
IntervalRank — Isotonic Regression
with Listwise and Pairwise Constraints

Taesup Moon, Alex Smola
∗

, Yi Chang, Zhaohui Zheng
Yahoo! Labs

701 First Avenue
Sunnyvale, CA 94051

{taesup, smola, yichang, zhaohui}@yahoo-inc.com

ABSTRACT

Ranking a set of retrieved documents according to their rel-
evance to a given query has become a popular problem at
the intersection of web search, machine learning, and infor-
mation retrieval. Recent work on ranking focused on a num-
ber of different paradigms, namely, pointwise, pairwise, and
list-wise approaches. Each of those paradigms focuses on a
different aspect of the dataset while largely ignoring others.
The current paper shows how a combination of them can
lead to improved ranking performance and, moreover, how
it can be implemented in log-linear time.

The basic idea of the algorithm is to use isotonic regres-
sion with adaptive bandwidth selection per relevance grade.
This results in an implicitly-defined loss function which can
be minimized efficiently by a subgradient descent procedure.
Experimental results show that the resulting algorithm is
competitive on both commercial search engine data and pub-
licly available LETOR data sets.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; G.1.6 [Numerical Analysis]:
Optimization - convex programming

General Terms

Algorithms, Experimentation, Theory

Keywords

learning to rank, isotonic regression, listwise constraints,
pairwise constraints

∗A.S. is also with the Australian National University, Re-
search School of Information Sciences and Engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

1. INTRODUCTION
Ranking a set of retrieved documents according to their

relevance for a given query is a popular problem at the in-
tersection of web search, machine learning, and information
retrieval. Over the past decade, a large number of learn-
ing to rank algorithms have been proposed [12]. Based on
how they treat sets of ratings, they can be effectively cate-
gorized into the following three groups: pointwise, pairwise,
and listwise approaches.

For a given query and a set of retrieved documents, point-
wise approaches try to directly estimate the relevance label
for each query-document pair. While one may show that
these approaches are consistent for a variety of performance
measures [4], they ignore relative information within col-
lections of documents. In other words, they ignore that a
document with a mediocre rating may actually be desirable
if all other documents carry even lower scores (i.e., the one-
eyed may be king among the blind). Pairwise approaches,
as proposed by [9, 10, 2, 24], take the relative nature of the
scores into account by comparing pairs of documents. They
ensure that we obtain the correct order of documents even in
the case when we may not be able to obtain a good estimate
of the ratings directly. Finally, listwise approaches, as pro-
posed by [3, 20, 16, 22], treat the ranking in its totality, and
they exploit the fact that we may not even care about the
entire ranking, and that, furthermore, even among the re-
trieved subset of documents we may care considerably more
about the topmost documents. For a more comprehensive
references see [12].

There has been significant discussion about the relative
merit of these strategies, and the common wisdom is that
the listwise is better than the pairwise, which outperforms
the pointwise. However, we argue that the listwise meth-
ods, when used naively, ignore some parts that the point-
wise or pairwise algorithms are able to capture; pointwise
approaches are able to capture the absolute relevance of
a document for a query. Moreover, they are sensitive to
the fact that queries with equal relevance should be rated
equally (listwise approaches are typically indifferent of the
order without a given relevance tier). Pairwise approaches
capture some of these aspects, e.g., by weighting pairwise
comparisons according to their score discrepancy.

In this paper, we present a novel algorithm — Interval-
Rank — which exploits all three of those aspects. That is, we
use Isotonic Regression to deal with the listwise, translation-
invariant aspects of the ranking problem. Secondly, we add a
penalty to ensure that documents within the same grade be
rated approximately equally. Finally, we impose large mar-

151

gin constraints between the grades which effectively ensure
that different grades are well separated, and thus, ratings
are obtained in a reliable fashion.

The idea of incorporating all three approaches to design a
learning to rank algorithm has also been attempted in [21].
However, whereas their method is to sequentially vary the
focus on the three approaches as the training process goes,
we try to incorporate them all at once. Our IntervalRank
achieves this by regressing on the pairwise ordinal intervals,
which are optimized in a listwise fashion. Size constraints on
the intervals ensure that like documents are rated alike. In
a departure from previous methods, our loss function is only
defined implicitly as the solution of a convex optimization
problem. We show that this nontrivial variant of Isotonic
Regression can be solved in loglinear time (in the number
of relevant documents) even though we are dealing with a
dense quadratic program. As we shall see, the key idea is to
reformulate the intermediate quadratic program as a smaller
program in terms of the boundary variables separating dif-
ferent grades and to use the log-barrier interior point algo-
rithm for the reduced problem. The experimental results on
both the commercial search engine data and publicly avail-
able LETOR data show that our algorithm is competitive
with state-of-the-art algorithms.

The rest of this paper is organized as follows; in Section 2,
we set notations necessary for the paper and present some
preliminary backgrounds for our work. We derive our al-
gorithm IntervalRank in Section 3 and show how we can
implement it efficiently. Two experimental results are given
in Section 4 to support the competitiveness of the Interval-
Rank. We conclude the paper in Section 5 with the key
contributions of the paper.

