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Abstract. Neutrosophic sets are powerful logics designed to facilitate understanding of indeterminate and inconsistent information;

many types of incomplete or complete information can be expressed as interval valued neutrosophic sets (IVNSs). This paper

proposes improved aggregation operation rules for IVNSs, and extends the generalized weighted aggregation (GWA) operator

to work congruently with IVNS data. The aggregated results are also expressed as IVNSs, which are characterized by truth-

membership degree, indeterminacy-membership degree, and falsity-membership degree. The proposed method is proved to be

the maximum approximation to the original data, and maintains most of the information during data processing. Then, a method

is proposed to determine the ranking orders for all alternatives according to their comparative advantage matrices based on their

general score, degree of accuracy and degree of certainty expressed by the aggregated IVNSs. Finally, a numerical example is

provided to illustrate the applicability and efficiency of the proposed approach.
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1. Introduction

Due to the complexity and uncertainty of objective

things, and the ambiguity of human thinking, Zadeh

proposed a remarkable theory of fuzzy sets (FSs) in

1965 [13]. Since then, the FS theory has been suc-

cessfully applied to various fields of multi-attribute

decision-making. Moreover, extended FSs were devel-

oped, such as the interval valued fuzzy sets (IVFSs)

[5], intuitionistic fuzzy sets (IFSs) [12], interval valued

intuitionistic fuzzy sets (IVIFSs) [11], hesitant fuzzy

sets (HFSs) [18], etc. Although FS theory has been

developed and generalized, it cannot account for all pos-

sible uncertainties in a variety of physical problems. For
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instance, when an expert is asked a question, he or she

may think that the possibility of a true answer is equal

to 0.6, the possibility of a false answer is 0.4, and the

degree of their uncertainty is 0.2. This issue is beyond

the scope of FSs and IFSs. Hence, Smarandache pro-

posed neutrosophic logic and neutrosophic sets (NSs)

in 1999 [1]. A NS is a set in which each element of the

universe has respective degrees of truth, indeterminacy,

and falsity, which lie in the nonstandard unit interval of

]0−, 1+[. This method represents an extension of the

standard interval [0,1] used for IFSs. The uncertainty

presented here, (i.e., the indeterminacy factor) is inde-

pendent of the truth and falsity values. This extended

IFS theory to account for uncertain information.

Many scholars have begun to study the practical

application of NSs in multi-attribute decision-making.

Wang, et al. [2] and Ye [9] defined the aggregation

operators for single valued neutrosophic set (SNSs),
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and proposed a corresponding multi-attribute decision-

making method. Majumdar, et al. [14] defined the

distance, similarity and entropy of two SNSs. Ye [7, 10]

defined the Hamming distance of SNSs based on cross-

entropy, and proposed a corresponding multi-attribute

decision-making method. Based on the operators of

SNSs, Wand and Li [6] extended the Todim method

based on multi-valued neutrosophic sets. Wang, et al.

[3] defined IVNSs and their logic operation rules.

Ye [8] defined similarity measure operators based on

the Hamming and Euclidean distances, and applied

them to multi-attribute decision-making problems.

Broumi, et al. [17] defined the correlation coeffi-

cient of IVNSs. Chi, et al. [15] extended the TOPSIS

method to include multi-attribute decision programs

with unknown weights and IVNS values. Zhang, et al.

[4] defined the operation rules for IVNSs based on

T-norm and S-norm, and proposed a corresponding

multi-attribute decision-making method.

All of the aforementioned definitions of aggre-

gation operators observe certain rationalities, but

some are inconsistent with the reality logic. Due to

the realistic differences among the characteristics of

truth-membership degree, indeterminacy-membership

degree, and falsity-membership degree, operation rules

must not only consider the basic operation rules, but

also consider the realistic significance of operators.

In many multi-attribute decision-making applications,

the weight of each attribute is determined according

to its importance. The generalized weighted aggrega-

tion operator is utilized to obtain the aggregated value

for all attributes of each alternative, and rank the lim-

ited alternatives or select the best by comparing the

advantage degrees of the aggregated IVNSs represent-

ing each alternative. This paper proposes improved

operation rules for IVNSs, and defines the general-

ized weighted aggregation operator for IVNSs based

on a traditional GWA operator. Due to the maximum

approximation to original values, the aggregated value

based on the GWA operator can most effectively reflect

the multi-attribute values while maintaining the greatest

amount of information. Compared to the multi-attribute

decision-making method based on distance, this method

maintains the integrity of information during the cal-

culation process. Meanwhile, by choosing different

parameters, decision makers can obtain ranking order

results according to their own risk attitudes.

The rest of this paper is organized as follows. In

Section 2, some concepts and operations of IVNSs

are briefly introduced. Based on the basic operation

rules, the GWA operator is extended to IVNSs. In

Section 3, a decision-making method is developed for

IVNSs based on a GWA operator. In Section 4, an

example is presented to illustrate the proposed method,

and comparison analysis and discussion are provided.

Finally, Section 5 concludes the paper.

