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Intervention and causality: forecasting traffic flows
using a dynamic Bayesian network

Catriona M. Queen Casper J. Albers

The Open University, Milton Keynes, UK

January 23, 2009

Abstract

Real-time traffic flow data across entire networks can be used in a traffic man-

agement system to monitor current traffic flows so that traffic can be directed and

managed efficiently. Reliable short-term forecasting models of traffic flows are crucial

for the success of any traffic management system.

The model proposed in this paper for forecasting traffic flows is a multivariate

Bayesian dynamic model called the multiregression dynamic model (MDM). This

model is an example of a dynamic Bayesian network and is designed to preserve the

conditional independences and causal drive exhibited by the traffic flow series.

Sudden changes can occur in traffic flow series in response to such events as traffic

accidents or roadworks. A traffic management system is particularly useful at such

times of change. To ensure that the associated forecasting model continues to pro-

duce reliable forecasts, despite the change, the MDM uses the technique of external

intervention. This paper will demonstrate how intervention works in the MDM and

how it can improve forecast performance at times of change.

External intervention has also been used in the context of Bayesian networks to

identify causal relationships between variables, and in dynamic Bayesian networks to

identify lagged causal relationships between time series. This paper goes beyond the
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identification of lagged causal relationships previously addressed using intervention

in dynamic Bayesian networks, to show how intervention in the MDM can be used to

identify contemporaneous causal relationships between time series.

Keywords: multivariate time series, Bayesian forecasting, dynamic linear model,

multiregression dynamic model

2



1. INTRODUCTION

As the number of vehicles on roads worldwide continues to rise, the problem of

keeping traffic flowing is becoming increasingly important. Many roads now have

induction loops implanted into the road surface at various sites, providing real-time

traffic flow data across entire traffic networks. These data can be used as part of

a traffic management system to monitor traffic flows and reduce congestion by, for

example, imposing variable speed limits or diverting traffic onto alternative routes.

Reliable short-term forecasting models of traffic flows are crucial for the success of

any such traffic management system.

The flows of traffic upstream and downstream of a particular data collection site

S in the network are very informative about the flows at site S. Despite this, only

a few short-term forecasting models make use of this fact by using lagged values at

other data collection sites when modelling the flow at site S (Tebaldi, West and

Karr 2002; Kamarianakis and Prastacos 2005; Stathopoulos and Karlaftis 2003).

Whittaker, Garside and Lindveld (1997) and Sun, Zhang and Yu (2006) additionally

use conditional independence so that only lagged flows of adjacent data collection sites

are required in their models. When the distance between sites is such that vehicles

are counted at a number of different sites during the same time period, the flow at

other sites at lag 0 is useful for forecasting the flow at site S. The models used in this

paper, Whitlock and Queen (2000) and Queen, Wright and Albers (2007), not only

use traffic flows at upstream sites for modelling site S and conditional independence to

reduce the number of upstream sites included in the model, but, unlike other models,

also allow the inclusion of flows from other data collection sites at lag 0.

Following Whitlock and Queen (2000) and Queen et al. (2007), this paper uses

a multivariate Bayesian dynamic model, called the multiregression dynamic model
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(MDM) (Queen and Smith 1993), for forecasting traffic flows. The MDM uses any

conditional independence and causal structure across the time series and is an example

of a dynamic Bayesian network. A Bayesian network (BN) is a directed acyclic

graph in which variables are represented by nodes and arcs between nodes represent

conditional dependencies between the variables. A dynamic BN is a Bayesian network

for a sequence of variables such as a time series or stochastic process. Dynamic

BNs of various forms have received a lot of interest in recent years (see for example

Kjærulff 1995; Brillinger 1996; Farrow, Goldstein and Spiropoulos 1997; Dahlhaus

2000; Dahlhaus and Eichler 2003; Sun et al. 2006; Smith and Figueroa 2007).

In the MDM, at each time t, the observable component series Yt(1), . . . , Yt(n) of

the n-dimensional time series, and their associated state vectors θt(1), . . . ,θt(n), are

represented by a BN. These individual BNs are linked together over time to form a

dynamic BN. As in Sun et al. (2006), the direction of traffic flow produces the causal

drive in the system and the possible routes through the network are used to define

a conditional independence structure across the time series. The MDM then uses

the conditional independences and causal driving mechanism through the system, as

represented by the dynamic BN, to break down the multivariate model into simpler

univariate regression dynamic linear models (DLMs) (West and Harrison 1997) where

contemporaneous traffic flows at upstream links in the network are used as regressors.

