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Intervalley scattering by acoustic phonons
in two-dimensional MoS2 revealed by
double-resonance Raman spectroscopy
Bruno R. Carvalho1,*, Yuanxi Wang2,*, Sandro Mignuzzi3,4, Debdulal Roy3,4, Mauricio Terrones2,5,6,

Cristiano Fantini1, Vincent H. Crespi2, Leandro M. Malard1 & Marcos A. Pimenta1

Double-resonance Raman scattering is a sensitive probe to study the electron-phonon

scattering pathways in crystals. For semiconducting two-dimensional transition-metal

dichalcogenides, the double-resonance Raman process involves different valleys and phonons

in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple

energy excitation Raman study in conjunction with density functional theory calculations that

unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results

show that the frequency of some Raman features shifts when changing the excitation energy,

and first-principle simulations confirm that such bands arise from distinct acoustic phonons,

connecting different valley states. The double-resonance Raman process is affected by the

indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk

allows the assignment of each Raman feature near the M or K points of the Brillouin zone.

Our work highlights the underlying physics of intervalley scattering of electrons by acoustic

phonons, which is essential for valley depolarization in MoS2.
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T
he second-order Raman spectrum of MoS2 and other
semiconducting transition-metal dichalcogenides (TMDs)
hosts a rich variety of features, which are strongly

dependent on the number of layers and the excitation laser
energy1–10. In the published works on two-dimensional (2D)
MoS2, the second-order Raman bands were probed using only
few laser excitation lines, and results were interpreted on the basis
of phonon dispersion relations calculated from empirical force
field models4. However, the use of multiple excitation energies is
pivotal to unveiling the rich physical phenomena underlying the
complex second-order Raman spectrum and the intervalley
scattering processes in MoS2.

Double-resonance Raman (DRR) is a special kind of second-
order process that involves the resonant scattering of excited
electrons by phonons, and can be used to study electrons,
phonons and their interplay11. By varying the incoming photon
energy, the DRR condition selects different electronic states and
different pairs of phonons with opposite finite momenta within
the interior of the Brillouin zone (BZ)12–18. For graphene, the
most important DRR features, the D and 2D bands, provide rich
physical information about the sample12,19.

In this work, we unravel the origin of the DRR processes
occurring in MoS2 by investigating both experimentally and
theoretically the Raman spectra as a function of the laser
excitation. We measure the second-order bands using more than
twenty different laser excitations ranging from 1.85 to 2.18 eV
that densely cover the range of the A and B excitonic levels.
Notably, we observe that the spectral positions of some specific
second-order peaks depend on the laser excitation energy, which
is characteristic of DRR processes. Results are explained by
accurate first-principles calculations, which are shown to be
crucial for identifying the different contributions to the DRR
process. We show that some specific Raman processes are related
to phonons near (but not at) the M and K points of the BZ.
Moreover, the different contributions from the M phonons in
monolayer and bulk reflect the crossover of the indirect-to-direct
bandgap transition in the monolayer regime of MoS2. Our work
provides a fundamental explanation of the resonant behaviour of
the second-order Raman processes in MoS2, involving different
electronic valleys, and may also be applicable to the higher-order
Raman spectra and to other semiconducting TMDs.

Results
Experimental analysis. Figure 1a,b show the Raman spectra of
monolayer (1L) and bulk MoS2 in the 350–500 cm�1 spectral
range for three different laser energies (1.94, 2.04 and 2.11 eV).
The two peaks around 388 and 407 cm�1 are associated,
respectively, with the first-order in-plane and out-of-plane
Raman bands, with E0 (E1

2g for bulk) and A0
1 (A1g for bulk)

symmetries10,20. All other features are contributions from
different second-order processes.

A first-order Raman band can be fitted with a Lorentzian
curve, since it arises from a single phonon at the center of the BZ.
On the other hand, a second-order Raman band is given by the
convolution of multiple two-phonon processes across the
whole BZ and, therefore, cannot be fitted by a sum of Lorentzian
curves. The determination of the lineshape requires a complete
theoretical description of Raman intensities, including electron-
photon and electron-phonon coupling matrix elements.
Nevertheless, the fitting of second-order bands in MoS2 and
other TMD compounds by a sum of Lorentzian curves has been
widely used in the literature3,4,7,10,21, because it provides a means
to associate a feature in the spectrum with a specific phonon at a
high-symmetry point within the BZ. Various works in the
literature have fitted the second-order bands of MoS2 with
different numbers of Lorentzians, and given the resulting peaks