2. IVNS concepts and operators

Definition 1. [8] Let X be a space of points (objects)

with generic elements in X, denoted by x. An interval

valued neutrosophic set (IVNS) A in X is characterized

by truth-membership function TA(x), indeterminacy-

membership function IA(x) and falsity-membership

function FA(x). For each point x in X, TA(x), IA(x),

FA(x) ∈[0,1].

A = {< x, [T l
A(x), T r

A(x)], [I l
A(x), Ir

A(x)],

[F l
A(x), F r

A(x)] > |x ∈ X} (1)

An IVNS is also defined as A =
〈

[T l
A, T r

A],

[I l
A, Ir

A], [F l
A, F r

A]
〉

.

Definition 2. The complement of an interval valued

neutrosophic set A =
〈

[T l
A, T r

A], [I l
A, Ir

A], [F l
A, F r

A]
〉

is

defined by

Ac =

〈

[F l
A, F r

A], [I l
A, Ir

A], [T l
A, T r

A]
〉

(2)

The maximum of an IVNS is <[1,1],[0,0],[0,0]>,

and the minimum is <[0,0],[0,0],[1,1]>. This defini-

tion varies from the definition of IVNSs presented in

previous literature; when a cost IVNS is transformed

into a benefit IVNS, the truth-membership and falsity-

membership are altered, while the indeterminacy-

membership is unchanged.

Definition 3. [19] Definition of advantage comparison

for interval values. Suppose that there are n inter-

val numbers ãi =
[

al
i, a

r
i

]

(i = 1, 2, . . . , n) and that the

comparison of each interval number ãi to all interval

numbers ãj =

[

al
j, a

r
j

]

(j = 1, 2, . . . , n) is formulated

by

pij(ãi ≥ ãj) = max

{

1 − max(
ãr
j − ãl

i

lãi + lãj

, 0), 0

}

.

(3)

Then a complementary matrix can be constructed as

follows:
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P =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

p11 p12 . . . p1n

p21 p22 . . . p2n

...

pn1 pn2 . . . pnn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where pij ≥ 0, pij + pji = 1, pii = 0.5.

Definition 4. Based on the score function and accu-

racy function of IVIFSs, the score function, accuracy

function and certainty function of an IVNS A =<

[T l
A, T r

A], [I l
A, Ir

A], [F l
A, F r

A] > are defined as follows.

(1) s(A) =

[

T l
A + 1 − Ir

A + 1 − F r
A,

T r
A + 1 − I l

A + 1 − F r
A

]

(4)

(2) a(A) =

[

min{T l
A − F l

A, T r
A − F r

A},

max{T l
A − F l

A, T r
A − F r

A}

]

(5)

(3) c(A) =

[

T l
A, T r

A

]

(6)

Definition 5. [4] Let A and B be two IVNSs. The com-

parison approach can be defined as follows.

If p(s(A) ≥ s(B)) > 0.5, then A is superior to B,

denoted by A ≻ B.

If p(s(A) ≥ s(B)) = 0.5, and p(a(A) ≥ a(B)) > 0.5,

then A is superior to B, denoted by A ≻ B.

If p(s(A) ≥ s(B)) = 0.5, p(a(A) ≥ a(B)) = 0.5, and

p(c(A) ≥ c(B)) > 0.5, then A is superior to B, denoted

by A ≻ B.

If p(s(A) ≥ s(B)) = 0.5, p(a(A) ≥ a(B)) = 0.5, and

p(c(A) ≥ c(B)) = 0.5, then A is indifferent to B,

denoted by A ∼ B.

Definition 6. Let IVNS A =< [T l
A, T r

A], [I l
A, Ir

A], [F l
A,

F r
A] >, B =< [T l

B, T r
B], [I l

B, Ir
B], [F l

B, F r
B] >; when

λ > 0, the basic operators are defined as follows.

(1) A + B =< [T l
A + T l

B − T l
AT l

B, T r
A + T r

B − T r
AT r

B],

[I l
AI l

B, Ir
AIr

B], [F l
AF l

B, F r
AF r

B] >

(7)

(2) A · B =< [T l
AT l

B, T r
AT r

B], [I l
A + I l

B − I l
AI l

B,

Ir
A + Ir

B − Ir
AIr

B], [F l
A + F l

B − F l
AF l

B,

F r
A + F r

B − F r
AF r

B] >

(8)

(3) λA =< [1 − (1 − T l
A)λ, 1 − (1 − T r

A)λ],

[(I l
A)λ, (Ir

A)λ], [(F l
A)λ, (F r

A)λ] > (9)

(4) Aλ =< [(T l
A)λ, (T r

A)λ], [1 − (1 − I l
A)λ,

1 − (1 − Ir
A)λ], [1 − (1 − F l

A)λ, 1 − (1 − F r
A)λ] >

(10)

Theorem 1. Let A, B, C be three IVNSs, λ, λ1, λ2 > 0.

The following equations are true.

