
the same middle point. For example, [0.3, 0.6] and [0.4, 0.5]
have the same middle point 0.45. This way cannot sufficiently
utilize the fuzziness information.

We design our loss function based on the continuous exten-
sion of F1 measure [20]:

E (y,y∗,m,m) = − 2ym>y∗

1> (ym + y∗)
− 2ym>y∗

1> (ym + y∗)
(4)

D. Defuzzification

To compute the metrics for comparing different methods.
We eventually have to generate binary prediction of labels.
That is, we have to determine an instance belongs to which
categories based on their fuzzy memberships. Suppose we use
the middle point of an interval for defuzzification. Then, we

5

just need to sort the middle points, and set top [m̂] yi’s as 1
and the remaining yi’s as 0, where [·] rounds · to the closest
integer. The problem is, as we discussed above, the middle
point cannot fully utilize the information of interval type-2
fuzzy logic. Here, we use a linear combination between middle
point and interval size for defuzzification, i.e.

ȳ =
ym + ym

2
− λ

2

(
ym − ym

)
, (5)

where λ is positive constant which is set as 0.1 in our
experiments. Finally, we sort the elements in ȳ, and set the
top [m̂] elements as 1 and the remaining elements as 0 to
generate final prediction ŷ.

E. Implementation Details
Fuzziness initializers can be any classification neural net-

works as long as their output layers can be written as an
activation imposing on a linear combination of weights and
inputs. We use B = {bi}, i = 1, . . . to represent the set that
contains all such neural networks. bi is a single candidate
neural network that can be used as our fuzziness initializer.
We can directly substitute the activation function of the output
layer of bi with Eq. (1). Otherwise, if we want to directly use
the pre-trained weights, we can add an additional layer with
activation function Eq. (1) on the top of the output layer of
bi.

For computational efficiency, we do not have to train the
autoencoder separately. We can use several layers of the
fuzziness initializer bi as the encoder, build a symmetric neural
network as decoder and freeze all other parameters. Let us take
VGG16 [32] as an example. VGG16 is a convolutional neural
network for image classification. We can freeze all the param-
eters of convolutional layers. Then we use the full-connected
layers as encoder and build a symmetric full-connected layers
as decoder. Thus, the input data x of autoencoder in Eq. (3) is
actually the outputs of convolutional part or the inputs of full-
connected part of VGG16. The rationale of this is illustrated in
Fig. 4. Note that in the view of signal processing, convolution
in time domain is multiplication in frequency domain. One
can use Fourier Transform to compute the spectrum of a time-
domain signal.

In Fig 4, both of the fuzziness intializer and the fuzzifier
estimator can use the same vector for their own predictions.
For convolutional neural networks, such as VGG16, we treat
the convolutional part as feature extraction. Fuzziness intializer
and fuzzifier estimator share the features. Thus, after we
trained the fuzziness intializer, we can freeze the feature ex-
traction part. On the other hand, we can directly use pretrained
deep neural networks to extract feature vectors from raw data.
In this way, deep full-connected neural networks of several
layers can be used both for the fuzziness initializer and the
fuzzifier estimator.

V. EXPERIMENTAL RESULTS

A. Benchmarks
We evaluate our method on three widely-used multi-label

datasets, scene [8], mirflickr [22] and nus-wide [13]. These

Fig. 4. Illustration of training fuzzifier estimator. When Chord C is played,
the three pressed keys have a spectrum like the second row. If 7 band-pass
filters are used to detect which of the 7 white keys in an octave are pressed, the
filters’ spectrum will look like the third row. Finally, we examine the output
of these 7 filters. The filters that have significant outputs are denoted as 1 and
others are denoted as 0. We will get the a binary vector at the fourth row.
The fuzziness intializer identifies which chord is played, while the fuzzifier
estimator only counts how many keys are pressed, which is equivalent to
compute the l0-norm of filters’ outputs.

datasets are publicly available1. The statistics of these three
datasets are given in Table II. We randomly separate nus-
wide dataset into training (80%), validation (10%) and tesing
(10%) splits and use the original splits of scene and mirflickr
datasets. To eliminate the effects of feature extraction neural
networks, we directly use extracted features rather than raw
images. For scene and mirflickr datasets, there is only one
option on features in the download links. For nus-wide dataset,
we select the 128D-cVALD features.