Tebaldi et al. (2002) also use regression DLMs when modelling traffic flows. As in

this paper, they use traffic flows at upstream links in the network as linear regressors.

However, whereas the vehicle counts in this paper are for one-hour intervals, those in

Tebaldi et al. (2002) are for one-minute intervals, and so regression on lagged flows

(rather than contemporaneous flows) is required.

Traffic flows can exhibit sudden changes in response to events such as congestion,

road traffic accidents, roadworks or adverse weather conditions. It is during these pe-
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riods of change when a traffic management system is often of most use and it is crucial

to the success of a traffic management system that its associated forecasting model

continues to perform well despite the change. To maintain forecast performance, the

MDM uses the technique of external intervention in which forecast distributions are

manipulated externally to the system. This is a long established technique in the

context of DLMs (West and Harrison 1986, 1989, 1997).

External intervention has also been used in the context of BNs with the different

aim of identifying causal relationships between variables (Pearl 1995, 2000; Spirtes,

Glymour and Scheines 2000; Lauritzen 2000; Lauritzen and Richardson 2002; Dawid

2002). Here, intervention for a random variable Xi means that the value of Xi is

manipulated externally and is assigned the value xi. Then Xi is causal for Xj if

intervention with respect to Xi affects Xj’s distribution. Didelez (2003) and Eichler

and Didelez (2007) consider the effects of external intervention in a dynamic setting

for dynamic BNs. Here, a time series {Xt(i)} is said to be causal for the time series

{Xt(j)} if an intervention with respect to Xt(i) affects the predictions of Xt+k(j),

for some future time t + k. Thus intervention in dynamic BNs has been used to

investigate lagged causal relationships between time series.

In this paper it will be shown how, in addition to maintaining good forecast

performance, intervention in the MDM can aid the identification of contemporane-

ous causal relationships between time series. This goes beyond the identification of

lagged causal relationships previously addressed using intervention in dynamic BNs.

The MDM uses contemporaneous causal relationships between component series ex-

plicitly: different contemporaneous causal relationships produce different MDMs. It

is therefore important that the correct causal relationships between traffic flow series

are used when specifying the MDM. In normal traffic conditions, these are dictated

by the direction of traffic flow and possible routes through the network: generally
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flow series at adjacent upstream sites to a particular site S are causal for the flow

series at site S. However, queuing traffic can change causal relationships, because a

queue at site S can feed upstream so that the flow series at site S can become (tem-

porarily) causal for the flows at upstream sites, as well as for the flows at downstream

sites. The MDM offers a method of identifying causal relationships on-line, ensuring

that the ‘correct’ causal relationships, and consequently the ‘correct’ MDM, is always

used.

Although the focus of this paper is the use of intervention in the MDM with

respect to forecasting traffic flows, there are many potential application areas for

the MDM, including modelling economic indicators such as energy consumption and

GDP, environmental resource management problems, industrial product distribution

flow problems and medical patient physiological monitoring. As a specific example,

monthly brand sales in a competitive market are modelled using an MDM in Queen

(1994) and Queen, Wright and Albers (2008). Here, the competition in the market

is the causal drive in the system and is used to elicit a conditional independence

structure across the time series: this is demonstrated in Queen (1997) and Queen,

Smith and James (1994). Goldstein, Farrow and Spiropoulos (1993), Farrow et al.

(1997) and Farrow (2003) also use dynamic BNs to represent brand relationships when

forecasting time series of brand sales. Guo and Brown (2001) use a generalisation of

the MDM to model bivariate hormone time series. Like the MDM, their model uses

univariate structural models where structural parameters are functions of the other

series. Their model reduces to the MDM in the special case in which the relationship

between the two series is in one direction only. Fosen et al. (2006) also use similar

ideas to the MDM, using parents from a dynamic BN as regressors, when analysing

a trial of cancer patients with liver cirrhosis.

The intervention techniques and methods for identifying causal relationships de-
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tailed in this paper are potentially applicable to any series suitable for modelling using

an MDM. Many series can exhibit sudden changes for which intervention is appropri-

ate to maintain forecast performance. For example, sales series often exhibit sudden

changes in response to marketing activity. Although the conditional independence

structure related to causality is fairly straightforward to elicit for traffic networks

under normal traffic conditions (see Queen et al. 2007), this is not necessarily the

case for other potential application areas. Furthermore, like the traffic flow applica-

tion, causal relationships across a multivariate time series may change over time. For

example, when forecasting sales data in competitive markets, marketing activity can

result in changes in the causal relationships between brand sales. Thus the methods

presented in this paper represent a significant advance for using the MDM in practice,

as well as for the notoriously difficult problem of identifying contemporaneous causal

relationships in general multivariate time series problems.