(1) A + B = B + A (11)

(2) A · B = B · A (12)

(3) λ(A + B) = λA + λB (13)

(4) (A · B)λ = Aλ · Bλ (14)

(5) λ1A + λ2A = (λ1 + λ2)A (15)

(6) Aλ1 · Aλ2 = A(λ1+λ2) (16)

(7) (A + B) + C = A + (B + C) (17)

(8) (A · B) · C = A · (B · C) (18)

Proof 1. According to definition 6, (1) and (2) are obvi-

ous. The others are proven as follows.

Proof 2. Formula (3):

λ(A + B)

= λ(< [T l
A + T l

B − T l
AT l

B, T r
A + T r

B − T r
AT r

B],

[I l
AI l

B, Ir
AIr

B], [F l
AF l

B, F r
AF r

B] >)

=< [1 − (1 − T l
A + T l

B + T l
AT l

B)λ,

1 − (1 − T r
A + T r

B + T r
AT r

B)λ],

[(I l
AI l

B)λ, (Ir
AIr

B)λ], [(F l
AF l

B)λ, (F r
AF r

B)λ] >

=< [1 − (1 − T l
A)λ(1 − T l

B)λ,

1 − (1 − T r
A)λ(1 − T r

B)λ],

[(I l
AI l

B)λ, (Ir
AIr

B)λ], [(F l
AF l

B)λ, (F r
AF r

B)λ] >

=< [1 − (1 − (1 − T l
A)λ)(1 − (1 − T l

B)λ),

1 − (1 − (1 − T r
A)λ)(1 − (1 − T r

B)λ)],

[(I l
A)λ(I l

B)λ, (Ir
A)λ(Ir

B)λ],

[(F l
A)λ(F l

B)λ, (F r
A)λ(F r

B)λ] >

= (< [1 − (1 − T l
A)λ, 1 − (1 − T r

A)λ],
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[(I l
A)λ, (Ir

A)λ], [(F l
A)λ, (F r

A)λ] >)

+(< [1 − (1 − T l
B)λ, 1 − (1 − T r

B)λ],

[(I l
B)λ, (Ir

B)λ], [(F l
B)λ, (F r

B)λ] >)

= λA + λB

Proof 3. Formula (4):

(A · B)λ

= (< [T l
AT l

B, T r
AT r

B],

[I l
A + I l

B − I l
AI l

B, Ir
A + Ir

B − Ir
AIr

B],

[F l
A + F l

B − F l
AF l

B, F r
A + F r

B − F r
AF r

B] >)λ

=< [(T l
AT l

B)λ, (T r
AT r

B)λ],

[1 − (1 − I l
A − I l

B + I l
AI l

B)λ,

1 − (1 − Ir
A − Ir

B + Ir
AIr

B)λ],

[1 − (1 − F l
A − F l

B + F l
AF l

B)λ,

1 − (1 − F r
A − F r

B + F r
AF r

B)λ] >

=< [(T l
AT l

B)λ, (T r
AT r

B)λ],

[1 − (1 − I l
A)λ(1 − I l

B)λ,

1 − (1 − Ir
A)λ(1 − Ir

B)λ],

[1 − (1 − F l
A)λ(1 − F l

B)λ,

1 − (1 − F r
A)λ(1 − F r

B)λ] >

=

〈[

(T l
A)λ(T l

B)λ, (T r
A)λ(T r

B)λ
]

[

1 − [1 − (1 − I l
A)λ][1 − (1 − I l

B)λ],

1 − [1 − (1 − Ir
A)λ][1 − (1 − Ir

B)λ]
]

,
[

1 − [1 − (1 − F l
A)λ][1 − (1 − F l

B)λ],

1 − [1 − (1 − F r
A)λ][1 − (1 − F r

B)λ]
]〉

=

(〈[

(T l
A)λ, (T r

A)λ
]

,

[

1 − (1 − I l
A)λ, 1 − (1 − Ir

A)λ
]

,

[

1 − (1 − F l
A)λ, 1 − (1 − F r

A)λ
]〉)

·

(〈[

(T l
B)λ, (T r

B)λ
]

,

[

1 − (1 − I l
B)λ, 1 − (1 − Ir

B)λ
]

,

[

1 − (1 − F l
B)λ, 1 − (1 − F r

B)λ
]〉)

= Aλ · Bλ

Proof 4. Formula (5):

λ1A + λ2A

=

(〈[

1 − (1 − T l
A)λ1 , 1 − (1 − T r

A)λ1

]

,

[

(I l
A)λ1 , (Ir

A)λ1

]

,
[

(F l
A)λ1 , (F r

A)λ1

]〉)

+

(〈[

1 − (1 − T l
A)λ2 , 1 − (1 − T r

A)λ2

]

,

[

(I l
A)λ2 , (Ir

A)λ2

]

,
[

(F l
A)λ2 , (F r

A)λ2

]〉)

=

〈[

1 − [1 − (1 − T l
A)λ1 ][1 − (1 − T l

A)λ2 ],

1 − [1 − (1 − T r
A)λ1 ][1 − (1 − T r

A)λ2 ]
]