different assignments (or when unassigned, different names)3,4,21.
This fitting procedure can yield different peak numbers, positions,
widths and intensities4,10,12,21. Here we also use this procedure,
but we stress that it is only intended to provide a reliable estimate
of the spectral position of the different contributions to the
second-order Raman bands. The central goal of this work is to
achieve a quantitative comparison between the measured and the
calculated spectra within the entire spectral range considered here
while making use of a dense sampling in terms of laser energies.
We impose constant values for the full width at half maximum as
a constraint in our Raman analysis, leaving intensity and position
unconstrained. This procedure was adopted to decrease the
number of fitting parameters, since the full width at half
maximum is not expected to depend significantly on the laser
energy within this narrow range of energy (1.85–2.18 eV). The
number of Lorentzian peaks is increased until a pre-defined
convergence threshold is reached, and the results of this
procedure are confirmed by first-principles calculations, as
described below.

In Fig. 1a one observes a band at ca. 420 cm� 1 that we call p1,
and a broad and asymmetric band centered around 460 cm� 1,
which is commonly called the 2LA band in the literature. In this
work, this broad band was fitted by four Lorentzian peaks: a first
peak around 440 cm� 1 and the other three denoted by p2, p3 and
p4, as shown in Fig. 1a. The same number of peaks was used to fit
the spectra of bulk MoS2, since more peaks were not found to be
necessary to the fitting (in terms of convergence). This is possibly
because the phonon branch splittings induced by interlayer
interactions are not larger than B3 cm� 1 in MoS2 (ref. 22).

Figure 1c,d show the multiple excitation Raman map for 1L
and bulk MoS2 obtained using more than twenty laser lines with
energies from 1.85 to 2.18 eV. The horizontal scale represents the
Raman shift, while the vertical scale is the laser excitation energy.
We can observe the resonances of all Raman bands across the A
(B1.89 eV) and B (B2.06 eV) excitonic transitions, which are
marked by horizontal dashed lines. An important result is the
dispersion of some Raman features as the laser energy changes, as
clearly revealed by the dashed lines tracking Raman peak
positions (Fig. 1a–d).

Each second-order band in the range 400–480 cm� 1,
measured with different laser excitation energies, was fitted
according to the same procedure used in Fig. 1a,b. The positions
of p1, p2, p3 and p4 as a function of the laser excitation energy are
plotted in Fig. 1e,f for 1L and bulk MoS2, respectively. Notably,
the position of the p2 peak is unchanged for all laser energies,
whereas p1, p3 and p4 red-shift as the laser excitation energy
increases.

Theoretical model. To explain the experimental results, we
calculated the second-order Raman spectra for 1L and bulk MoS2
within the single-particle picture, using the electronic structure
and phonon dispersion obtained from density functional theory
(DFT) (see Supplementary Note 1 and Supplementary Fig. 1) for
different laser excitation energies, as described in Theoretical
methods.

Figure 2a shows a schematic representation of a DRR process
in MoS2, where the low-energy electronic structure is represented
by parabolic bands at the BZ edges. The DRR process begins with
an incoming photon creating an electron-hole pair of wave vector
k near the K valley. The electron is then inelastically scattered by
the emission of a phonon with branch index m, wave vector � q,
and energy ‘om

� q to the K0 valley. After that, the electron is
inelastically scattered back to the K valley by the emission of a
second phonon with branch index n, wave vector q and energy
‘on

q, where the electron-hole pair recombines emitting a photon
with energy EL�‘om

� q �‘on

q (Stokes scattering). At most
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two of these steps can be simultaneously resonant for a DRR
process9,11–13.

The intensity of a second-order Raman process is given by
following expression:

Ippee ELð Þ¼
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where M0, Mf are the matrix elements of the exciton–photon
interactions for the incoming and outgoing photons, Mcb, Mba

represent the exciton–phonon interactions23, q and k are the
wave vectors of the phonon and the electron, respectively,
Ec
kþ q and Ec

k are the energies of the intermediate states, and m

and n denote the phonon branches involved in the process. The
damping constant g is related to the finite lifetime of the
intermediate states, and ‘o

m;n
� q is the corresponding phonon

energy. In the present study, we only focus on two-electron
processes (ee) involving transverse acoustic (TA) and longitudinal
acoustic (LA) phonons; processes involving hole scattering
(hh, eh and he)24 were not taken into account for clarity and
will be elaborated in future studies. The matrix elements are taken
to be constants in the calculations.

Following the usual analysis for DRR in graphite25, the
calculated DRR intensities are dominated by contributions from
phonon wave vectors near qB0 and qB2k (distance from the K
point), as shown in Supplementary Fig. 1. As the laser energy
increases, the peak corresponding to qB0 is almost dispersionless
and the peak corresponding to qB2k is dispersive25. It has been
reported for graphene26–28 that the qB0 contribution vanishes
due to the symmetry selections rules and quantum interference.
We show later that, in the case of MoS2, this contribution, which
is present in the DFT results, should vanish if excitonic effects are
considered. For now, we only focus on the qB2k contribution by
tracking the most dispersive Raman peaks in the calculated DRR
intensities, since the qB0 contributions are almost dispersionless
(other dispersionless features such as van Hove singularities can
be identified separately from the phonon density of states
(pDOS), as shown later).