The paper will focus on a single traffic network near London, UK. The network

will be described in Section 2, while an MDM is defined for it in Section 3. Details

of how intervention in the MDM works are presented in Section 4 before looking at

intervention in practice in the London network in Section 5. Section 6 shows how the

MDM can be used to identify contemporaneous causal relationships between series.

Finally, Section 7 offers some concluding remarks.

2. THE LONDON NETWORK

This paper focuses on using intervention when forecasting vehicle counts at the

junction of three major roads — the M25, A2 and A296 — east of London, UK.

Figure 1(a) shows an aerial photograph of the network. The traffic data are hourly

counts of vehicles passing over induction loops in the road surface at a number of data

collection sites in the network. A diagram of the network showing the layout of the
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(a) (b)

Figure 1: The London network (a) aerial photograph (taken from Google Maps) (b)
schematic diagram: the grey diamonds are the (numbered) data collection sites and
the white arrows indicate the direction of traffic flow.

data collection sites is given in Figure 1(b). The data used here were collected between

31 January 1995 and 28 March 1995. Data for this network are freely available at

http://trads.hatris.co.uk.

The network is such that traffic flows into the network, through a number of data

collection sites, and then out of the network. During normal conditions it will only

take a few minutes for a vehicle to traverse the network, so most vehicles are counted

at a number of different sites during the same time period.

The vehicle counts have a strong seasonal pattern with peaks in the morning

and evening rush hours. The daily pattern is different on a weekday than it is at

the weekend, and also slightly different for Monday and Friday. It is possible to

incorporate these differences into the model, but for clarity of presentation, only

traffic flows for Tuesday–Thursday each week are considered here. The hourly counts
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in this network will be modelled by an MDM, as described in the next section.

3. A MULTIREGRESSION DYNAMIC MODEL FOR THE LONDON NETWORK

In this section, an MDM (Queen and Smith, 1993) will be defined for the Lon-

don network. Let Yt(i) be the vehicle count for site i at hour t. Then let Y t =

(Yt(1), . . . , Yt(n))⊤ denote the n-dimensional multivariate time series and let Y t =

(Y 1, . . . ,Y t)
⊤ and Y t(i) = (Y1(i), . . . , Yt(i))

⊤.

Suppose that the variables are ordered and indexed so that there is a conditional

independence structure related to causality so that at each time t ∈ N, for i = 2, . . . , n,

Yt(i) ⊥⊥ ({Yt(1), . . . , Yt(i − 1)} \pa(Yt(i)))|pa(Yt(i)),

Yt(i) ⊥⊥
{{

Y t(1), . . . ,Y t(i − 1)
}

\pa(Y t(i))
}

|(pa(Y t(i)),Y t−1(i)).

The notation A⊥⊥B|C reads “A is independent of B given C” (Dawid 1979), “\” reads

“excluding” and pa(Yt(i)) ⊆ {Yt(1), . . . , Yt(n)}. Each variable in the set pa(Yt(i)) is

a parent of Yt(i) so that in a BN representing the conditional independence relation-

ships, there is a directed arc to Yt(i) from each of its parents. Thus over time the

conditional independence relationships are represented by a dynamic BN.

In Queen et al. (2007), the possible routes through the London network were used

to elicit the conditional independences related to causality across Y t at each time t.

A BN representing these relationships, suitable for use with an MDM, was elicited.

Because some of the data collection sites were not operational, the BN separates out

into two parts. The larger of these parts, representing vehicle counts at sites labelled

167, 168, 170A, 170B, 169, 161 and 171, is presented here in Figure 2.

In the BN of Figure 2, Yt(170AB) denotes Yt(170A) + Yt(170B) and Yt(161.171)

denotes Yt(161) + Yt(171). Each node θt(i) is the parameter vector associated with
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Y t(167) θt(167)

Y t(168)Y t(170AB)θt(170AB)

Y t(170A) Y t(170B) θt(170B) Y t(169) θt(169)

Y t(161.171)θt(161.171)

Y t(171) Y t(161) θt(161)

Figure 2: Part of the BN for each time t representing traffic flows in the London
network of Figure 1.

Yt(i) in the MDM. These are mutually independent at each time t within the MDM

framework. Three variables are logical functions of their parents:

Yt(168) = Yt(167) − Yt(170AB),

Yt(170A) = Yt(170AB) − Yt(170B), (1)

Yt(171) = Yt(161.171) − Yt(161).