2. BACKGROUND

2.1 Notation
We assume that we are in a classical learning-to-rank sce-

nario. That is, at training time, we are given a set of queries
Q = {q1, . . . , qQ}. For each query qk, we are also given a
set of retrieved documents Dqk

= {dk1, . . . , dknk
} and as-

sociated relevance grades Gqk
= {gk1, . . . , gknk

}, where nk

is the number of documents for query qk. The relevance
grade gkj is typically represented by numeric values in R in-
dicating how relevant a document dkj is to the given query
qk. For example, the usual editorial relevance judgments
of {Bad, Fair, Good, Excellent, Perfect} can be mapped into
the grade values {0, 1, 2, 3, 4}, respectively. We will denote
by G the set of possible relevance grades. With slight abuse
of notation, we will drop the index k from queries q and
associated documents dkj whenever the index is obvious or
irrelevant (i.e. q, dj , Gq, Dq) to simplify notation.

For a given query q, we denote by

Oq � {(di, dj) ∈ Dq × Dq : gi > gj} and

Tq � {(di, dj) ∈ Dq × Dq : gi = gj}

the set of ordered relevance pairs and tied relevance pairs,
respectively, generated from the retrieved document set Dq .
Moreover, we denote by

Sg � {i : di ∈ Dq , gi = g} (1)

the set of indices of documents in Dq with grade g. We
associate a numeric target yg ∈ R with every g ∈ G. For
instance, we may set y0 = 0, y1 = 0.5, y2 = 3, y3 = 7, and
y4 = 10 for G = {0, 1, 2, 3, 4}. Alternatively we might choose
yg = 2g − 1 for g ∈ G. Finally,

∆g+1,g � yg+1 − yg

represents the label margin between grades g and g + 1.
Whenever clear from the context we denote by yi the nu-
meric target associated with document di and by ∆ij the
label margin between documents di and dj .

We assume that each query-document pair (qk, dkj), where
dkj ∈ Dqk

, is represented as a feature vector xkj ∈ R
p.

Again, when the context is clear, we will drop the index k

for brevity. The ranking function is denoted by f : R
p → R.

At test time, the ranking function produces a set of scores
for the corresponding retrieved documents, and the ranking
of documents for a given query is determined by sorting the
documents in terms of the scores. Discounted Cumulative
Gain (NDCG) and Mean Average Precision (MAP) are com-
monly used metrics that measure the quality of ranked list,
of which definitions will be given in Section 4.

2.2 Inference
As common in the supervised learning, the estimation

problem is often cast as one of the (regularized) risk mini-
mization problem. That is, we assume that we have some
loss function

l : R
2n → R

+
0 (2)

which scores the performance of f(x) relative to the numer-
ical targets y via l ({f(x1), . . . , f(xn)} , {y1, . . . , yn}). For
convenience, we use the shorthand

l(f, xk, yk) := l ({f(xk1), . . . , f(xknk
)} , {yk1, . . . , yknk

})

to denote the loss function applied to the nk query-document
collections and the relevance targets for query qk. Inference
is then carried out by (regularized) empirical risk minimiza-
tion, that is, by finding some f which minimizes

R[f] :=
1

Q

Q
X

k=1

l(f, xk, yk) + λΩ[f].

Here Ω[f] is an (optional) regularization term with regular-
ization constant λ ≥ 0, and the first term denotes the aver-
age performance of the ranking function f on the aforemen-
tioned training set. One may show that under fairly general
conditions [19], minimization of a regularized risk term will
produce a minimizer f which has good performance on the
unseen data (in our case, queries and documents which one
might expect to see in the deployed system).

Some of the key questions arising from the regularized risk
minimization problem in the context of ranking are a) how
to choose a suitable loss function l, b) how to find a flexible
enough function class containing f , and c) how to solve the
resulting optimization problem. It is the first of the three
questions that this paper contributes to. For completeness,
we discuss b) and c) briefly.

2.3 Functional gradient descent
The problem of minimizing R[f] has been addressed in a

number of different contexts. For instance, we can treat this

152

as a convex minimization problem and use subgradient pro-
cedures [15, 5]. This works whenever the objective function
itself is convex, and derivatives can be computed efficiently.
Similar procedures can be applied to smooth proxies of the
ranking performances [2].

For the purpose of this paper, we adopt a functional gra-
dient descent representation [8, 14, 7]. This allows us to deal
efficiently with cases where the function class F containing f
is not explicitly available, but, rather, where we are able to
draw functions from the class which are well correlated with
the functional derivative of R[f]. This allows us to minimize
R[f] within function classes which are implicitly defined as
convex combinations of some “weak learners” (i.e., the func-
tion classes defining the generators of the convex set), such
as decision trees.