Figure 2b,c show a contour map of the conduction electron
energies for 1L and bulk MoS2, where the conduction band
minimum occurs at K for 1L MoS2. Based on the calculated
electronic structure, Fig. 2d shows three sets of electronic
states that participate in the DRR process in 1L MoS2, for laser
excitation energies of 1.9, 2.0 and 2.1 eV, represented,
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Figure 1 | Resonance Raman results on 1L and bulk MoS2. (a,b) Raman spectra of 1L and bulk MoS2 measured with three laser excitation energies:

1.94, 2.04 and 2.11 eV. The spectra are fit to a sum of Lorentzians (grain and green curves). The second-order bands studied here are denoted p1, p2,

p3 and p4. (c,d) Resonant Raman maps of 1L and bulk MoS2 acquired using more than twenty different laser lines, showing the enhancement of the Raman

bands across the A and B excitons (horizontal dashed lines). (e,f) Laser energy dependence of the experimental values of the positions of the p1, p2, p3 and

p4 peaks (symbols) of 1L and bulk MoS2, and the calculated dispersion of these peaks using equation (1) (solid curves). (g) Raman spectrum of a defective

1L MoS2 sample, showing the disorder-induced bands associated with acoustic phonons near the edges of the Brillouin zone. Defects were created through

bombardment with Mnþ (see Experimental Methods section for details). The band was fit to a sum of Lorentzians with frequencies half the frequencies

of p2, p3 and p4. (h) Laser energy dependence of the experimental values of p2/2, p3/2 and p4/2 (symbols) showed in g, and the calculated dispersion of

these disorder-induced peaks (solid curves) assuming one-phonon-defect DRR scattering. The absence of the theoretical curve of p4 peak in e,h is due to

its weak intensity not observable in the calculated Raman spectra (see Fig. 3 and, main text for details). The error bars in e,f,h represent the standard error

from the fitting process.
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respectively, in red, green and blue. Similar to the case of
graphene19, when the laser excitation energy increases the locus
of the on-resonance electronic states expands outward from K.
Figure 2d also shows that phonons that connect the pockets
around K and K0 valleys have wave vectors near K, denoted q

Bk

here (the symbol ‘B’ means in the vicinity of the given high-
symmetry point). On the other hand, pockets around the K and
Q points are connected by phonons near both the M and Q
points, with wave vectors q

BM and q
BQ, where Q is another

conduction band local minimum half-way between C and K, as
shown in Fig. 2b–d.

Figure 2e shows the on-resonance density of states for acoustic
phonons that connect two pockets in the electronic structure at
2.0 eV excitation for 1L MoS2. A high density of q

Bk phonons
appears around K and contributes strongly to the DRR scattering.
A weaker density of phonons around M also appears (green
arrow in Fig. 2e). They originate from scattering between the K
and Q valleys (see Fig. 2d). For 1L MoS2, the intervalley scattering
between K and Q only contributes weakly to the DRR process
since the two minima are misaligned by 0.2 eV for 1L MoS2.

The above procedure is also applied to bulk MoS2, where the
conduction band local minimum at Q drops in energy, rendering
the band gap indirect29,30, as shown in Fig. 2c. Now, both q

Bk

and q
BM phonons in bulk MoS2 contribute strongly to the

on-resonance pDOS (red and green arrows in Fig. 2f), as well as
the additional scattering channel between K and Q with phonon
wave vector q

BQ (see Fig. 2d).
Figure 3a–d show the calculated second-order Raman spectra

for 1L and bulk MoS2 for different laser energies, as given by
equation (1), and using the phonon dispersion relations of the
LA and TA phonons (Supplementary Fig. 1). In the range
405–420 cm� 1 (Fig. 3a,c), we observe one dispersive and one

non-dispersive feature, and in the range 450–470 cm� 1

(Fig. 3b,d), one non-dispersive and two dispersive features at
higher frequency. A normal second-order Raman band is
non-dispersive, whereas a dispersive behaviour indicates a DRR
process. The positions of each feature in Fig. 3a–d as a function of
the laser energy are also plotted in Fig. 1e,f, for 1L MoS2 and bulk,
respectively, and represented by the black lines. The comparison
between the experimental and calculated results in Fig. 1e,f shows
an excellent agreement, and will allow for the assignment of each
second-order feature. As q

Bk expands away from K, the
frequency of on-resonance LA phonons would decrease with
increasing laser energy due to the negative curvature of the LA
branch dispersion near K. Although p4 is not clearly observable in
the calculated DRR spectra for 1L MoS2, a small contribution
near BM can be seen in the BZ mapping of DRR intensity in
Fig. 2e (green arrow). The underestimated intensity of this
contribution from M, compared with the experimental results
(where the contribution from M appears larger), might be due to
strong electron-phonon coupling matrix elements between BK
and BQ conduction valleys by an q

BM phonon27 (matrix
elements are treated as constants in this study).

