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We discuss the effect of certain types of static disorder, like that induced by curvature or topological
defects, on the quantum correction to the conductivity in graphene. We find that when the intervalley
scattering time is long or comparable to ��, these defects can induce an effective time-reversal symmetry
breaking of the Hamiltonian associated to each one of the two valleys in graphene. The phenomenon
suppresses the magnitude of the quantum correction to the conductivity and may result in the complete
absence of a low-field magnetoresistance, as recently found experimentally. Our work shows that a
quantitative description of weak localization in graphene must include the analysis of new regimes, not
present in conventional two-dimensional electron gases.
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Introduction.—Graphene provides a two-dimensional
electron system that is distinctly different from the two-
dimensional electron gases (2DEGs) hosted in common
semiconducting heterostructures. The low energy elec-
tronic states of graphene can be described by two sets of
two-dimensional spinors associated to two independent
points at the corner of the Brillouin zone (K and K0). In
the absence of short range potentials, the states associated
to the different points are not coupled and, in the long
wavelength limit, they satisfy the two-dimensional Dirac
equation. Theoretical calculations based on these assump-
tions [1] reproduce the unconventional quantization of the
quantum Hall conductance observed experimentally [2,3]
(see also [4]). It is expected that, beside the quantum Hall
effect, other phenomena should manifest unusual charac-
teristics as compared to more conventional 2DEGs.

It appears that one of these phenomena is the weak-
localization correction to the conductivity [5–8]. In the
presence of time-reversal symmetry, the suppression of
weak localization at low magnetic fields produces a nega-
tive magnetoresistance, ubiquitous in metallic conductors.
The magnitude of the weak localization correction is of the
order of e2=h, and it is determined by two characteristic
time scales: the phase coherence time �� and the elastic
scattering time �. In the graphene samples that exhibit very
clear Quantum Hall Effect (QHE), however, no low-field
magnetoresistance is observed. In these samples, never-
theless, the observation of high-order quantum Hall plateau
indicates that phase coherent propagation of electrons
occurs at least on a distance of several hundreds nano-
meters, which corresponds to the estimated elastic mean-
free path, so that a magnetoresistance originating from the
suppression of weak localization is expected.

It has been realized by Suzuura and Ando [9] that the
quantum correction to the conductivity in graphene can
differ from what is observed in conventional 2DEGs (see

also [10]). This is due to the pseudospin associated to the
solutions of the Dirac equation, that in conjunction with the
nature of elastic scattering in graphene may change the
sign of the localization correction and turn weak localiza-
tion into weak (anti)localization (even in the absence of
spin-orbit interaction). The phenomenon crucially depends
on the intervalley scattering time �iv, i.e., the characteristic
times that it takes for a charge carrier to be scattered from
one to the other K-point in graphene. Specifically, if �iv �
�� weak (anti)localization is expected, resulting in a posi-
tive magnetoresistance at low field; if �iv � ��, conven-
tional weak localization should be observed. Even though
these conclusions are at odds with experimental findings,
they are important as they clearly illustrate the relevance of
intervalley scattering.

Here, we show that not only weak localization and
(anti)localization can appear in graphene depending on
the nature of elastic scattering, but also that the quantum
correction to the conductivity can be entirely suppressed
due to time-independent potential slowly varying in space.
These static potentials can result in the effective breaking
of time-reversal symmetry of electronic states around each
K-point when �iv > ��. They originate from defects that
are realistically present in graphene, such as long-range
distortions induced by topological lattice defects (disclina-
tions and dislocations), nonplanarity of the graphene
layers, and slowly varying random electrostatic potentials
that break the symmetry between the two sublattices of
graphene. We estimate the effect of each one of these
defects in terms of a characteristic time, which acts as a
cutoff for the time-reversed trajectories of electrons re-
sponsible for weak localization phenomena. If the charac-
teristic time associated to one of these mechanisms is much
shorter than ��, weak localization is largely suppressed.
This explains the absence of weak localization in the first
magneto-transport experiments in graphene.
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We emphasize that the potentials that we consider, being
static, do not actually break time-reversal symmetry in
graphene. However, in the presence of these potentials,
time-reversal symmetry connects electronic states associ-
ated to the two different K-points. If the electron dynamics
is such that electrons cannot be transferred from one to the
other K-point within their phase coherence time (i.e., if
�iv > ��), the contribution to interference due to time-
reversed trajectories (responsible for weak localization) is
suppressed [11].