,
[

(I l
A)λ1 (I l

A)λ2 , (Ir
A)λ1 (Ir

A)λ2

]

,

[

(F l
A)λ1 (F l

A)λ2 , (F r
A)λ1 (F r

A)λ2

]〉

=

〈[

1 − (1 − T l
A)λ1 (1 − T l

A)λ2 ,

1 − (1 − T r
A)λ1 (1 − T r

A)λ2
]

,
[

(I l
A)λ1 (I l

A)λ2 , (Ir
A)λ1 (Ir

A)λ2

]

,

[

(F l
A)λ1 (F l

A)λ2 , (F r
A)λ1 (F r

A)λ2

]〉

=

〈[

1 − (1 − T l
A)(λ1+λ2),

1 − (1 − T r
A)(λ1+λ2)

]

,

[

(I l
A)(λ1+λ2), (Ir

A)(λ1+λ2)
]

,

[

(F l
A)(λ1+λ2), (F r

A)(λ1+λ2)
]〉

= (λ1 + λ2)A
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Proof 5. Formula (6):

Aλ1 · Aλ2

=

(〈[

(T l
A)λ1 , (T r

A)λ1

]

,
[

1 − (1 − I l
A)λ1 , 1 − (1 − Ir

A)λ1

]

,

[

1 − (1 − F l
A)λ1 , 1 − (1 − F r

A)λ1

]〉)

·

(〈[

(T l
A)λ2 , (T r

A)λ2

]

,

[

1 − (1 − I l
A)λ2 , 1 − (1 − Ir

A)λ2

]

,
[

1 − (1 − F l
A)λ2 , 1 − (1 − F r

A)λ2

]〉)

=

〈[

(T l
A)λ1 (T l

A)λ2 , (T r
A)λ1 (T r

A)λ2

]

,
[

1 − [1 − (1 − I l
A)λ1 ][1 − (1 − I l

A)λ2 ],

1 − [1 − (1 − Ir
A)λ1 ][1 − (1 − Ir

A)λ2 ]
]

〈[

1 − [1 − (1 − I l
A)λ1 ][1 − (1 − I l

A)λ2 ], 1 − [1 − (1 − Ir
A)λ1 ][1 − (1 − Ir

A)λ2 ]
]

,

[

1 − [1 − (1 − F l
A)λ1 ][1 − (1 − F l

A)λ2 ], 1 − [1 − (1 − F r
A)λ1 ][1 − (1 − F r

A)λ2 ]
]〉

=

〈[

(T l
A)λ1 (T l

A)λ2 , (T r
A)λ1 (T r

A)λ2

]

,
[

1 − (1 − I l
A)λ1 (1 − I l

A)λ2 , 1 − (1 − Ir
A)λ1 (1 − Ir

A)λ2

]

,

[

1 − (1 − F l
A)λ1 (1 − F l

A)λ2 , 1 − (1 − F r
A)λ1 (1 − F r

A)λ2

]〉

=

〈[

(T l
A)(λ1+λ2), (T r

A)(λ1+λ2)
]

,
[

1 − (1 − I l
A)(λ1+λ2), 1 − (1 − Ir

A)(λ1+λ2)
]

,

[

1 − (1 − F l
A)(λ1+λ2), 1 − (1 − F r

A)(λ1+λ2)
]〉

= A(λ1+λ2)

Proof 6. Formula (7):

(A + B) + C =

(〈[

T l
A + T l

B − T l
AT l

B, T r
A + T r

B − T r
AT r

B

]

,
[

I l
AI l

B, Ir
AIr

B

]

,

[

F l
AF l

B, F r
AF r

B

]〉)

+ C

=

(〈[

1 − (1 − T l
Aza)(1 − T l

B)
]

,
[

I l
AI l

B, Ir
AIr

B

]

,
[

F l
AF l

B, F r
AF r

B

]〉)

+ C

=

〈[

1 − {1 − [1 − (1 − T l
A)(1 − T l

B)]}(1 − T l
C)
]

,
[

I l
AI l

BI l
C, Ir

AIr
BIr

C

]

,

[

F l
AF l

BF l
C, F r

AF r
BF r

C

]〉

=

〈[

1 − (1 − T l
A)(1 − T l

B)(1 − T l
C)
]

,
[

I l
AI l

BI l
C, Ir

AIr
BIr

C

]

,
[

F l
AF l

BF l
C, F r

AF r
BF r

C

]〉

=

〈[

1 − (1 − T l
A){1 − [1 − (1 − T l

B)(1 − T l
C)]}
]

,
[

I l
AI l

BI l
C, Ir

AIr
BIr

C

]

,

[

F l
AF l

BF l
C, F r

AF r
BF r

C

]〉

= A +

(〈[

1 − (1 − T l
B)(1 − T l

C)
]

,
[

I l
BI l

C, Ir
BIr

C

]

,
[

F l
BF l

C, F r
BF r

C

]〉)

= A +

(〈[

T l
B + T l

C − T l
BT l

C, T r
B + T r

C − T r
BT r

C

]

,
[

I l
BI l

C, Ir
BIr

C

]