B. Baselines

We compare our methods to ASL [31], RBCC [18], MP-
VAE [2], LaMP [24], C2AE [46], SLEEC [6], HARAM [5],
MLKNN [49] and BR [47].

ASL uses an asymmetric loss for positive and negative
samples so that easy negative samples can be dynamically
down-weighted. RBCC learns a Bayesian network to condition
the prediction of child nodes only on their parents in order
to circumvent the unprincipled ordering in classical recurrent
classifier chains [28]. MPVAE learns and aligns probabilistic
embedding for labels and features. LaMP uses attention-based
neural message passing to compute the hidden representation
of label nodes of a label-interaction graph to learn the interac-
tions among labels. C2AE adopts autoencoders to embedding
data and labels in a latent space. SLEEC assumes the label

1scene and nus-wide datasets with 128D-cVALD features are available at
http://mulan.sourceforge.net/datasets-mlc.html. mirflickr dataset is available at
https://github.com/JunwenBai/c-gmvae.

6

TABLE II
DATASETS STATISTICS

Dataset No. Samples No. Labels Feature Dimension Mean Labels Per Sample Mean Samples Per Label
scene 2407 6 294 1.07 170.83

mirflickr 25000 1000 38 4.8 1247.34
nus-vec 269648 128 85 1.86 3721.7

TABLE III
EXAMPLE-F1 AND MICRO-F1 SCORES OF DIFFERENT METHODS ON ALL

DATASETS

Metric example-F1 micro-F1
Dataset scene mirflickr nus-wide scene mirflickr nus-wide

BR 0.606 0.325 0.343 0.706 0.371 0.371
MLKNN 0.691 0.383 0.342 0.667 0.415 0.368
HARAM 0.717 0.432 0.396 0.693 0.447 0.415
SLEEC 0.718 0.416 0.431 0.699 0.413 0.428
C2AE 0.698 0.501 0.435 0.713 0.545 0.472
LaMP 0.728 0.492 0.376 0.716 0.535 0.472

MPVAE 0.751 0.514 0.468 0.742 0.552 0.492
ASL 0.770 0.477 0.468 0.753 0.525 0.495

RBCC 0.758 0.468 0.466 0.749 0.513 0.490
Ours 0.782 0.536 0.483 0.771 0.582 0.521

matrix is low-rank so embedding the label in low-dimensional
space can improve the prediction accuracy. HARAM adds an
extra ART layer to fuzzy adaptive resonance associative map
neural network to increase the classification speed. MLKNN
first finds the k-nearest neighbors of an instance and then uses
maximum a posteriori principle to determine the label set.
BR decomposes the multi-label classification into independent
binary classifications.

C. Evaluation

We evaluate our method using four metrics, i.e. Example
F1, Micro-F1, Macro-F1 and Hamming Accuracy (HA). We
denote true positives, false positives and false negatives by
TPj , FPj and FNj , respectively for the j-th of L label
categories. HA is defined as

1

L

L∑
j=1

1
[
ŷj = y∗j

]
, (6)

where 1[·] is an indicator function which equals to 1 if the
condition is true otherwise equals to 0. Example-F1 is defined
as

2
∑L

j=1 ŷjy
∗
j∑L

j=1 yj + y∗j
. (7)

Micro-F1 is defined as ∑L
j=1 tpj∑L

j=1 2tpj + fpj + fnj
. (8)

Macro-F1 is defined as

1

L

L∑
j=1

2tpj
2tpj + fpj + fnj

. (9)

TABLE IV
MACRO-F1 AND HA SCORES OF DIFFERENT METHODS ON ALL DATASETS

Metric macro-F1 HA
Dataset scene mirflickr nus-wide scene mirflickr nus-wide

BR 0.704 0.182 0.083 0.901 0.886 0.971
MLKNN 0.693 0.266 0.086 0.863 0.877 0.971
HARAM 0.713 0.284 0.157 0.902 0.634 0.971
SLEEC 0.699 0.364 0.135 0.894 0.870 0.971
C2AE 0.728 0.393 0.174 0.893 0.897 0.973
LaMP 0.745 0.387 0.203 0.903 0.897 0.980