Assignment of the second-order Raman features of MoS2. The
2LA band. The strongest feature in the second-order spectrum
of MoS2 is the broad and asymmetric band centered
around 460 cm� 1. In previous Raman studies of bulk MoS2
(ref. 1), it was initially ascribed to the overtone of the LA phonon
at the M point in the BZ and assigned to the 2LA(M) band1,2.
However, its asymmetric shape led some authors to suggest that it
could have contributions from other second-order processes.
Verble and Wieting6 assigned the shoulder of the 2LA band at

QΓΓΓQ
Q

K

M
M

K
d e f

b
1L-MoS2

c

K

Q

Bulk
a

0

0.2

0.4

0.6

0.8

1.0q

E
L

Ek
v

Ek
c

2h
–
�q

Ek+q
c

K′K

KK′

M
K′K

Γ

k

–q

E
n

e
rg

y
 a

b
o

v
e

 C
B

M
 (

e
V

)

K K

M M

Figure 2 | Double-resonance Raman model. (a) Representation of a DRR process where excited electronic states are connected by two phonons with
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466 cm� 1 to the Raman-inactive mode with A00
2u symmetry

(or A2u mode for bulk or even layers) at the C point. Gołasa et al.4

suggested this band was composed by a combination of the
optical E1g phonon with the TA phonon at the M point. Livneh
and Spanier21 proposed different contributions for the 2LA band
in bulk MoS2, such as the pDOS, overtones of the M edge
phonons from the acoustic (LA) and quasi-acoustic (LA0)
branches, which are very close in energy, and a weak
contribution of the LA(K) phonons.

In this work, we assign the different contributions to the 2LA
band by comparing the experimental and calculated multiple
excitation Raman spectra of both 1L and bulk MoS2. In our
analysis, the 2LA band was fitted by four peaks, a peak around
440 cm� 1 and the peaks p2, p3 and p4, as shown in Fig. 1a,b. The
non-dispersive behaviour of p2 (see Fig. 1e,f) shows that it
corresponds to a normal second-order Raman process. On the
other hand, p3 and p4 exhibit a dispersive behaviour, a signature
of a DRR process (or higher-order resonant process) due to
photons with different energies selecting electrons and phonons
with different wave vectors in the BZ. Our calculations show that
p2 comes from the van Hove singularity (vHs) in the pDOS from
a saddle point between K and M. The frequency of p2 matches
with twice the calculated frequency of the vHs. Our assignment
for p2 agrees with the conclusion reached by Livneh and
Spainer21 (the L2 peak in their work). The 440 cm� 1 peak was
recently ascribed to the combination mode A1gþ E2

2g (ref. 21).
However, it can also be due to the asymmetric shape of p2, since
the vHs is not necessarily symmetric.

We next discuss the origin of the p3 and p4 peaks. Previous
works assigned them to 2LA(M) and/or 2LA(K) processes, but
the near-degeneracy of the LA phonon at M and K prevented
a clear distinction between these two contributions1–5,31.
A comparison of our results for 1L and bulk MoS2 allows for
an unambiguous assignment. As shown in Fig. 2f, the DRR
process in bulk MoS2 can support scattering by both q

BM and
q
BK phonons, whereas DRR in 1L MoS2 (Fig. 2e) is very weak

for q
BM phonons. The different DRR contributions from BM

phonons in 1L and bulk MoS2 allow us to distinguish the
contributions of DRRBK andBM phonons to the second-order
Raman band, as will be shown below. The calculated results in
Fig. 3b,d show that p4 clearly appears in the spectra of bulk MoS2,
but is very weak for 1L MoS2. Notice that different from the
calculated results, the experimental intensity of p4 for 1L MoS2 is
weak but not negligible, this is possibly ascribed to the effect of a
strong electron-phonon coupling of p4. However, the most
relevant result is that p4 is more intense than p2 and p3 for 2L, 3L
and bulk MoS2 (see Supplementary Note 2 and Supplementary
Fig. 2), and weaker for 1L MoS2.