,
[

F l
BF l

C, F r
BF r

C

]〉)

= A + (B + C)
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Proof 7. Formula (8):

(A · B) · C

=
(〈[

T l
AT l

B, T r
AT r

B

]

,
[

I l
A + I l

B − I l
AI l

B, Ir
A + Ir

B − Ir
AIr

B

]

,
[

F l
A + F l

B − F l
AF l

B, F r
A + F r

B − F r
AF r

B

]〉)

· C

=
(〈[

T l
AT l

B, T r
AT r

B

]

,
[

1 − (1 − I l
A)(1 − I l

B)
]

,
[

1 − (1 − F l
A)(1 − F l

B)
]〉)

· C

=
〈[

T l
AT l

BT l
C, T r

AT r
BT r

C

]

,
[

1 − {1 − [1 − (1 − I l
A)(1 − I l

B)]}(1 − I l
C)
]

,
[

1 − {1 − [1 − (1 − F l
A)(1 − F l

B)]}(1 − F l
C)
]〉

=
〈[

T l
AT l

BT l
C, T r

AT r
BT r

C

]

,
[

1 − (1 − I l
A)(1 − I l

B)(1 − I l
C)
]

,
[

1 − (1 − F l
A)(1 − F l

B)(1 − F l
C)
]〉

=
〈[

T l
AT l

BT l
C, T r

AT r
BT r

C

]

,
[

1 − (1 − I l
A){1 − [1 − (1 − I l

B)(1 − I l
C)]}
]

,
[

1 − (1 − F l
A){1 − [1 − (1 − F l

B)(1 − F l
C)]}
]〉

= A ·
(〈[

T l
BT l

C, T r
BT r

C

]

,
[

1 − (1 − I l
B)(1 − I l

C)
]

,
[

1 − (1 − F l
B)(1 − F l

C)
]〉)

= A ·
(〈[

T l
BT l

C, T r
BT r

C

]

,
[

I l
B + I l

C − I l
BI l

C, Ir
B + Ir

C − Ir
BIr

C

]

,
[

F l
B + F l

C − F l
BF l

C, F r
B + F r

C − F r
BF r

C

]〉)

= A · (B · C)

Definition 7. Let Aj =< [T l
Aj

, T r
Aj

], [I l
Aj

, Ir
Aj

], [F l
Aj

,

F r
Aj

] > be a collection of IVNSs, and W = (w1, w2,

. . . , wn)T be the weight vector of Aj , with wj ≥ 0, and
∑n

j=1 wj = 1. Their generalized weighted aggregation

GWA [16] An → A is defined as follows.

Z = IVNSGWA(A1, A2, . . . , An) =

(

n
∑

j=1

wjA
λ
j

)1/λ

=

(

n
∑

j=1

wj

(〈[

(T l
j)λ, (T r

j )λ
]

,
[

1 − (1 − I l
j)λ, 1 − (1 − Ir

j )λ
]

,
[

1 − (1 − F l
j)λ, 1 − (1 − F r

j )λ
]〉))1/λ

=

(

n
∑

j=1

wj

(〈[

1 − (1 − (T l
j)λ)wj , 1 − (1 − (T r

j )λ)wj
]

,
[

(1 − (1 − I l
j)λ)wj , (1 − (1 − Ir

j )λ)wj
]

,

[

(1 − (1 − F l
j)λ)wj , (1 − (1 − F r

j )λ)wj
]〉))1/λ

=

(〈[

1 −

n
∏

j=1

(1 − (T l
j)λ)wj , 1 −

n
∏

j=1

(1 − (T r
j )λ)wj

]

,

[

n
∏

j=1

(1 − (1 − I l
j)λ)wj ,

n
∏

j=1

(1 − (1 − Ir
j )λ)wj ,

]

,

[

n
∏

j=1

(1 − (1 − I l
j)λ)wj ,

n
∏

j=1

(1 − (1 − Ir
j )λ)wj ,

]〉)1/λ

=

⎛

⎝

〈

⎡

⎣

(

1 −

n
∏

j=1

(1 − (T l
j)λ)wj

)1/λ

,

(

1 −

n
∏

j=1

(1 − (T r
j )λ)wj

)1/λ
⎤

⎦ ,

⎡

⎣1 −

(

1 −

n
∏

j=1

(1 − (1 − I l
j)λ)wj

)1/λ

, 1 −

(

1 −

n
∏

j=1

(1 − (1 − Ir
j )λ)wj

)1/λ
⎤

⎦ ,

⎡

⎣1 −

(

1 −

n
∏

j=1

(1 − (1 − F l
j)λ)wj

)1/λ

, 1 −

(

1 −

n
∏

j=1

(1 − (1 − F r
j )λ)wj

)1/λ
⎤

⎦

〉

⎞

⎠ (19)
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When λ → 0

Z = IVNSGWA(A1, A2, . . . , An) =

n
∏

j=1

A
wj

j

=

n
∏

j=1

(〈[

(T l
j)wj , (T r

j )wj

]