MPVAE 0.750 0.422 0.211 0.909 0.898 0.980
ASL 0.765 0.410 0.208 0.912 0.893 0.975

RBCC 0.753 0.409 0.202 0.904 0.888 0.975
Ours 0.772 0.445 0.231 0.917 0.908 0.986

D. Results and discussion

The results are given in Table III and Table IV. Our
method outperforms the existing state-of-the-art methods on
all datasets. The best numbers are marked in bold. All the
numbers of our method are averaged over 5 random seeds.
For example-F1, the best results of compared methods are
among MPVAE, ASL and RBCC. Our method improves over
the best compared method by 1.6%, 4.3% and 3.2% on scene,
mirflickr and nus-wide, respectively. For micro-F1 and macro-
F1, the best results of compared methods are between MPVAE
and ASL. For micro-F1, our method improves over the best
compared one by 2.4%, 5.4% and 5.3% on scene, mirflickr and
nus-wide, respectively. For macro-F1, our method improves
over the best compared one by 0.9%, 5.5% and 9.5% on scene,
mirflickr and nus-wide, respectively. For HA, the best results
of compared methods are among LaMP, MPVAE and ASL,
our method improves over the best one by 0.5%, 1.1% and
0.6% on scene, mirflickr and nus-wide, respectively.

E. Ablation studies

To demonstrate the effectiveness of interval type-2 fuzzy
logic used in our method, we modify our method by type-1
fuzzy logic. Eq. (4) is modified as

E(y, y∗) = − 2y>y∗

1>(y + y∗)
. (10)

For defuzzification, we directly use 1[yj ≥ 1/L̂]. The results
on three datasets are given in Table V. In Table V, example-
F1, micro-F1 and macro-F1 are abbreviated as ex-F1, mi-
F1 and ma-F1, respectively. The interval Type-2 fuzzy logic
substantially improves the performance over type-1 fuzzy
logic.

η in Eq. (3) and λ in Eq. (5) are two important hyperpa-
rameters in our model. η controls the weight of cross entropy.

7

0 0.1 0.2 0.3 0.4
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 E
x
a
m

p
le

-F
1

Example-F1

scene

mirflickr

nus-wide

0 0.1 0.2 0.3 0.4
-0.08

-0.06

-0.04

-0.02

0

 M
ic

ro
-F

1

Micro-F1

scene

mirflickr

nus-wide

0 0.1 0.2 0.3 0.4
-0.04

-0.03

-0.02

-0.01

0

 M
a
c
ro

-F
1

Macro-F1

scene

mirflickr

nus-wide

0 0.1 0.2 0.3 0.4
-0.1

-0.08

-0.06

-0.04

-0.02

0

 H
A

HA

scene

mirflickr

nus-wide

Fig. 5. ∆M on different λ settings.

TABLE V
COMPARISON BETWEEN INTERVAL TYPE-2 FUZZY LOGIC AND TYPE-1

FUZZY LOGIC OF OUR METHOD

method ex-F1 mi-F1 ma-F1 HA

scene type-1 0.755 0.749 0.753 0.901
type-2 0.782 0.771 0.772 0.917

mirflickr type-1 0.511 0.554 0.412 0.874
type-2 0.536 0.582 0.445 0.908

nus-wide type-1 0.454 0.499 0.208 0.973
type-2 0.483 0.521 0.231 0.986

In Eq. (3), both of mean squared error and cross entropy can
be independently used as an objective function for training a
neural network. We set η as 1 in all our experiments. Our
model is robust to η. However, with large η, one should be
careful with the choice of learning rate. Our model is relatively
sensitive to λ. In Fig. 5, we show the performance of our model
in different λ settings. In Fig. 5,

∆M = Mbest −Mcurrent. (11)

M stands for a metric, i.e. exmaple-F1, micro-F1, macro-F1 or
HA. Mbest stands for the best metric among all experiments of
different λ settings. Mcurrent stands for metric corresponding
to current λ setting. Hence, all the values of ∆M are no greater
than 0.