We, therefore, conclude that the p4 peak is related to the
scattering of the excited electron between the K and the Q valleys
by two LA phonons near BM (see Fig. 2d). This leaves p3 to be
assigned to the scattering process between K and K0 by two LA
phonons in the vicinity of the K point. Thus, a more precise
assignment for p3 and p4 would be 2LA(BK) and 2LA(BM),
respectively.

Figure 1e,f compare the experimental positions of p3 and p4
with their calculated dispersion. The excellent agreement between
experiment and theory further confirms the assignment of p3 and
p4 as 2LA(BK) and 2LA(BM). As the laser energy increases,
p3 and p4 disperse at rates of � 49 and � 21 cm� 1 eV� 1,
respectively, and this result reflects the different slopes of the LA
phonon dispersion near K andM of MoS2. We thus conclude that
the broad and asymmetric band centered around 460 cm� 1 can
be explained by contributions from LA phonons, instead of
optical phonons4,6. It has contributions from LA phonons near
the saddle point between K and M (pDOS singularities) and from
LA phonons near BK and BM, which are enhanced in the
spectra by the intervalley DRR process.

The p1 (or b) peak. In a resonance Raman study of bulk MoS2 at
7 K, Sekine et al.32 observed a band around 430 cm� 1 with a
dispersive behaviour near the A and B excitonic resonances,
and called it the b band (see Supplementary Note 3 and
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maxima of each branch, showing that the LA branch disperses more rapidly away from K.
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Supplementary Fig. 3). This band was ascribed to a two-phonon
process involving a quasi-acoustic interlayer breathing mode and
a transverse optical phonon E2

1u

� �

both along the c-axis32.
However, this band was also observed in more recent Raman
studies of monolayer MoS2 (ref. 21), thus ruling out the
assignment suggested by Sekine et al.32. In a detailed multi-
phonon study of bulk MoS2, Livneh and Spanier suggested that
the b band could involve combinations of the LA (or LA0) and TA
(or TA0) phonons at the K point21.

In Fig. 1e,f we compare the experimental values of the p1
positions (red circles) with the dispersion of the calculated peak
(black curve) considering an intervalley DRR process involving
one LA phonon and one TA phonon, in both time orders, in the
vicinity of K (see Fig. 3a,c). The combined energy of the relevant
LAþTA phonons near BK red-shifts as the incident laser
energy increases, dispersing at a rate of � 43 cm� 1 eV� 1. The
agreement between the experimental and calculated results in
Fig. 1e,f allows for the assignment of p1 to LA(BK)þTA(BK).

The larger dispersion of p3¼ 2LA(BK) than p1¼ LA(BK)þ
TA(BK) is consistent with TA phonons dispersing more slowly
near K than do LA phonons. This can be seen in Fig. 3e,f, which
show the phonon dispersion for the TA and LA branches in the
irreducible BZ, where the frequencies are represented by a colour
map. The LA phonon frequency rapidly decreases away from K,
whereas the TA phonon frequency varies slowly near K.

The 2LA(BQ) band. As represented in Fig. 2d, there are two
different scattering processes between the K and Q electronic
valleys, involving phonons with both wave vectors q

BM and q
BQ.

Indeed, the theoretical DRR maps in Fig. 2f predict the existence
of a 2LA(BQ) band for bulk MoS2 (see the red circle labelled
BQ in Fig. 2f) at a frequency of 370 cm� 1. This band was not
detected in our room-temperature spectra, presumably because
the electron-phonon coupling matrix elements for this process
are almost vanishing27. However, it was possibly observed in
previous low-temperature studies in bulk MoS2 (refs 21,32).
Sekine et al.32 observed a weak feature around 380 cm� 1 in the
spectra at 7 K, and ascribed it to the zone-center Raman-inactive
E1
2u phonon. Livneh and Spanier reported the existence of a band

at 386 cm� 1, observed at 95 K, which could not be explained by
their multi-phonon analysis21. A multiple excitation Raman study
at low temperatures will be necessary to confirm the existence of
the double-resonance 2LA(BQ) band, and its possible dispersive
behaviour.

Disorder-induced DRR bands. As a further verification of our
proposed DRR conclusions involving the acoustic phonons, the
defect-induced resonant Raman spectra in 1L MoS2 were mea-
sured. Figure 1g shows the spectrum in the range 200–285 cm� 1,
where we can observe defect-induced Raman features33 for a
excitation energy of 1.92 eV (see also Supplementary Note 4 and
Supplementary Fig. 4). This process is similar to the disorder-
induced D band in graphene19, which also comes from a DRR
process involving just one phonon, where momentum
conservation is provided by elastic scattering of the excited
electron by a defect9,12,19. We have fitted the defect-induced
Raman band with four Lorentzian peaks, similar to the procedure
used for the 2LA second-order band in 1L pristine MoS2. The
frequencies of the three peaks at 227, 234 and 235 cm� 1

correspond, respectively, to one-half the frequencies of the p2,
p3 and p4 peaks as marked by the vertical dashed lines in Fig. 1g.
Figure 1h shows the frequencies of these three Raman peaks as a
function of the laser excitation energy, and the calculated
dispersion of the DRR features considering now scattering by a
phonon and a defect. The excellent agreement with the
theory and experiment further supports the interpretation of

the second-order DRR features, and highlights the intervalley
elastic scattering by defects.