,

[

1 − (1 − I l
j)wj , 1 − (1 − Ir

j )wj

]

,

[

1 − (1 − F l
j)wj , 1 − (1 − F r

j )wj

]〉)

=

⎛

⎝

〈

⎡

⎣

n
∏

j=1

(T l
j)wj ,

n
∏

j=1

(T r
j )wj

⎤

⎦ ,

⎡

⎣1 −

n
∏

j=1

(1 − I l
j)wj , 1 −

n
∏

j=1

(1 − Ir
j )wj

⎤

⎦ ,

⎡

⎣1 −

n
∏

j=1

(1 − F l
j)wj , 1 −

n
∏

j=1

(1 − F r
j )wj

⎤

⎦

⎞

⎠

〉

(20)
When λ = 1

Z = IVNSGWA(A1, A2, . . . , An) =

n
∑

j=1

wjAj

=

n
∑

j=1

(〈[

1 − (1 − T l
j)wj , 1 − (1 − T r

j )wj
]

,

[

(I l
j)wj , (Ir

j )wj
]

,
[

(F l
j)wj , (F r

j )wj
])〉

=

(〈[

1 −

n
∏

j=1

(1 − T l
j)wj , 1 −

n
∏

j=1

(1 − T r
j )wj

]

,

[

n
∏

j=1

(I l
j)wj ,

n
∏

j=1

(Ir
j )wj

]

,

[

n
∏

j=1

(F l
j)wj ,

n
∏

j=1

(F r
j )wj

]〉)

(21)

When λ = 1, Formula (19) is reduced to Formula (21).

3. Multi-attribute decision-making method

based on IVNSGWA operators

Definition 7 indicates that:

(1) When λ → 0, IVNSGWA(A1, A2, . . . , An) =
∏n

j=1 A
wj

j , the standard aggregation operator

IVNSGWA is reduced to weighted geometric

aggregation operator (WG).

(2) When λ = 1, IVNSGWA(A1, A2, . . . , An) =
∑n

j=1 wjAj , the standard aggregation operator

IVNSGWA is reduced to weighted arithmetic

aggregation operator (WA).

(3) Let Z = IVNSGWA(A1, A2, . . . , An).

When Z =

(

∑n
j=1 wjA

λ
j

)1/λ
, the value of

∑n
j=1 wj(Z − Aλ

j )2 is at its minimum. There-

fore, the aggregation operator IVNSGWA is the

greatest approximation representing n attributes.

A multi-attribute decision-making problem repre-

sents a process by which to find the best alternative

from all of feasible alternatives, in which all alter-

natives can be evaluated according to a number

of attributes or criteria. Let A = {A1, A2, . . . , Am}

be a set of alternatives and C = {C1, C2, . . . , Cn}

be a set of attributes. Assume that the vector of

the weight w = (w1, w2, . . . , wn), where wj ∈ [0, 1],

and
∑n

j=1 wj = 1. In this case, the characteristic

of attribute Cj of alternative Ai is represented by

an IVNS rij = 〈[T l
rij

, T r
rij

], [I l
rij

, Ir
rij

], [F l
rij

, F r
rij

]〉. Here,

[T l
rij

, T r
rij

], [I l
rij

, Ir
rij

], and [F l
rij

, F r
rij

] respectively indi-

cate the degree to which alternative Ai satisfies the

attribute Cj , the indeterminacy degree to which the

alternative Ai satisfies or does not satisfy the attribute

Cj , and the degree to which the alternative Ai does

not satisfy the attribute Cj . Therefore, an interval val-

ued neutrosophic decision matrix can be elicited: R =

[rij]m×n.

The steps of interval valued neutrosophic multi-

attribute decision-making based on IVNSGWA can be

presented as follows.

Step 1. Construction of standard decision matrix.

If Cj is a benefit attribute, bij = 〈[T l
rij

, T r
rij

],

[I l
rij

, Ir
rij

], [F l
rij

, F r
rij

]〉.

If Cj is a cost attribute, bij = 〈[F l
rij

, F r
rij

],

[Ir
rij

, I l
rij

], [T l
rij

, T r
rij

]〉.

Thus, a standard decision matrix is obtained, B =
[

bij

]

m×n
.

Step 2. Calculation of the aggregation value Zi for

alternative ai. See Definition 8.

Step 3. Construction of dominance matrices.

Based on Definition 4, calculate score s(Zi), degree

of accuracy a(Zi) and degree of certainty c(Zi) for alter-

native ai. Then, according to Definition 3, construct the



2704 Z. Aiwu et al. / Interval valued neutrosophic set based multi-attribute decision-making

score dominance matrix Ps, accuracy dominance matrix

Pa and certainty dominance matrix Pc as follows.

Ps

⎡

⎢

⎢

⎢

⎣

ps11 ps12 ... ps1m

ps21 ps22 ... ps2m

.

.

.

psn1 psn2 ... psmm

⎤

⎥

⎥

⎥

⎦

Pa

⎡

⎢

⎢

⎢

⎣

pa11 pa12 ... pa1m

pa21 pa22 ... pa2m

.