The model.—We use the continuum approximation to
the band structure near the K and K0 points of the Brillouin
Zone of graphene. The wave functions can be expressed as
a two component spinor, ��A;K;"�~r�;�B;K;"�~r��, where A
and B stand for the two sublattices of the honeycomb
structure. Other spinors can be defined for the K0 point
and the down spin orientation. The curvature of the gra-
phene sheet can be included by generalizing the ordinary
derivative operator to the covariant derivative [12,13],
following the standard procedure used for spinor fields
[14]. These effects are described below by the spin con-
nection operator �̂curv which breaks the effective time-
reversal symmetry around each K point. Similarly, certain
topological lattice defects imply the existence of rings with

an odd number of Carbon atoms. A dislocation has a
pentagon at its core, and a dislocation requires a
pentagon-heptagon pair. An odd numbered ring of
Carbon atoms implies that the two sublattices are inter-
changed when traversing a path which encloses it. This
needs to be taken into account in the continuum descrip-
tion, irrespective of the smoothness of the induced distor-
tion. It can be described by a non Abelian gauge potential
�̂def [12,13]. It has been shown that its inclusion allows for
an accurate description of the electronic spectrum in
curved graphene sheets, such as fullerenes [12,13], or
graphitic cones [15]. Note that this gauge field inter-
changes the two sublattices and the K and K0 points.
This fact, however, does not prevent the description of
the system in terms of two sets of spinorial wave functions
which obey equivalent Dirac equations. In fact, using the
transformation

 

~�AK~ks�~r� � �AK~ks�~r� 	 i�BK0~ks�~r�

~�BK0~ks�~r� � �BK0~ks�~r� � i�AK~ks�~r�
(1)

the model can be reduced to two independent
Hamiltonians:
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where Â is the ordinary vector potential. ��~r��VA�~r��
VB�~r� measures the difference of the electrostatic potential
in the two sublattices and originates from the environment
around the graphene layer (e.g., charges located at random
position in the substrate supporting graphene).

A description of quantum interference in terms states
associated to two decoupled K-points separately is correct
if �iv � ��. In this regime, the defects described by three

terms �̂def , �̂curv ,and ��~r� break the effective time-
reversal symmetry around the K and K0 points, which
can be written as the complex conjugation operator times
�y [16]. We will treat separately the effect of the different
defects by analyzing the dynamical phase that quasiclass-
ical trajectories in real space acquire in their presence. We
will confine ourselves to the qualitative analysis of this
problem, but we note that a formal description of weak
(anti)localization in terms of quasiclassical trajectories [6–
8] can be made equivalent to diagrammatic approaches
[17].

Curvature effects.—Scattering is modified in a curved
surface. We analyze the geometry sketched in Fig. 1. An
incoming plane wave moves into a spherical cap parame-
trized by the angle �. The wave is scattered by a defect
within the bump. We place the defect at the center of the

region, in order to simplify the calculation. In flat space,
the incoming and outgoing waves can be written as

 �~k 

1
ei�~k

� �
ei~k�~r �~k0 


1
ei�~k0

� �
ei~k

0�~r (3)

where �~k determines the direction of ~k. The scattering
amplitude due to a local potential, V̂ 
 V��~r� is A �
h~kjV̂j~k0i / V�1	 cos��~k ��~k0 ��.

We calculate the scattering amplitude in the geometry
shown in Fig. 1 by matching the plane waves in Eq. (3)
to solutions inside the spherical cap. The wave func-
tions can be computed analytically for energies �l �
vF=R

��������������������������
l�l	 1� � 2

p
[12]. The quasiclassical limit corre-

sponds to l� 1. The main difference between the solu-
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FIG. 1 (color online). Geometry of the scattering process
analyzed in the text. An impurity potential is placed at the center
of a spherical bump in a flat sheet.
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tions inside the cap and those in a plane, Eq. (3), is that the
values of the modulii of the two components of the Dirac
spinors are not equal. Because of the radial symmetry of
the problem, we only need the solutions inside the cap with
m � 0. The relevant solutions, for a given valley, can be
written as

 �1 

 1
A���

 1
B���e

�i�

� �
�2 


 2
A���e

i�

 2
B���

� �
(4)

Matching these solutions to those in Eq. (3) outside the
cap, the scattering amplitude can be written as

 A/V�j 1
A��0�

2	 2
B��0�

2	2 1
A��0� 

2
B��0�cos��~k��~k0 ��

(5)

where �0 is the angle which defines the shape of the cap.
The deviation from scattering in a plane is determined by
the difference  1

A��0� �  2
B��0�, which is maximum when

 1
A��0�,  2

B��0� � 0, as shown in Fig. 2.
The first zeros of the functions  1

A��0�,  2
B��0� � 0 lie at

�0  l� 1. Hence, we expect deviations from (anti)local-
ization for Fermi energies such that �0  �FR=vF, that is,
kFR 1. In a sample with height fluctuations of order h
oner a length l, we have R�1  h2=l, so that (anti)localiza-
tion effects will be suppressed for �kFh2�=l 1.

Gauge field induced by lattice defects.—As mentioned
above, a local rotation of the axes leads to the existence of a
gauge field, �̂def . In terms of the lattice strain, ux�r�, uy�r�,
this rotation is given by [18]

 ��r� �
@yux � @xuy

2
(6)

and �̂def in Eq. (2) becomes

 �̂ def 

1

2
r��r� (7)

We consider first the effect of gauge field induced by a
finite distribution of dislocations, with random Burgess
vectors bi, and average distance d, on a quasiparticle
moving around a closed loop of length l.