Excitonic effects. We now discuss the validity of the single-
particle picture in the presence of excitonic effects. Single-particle
DFT calculations have been extensively used in studying DRR
processes in graphene, where excitonic effects are negligible at
low excitation energies34. The strong excitonic effects in 1L MoS2
call for further interrogation of assignments based on single-
particle DFT results. Here based on a simple two-band model, we
show that the use of single-particle band structures (see
Supplementary Note 5 and Supplementary Fig. 5a,c,e)
and exciton band structures (see Supplementary Note 5 and
Supplementary Fig. 5b,d,f) would yield similar laser-energy
dependence of the Raman frequencies, thereby justifying the
use of DFT eigenvalues in equation (1).

In the single-particle case, we model the low-energy band
structure as parabolic bands E±¼±(Eg/2þ k2/2m*), where for
convenience we assume that me¼mh�m* is the mass of the
electron and hole and that the conduction band has been rigidly
shifted to bring the single-particle band-gap to match with the
optical gap Eg. The actual electron-hole mass ratio calculated
from different first-principles methods ranges from 0.8 to 1.8
(refs 35–38).

From the single-particle bands, excitons can be approximately
represented by pairing electrons and holes with matching group
velocities at ke¼ � kh� k (where k is the wave vector measured
from K); such an exciton has a center-of-mass momentum of
Q¼2k and a total energy of Eg þ 2 k2=2m�

� �

¼Eg þQ2=2M. Thus,
we find M¼ 2m*, that is, the excitonic dispersion has half the
band curvature of the single-particle bands. This is consistent
with the semi-classical interpretation that the mass of an exciton
is the sum of its constituents’ masses. Momentum-resolved
electron energy-loss spectroscopy measurements39 are consistent
with the exciton mass being larger than the constituent hole
and electron masses obtained from first-principles calculations:
0.9–1.4 times their sum, depending on the exchange-correlation
functional and pseudopotential used (note that the discussion
below still applies, semi-quantitatively, for a reasonable range of
exciton masses). Finally, we assume that the excitonic dispersion
near Q¼0 and Q¼ K can be described by parabolic bands with
the same band minimum and same curvature, since they both
describe electron-hole pairs near the two degenerate valleys.
That is, the energy difference of the two minima calculated
by solving the tight-binding-based Bethe-Salpeter equation,
0.015 eV, is neglected here40.

We now discuss intervalley scattering between single-particle
states and between excitonic states within the above assumptions,
as depicted in Supplementary Fig. 5c,d. When the laser energy is
EL¼Egþ 2k2/2m*, the on-resonance phonons in the single-
particle bands are 2k away from K, as previously described. When
the excitonic dispersion replaces the single-particle energies in
equation (1), the resonance condition will be satisfied only if the
incoming photon matches the optical band gap, that is, EL¼Eg,
where excitons are scattered to Q¼K and back. However, as the
laser energy increases beyond the optical gap EL4Eg (but still
within the exciton linewidth), a single and weaker resonance
can still be achieved when the exciton is scattered to the other
valley near Q¼K, and then back. The same laser energy as the one
given in the single-particle system can be recast in terms of the
exciton mass EL¼ Egþ 2k2/2m*¼Egþ (2k)2/2M. Hence the on-
resonance phonons scattering excitons are also away from K by
2k, the same as the single-particle case. Therefore, the excitation-
energy dependence of the Raman frequencies (but not the
intensities) can be reasonably well described by a single-particle
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electronic band structure, as both pictures give the so-called
qB2k contribution of on-resonance phonons. We note that the
qB0 contribution, which appears in the single-particle picture, is
lost in the excitonic picture.

The single-particle results may also carry over to the many-
body picture due to the presence of trions. Unlike neutral excitons
with vanishing momenta, trions of finite momenta can be created
where the momentum comes from the extra charge carrier. Thus,
the momentum of this many-body state again depends on the
laser excitation energy, and a dispersive behaviour is expected.