Following the terminology of WinBUGS software, these are called logical variables

and denoted by double ovals. Note that all these logical variables are also general

time series. However, it is not possible to model them directly, because then all

the parameter vectors would no longer be mutually independent. (For full details

regarding the BN of Figure 2 and how it was elicited, see Queen et al., 2007.)

Denote the information available at time t by Dt. The MDM for the n-dimensional

vector time series Y t over times t = 1, 2, ..., is defined by the n observation equations,
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the system equation, and information at time t − 1 as follows.

Observation equations: Yt(i) = F t(i)
⊤θt(i) + vt(i), vt(i) ∼ (0, Vt(i)), 1 ≤ i ≤ n

System equation: θt = Gtθt−1 + wt, wt ∼ (0,W t)

Information: (θt−1 |Dt−1) ∼ (mt−1,Ct−1).

The mi-dimensional vector F t(i) contains an arbitrary, but known, function of the

parents pa(Yt(i)) and possibly other known variables (which may include Y t−1); θt(i)

is the mi-dimensional parameter vector for Yt(i); Vt(1), . . . Vt(n) are the scalar ob-

servation variances; θ⊤

t = (θt(1)⊤, . . . ,θt(n)⊤) is the m-dimensional parameter vec-

tor; mt−1 and Ct−1 are the (posterior) moments for θt−1 at time t − 1; and the

block diagonal m × m matrices Gt, W t, and Ct−1 are assumed known (and are

not functions of pa(Yt(i))). The error vectors, v⊤
t = (vt(1), . . . , vt(n)) and w⊤

t =

(wt(1)⊤, . . . ,wt(n)⊤), are such that vt(1), . . . , vt(n) and wt(1), . . . ,wt(n) are mutu-

ally independent and {vt,wt}t∈N are mutually independent with time.

The MDM uses the conditional independence structure to model the multivariate

time series by n separate univariate models — for Yt(1) and Yt(i)|pa(Yt(i)), i =

2, . . . , n. Note that no distributional assumptions have been placed on the error

terms or the distribution for θt−1. Also, there is no specific requirement that F t(i)

be a linear function of pa(Yt(i)), just that the function is known. Thus the MDM

is a very general model. When F t(i) is a linear function of pa(Yt(i)) and the error

distributions are normal, then this is the special case of the linear multiregression

dynamic model. In this case, each Yt(i) with parents is modelled by a regression DLM

with its parents as (linear) regressors, and each Yt(i) without parents is modelled by

any appropriate DLM. Linear MDMs are particularly simple to use analytically and

will be used in this paper to forecast traffic flows in the London network.

From the BN in Figure 2, neither Yt(167) nor Yt(169) have parents so each of

these is modelled separately by univariate DLMs. For i = 167, 169, to account for the
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seasonality exhibited by each Yt(i), a seasonal factor model is used with a separate

level parameter for each hour of the day. (This was shown to perform as well as the

Fourier model, and has the added advantage of interpretability, which is helpful when

using intervention.) Thus in this case, θt(i) is a 24-dimensional vector with a seasonal

factor for each of the 24 hours, F t(i)
⊤ = (1, 0, . . . , 0) and, for a ∈ [0, 1],

Gt(i) =











a 1 − a 0 · · · 0
0 0 1 · · · 0
...

. . . 1
1 0 · · · · · · 0











. (2)

So the system equation links the current hour parameter (hour t) with the parameter

for the previous hour (hour t − 1), as well as the parameter for the corresponding

hour the previous day (hour t − 24). The optimal value of a for the London network

was found to be 0.01.

From Figure 2, series Yt(170AB), Yt(170B), Yt(161.171) and Yt(161) all have par-

ents. Thus each is modelled by a regression DLM with its parents as regressors. In

this case the regression parameters represent the proportion of traffic flowing from

parents to Yt(i). These proportions exhibit a seasonal daily pattern which remains

stable over time. Thus a separate regression parameter is defined for each hour for

each parent, and, in the case where Yt(i) has a single parent, Gt(i) is given by (2)

with a = 0. Thus the current hour parameter is linked with the parameter for the

corresponding hour of the previous day.

The remaining series, Y t(168), Yt(170A) and Yt(171), are logical variables and

their forecasts are simply derived from those of their parents in accordance with (1).

The value of the observation variances Vt(i) are estimated on-line using standard

DLM variance learning techniques (see West and Harrison (1997), Section 2.5) and

the evolution variance W t is estimated using established DLM discounting techniques
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(see West and Harrison (1997), Section 2.4).