Algorithm 1 Functional gradient descent

Require: Training examples {(xi, yi)}
n
i=1

Ensure: f∗ that minimizes R[f]
initialize f = f0 ∈ F

repeat
Compute functional gradient

gi =
∂R[f(xi)]

∂f(xi)
, i = 1, . . . , n

Find h ∈ F via weak learner that is well correlated with
g ∈ R

n

Update f ← f − νh
until converged

Algorithm 1 describes how to obtain a functional gradi-
ent at every step. For notational brevity, we simplified the
indices of the examples to i = 1, . . . , n above. Once we
compute the functional gradient g, we subsequently obtain
a regression tree h that is well correlated with g (i.e. we
use the component-wise derivatives as regression targets).
Finally, we update f by moving ν ∈ (0, 1) into the direc-
tion of the current gradient. More sophisticated variants of
this procedure are possible. For instance, we may replace g
by an update estimate computed by a (non)convex second
order optimization procedure such as LBFGS [11].

3. INTERVALRANK
The IntervalRank defines an implicit loss function via a

convex optimization problem and applies the functional gra-
dient descent as described in Section 2.3. A nontrivial step
of such formulation is to compute the functional gradient of
the loss function. Section 3.1 describes how we define the
loss function in detail and proves that the solution of the op-
timization problem is equivalent to the functional gradient
of the loss function. Then, Section 3.2 ∼ Section 3.4 elab-
orate how we can solve the optimization problem efficiently
by reducing the number of the optimization variables, effi-
ciently evaluating the objective function of the optimization
problem, and applying the logarithmic barrier interior point
method. Finally, Section 3.5 shows that we can also easily
add the pointwise loss function to our loss function.

3.1 Loss Functions
We begin our analysis by discussing isotonic regression as

proposed by [25]. From now on, we will only consider a single
query q since all the procedures can be easily parallelized.

The key idea in isotonic regression ranking is to estimate
the document grades up to a constant (latent variable) off-
set. This takes into account that it is the relative order
of the documents that are being retrieved that matters for
ranking performance. The corresponding loss function can
be written as

l(f, x, y) := min
w∈R

1

2

n
X

i=1

(yi − f(xi) + w)2. (3)

While this is desirable in its own right, it misses an impor-
tant part of the ranking problem, namely that individual
category labels should be well separated. This is achieved
by defining

l(f, x, y) :=
1

2
‖δ∗‖

2
2 (4)

where δ∗ ∈ R
n solves the optimization problem

minimize
δ∈Rn

1

2
‖δ‖2

2 (5)

subject to f(xi) + δi − f(xj) − δj ≥ ∆ij for (i, j) ∈ Oq

That is, the loss function (4) measures the minimal norm of
the offset vector δ ∈ R

n we need to apply to f(x1), . . . , f(xn)
such that the list of shifted scores are consistent with the
pairwise target label margins {∆ij : (i, j) ∈ Oq}. Note that
this is a listwise optimization with pairwise constraints.

A naive approach to solve the optimization problem (5)
would be at least cubic in terms of the number of vari-
ables used; the number of constraints encoded in Oq is typ-
ically quadratic in the number of documents n. Taking into
account of the sparsity of the constraint matrix, an effi-
cient brute force solution of the resulting quadratic program
would require at least O(n3) operations to compute the re-
duced Karush-Kuhn-Tucker system [18], and thus, solving
(5) has at least cubic cost. We shall see in Section 3.2 that
efficient variable reduction and reordering can reduce this to
O(n log n) cost.

Before we do so, let us extend the objective function in
two ways. Firstly, the pairwise constraints ignore the fact
that documents with equal relevance scores yi should lead
to ratings f(xi) which are also close. This can be addressed
by a parameter-tying constraint on Tq. Secondly, while a
separation by ∆ij is desirable, it may not always be entirely
achievable. Hence, we relax the separation constraint by
adding another slack variable. This leads to the following
loss function: Define l as in (4) where δ∗ ∈ R

n solves

minimize
δ,ǫ,ξ

1

2
‖δ‖2

2 +
λ1

2
‖ǫ‖2

2 +
λ2

2
‖ξ‖2

2 (6)

subject to f(xi) + δi − f(xj) − δj ≥ ∆ij − ǫgi
for (i, j) ∈ Oq

|f(xi) + δi − f(xj) − δj | ≤ ξgi
for (i, j) ∈ Tq

Note that we only need to enforce adjacent constraints for
intervals since they automatically enforce the larger-range
constraints, hence the vector ǫ ∈ R

|G|−1 rather than matrix-
valued variable suffices. The relaxation ǫ takes care of overly
optimistic separation requirements ∆ij . Moreover, the addi-
tion of the constraint on Tq and the slack variables ξ ∈ R

|G|

ensures that ratings of the same score are tightly packed.
For the sake of using the functional gradient descent method

as in Section 2.3, we need to compute the gradient of the
loss function (4) with respect to f . In other words, we need
to compute the gradient of the minimum of the objective

153

function (6) with respect to f , which requires the following
stability result from convex duality, e.g. [1, Section 5.6.3]:

Lemma 1 Consider the convex minimization problem (F
and ci are convex functions)

minimize
x

F (x) (7)

subject to ci(x) ≤ zi for all i (8)

and let Λi be the Lagrange multipliers associated with ci.
Moreover, let x∗(z),Λ∗(z) be the solution and Lagrange mul-
tipliers associated with z. Then, if strong duality holds and
F (x∗(z)) is differentiable, we have ∂zF (x∗(z)) = −Λ∗(z).

Lemma 2 The gradient of the loss satisfies ∂f l(f, x, y) = δ.