Our conclusion that the LA(K) phonon dominates the
intervalley scattering is consistent with previous reports of
valley depolarization in TMDs41–43. From the decay of the
valley polarization with increasing temperature, Zeng et al.41

extracted the energy of the phonon mode dominating intervalley
scattering to be 240 cm� 1, consistent with the LA(K) phonon
energy. However, this thermal destruction of valley polarization
could also originate from the excitonic levels shifting as a function
of temperature, thus detuning the laser excitation energy from the
A exciton energy42. To rule out this possibility, Kioseoglou et al.43

performed depolarization measurements as a function of increasing
pump laser energy at T¼ 5K, whereby the excess energy enables
phonon-assisted intervalley scattering. These authors found that the
destruction of the valley polarization occurs beyond an excess
energy of 60meV (E480 cm� 1), which corresponds to two-LA(K)
phonons, thus showing that intervalley scattering by LA phonons is
responsible for depolarization43.

Discussion
To summarize, this work explains the origin of the DRR process
in monolayer and bulk MoS2, as involving different intervalley
scattering processes. The resonant Raman spectra of the most
intense second-order features in MoS2 and the associated first-
order disorder-induced bands, were measured using many laser
excitation energies in the range of 1.85–2.18 eV, which covers the
A and B excitonic levels. Experimental results are explained by
DFT calculations of the DRR scattering in monolayer and bulk
MoS2. We demonstrate that the use of multiple excitation
energies is crucial for understanding the physical phenomena
underlying the second-order Raman spectrum of MoS2.

We observe that the spectral position of some specific second-
order peaks depends on the laser excitation energy, which is
characteristic of DRR processes. By varying the incoming photon
energy, the DRR condition selects different electronic states in the
K and Q valleys, and different pairs of phonons with opposite
finite momenta near (but not at) the M and K points of the BZ.
Our results show that the DRR process reflects the indirect-to-
direct bandgap transition from bulk to monolayer, and this effect
allows the assignment of the Raman features to specific phonons
near M or K (see also Supplementary Note 6 and Supplementary
Tables 1–3).

Our study can also be extended to explain the second-order
Raman spectra and the double-resonance process in other
semiconducting TMDs, such as MoSe2, WS2, WSe2. Moreover,
the methodology in this work, based on multiple excitation
Raman results and first-principle calculations, can also be used to
explain the multiphonon spectra of semiconducting TMDs
that exhibit a rich variety of high-frequency features, up to the
fifth-order4,21,44. Finally, we show the second-order DRR spectra
of MoS2 originates in intervalley scattering by acoustic phonons,
a mechanism which is also responsible for the destruction of
valley polarization (that is, depolarization)41,43. Our work is thus
relevant for the field of valleytronics of MoS2, since the robustness
of valley polarization depends sensitively on the absence of
intervalley scattering41,42,45.

Methods
Experimental methods. The MoS2 samples were obtained by mechanical
exfoliation of natural 2H-MoS2 crystals transferred onto Si substrates with a
298 nm thick SiO2 coating. Defective monolayer MoS2 was created through
bombardment with Mnþ in an ultrahigh vacuum time-of-flight secondary ion
mass spectrometry (TOF-SIMS IV) instrument (ION-TOF GmbH, Muenster,
Germany), equipped with a liquid metal ion gun at an angle of 45� to the surface
normal and using an ion-beam kinetic energy of 25 keV, as described in ref. 33.
The ion current and the exposure time were tuned to obtain an average inter-defect
distance of 2.2 nm. Micro-Raman measurements were obtained on a DILOR XY
triple-monochromator spectrometer equipped with a N2-cooled charge-couple
device detectors and with 1,800 gmm� 1 diffraction gratings, giving spectral
resolution better than 1 cm� 1. The MoS2 samples were excited using different laser
sources (Ar/Kr, and dye laser with DCM special and rhodamine 6G) covering
excitation energies from 1.85 to 2.18 eV. All measurements were conducted at
room temperature in backscattering geometry where the laser propagation is
perpendicular to the MoS2 layer plane. A 100� objective provided a spot of 1 mm
diameter. The laser power at the sample surface was kept below 1.0mW to avoid
sample heating. The Raman spectra were normalized by the intensity of the Si peak
at each excitation energy and, the Si Raman peak at 521.6 cm� 1 is used to calibrate
the Raman shift.