As long as θt(1),θt(2), . . . ,θt(n) are mutually independent initially (i.e. C0

is block diagonal), then the block diagonal form of Gt and W t ensures that the

θt(i) remain mutually independent and that each θt(i) can be updated separately

in closed form from Yt(i)’s (conditional) univariate model. Forecasts for Yt(1) and

Yt(i)|pa(Yt(i)), i = 2, . . . , n, and the k-step forecasts for Yt+k(1) and Yt+k(i)|pa(Yt+k(i)),

k ∈ N, i = 2, . . . , n, could also then be found separately, often using established dy-

namic model results. However, the values of pa(Yt(i)) are not available when forecast-

ing Yt(i), since Yt(i) and pa(Yt(i)) are observed simultaneously. Similarly, the values

of pa(Yt+k(i)) are not available when forecasting Yt+k(i). So the marginal forecasts

for each Yt(i) and Yt+k(i), k ∈ N, without conditioning on the values of parents,

are required. Unfortunately, the marginal forecast distributions for Yt(i) and Yt+k(i),

k ∈ N, i = 2, . . . , n, will not generally be of a simple form. However, (under quadratic

loss) the marginal moments of the forecast distributions are adequate for forecasting

purposes, and these can be easily found for many MDMs. (See Queen and Smith

(1993) and Queen et al. (2008) for further details.)

Because the MDM breaks the multivariate model into univariate components,

computations in the MDM are fast and efficient, no matter how large and complex

the network is. The software used in this paper was written in R and had a speed of

over 1200 (roughly) forecasts per second.

It is important to realise that although two BNs can represent the same condi-

tional independences, they can represent quite different conditional independences

related to causality and consequently, quite different MDMs. For example, consider

the BN in Figure 2 and a second BN which is exactly the same except that the

arc between Yt(167) and Yt(170AB) is reversed. These two BNs are probabilisti-

cally equivalent. However, the conditional independences related to causality re-
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late to two quite different MDMs. For the BN in Figure 2 an MDM would model

Yt(167) and Yt(170AB)|Yt(167), whereas for the second BN, an MDM would model

Yt(167)|Yt(170AB) and Yt(170AB).

4. INTERVENTION IN THE MULTIREGRESSION DYNAMIC MODEL

Intervention in the BN context is usually ‘atomic’ where Xi is assigned a specific

(single) value xi. Intervention in the context of the DLM is instead ‘random’ where

the distribution of the random variable is manipulated.

The need for intervention in the time series context can be triggered by poor

model forecast performance or by expert information regarding external events (such

as planned roadworks). As pointed out by West and Harrison (1997), detecting when

intervention is required, and monitoring the intervention afterwards, can be informal,

involving the forecaster’s subjective judgement (by examining the pattern and/or

magnitude of the one-step forecast errors, for example), or can be based on more

formal monitoring techniques. Formal monitoring techniques are long-established for

DLMs (see West and Harrison, 1997, Chp. 11). Because the MDM decomposes into

(conditional) DLMs, it should be relatively straightforward to develop such monitors

for the MDM. In this paper, however, the focus lies in the use of intervention and

informal monitoring only is used. The development of a suitable formal monitor for

the MDM will be addressed in future work.

As is assumed in Lauritzen (2000) and Dawid (2002) with respect to BNs, inter-

vention in the DLM always precedes observation, so that intervention at time t is

done before forecasts are made and the series is observed at time t. In the MDM it is

possible to intervene (separately) for any number and combination of the individual

series Yt(1), . . . , Yt(n) and/or their associated parameter vectors θt(1), . . . ,θt(n) at

14



any particular time t. Thus, sequential decisions are made at each time point regard-

ing intervention on the time series, as in Dawid and Didelez (2005). For simplicity

here, only intervention at the single time point t for a single component Yt(i), and its

associated parameter vector θt(i), will be considered.

The observation equation for Yt(i) specifies the distribution Yt(i)|(θt(i), pa(Yt(i))) ∼

(F t(i)
⊤θt(i), Vt(i)). Intervention for Yt(i) in the MDM involves manipulating this dis-

tribution, to give the intervention distribution

Yt(i)|(θt(i), pa(Yt(i)), intervention) ∼ (F t(i)
⊤θt(i) + ht(i), Vt(i) + Ht(i)), (3)

for suitable scalars ht(i) and Ht(i). The system equation specifies the distribution

θt|θt−1 ∼ (Gtθt−1,W t). So when intervening for θt(i), the part of the system equation

associated with θt(i) is manipulated to produce the intervention distribution

θt(i)|(θt−1(i), intervention) ∼ (Gt(i)
∗θt−1(i),W t(i)

∗),

for suitable matrices Gt(i)
∗ and W t(i)

∗. The values of ht(i) and Gt(i)
∗ reflect the

expected change in Yt(i) and θt(i), respectively, at time t, and Ht(i) and W t(i)
∗

reflect the uncertainty regarding the changes.