Proof. We begin by writing out the Lagrange function
of (6). In order to obtain linear constraints we replace the
absolute value function by a pair of constraints, i.e. |a| ≤ b
transforms into a ≤ b and −a ≤ b. This yields

L(δ, ǫ, ξ, Λ) =
1

2
‖δ‖2

2 +
λ1

2
‖ǫ‖2

2 +
λ2

2
‖ξ‖2

2

−
X

i,j∈Oq

Λij [∆ij − ǫgi
− f(xi) − δi + f(xj) + δj]

−
X

i,j∈Tq

Λij [f(xi) + δi − f(xj) − δj − ξgi
]

−
X

i,j∈Tq

Λ̄ij [−f(xi) − δi + f(xj) + δj − ξgi
]

For a suitably chosen matrix A and an offset vector b the
terms in Λ (and Λ̄) can be subsumed by the expression
Λ⊤[b + A(f + δ, ǫ, ξ)] which leads to

L =
1

2
‖δ‖2

2 +
λ1

2
‖ǫ‖2

2 +
λ2

2
‖ξ‖2

2 − Λ⊤[b + A(f + δ, ǫ, ξ)]

Now denote by Af the upper slice of A pertaining to f + δ.
First order optimality conditions require that

∂δL = δ − A
⊤
f Λ = 0 and hence δ = A

⊤
f Λ.

If we were to change f by an infinitesimal amount df , the
constraints of the optimization problem would change by
Afdf . Since the objective function is quadratic and strongly
convex and all constraints are linear we may apply Lemma 1.
It states that the change in the objective function is given
by Λ⊤Afdf and therefore by δ⊤df . This proves the claim
that δ is the variational derivative with respect to f .

This result is surprising since it implies that in the first or-
der, changes in f are directly reflected in δ. It also means
that computing gradients is as simple as solving the opti-
mization problem itself. Note that for more general convex
penalties Ω[δ] instead of 1

2
‖δ‖2, the connection is somewhat

more complex. The condition δ = A⊤
f Λ is replaced by

∂δΩ[δ] = A
⊤
f Λ.

This leads to the gradient ∂δΩ[δ]. We believe that implicitly
defined loss functions constitute a fertile field of research, as
long as they are computationally accessible for estimation.

3.2 Variable Reduction
The key trick to an efficient solution of the Quadratic

Program (6) is to eliminate all but the boundary variables
between different grades such that, regardless of the size of
the initial optimization problem, we have a smaller subprob-
lem which only scales with the number of different grades.
Without loss of generality, we assume that there exists at
least one document for all the relevance grades in the train-
ing data. If this were not the case, we could simply drop
the corresponding value yi from the problem and obtain an
identical problem with a smaller number of relevance grades.

The key observation when solving (6) is that we may
rewrite the constraints such that the boundaries between
different grades are explicitly specified.

Lemma 3 For fixed slack variables ǫ and ξ, let P1(ǫ, ξ) and
P2(ǫ, ξ) be polyhedra, where P1 and P2 are defined via

P1(ǫ, ξ) =
n

z ∈ R
n : zi − zj ≥ ∆ij − ǫgi

for all (i, j) ∈ Oq ,

|zi − zj | ≤ ξgi
for all (i, j) ∈ Tq

o

P2(ǫ, ξ) =
n

z ∈ R
n
, l ∈ R

|G|
, u ∈ R

|G| :

zi ∈ [lgi
, ugi

] for all 1 ≤ i ≤ n,

lg ≤ ug ≤ lg + ξg for all g ∈ G,

lg+1 − ug ≥ ∆g+1,g − ǫg for all g ∈ G\{gmax}
o

,

where gmax � max{g : g ∈ G}. Then the projection of P2

onto its first n coordinates is equivalent to P1.

Proof. For any z ∈ P1 we define lg := mini:yi=g zi and
ug := maxi:yi=g zi. Since, in particular, the extremes satisfy
the conditions of P1, hence they also satisfy the conditions
of P2. Likewise, for any (z, l, u) ∈ P2 the conditions on z

are equivalent to those in P1. The projection preserves this
property.

Lemma 4 The optimization problems arising by replacing
the constraints P1 in (6) by P2 are equivalent.

Proof. The objective functions match, and the projec-
tion of P2 onto R

n equals P1 if we define zi = f(xi)− δi.

The reason for introducing P2 is that we may now elimi-
nate δ entirely from the optimization problem since we are
able to express the problem in terms of the boundaries be-
tween different grades. First, recall (1) that Sg stands for
the set of indices of all documents with grade g. Also, from
now on, let fi � f(xi). Then, we have following theorem.

Theorem 5 The optimization problem (6) is equivalent to
the following problem:

minimize
l,u,ǫ,ξ

1

2

X

g∈G

X

i∈Sg

ˆ

(lg − fi)
2
+ + (fi − ug)

2
+

˜

+
λ1

2
‖ǫ‖2

2 +
λ2

2
‖ξ‖2

2

subject to lg ≤ ug ≤ lg + ξg, ∀g ∈ G

lg+1 − ug ≥ ∆g+1,g − ǫg, ∀g ∈ G\{gmax}

where (η)+ � max(0, η), and l ∈ R
|G|, u ∈ R

|G|. Moreover,
δ ∈ R

n is given by δi = fi − max(lgi
, min(ugi

, fi)).