.

.

pan1 pan2 ... pamm

⎤

⎥

⎥

⎥

⎦

Pc

⎡

⎢

⎢

⎢

⎣

pc11 pc12 ... pc1m

pc21 pc22 ... pc2m

.

.

.

pcn1 pcn2 ... pcmm

⎤

⎥

⎥

⎥

⎦

Step 4. Calculation of the total score psi, total accu-

racy pai and total certainty pci for alternative ai.

psi =

m
∑

j=1

psij pai =

m
∑

j=1

paij pci =

m
∑

j=1

pcij

Step 5. According to Definition 5, determine the

ranking order for each alternative.

4. Illustrative example

In this section, an example of the multi-attribute

decision-making problem of alternatives is used to

demonstrate the application and effectiveness of the

proposed decision-making method.

Let us consider the decision-making problem

adapted from Chi and Liu, in which an investment com-

pany wants to invest in the best option [15].

There are four possible alternatives in which to

invest, expressed as {A1, A2, A3, A4}, where A1 is a

bookshop, A2 is a chemical plant, A3 is a supermarket,

and A4 is a food company.

The investment company must make a decision

according to the following three attributes: C1 is the

earning estimate analysis, C2 is the growth analysis, and

C3 is the environmental impact analysis for the alter-

natives; C1 and C2 are benefit attributes, while C3 is a

cost attribute. The weight vector of the attribute is given

by w = (0.2, 0.25, 0.55). The four possible alternatives

are evaluated according to the above three attributes

by IVNSs, as shown in the following interval valued

neutrosophic decision matrix R.

R =

⎡

⎢

⎢

⎢

⎢

⎣

〈[0.4, 0.5] , [0.2, 0.3] , [0.3, 0.4]〉

〈[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]〉

〈[0.3, 0.6] , [0.2, 0.3] , [0.3, 0.4]〉

〈[0.7, 0.8] , [0.0, 0.1] , [0.1, 0.2]〉

〈[0.4, 0.6] , [0.1, 0.3] , [0.2, 0.4]〉

〈[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]〉

〈[0.5, 0.6] , [0.2, 0.3] , [0.3, 0.4]〉

〈[0.6, 0.7] , [0.1, 0.2] , [0.1, 0.3]〉

〈[0.7, 0.9] , [0.2, 0.3] , [0.4, 0.5]〉

〈[0.3, 0.6] , [0.3, 0.5] , [0.8, 0.9]〉

〈[0.4, 0.5] , [0.2, 0.4] , [0.7, 0.9]〉

〈[0.6, 0.7] , [0.3, 0.4] , [0.8, 0.9]〉

⎤

⎥

⎥

⎥

⎥

⎦

Each IVNS value in the matrix represents the

assessment of the corresponding attribute of a

certain alternative. For instance, the first value

<[0.4,0.5],[0.2,0.3],[0.3,0.4]> in matrix R represents

the possibility of earning of alternative A1, which lies

between 0.4 and 0.5; the uncertainty of earning of alter-

native A1, which lies between 0.2 and 0.3; and the

possibility of loss of alternative A1, which lies between

0.3 and 0.4.

(1) Construction of standard decision matrix B.

B =

⎡

⎢

⎢

⎢

⎢

⎣

〈[0.4, 0.5] , [0.2, 0.3] , [0.3, 0.4]〉

〈[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]〉

〈[0.3, 0.6] , [0.2, 0.3] , [0.3, 0.4]〉

〈[0.7, 0.8] , [0.0, 0.1] , [0.1, 0.2]〉

〈[0.4, 0.6] , [0.1, 0.3] , [0.2, 0.4]〉

〈[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]〉

〈[0.5, 0.6] , [0.2, 0.3] , [0.3, 0.4]〉

〈[0.6, 0.7] , [0.1, 0.2] , [0.1, 0.3]〉

〈[0.4, 0.5] , [0.2, 0.3] , [0.7, 0.9]〉

〈[0.8, 0.9] , [0.3, 0.5] , [0.3, 0.6]〉

〈[0.7, 0.9] , [0.2, 0.4] , [0.4, 0.5]〉

〈[0.8, 0.9] , [0.3, 0.4] , [0.6, 0.7]〉

⎤

⎥

⎥

⎥

⎥

⎦

Since C3 is a cost attribute, it is transformed into a

benefit attribute according to Definition 2.

(2) Calculation of aggregation value Zi for alterna-

tive ai.