From Fig. 5, we found the best M ’s are generally achieved
at λ = 0.1 ∼ 0.2 and occasionally at λ = 0. When λ = 0,
Eq. (5) degrades to classical defuzzification, i.e. the middle
point of the interval. When λ gets larger, say exceeding
0.3, the performance drops dramatically. This phenomenon
is reasonable. The size of the interval should not dominate
the prediction. For example, given two intervals [0.4, 0.5] and
[0.5, 0.9], although the latter interval has a larger size, it still
implies the classifier is more confident on the prediction,
because all the numbers in the latter interval is no less than
those in the former one.

VI. CONCLUSION

In this paper, we proposed a multi-label classification
method using interval type-2 fuzzy logic. Two neural net-
works are used for fuzziness intializer and fuzzifier estimation.
The fuzzifier estimation neural network is supervised by the
number of categories an instance belongs to and its predic-
tion is used to generate interval type-2 fuzzy labels. A loss
function measuring the dissimilarities between interval type-
2 fuzzy labels and binary labels were proposed for training

the fuzziness intializer. Finally, a defuzzification method is
proposed to generate binary labels from interval type-2 fuzzy
labels for metric computations. Experiments on widely-used
datasets validate the better performance of our methods to the
compared state-of-the-art methods.

Future works include modeling hierarchical relations among
labels using interval type-2 fuzzy logic and extending the pro-
posed method to multi-modal multi-label classification task.

REFERENCES

[1] B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,” in
Proceedings of the 34th International Conference on Machine Learning,
Sydney NSW Australia, 06–11 Aug 2017, pp. 146–155.

[2] J. Bai, S. Kong, and C. Gomes, “Disentangled Variational Autoencoder
based Multi-Label Classification with Covariance-Aware Multivariate
Probit Model,” in Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, Yokohama, Japan, Jul. 2020, pp.
4313–4321.

[3] D. Belanger and A. McCallum, “Structured prediction energy networks,”
Jun. 2016, arXiv:1511.06350.

[4] D. Belanger, B. Yang, and A. McCallum, “End-to-end learning for
structured prediction energy networks,” in Proceedings of the 34th
International Conference on Machine Learning - Volume 70, Sydney,
NSW, Australia, 2017, p. 429–439.

[5] F. Benites and E. Sapozhnikova, “HARAM: A Hierarchical ARAM
Neural Network for Large-Scale Text Classification,” in 2015 IEEE
International Conference on Data Mining Workshop (ICDMW), Atlantic
City, NJ, USA, Nov. 2015, pp. 847–854.

[6] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain, “Sparse local embed-
dings for extreme multi-label classification,” in 29th Annual Conference
on Neural Information Processing Systems, NIPS 2015, December 7,
2015 - December 12, 2015, Montreal, QC, Canada, December 2015,
pp. 730–738.

[7] W. Bi and J. T. Kwok, “Multilabel classification with label correlations
and missing labels,” in 28th AAAI Conference on Artificial Intelligence,
AAAI 2014, 26th Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2014 and the 5th Symposium on Educational Advances in
Artificial Intelligence, EAAI 2014, July 27, 2014 - July 31, 2014, Quebec
City, QC, Canada, 2014, pp. 1680–1686.

[8] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern Recognition, vol. 37, no. 9, pp. 1757–1771,
Sep. 2004.

[9] N. Brukhim and A. Globerson, “Predict and constrain: Modeling car-
dinality in deep structured prediction,” in Proceedings of the 35th
International Conference on Machine Learning, Stockholm Sweden, 10–
15 Jul 2018, pp. 659–667.

[10] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. Dhillon, “X-BERT:
eXtreme multi-label text classification with using bidirectional encoder
representations from transformers,” 2020, arXiv:1905.02331.

[11] Y.-n. Chen and H.-t. Lin, “Feature-aware Label Space Dimension Reduc-
tion for Multi-label Classification,” in Advances in Neural Information
Processing Systems, Lake Tahoe Nevada, December 2012, p. 1529–1537.

[12] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-Label Im-
age Recognition with Graph Convolutional Networks,” Apr. 2019,
arXiv:1904.03582.