154

Proof. Since on P2(ǫ, ξ) the constraints in terms of δi =
fi − zi decouple, we can see that the optimization problems
in delta are solved by δi = fi −max(l, min(u, fi)). Plugging
this value into the objective function yields (lgi

−fi)
2
++(fi−

ugi
)2+, which proves the theorem.

The benefit of Theorem 5 is that we now have a reduced op-
timization problem in 4|G| − 1 variables with simple neigh-
boring constraints (between adjacent grades) rather than
n + 2|G| − 1 variables and considerably more complicated
constraints.

3.3 Computing the objective function
To solve the optimization problem of Theorem 5, e.g., by

means of a logarithmic barrier function, we need to be able
to compute values and gradients of the objective function
cheaply. A naive implementation would require O(n) opera-
tions, since we need to carry out a sum over O(n) terms. A
more efficient strategy is to sort the values {fi : i ∈ Sg} for
each g ∈ G once (this costs O(n log n) operations in Quick-
Sort), and then, simply perform a lookup to decide for which
set of fi the terms (lg − fi)

2
+ or (fi − ug)2+ are nonzero. It

works as follows:
Assume that the documents {fi : i ∈ Sg} with grade g are

sorted in the ascending order. Then, define the linear and
quadratic partial sums for grade g as

Lgi :=
i

X

j=1

fj and Qgi :=
i

X

j=1

f
2
j (9)

for i = 1, . . . , |Sg|, which can be computed in O(n) time

and O(n) space. Denote by ag � max {i : fi ≤ lg} and

bg � min {i : fi ≥ ug} the indices of the largest and small-
est elements fi exceeding lg and ug , respectively. Then, for
grade g, we can write

1

2

X

i∈Sg

(lg − fi)
2
+

=
1

2

X

i∈Sg

(l2g + f
2
i − 2lgfi)1{fi ≤ lg} (10)

=
1

2
agl

2
g +

1

2
Qg,ag − lgLg,ag ,

where 1{fi ≤ lg} in (10) is 1 if fi ≤ lg, and 0 otherwise.
A similar partial sum can be computed with regard to the
upper boundary. This sum now only contains as many terms
as we have different grades. An initial lookup to construct
ag and bg costs at most log n time. Subsequent lookups are
likely to be O(1) since at every optimization step we will
adjust l and u only slightly, so it is unlikely that the indices
will change by more than one or two at a time. In the same
fashion we can compute gradients with respect to l and u.

This means that up to a negligible O(n log n) expense to
sort the values fi initially, all other operations are O(log n)
or O(1) respectively, thus greatly reducing the computa-
tional cost of the optimization procedure making it virtually
independent of the number of documents involved. Such an
algorithm makes the implementation of loss functions such
as those defined via (6) possible in the first place: this is the
reason why [25] only consider the Isotonic Regression prob-
lem without the constraint |f(xi) + δi − f(xj) − δj | ≤ ξgi

for (i, j) ∈ Tq since this reduced optimization problem can
be solved more efficiently, albeit with reduced ranking per-
formance.

3.4 Logarithmic Barrier
For completeness we briefly describe the basic log-barrier

template for constrained convex optimization:

Algorithm 2 Logarithmic Barrier

initialize feasible parameters l, u, ǫ, ξ
for µ = 1 step: µ ← 2µ end: µ > 100 do

Minimize objective function with constraints added via

1

2

X

g∈G

X

i∈Sg

ˆ

(lg − fi)
2
+ + (fi − ug)

2
+

˜

+
λ1

2
‖ǫ‖2

2 +
λ2

2
‖ξ‖2

2

− µ
−1

X

g∈G

log(ug − lg) + log(lg + ξg − ug)

− µ
−1

X

g∈G\{gmax}

log(lg+1 − ug − ∆g+1,g − ǫg)

end for

The inner loop of the optimization algorithm proceeds by
using conjugate gradient descent with line search which is
run until approximate convergence is achieved (we do not
need to run it to full convergence since we keep on adjusting
µ during the process of the optimization procedure). Note
that there is no need to optimize the problem to high preci-
sion (i.e. very large µ) — a smaller µ imposes an additional
benefit for having even larger separation between the grades
than required by ∆ij and ǫ.

3.5 Adding a Pointwise Loss
Besides the pairwise and effectively listwise constraints on

the scores it is easy to add pointwise regression loss to the
objective function. This ensures that we obtain a calibra-
tion that is correct in absolute terms. Since gradients are
additive, it is straightforward to add this to the listwise loss
function as it stands. Hence we have

l(f, x, y) = llistwise(f, x, y) +
λ3

2
‖y − f(x)‖2

2 (11)

While the changes effected by the pointwise loss are not mas-
sive (it constitutes a consistent loss function in its own right,
though), adding a score calibration exploits information that
is not exploited by the listwise loss functions discussed in
Section 3.1.