According to formula (22), let λ = 1. Thus:
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Table 1

Ranking orders with various λ

λ Total score ps Ranking order

→ 0 [0.8609,2.7000,1.5887,2.8504] A4 ≻ A2 ≻ A3 ≻ A1

0.1 [0.9307,2.5811,1.4059,3.0823] A4 ≻ A2 ≻ A3 ≻ A1

0.3 [0.9347,2.5790,1.3995,3.0868] A4 ≻ A2 ≻ A3 ≻ A1

0.5 [0.9385,2.5768,1.3934,3.0913] A4 ≻ A2 ≻ A3 ≻ A1

1.0 [0.9467,2.5721,1.3793,3.1019] A4 ≻ A2 ≻ A3 ≻ A1

1.4 [0.9516,2.5690,1.3694,3.1100] A4 ≻ A2 ≻ A3 ≻ A1

1.8 [0.9549,2.5665,1.3611,3.1175] A4 ≻ A2 ≻ A3 ≻ A1

2.0 [0.9560,2.5655,1.3575,3.1210] A4 ≻ A2 ≻ A3 ≻ A1

5.0 [0.9425,2.5644,1.3362,3.1569] A4 ≻ A2 ≻ A3 ≻ A1

10 [0.8902,2.5815,1.3446,3.1837] A4 ≻ A2 ≻ A3 ≻ A1

Z

=

⎡

⎢

⎢

⎢

⎢

⎣

〈[0.4000,0.5577],[0.1366,0.3000],[0.2967,0.4899]〉

〈[0.6636,0.7720],[0.1316,0.2515],[0.2213,0.3568]〉

〈[0.5293,0.7172],[0.2000,0.3224],[0.3224,0.4229]〉

〈[0.6824,0.7898],[0.0000,0.2071],[0.1565,0.3419]〉

⎤

⎥

⎥

⎥

⎥

⎦

(3) Construction of dominance matrices.

According to Definition 4, the score, degree of accu-

racy and degree of certainty of each alternative are

expressed as follows.

S A C(Z)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

[1.6101,2.1245] [0.0679,0.1033] [0.4000,0.5577]

[2.0554,2.4191] [0.4153,0.4423] [0.6636,0.7720]

[1.7840,2.1948] [0.2069,0.2942] [0.5293,0.7172]

[2.1335,2.6333] [0.4479,0.5259] [0.6824,0.7898]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Next, according to Definition 3, the respective dom-
inance matrices are obtained.

Ps =

⎡

⎢

⎢

⎢

⎢

⎣

0.5000 0.0787 0.3680 0.0000

0.9213 0.5000 0.8200 0.3308

0.6320 0.1800 0.5000 0.0673

1.0000 0.6692 0.9327 0.5000

⎤

⎥

⎥

⎥

⎥

⎦

Pa =

⎡

⎢

⎢

⎢

⎢

⎣

0.500 0.000 0.000 0.000

1.000 0.500 1.000 0.000

1.000 0.000 0.500 0.000

1.000 1.000 1.000 0.500

⎤

⎥

⎥

⎥

⎥

⎦

Pc =

⎡

⎢

⎢

⎢

⎢

⎣

0.5000 0.0000 0.0823 0.0000

1.0000 0.5000 0.8194 0.4153

0.9177 0.1806 0.5000 0.1176

1.0000 0.5847 0.8824 0.5000

⎤

⎥

⎥

⎥

⎥

⎦

(4) Calculation of the total score psi, total accuracy

pai and total certainty pci for each alternative.

ps = [0.9467 2.5721 1.3793 3.1019]

pa = [0.5000 2.5000 1.5000 3.5000]

pc = [0.5823 2.7347 1.7159 2.9671]

(5) Ranking the alternatives.

The scores of the three alternatives vary, so the

ranking order is A4 ≻ A2 ≻ A3 ≻ A1 according to ps,

which is identical to the ranking order used in the [15]

TOPSIS method.

In order to discuss the impact of parameter λ, the

ranking order under different λ were calculated. The

ranking orders are listed in Table 1.

As indicated by Table 1, the total score of each alter-

native varies for different values of parameter λ while

the ranking order remains unchanged. In fact, λ gener-

ally represents the attitude of decision makers; smaller

λ indicates more conservative attitudes, while larger λ

indicates more optimistic attitudes.

The ranking order results are consistent with results

reported in previous literature [8, 15], and the results

are not impacted by different values of λ. There-

fore, the method proposed in this paper is applicable

and effective. However, the results are not consis-

tent with results from other literature [4, 6] even with

appropriately-adjusted weight vectors. Analysis indi-

cates that Zhang, et al., did not standardize cost attribute

data [4]. Although Wang and Li utilized standardized

cost attribute data, the definition of complement oper-

ator is different from the definition utilized in this

paper [6].

5. Conclusion

This paper proposed improved aggregation opera-

tion rules for interval valued neutrosophic sets, and

extended the generalized aggregation method to IVNSs

based on the defined operators. Additionally, the appli-
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cation of the IVNS decision-making model based on

IVNSGWA operator was detailed. The application of

the IVNS multi-attribute decision-making method can

help people make a correct decision out of avail-

able alternatives in indeterminate and inconsistent

information environments in. Compared to the multi-

attribute decision-making method based on distance,

this method maintains the integrity of information dur-

ing calculation. Additionally, by choosing different

parameters, decision makers can obtain ranking order

results according to their own risk attitudes.

This paper only considered the attribute decision

making problems with IVNS data. Considering that

other data types can be expressed as IVNSs, this paper

can also be easily extended to account for problems

which deal with multiple data types.
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