8

[13] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-
WIDE: a real-world web image database from National University of
Singapore,” in Proceedings of the ACM International Conference on
Image and Video Retrieval, New York, NY, USA, Jul. 2009, pp. 1–9.

[14] A. Clare and R. D. King, “Knowledge Discovery in Multi-label Phe-
notype Data,” in Principles of Data Mining and Knowledge Discovery,
Berlin, Heidelberg, 2001, pp. 42–53.

[15] N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H. Lee,
H. Salimbeni, K. Arulkumaran, and M. Shanahan, “Deep Unsupervised
Clustering with Gaussian Mixture Variational Autoencoders,” Jan. 2017,
arXiv:1611.02648.

[16] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classifi-
cation,” in Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic, Cambridge,
MA, USA, 2001, p. 681–687.

[17] J. Fürnkranz, E. Hüllermeier, E. Loza Mencı́a, and K. Brinker, “Multi-
label classification via calibrated label ranking,” Mach. Learn., vol. 73,
no. 2, p. 133–153, nov 2008.

[18] W. Gerych, T. Hartvigsen, L. Buquicchio, E. Agu, and E. A. Runden-
steiner, “Recurrent Bayesian Classifier Chains for Exact Multi-Label
Classification,” in Advances in Neural Information Processing Systems,
2021, pp. 15 981–15 992.

[19] N. Ghamrawi and A. McCallum, “Collective multi-label classification,”
in Proceedings of the 14th ACM International Conference on Infor-
mation and Knowledge Management, New York, NY, USA, 2005, p.
195–200.

[20] M. Gygli, M. Norouzi, and A. Angelova, “Deep value networks learn
to evaluate and iteratively refine structured outputs,” in Proceedings of
the 34th International Conference on Machine Learning - Volume 70,
Sydney, NSW, Australia, 2017, p. 1341–1351.

[21] D. Hsu, S. M. Kakade, J. Langford, and T. Zhang, “Multi-Label
Prediction via Compressed Sensing,” Jun. 2009, arXiv:0902.1284.

[22] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval evaluation,” in
1st International ACM Conference on Multimedia Information Retrieval,
MIR2008, Co-located with the 2008 ACM International Conference on
Multimedia, MM’08, August 30, 2008 - August 31, 2008, Vancouver,
BC, Canada, 2008, pp. 39–43.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, Lille, France, 2015, p. 448–456.

[24] J. Lanchantin, A. Sekhon, and Y. Qi, “Neural Message Passing for Multi-
Label Classification,” Apr. 2019, arXiv:1904.08049.

[25] J. Li, C. Zhang, J. T. Zhou, H. Fu, S. Xia, and Q. Hu, “Deep-lift: Deep
label-specific feature learning for image annotation,” IEEE Transactions
on Cybernetics, vol. 52, no. 8, pp. 7732–7741, 2022.

[26] H.-Y. Lo, S.-D. Lin, and H.-M. Wang, “Generalized k-labelsets ensemble
for multi-label and cost-sensitive classification,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 7, pp. 1679–1691, 2014.

[27] J. Ma, B. C. Y. Chiu, and T. W. S. Chow, “Multilabel classification
with group-based mapping: A framework with local feature selection
and local label correlation,” IEEE Transactions on Cybernetics, vol. 52,
no. 6, pp. 4596–4610, 2022.

[28] J. Nam, E. L. Mencı́a, H. J. Kim, and J. Fürnkranz, “Maximizing subset
accuracy with recurrent neural networks in multi-label classification,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, Long Beach, California, USA, 2017, p. 5419–5429.

[29] D. Patel, P. Dangati, J. Y. Lee, M. Boratko, and A. McCallum, “Modeling
label space interactions in multi-label classification using box embed-
dings,” in ICLR, Mar 2022.

[30] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier Chains
for Multi-label Classification,” in Machine Learning and Knowledge
Discovery in Databases, Berlin, Heidelberg, 2009, pp. 254–269.