Because the MDM is a dynamic BN, intervention for Yt(i) or θt(i) not only affects

the manipulated distributions, but also affects other variables in the dynamic BN.

This makes intervention in the MDM a very powerful forecasting technique. To

investigate the effects of interventions, this paper will use influence diagrams.

An influence diagram is a generalisation of a BN with random nodes (drawn as

ovals) and decision nodes (drawn as rectangles), which can be used to represent and

solve Bayesian decision problems (Howard and Matheson 1984; Shachter 1986, 1988;

Oliver and Smith 1990). The value of a decision node arises through external inter-

vention by a decision maker. Arcs leading into random nodes represent conditional
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dependencies, whereas arcs leading into decision nodes imply that information re-

garding its parents is assumed available before a decision is made.

Following the ideas of Dawid (2002), introduce indicator variables σ(Yt(i)) and

σ(θt(i)), where σ(Yt(i)) only takes the value 1 when intervention for Yt(i) occurs,

and σ(θt(i)) only takes the values 1 when intervention for θt(i) occurs. Note that,

although similar in concept, the intervention variables used here are different to those

used in Dawid (2002), where atomic interventions were used with a finite set of

possible interventions. With random intervention the distribution for Yt(i) or θt(i)

can be manipulated arbitrarily at intervention. Thus, σ(Yt(i)) and σ(θt(i)) are simply

indicators as to whether intervention takes place or not. The conditional distributions

can then be defined: Yt(i)|(θt(i), pa(Yt(i)), σ(Yt(i))) and θt(i)|(θt−1(i), σ(θt(i))).

The intervention variables, σ(Yt(i)) and σ(θt(i)), are decision variables whose

values are controlled by the forecaster using the forecasting model. Following the

ideas of Dawid (2002), σ(Yt(i)) and σ(θt(i)), will be added as decision nodes to a

dynamic BN of the MDM to produce an influence diagram of the MDM. The MDM

uses the conditional independence structure related to causality represented in the

influence diagram. As such, the descendants of σ(Yt(i)) will be affected by intervention

for Yt(i), and the descendants of σ(θt(i)) will be affected by interventions for θt(i).

In order to draw an influence diagram which represents the general structure of

all MDMs, define the following notation. Let

X t(i)
⊤ = (Yt(1), . . . , Yt(i − 1))

Zt(i)
⊤ = (Yt(i + 1), . . . , Yt(n))

αt(i)
⊤ = (θt(1)⊤, . . . ,θt(i − 1)⊤)

βt(i)
⊤ = (θt(i + 1)⊤, . . . ,θt(n)⊤).

Thus, for i = 2, . . . , n−1, the time series can be written as Y ⊤

t = (X t(i)
⊤, Yt(i),Zt(i)

⊤),

16



D t−1

αt−1(i)

θt−1(i)
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Figure 3: Influence diagram for the multiregression dynamic model before Y t is
observed, together with the intervention decision variables, σ(Yt(i)) and σ(θt(i)).

with parameter vector θ⊤

t = (αt(i)
⊤,θt(i)

⊤,βt(i)
⊤). Then since pa(Yt(i)) ⊆ X t(i),

the vector F t(i) is a known function of X t(i), and Yt(i)|(X t(i),θt(i)) has some dis-

tribution with mean F t(i)
⊤θt(i) and variance Vt(i).

Suppose that Y 1, . . . ,Y t−1 have been observed. An influence diagram, repre-

senting the MDM before Y t is observed, is given in Figure 3. Also included in the

influence diagram are the intervention decision variables, σ(Yt(i)) and σ(θt(i)).