At sufficiently long distances from an edge dislocation
with Burgess vector ~b, Eq. (6) gives ��r� / ~b � ~r=jrj2. The

local rotations average to zero when the loop encloses
completely the dislocations. A finite contribution is ob-
tained from the dislocations whose core is near the trajec-
tory of the particle. The quasiclassical width of the
trajectory of the particle is of order k�1

F , where kF is the
Fermi wave vector. Hence, the number of dislocations
which contribute to change the phase around the loop is
of order �k�1

F l�=d2, where l is the length of the loop and d is
the average distance between dislocations.

To estimate the effect of the rotation on the phase of the
trajectories traversing the loop, we assume that the Burgess
vector of the dislocations is distributed randomly. Using
the central limit theorem, we find that the rotation associ-
ated to the loop becomes non negligible when
��k�1

F l�=d2�2 � 1. This rotation leads to a phase of order
�, which dephases randomly trajectories traversed clock-
and anticlockwise, which suppresses the quantum interfer-
ence correction to the conductivity. From the above in-
equality, the time scale at which these effects are relevant is

 ��1
gauge 

vF
l
�

vF
kFd

2 (8)

Potential gradients.—The potential ��~r� in Eq. (2) rep-
resents the difference in potentials at the two sites of the
unit cell. Physically, this potential originates from charges
located in the substrate supporting the graphene layer [19].
An asymmetry between the two sublattices arises from
slowly varying potentials that can be written as the sum
of a smooth term which is the same within each unit cell,
and a small contribution which breaks the equivalence of
the two sites in the unit cell. The second part can be written
as ��~r� � ~crV�~r�, where ~c is the vector connecting the
two atoms in the unit cell. We assume this potential to be
slowly varying, so that

 V�~q� �
�
V0; j~qj � qc
0; j~qj � qc

(9)

where qc is a momentum cutoff such that qc � a�1, where
a � j~cj is the lattice constant. We are interested in mo-
mentum transfers j~qj  kF, where kF � a�1 for typical
dopings. Equation (9) implies that

 ��~q� �
�

~q � ~cV0; j~qj � qc
0; j~qj � qc

: (10)

The elastic scattering time can be obtained from Vdisorder

using Fermi’s golden rule:

 ��1
elastic �

V2
0���F�

a2 (11)

where ���F� � j�Fj=��v2
F� is the density of states at the

Fermi energy.
The potential ��~r� breaks the effective time-reversal

symmetry around each K point. We can estimate the in-
verse time at which this operator induces a significant
change in the wave fuction of the spinor applying again
Fermi’s golden rule to the symmetry breaking potential:
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FIG. 2 (color online). Wave functions within the spherical cap
shown in Fig. 1 for l� 20. These two solutions, in flat space, are
related by the effective time-reversal symmetry defined in each
valley.
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 ��1
grad �

V2
0���F�

a2 j~cj2k2
F  �

�1
elasticnelec (12)

where nelec  �kFa�2 is the number of carriers per unit cell
(note that the effect can be larger close to the sample edges
where the disorder is also larger). In typical experiments,
nel  10�4–10�2. Thus, there exists a range of energies or
temperatures, ��1

grad & T & ��1
el , ��1

� � T, where the effec-
tive time-reversal symmetry around each K is not broken
by ��~r�.

Conclusions.—Our analysis illustrates that the behavior
of the quantum correction to the conductivity in graphene
is much richer than what was anticipated in the work of
Suzuura and Ando [9]. We conclude that the intervalley
scattering time �iv and the phase coherence time �� are not
the only important time scales. An additional time scale
describing the effective time-reversal symmetry breaking
is present, which can cause a complete suppression of weak
(anti)localization. This time scale depends on specific
defects present in the graphene samples, which leads to
the prediction that large differences in the quantum cor-
rection to the conductivity measured on different samples
should be expected. This is striking, since in all metallic
conductors studied in the past weak (anti)localization
manifests as a robust and very reproducible phenomenon.

Furthermore, the physical understanding provided by
our analysis, which does not rely on any detailed assump-
tion, enables us to draw additional conclusions. For in-
stance, we expect that it will be easier to observe weak
localization in narrow graphene samples, since scattering
at the edges couple states at the two different K-points. We
also expect that an effective time-reversal symmetry break-
ing similar to the one discussed here should occur more in
general, in systems with two or more degenerate valleys
with topological defects similar to those considered here.
This is the case, for instance, for a graphene bilayer
[20,21]. Note, however, that contrary to individual gra-
phene layers, in graphene bilayers the relative phases of
the two components in the spinor of the momentum eigen-
functions are twice those in graphene. Therefore, in suffi-
ciently clean samples (where defects are not sufficient to
induce an effective time-reversal symmetry breaking) the
usual negative magnetoresistance is expected, and there
should be no weak (anti)localization à la Suzuura-Ando.
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Note added.—Recently, three related works have ap-
peared [22–24] dealing with the same topic. Ref. [24]
presents experimental results which show unambiguously
the suppression of weak (anti)localization effects in gra-
phene. It also provides an explanation in terms of gauge
fields associated to the existence of ripples in the samples,

similar to the one analyzed here. The interpretation of
weak localization effects in [23] is also consistent with
our results. An alternative explanation is discussed in [22].
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