4. EXPERIMENTAL EVALUATION
We established in the previous section that a combined

point and listwise loss function which ensures a large mar-
gin between ratings can be implemented efficiently. We now
demonstrate that our loss function works well in practice,
outperforming the state of the art on a number of datasets
both public (Letor 3.0 OHSUMED) and proprietary (com-
mercial search engine).

Two types of experiments are required to corroborate our
claims: firstly, we show that the combined loss function com-
posed of a listwise and a pointwise score outperforms the
listwise-only loss function. Secondly, we show that our loss
function outperforms competing approaches.

4.1 Performance Metrics
For comparison purposes we use a number of performance

metrics — the Discounted Cumulative Gain@k (NDCG@k),
the Precision@k (P@k), and the Mean Average Precision

155

(MAP). These three metrics tend to provide a rich repre-
sentation of what matters in editorially annotated ranking
problems. For conciseness we give a brief definition of the
metrics below. We use r to denote the ranks of the docu-
ments after the scoring function f has been applied. That
is, ri is the rank of document i.

NDCG@k The NDCG at position k (NDCG@k) for a ranked
document list of a query q is defined as a position and
rating weighted score which is then normalized such
that the maximum NDCG score is 1 for a perfect rank-
ing. We have the definition

NDCG@k[r] := Z

k
X

i=1

2gri − 1

log(1 + i)
. (12)

Here gri
is the relevance grade of document ranked at

i. Denote by r̂ := argsort[g] the optimally sorted ver-
sion of the document collection. In this case we can
write Z =

Pk

i=1
2

gr̂i −1
log(1+i)

. The motivation for truncat-

ing the sum at k is that in a search engine we are only
interested in the top-k results of a query rather than
a sorted order of the entire document collection.

P@k The Precision at position k for a ranked document list
of a query q is defined as

P@k[r] :=
1

k

k
X

i=1

I {gri
= max(g)} . (13)

Here I {expr} is is the indicator function that assumes
the value 1 if expr = TRUE and 0 otherwise. Hence,
P@k only considers the top-ranking documents as rel-
evant and computes the fraction of such documents in
the top-k elements of the ranked list.

MAP The mean of the Average Precision over test queries
is defined as the mean over the precision scores for all
retrieved relevant documents. It is given by

MAP =

Pn

k=1 P@k × I {grk
= max(g)}

Pn

k=1 I {grk
= max(g)}

. (14)

As before, n is the number of documents associated
with query q. On the OHSUMED dataset, max(g) = 2
(we only have 3 different grades).

4.2 OHSUMED

Data.
The OHSUMED data set is one of the data sets contained

in the LETOR 3.0 package [13]. It is widely used in in-
formation retrieval to evaluate the performance of various
learning to rank algorithms. OHSUMED contains queries,
the contents of the retrieved documents, and the relevance
judgments of the document to the associated queries.

A number of features have been added including BM25,
HostRank and topical PageRank. In addition, the LETOR
3.0 package contains the results of several learning to rank
algorithms such as RankBoost [6], RankSVM [10], AdaRank
[23], FRank [17], and ListNet [3] as baselines.

OHSUMED contains medical publication abstracts. There
are 106 queries and a total of 16,140 query-document pairs
with associated relevance judgements. Each query-document
pair is represented by a 25-dimensional feature vector. The

relevance grade judgments are given in three levels, i.e.,
G = {0, 1, 2}, where 0 means not relevant, 1 means possi-
bly relevant, and 2 means definitely relevant. Among the
query-document pairs, 11,303 are judged as g = 0, 2,585
are judged as g = 1, and 2, 252 are judged as g = 2 (see
Figure 1).

LETOR 3.0 also contains TREC and GOV. Unfortunately
those datasets are not well suited to ranking since they only
contain binary ratings (relevant, irrelevant), which reduces
the ranking problem to binary classification.

Results.
In our experiments we used 5-fold crossvalidation where 1

5

each were used for validation and testing and 3
5

for training.
Appropriately all models were trained using the training set,
tuned on the validation set, and tested on the test set.

We used 125 trees, i.e. we performed 125 steps of the func-
tional gradient descent method (Algorithm 1). The param-
eters for IntervalRank, namely the number of nodes in each
tree and the shrinkage step size, the weight parameters λ1

and λ2 for the slack variables in our optimization problem,
and the steplength of the functional gradient descent proce-
dure ν were adjusted on the validation set.

Table 1 contains a summary of the results. IntervalRank
performs very well on NDCG@1-3, and P@1-2 compared
to the reference algorithms. Note that the improvements
are significant on those metrics. However, we also see that
for the bottom positions of the ranked list, IntervalRank’s
benefits are less significant. Overall, the experiments show
that IntervalRank is state of the art and a useful addition to
the machine learning ranking toolbox. Note that on datasets
with only three grades some of the more detailed distinctions
between elementwise, pairwise and listwise ranking are less
pronounced.

4.3 Commercial search engine

Data.
The commercial search engine data is collected by sam-

pling queries from the query logs and by manually labeling
a number of associated documents with human understand-
able grades. In our collection we have five relevance grades,
i.e., G = {Bad, Fair, Good, Excellent, Perfect}. We collected
total 8,180 queries with 341,300 query-document pairs for
the training set and 916 queries with 32,008 query-document
pairs. The distribution of the relevance grades for each set
are given in Table 2.