In the influence diagram there are arcs leading from Dt−1 and θt−1(i) to both

σ(Yt(i)) and σ(θt(i)) because the decision to intervene at time t is often a reflection

of past behaviour of the series and/or its model. (It is also possible that the decision

to intervene is entirely dictated by information external to the model.) The other
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arcs in the influence diagram are direct consequences of the MDM. The parameter

vectors αt−1(i), θt−1(i) and βt−1(i) each have the single parent Dt−1, since the poste-

rior distributions αt−1(i)|Dt−1, θt−1(i)|Dt−1 and βt−1(i)|Dt−1 represent all knowledge

of αt−1(i), θt−1(i) and βt−1(i), respectively, after the first t − 1 observations are

made. The block diagonal form of Ct−1 ensures that θt−1(1), . . . ,θt−1(n) are all mu-

tually independent given Dt−1 and so there are no arcs between αt−1(i), θt−1(i) and

βt−1(i). The block diagonal forms of Gt,Gt+1, . . . ,Gt+k and W t,W t+1, . . . ,W t+k

ensure that repeated use of the system equation specifies separate distributions for

θt(i)|θt−1(i) and each θt+k(i)|θt(i), i = 1, . . . , n, for k ∈ N. Therefore {αt+k(i), k ∈

N}, {θt+k(i), k ∈ N} and {βt+k(i), k ∈ N} have the single parents αt(i), θt(i) and

βt(i), respectively, which in turn have single parents αt−1(i), θt−1(i) and βt−1(i),

respectively. The n observation equations at times t and t + k, k ∈ N define the

distributions for Yt(i)|(θt(i), pa(Yt(i))) and Yt+k(i)|(θt+k(i), pa(Yt+k(i))), i = 1, . . . , n.

So X t(i) has parent αt(i), {X t+k(i), k ∈ N} has parent {αt+k(i), k ∈ N}, Yt(i)

has parents θt(i) and X t(i), {Yt+k(i), k ∈ N} has parents {θt+k(i), k ∈ N} and

{X t+k(i), k ∈ N}, Zt(i) has parents βt(i), X t(i) and Yt(i), and {Zt+k(i), k ∈ N} has

parents {βt+k(i), k ∈ N}, {X t+k(i), k ∈ N} and {Yt+k(i), k ∈ N}. Additionally Yt(i)

and θt(i) have parents σ(Yt(i)) and σ(θt(i)), respectively.

4.1 EFFECTS OF INTERVENTION IN THE MDM BEFORE OBSERVING Y t

The effects of intervention for Yt(i) and θt(i) in the MDM can be easily seen

by looking at the descendants of σ(Yt(i)) and σ(θt(i)), respectively, in the influence

diagram of Figure 3.

As σ(Yt(i)) has descendants Yt(i) and Zt(i), intervention for Yt(i) affects Yt(i)’s

forecast and Zt(i)’s forecast only. Note that intervention for Yt(i) does not affect the

forecasts for X t(i), nor the priors for any parameters at time t + k, nor the k-step
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ahead forecasts for Y t+k.

On the other hand, σ(θt(i)) has descendants θt(i), Yt(i), Zt(i), {θt+k(i), k ∈

N}, {Yt+k(i), k ∈ N} and {Zt+k(i), k ∈ N}. Therefore intervention for θt(i) affects:

the prior for θt(i), the one-step ahead forecasts for Yt(i) and Zt(i), the priors for

{θt+k(i), k ∈ N}, and the k-step ahead forecasts for {Yt+k(i), k ∈ N} and {Zt+k(i), k ∈

N}. Intervening for θt(i) does not affect the one-step, or k-step, ahead forecasts for

X t(i), nor the priors for any parameters for components of Y t other than Yt(i), either

at time t (that is, αt(i), βt(i)) or at future time periods (that is, {αt+k(i), k ∈ N},

{βt+k(i), k ∈ N}).

The influence diagram given in Figure 3 is a generic representation of the struc-

ture of all MDMs. For a specific MDM, not every variable in Zt(i) is necessarily a

descendant of Yt(i). For example, in the dynamic BN of the London network given

in Figure 2, when considering intervention for Yt(170B), say, then Yt(169) could be

included in Zt(170B) although Yt(169) is not a descendant of Yt(170B) and so will

not be affected by intervention for Yt(170B). As a result, intervention for Yt(i) will

not necessarily affect the forecasts for all variables in Zt(i), but only the forecasts of

those Yt(j) ∈ Zt(i) which are descendants of Yt(i). Similarly, intervention for θt(i)

will not affect the forecasts of all variables in Zt(i) or {Zt+k(i), k ∈ N}, but only

those Yt(j) and Yt+k(j) for which Yt(j) ∈ Zt(i) are descendants of Yt(i).