Theoretical methods. DFT calculations were performed using the generalized
gradient approximation parametrized by Perdew-Burke-Ernzerhof for the
exchange correlation functional46. Electron–nucleus interactions are described
within the projector augmented wave formalism47,48. All structural relaxation and
band structure calculations were carried out by the Vienna Ab-initio Simulation
Package49,50, with energies converged at a plane wave expansion energy cutoff of
400 eV and forces converged at 0.004 eVÅ� 1. Interatomic force constants were
calculated using the supercell method with the size of the supercell converged at
6� 6� 1. Interlayer van der Waals interactions were included using the semi-
empirical DFT-D2 method51. All conduction bands calculated from DFT have been
rigidly shifted to match with the experimentally measured optical gaps for 1L and
bulk MoS2. Resonant Raman calculations were performed using phonon
dispersions sampled on a 400� 400� 1 C-centered grid for 1L MoS2 and a
200� 200� 50 grid for bulk. A phenomenological damping constant (smearing) of
g¼ 0.02 eV was used. Since the absolute Raman shifts are prone to slight (1%)
over/under-estimates due to limitations of DFT, the calculated phonon frequencies
were shifted by within 1% to allow better comparison with the respective
experimental dispersions. This shift leaves the calculated dispersion in the Raman
shift with laser energy (which reflects the influence of the phonon and electron
band structures on the DRR process) unchanged.

Data availability. All relevant data are available from the authors upon request.

References
1. Chen, J. & Wang, C. Second order Raman spectrum of MoS2. Solid State

Commun. 14, 857–860 (1974).
2. Stacy, A. & Hodul, D. Raman spectra of IVB and VIB transition metal

disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids
46, 405–409 (1985).

3. Frey, G. L., Tenne, R., Matthews, M. J., Dresselhaus, M. S. & Dresselhaus, G.
Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B
60, 2883–2892 (1999).

4. Gołasa, K. et al. Multiphonon resonant Raman scattering in MoS2. Appl. Phys.
Lett. 104, 092106 (2014).

5. Liu, H.-L. et al. Anomalous lattice vibrations of monolayer MoS2 probed
by ultraviolet Raman scattering. Phys. Chem. Chem. Phys. 17, 14561–14568
(2015).

6. Verble, J. L. & Wieting, T. J. Lattice mode degeneracy in MoS2 and other layer
compounds. Phys. Rev. Lett. 25, 362–365 (1970).

7. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS
Nano 4, 2695–2700 (2010).

8. Chakraborty, B., Matte, H. S. S. R., Sood, A. K. & Rao, C. N. R. Layer-dependent
resonant Raman scattering of a few layer MoS2. J. Raman Spec. 44, 92–96 (2013).

9. Pimenta, M. A., del Corro, E., Carvalho, B. R., Fantini, C. & Malard, L. M.
Comparative study of Raman spectroscopy in graphene and MoS2-type
transition metal dichalcogenides. Acc. Chem. Res. 48, 41–47 (2015).

10. Carvalho, B. R., Malard, L. M., Alves, J. M., Fantini, C. & Pimenta, M. A.
Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed
by resonance Raman scattering. Phys. Rev. Lett. 114, 136403 (2015).

11. Martin, R. M. & Falicov, L. M. Resonant Raman Scattering. in Light Scattering
in Solids I. (ed. Cardona, M.) Vol. 8, 79–145 (Springer, Berlin, Germany, 1983).

12. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. Raman
spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

13. Maultzsch, J., Reich, S. & Thomsen, C. Double-resonant Raman scattering in
graphite: interference effects, selection rules, and phonon dispersion. Phys. Rev.
B 70, 155403 (2004).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14670 ARTICLE

NATURE COMMUNICATIONS | 8:14670 | DOI: 10.1038/ncomms14670 |www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


14. Carvalho, B. R. et al. Probing carbon isotope effects on the Raman spectra of
graphene with different 13C concentrations. Phys. Rev. B 92, 125406 (2015).

15. Mohr, M., Machón, M., Maultzsch, J. & Thomsen, C. Double-resonant Raman
processes in germanium: Group theory and ab initio calculations. Phys. Rev. B
73, 035217 (2006).

16. Bansal, M. L., Sood, A. K. & Cardona, M. Strongly dispersive low frequency
Raman modes in germanium. Solid State Commun. 78, 579–582 (1991).

17. Renucci, M. A., Renucci, J. B., Zeyher, R. & Cardona, M. Second-order Raman
scattering in germanium in the vicinity of the E1, E1þD1 edges. Phys. Rev. B
10, 4309–4323 (1974).

18. Cerdeira, F., Dreybrodt, W. & Cardona, M. Resonant Raman scattering in
germanium. Solid State Commun. 10, 591–595 (1972).

19. Pimenta, M. A. et al. Studying disorder in graphite-based systems by Raman
spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1290 (2007).

20. Ribeiro-Soares, J. et al. Group theory analysis of phonons in two-dimensional
transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014).

21. Livneh, T. & Spanier, J. E. A comprehensive multiphonon spectral analysis in
MoS2. 2D Mater. 2, 035003 (2015).

22. Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2
and WS2. Phys. Rev. B 84, 155413 (2011).
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