The feature vector xi for each query-document pair (q, di)
consists of the following three categories:

Query features They only depend on the query q and have
constant values across Dq . For example, the number
of terms in the query, language of the query, or the
query classification result fall into this category.

Document features They only depend on the document
and do not vary over queries. The number of inbound
links pointing to the document or the spam score of
the document are such features.

Query-document features They explicitly depend on both
the query and the document. This includes for in-
stance the number of times query terms occur in the
document or in the anchor text.

156

Algorithms N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

RankBoost 0.4632 0.4504 0.4555 0.4543 0.4494 0.5576 0.5481 0.5609 0.5580 0.5447 0.4411

RankSVM 0.4958 0.4331 0.4207 0.4240 0.4164 0.5974 0.5494 0.5427 0.5443 0.5319 0.4334

FRank 0.5300 0.5008 0.4812 0.4694 0.4588 0.6429 0.6195 0.5925 0.5840 0.5638 0.4439

ListNet 0.5326 0.4810 0.4732 0.4561 0.4432 0.6524 0.6093 0.6016 0.5745 0.5502 0.4457

AdaRank.MAP 0.5388 0.4789 0.4682 0.4721 0.4613 0.6338 0.5959 0.5895 0.5887 0.5674 0.4487

AdaRank.NDCG 0.5330 0.4922 0.4790 0.4688 0.4673 0.6719 0.6236 0.5984 0.5838 0.5767 0.4498

IntervalRank 0.5628 0.5448 0.4900 0.4703 0.4609 0.6892 0.6522 0.5768 0.5556 0.5488 0.4466

Table 1: Performance on the OHSUMED dataset (we use N@k to denote NDCG@k). Note that IntervalRank
outperforms other ranking algorithms in the top NDCG categories and that it is very competitive otherwise.

Figure 1: Grade distribution on OHSUMED

Figure 2: Grade distribution on search engine data

Comparison to other algorithms.
We compared IntervalRank with three other algorithms

that we have implemented: the regression based pointwise
algorithm (GBDT) [4], the pairwise algorithm using squared
hinge loss (GBRank) [26], and the listwise algorithm using
a probabilistic approach (ListMLE) [22]. All of these three
algorithms are implemented within the functional gradient
descent framework with decision trees as weak learners. The
various algorithms differ only in the choice of the loss func-
tion.

GBDT: This is simply a squared loss which weighs the
deviation between target score yi and estimate f(xi), that
is

l(f, x, y) =

n
X

i=1

(yi − f(xi))
2

GBRank: It uses a loss function quite related to Interval-
Rank. The main difference is that it tries to regress explicitly
on the large margin interval boundaries ∆ij and moreover,
that it aims for vanishing pairwise difference between iden-
tical grades.

l(f, x, y) =
X

(i,j)∈Oq

(∆ij − f(xi) + f(xj))
2
+

+ λ1

X

(i,j)∈Tq

(f(xi) − f(xj))
2

Here λ1 is a user-defined parameter calibrating the trade-off
between the monotonicity and the clustering constraints.
ListMLE: It uses a logistic regression model rather than a
hinge loss in the ordinal regression setting of [9].

l(f, x, y) = −

n
X

i=1

log(1 +
X

j>i

exp(f(xrj
) − f(xri

)))

Here ri is the original index of the document that should be
ranked at i-th position.

Results.
We used 600 trees for all four loss functions and we com-

pared NDCG@1 and NDCG@5 performance for evaluation
purposes. Besides directly computing the NDCG values, we
make one practical consideration: we used only the two most
relevant documents per host. For real world search engines
this is a very reasonable restriction, since retrieval of multi-
ple similar documents from the same host may deteriorate
the quality of the result set considerably. Therefore, in our
test result, only two documents from the same hosts that
have the highest ranking scores were allowed to be listed in
the retrieved result, and then the NDCG values were com-
puted from that list (this restriction was applied to all four
algorithms).

To test whether an additive pointwise score is needed for
good performance we report results for GBRank and Inter-
valRank with and without the regression loss

l(f, x, y) =
λ3

2
‖y − f(x)‖2

2.

For ListMLE this is added by default since it produces rather
poor performance without it. We denote the regression-
calibrated variants by GBRankReg and IntervalRankReg.

Figure 3 shows the (host-name limited) performance with
regard to the NDCG@1 and NDCG@5 scores as a function
of the number of decision trees. Multiple configurations of
parameters were used for each algorithm in training, and
the results show the performances of the best configurations
on the test set. As before IntervalRank outperforms other

157

algorithms in both both metrics. However, we again observe
larger improvements in NDCG@1 than in NDCG@5, which
suggests that IntervalRank performs well on the top portion
of the list.

A remark regarding the magnitude of the improvement is
in order: a change of 1% may appear small, however it is
significant for web search in a commercial setting. Also note
that the difference between the competing algorithms which
represent about 5 years of progress in learning to rank is
only approximately 4%.

5. CONCLUSION
In this paper we presented a novel combined loss func-

tion which outperforms related ranking functions on both
commercial and publicly available datasets. It relies on a
number of key ideas:

• An adaptive listwise approach which incorporates tied
pairwise constraints.