[31] T. Ridnik, E. Ben-Baruch, N. Zamir, A. Noy, I. Friedman, M. Protter, and
L. Zelnik-Manor, “Asymmetric Loss For Multi-Label Classification,” in
2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, QC, Canada, Oct. 2021, pp. 82–91.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[33] V. K. Sundar, S. Ramakrishna, Z. Rahiminasab, A. Easwaran, and
A. Dubey, “Out-of-distribution detection in multi-label datasets using
latent space of β-VAE,” Mar. 2020, arXiv:2003.08740.

[34] C. Tan, S. Chen, G. Ji, and X. Geng, “Multilabel distribution learning
based on multioutput regression and manifold learning,” IEEE Transac-
tions on Cybernetics, vol. 52, no. 6, pp. 5064–5078, 2022.

[35] D. Tian, C. Gong, M. Gong, Y. Wei, and X. Feng, “Modeling cardinality
in image hashing,” IEEE Transactions on Cybernetics, pp. 1–10, Early
Access.

[36] D. Tian, D. Zhou, M. Gong, and Y. Wei, “Interval type-2 fuzzy
logic for semisupervised multimodal hashing,” IEEE Transactions on
Cybernetics, vol. 51, no. 7, pp. 3802–3812, 2021.

[37] G. Tsoumakas and I. Vlahavas, “Random k-Labelsets: An Ensemble
Method for Multilabel Classification,” in Machine Learning: ECML
2007, Berlin, Heidelberg, 2007, pp. 406–417.

[38] L. Tu, R. Y. Pang, and K. Gimpel, “Improving joint training of inference
networks and structured prediction energy networks,” in Proceedings of
the Fourth Workshop on Structured Prediction for NLP, Online, Nov.
2020, pp. 62–73.

[39] L. Vilnis, X. Li, S. Murty, and A. McCallum, “Probabilistic embedding
of knowledge graphs with box lattice measures,” in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Melbourne, Australia, Jul. 2018, pp. 263–272.

[40] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “CNN-
RNN: A Unified Framework for Multi-label Image Classification,” Apr.
2016, arXiv:1604.04573.

[41] R. Wang, S. Kwong, Y. Jia, Z. Huang, and L. Wu, “Mutual informa-
tion based k-labelsets ensemble for multi-label classification,” in 2018
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de
Janeiro, Brazil, 2018, pp. 1–7.

[42] R. Wang, S. Kwong, X. Wang, and Y. Jia, “Active k-labelsets ensemble
for multi-label classification,” Pattern Recognition, vol. 109, no. C, p.
107583, Jan 2021.

[43] S. Wang, G. Peng, S. Chen, and Q. Ji, “Weakly supervised facial
action unit recognition with domain knowledge,” IEEE Transactions on
Cybernetics, vol. 48, no. 11, pp. 3265–3276, 2018.

[44] M. Wu and N. Goodman, “Multimodal Generative Models for Scalable
Weakly-Supervised Learning,” Nov. 2018, arXiv:1802.05335.

[45] L. Xu, J. Raitoharju, A. Iosifidis, and M. Gabbouj, “Saliency-based mul-
tilabel linear discriminant analysis,” IEEE Transactions on Cybernetics,
vol. 52, no. 10, pp. 10 200–10 213, 2022.

[46] C.-K. Yeh, W.-C. Wu, W.-J. Ko, and Y.-C. F. Wang, “Learning deep
latent spaces for multi-label classification,” Jul. 2017, arXiv:1707.00418.

[47] M.-L. Zhang, Y.-K. Li, X.-Y. Liu, and X. Geng, “Binary relevance for
multi-label learning: an overview,” Front. Comput. Sci., vol. 12, no. 2,
pp. 191–202, Apr. 2018.

[48] M.-L. Zhang, Y.-K. Li, H. Yang, and X.-Y. Liu, “Towards class-
imbalance aware multi-label learning,” IEEE Transactions on Cyber-
netics, vol. 52, no. 6, pp. 4459–4471, 2022.

[49] M.-L. Zhang and Z.-H. Zhou, “ML-KNN: A lazy learning approach to
multi-label learning,” Pattern Recognition, vol. 40, no. 7, pp. 2038–2048,
2007.

[50] Y. Zhang, J. Hare, and A. Prügel-Bennett, “Deep set prediction net-
works,” 2019, arXiv:1906.06565.