• An efficient O(n log n) algorithm for solving the result-
ing optimization problem.

• A duality result which allows us to compute the loss
gradient efficiently.

• The combination of listwise and pointwise losses which
ensures that we capture all relevant pieces of informa-
tion inherent in an editorially annotated dataset.

We believe that each of those four pieces is useful in its own
right to design improved ranking functions and their appli-
cation extends beyond machine learning ranking to collabo-
rative filtering [20] and similar preference-related problems.

Acknowledgments.
We thank Mingrui Wu and Hongyuan Zha for helpful sug-

gestions and discussions. We also thank Shihao Ji for his
help in experiments.

6. REFERENCES

[1] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, England,
2004.

[2] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hulldender. Learning
to rank using gradient descent. In Proc. Intl. Conf.
Machine Learning, 2005.

[3] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages
129–136, New York, NY, USA, 2007. ACM.

[4] D. Cossock and T. Zhang. Statistical analysis of bayes
optimal subset ranking. IEEE Transactions on
Information Theory, 54(11):5140–5154, 2008.

[5] C. Do, Q. Le, and C. Foo. Proximal regularization for
online and batch learning. In International Conference
on Machine Learning ICML, 2009.

[6] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969,
2003.

[7] J. Friedman. Greedy function approximation: a
gradient boosting machine. Technical report, Stanford
University, 1999.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: A statistical view of boosting. The
Annals of Statistics, 28(2):337–374, 2000.

[9] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. In A. J.
Smola, P. L. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 115–132, Cambridge, MA, 2000.
MIT Press.

[10] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining
(KDD). ACM, 2002.

[11] D. Liu and J. Nocedal. On the limited memory BFGS
method for large scale optimization. Mathematical
Programming, 45(3):503–528, 1989.

[12] T. Y. Liu. Learning to Rank for Information Retrieval.
Now Publishers, 2009.

[13] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank
for information retrieval. In LR4IR 2007, in
conjunction with SIGIR 2007, 2007.

[14] L. Mason, J. Baxter, P. L. Bartlett, and M. Frean.
Functional gradient techniques for combining
hypotheses. In A. J. Smola, P. L. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances
in Large Margin Classifiers, pages 221–246,
Cambridge, MA, 2000. MIT Press.

[15] A. Smola, S. V. N. Vishwanathan, and Q. Le. Bundle
methods for machine learning. In D. Koller and
Y. Singer, editors, Advances in Neural Information
Processing Systems 20, Cambridge MA, 2007. MIT
Press.

[16] M. Taylor, J. Guiver, S. Robertson, and T. Minka.
SoftRank: Optimising non-smooth rank metrics. In
Proceedings of International ACM Conference on Web
Search and Data Mining, 2008.

[17] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. FRank: A ranking method with fideltiy loss. In
Proceedings of International ACM SIGIR Conference
on Research and development in information retrieval,
2007.

[18] R. J. Vanderbei. Linear Programming: Foundations
and Extensions. Kluwer Academic, Hingham, 1997.

[19] V. Vapnik and A. Chervonenkis. The necessary and
sufficient conditions for consistency in the empirical
risk minimization method. Pattern Recognition and
Image Analysis, 1(3):283–305, 1991.

[20] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola.
Cofi rank - maximum margin matrix factorization for
collaborative ranking. In J. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural
Information Processing Systems 20. MIT Press,
Cambridge, MA, 2008.

[21] M. Wu, H. Zha, Z. Zheng, and Y. Chang. Smoothing
DCG for learning to rank: A novel approach using
smoothed hinge functions. In Proceedings of CIKM
(Short Paper), 2009.

[22] F. Xia, T. Y. Liu, J. Wang, W. Zhang, and H. Li.

158

Figure 3: The regression calibrated version of IntervalRank outperforms all other ranking losses both for
NDCG@1 and NDCG@5 for any number of trees. Also note that adding a pointwise loss to the pairwise and
listwise approaches always improved performance.

Listwise approach to learning to rank - Theory and
algorithm. In International Conference on Machine
Learning (ICML), 2008.

[23] J. Xu and L. Hang. Adarank: a boosting algorithm for
information retrieval. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 391–398, New York, NY, 2007. ACM Press.

[24] Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression
framework for learning ranking functions using
relative relevance judgments. In Proccedings of Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2007.

[25] Z. Zheng, H. Zha, and G. Sun. Query-level learning to
rank using isotonic regression. In Proccedings of the
46th Annual Allerton Conference on Communication,
Control and Computing. Allerton, IL, 2008.

[26] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen,
and G. Sun. A general boosting method and its
application to learning ranking functions for web
search. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 1697–1704. MIT Press,
Cambridge, MA, 2008.

159

	Introduction
	Background
	Notation
	Inference
	Functional gradient descent

	IntervalRank
	Loss Functions
	Variable Reduction
	Computing the objective function
	Logarithmic Barrier
	Adding a Pointwise Loss

	Experimental Evaluation
	Performance Metrics
	OHSUMED
	Commercial search engine

	Conclusion
	References