4.2 EFFECTS OF INTERVENTION IN THE MDM AFTER OBSERVING Y t

After observing Y t, the influence diagram in Figure 3 is no longer appropriate to

represent the MDM. Each of the arcs (αt(i),X t(i)), (θt(i), Yt(i)) and (βt(i),Zt(i))

needs to be reversed to reflect the fact that the posterior distributions αt(i)|Y t,

θt(i)|Y t and βt(i)|Y t are now of interest (rather than the distributions Yt(i)|θt(i)

specified by the observation equations used for forecasting each Yt(i)). Following
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Figure 4: Influence diagram for the multiregression dynamic model, together with
intervention indicator decision variables σ(Yt(i)) and σ(θt(i)), after Y t is observed.

Howard and Matheson’s (1984) Arc Reversal Theorem, extra arcs need to be intro-

duced into the influence diagram. Explicitly, reversing the arc between any two nodes

A and B means that A must inherit B’s parents and B must inherit A’s parents. The

new influence diagram, after observing Y t, is given in Figure 4. Notice how the arc

reversals have introduced several new arcs into the influence diagram.

It is important to note that the interventions for Yt(i) and/or θt(i) still pre-

cede the observation Y t. However, as the influence diagram representing the MDM

changes after observing Y t, so the effects of the interventions will change after Y t

is observed. The effects of intervention after Y t is observed are easily seen from the

influence diagram in Figure 4 by again looking at the descendants of σ(Yt(i)) and
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σ(θt(i)), respectively. This time both σ(Yt(i)) and σ(θt(i)) have the same descen-

dants: Yt(i), θt(i), Zt(i), βt(i), {θt+k(i), k ∈ N}, {βt+k(i), k ∈ N}, {Yt+k(i), k ∈ N}

and {Zt+k(i), k ∈ N}. Thus after observing Y t, intervention for Yt(i) and θt(i) both

affect the posterior for θt(i) and also the posterior for βt(i), the priors for future

θt+k(i) and also the priors for future βt+k(i), the k-step forecasts for Yt+k(i) and the

k-step forecasts for Zt+k(i). It is, however, important to note that although inter-

vention for Yt(i) and θt(i) both affect the same variables after Y t(i) is observed, they

affect the variables in different ways. Neither intervention for Yt(i) nor θt(i) affect

the posterior for X t(i)’s parameter vector αt(i), the prior for future parameters αt+k,

nor the k-step forecasts for X t+k(i).

Notice that before Y t is observed, intervening for Yt(i) affects a different set of

variables than intervening for θt(i) does. On the other hand, after Y t is observed,

intervening for Yt(i) affects exactly the same set of variables (although in different

ways) as intervening for θt(i). It is interesting to note that neither intervention affects

the forecasts of {X t+k(i), k ∈ N}, nor the distributions of its parameters.

5. INTERVENTION IN THE LONDON NETWORK

The specific method of intervention to be used when forecasting traffic flows nat-

urally depends on the particular change to be accommodated for a given series. In

this section, two specific interventions are considered — one for an observed series

Yt(i) and the other for two state vectors. Both of these are typical of the type of

interventions commonly required when forecasting traffic flows.

5.1 INTERVENTION FOR A Yt(i)

Poor forecast performance, as identified by large forecast errors, can be an indica-

tion that intervention might be useful. Such an instance of poor forecast performance
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occurs in series Yt(167), where an unusually large negative forecast error occurs at time

560 followed by an unusually large positive forecast error. This pattern of forecast

errors is consistent with a slowdown in traffic flow, for example due to a temporary

block in the road following a crash, followed by an increase in traffic flow as the

problem is resolved and delayed vehicles move through the network. Such patterns

are not uncommon in traffic networks. A plot of the one-step ahead forecast errors

with ±1.96 forecast standard deviation error bars for Yt(167) between times 500 and

580 is shown in Figure 5(a). The forecast errors for times 560 and 561 are circled on

the plot. The same pattern of forecast errors is also evident in Yt(167)’s children (see

Figure 5(c)), and in other descendants (see Figure 5(e)). This is due to the fact that

traffic from site 167 flows to sites 168, 170A or 170B, so any changes in traffic flow at

site 167 will have a knock-on effect to the traffic flows at these sites, and, in turn, to

the flows at sites further downstream. It is precisely these kinds of relationships be-

tween flows at different sites in the network which the BN was designed to represent.

Figure 5(g) shows a plot of the one-step forecast errors for Yt(169) over the same time

period. It is interesting to note that Yt(169) is not a descendant of Yt(167) and does

not show the same large forecast errors at times 560 and 561.

In order to improve forecast performance of Yt(167) and its descendants, interven-

tion was used for Yt(167) as follows. The observation y560(167) was unexpected and

so was treated simply as an outlier (since it would not usually be known in advance

that there would be a hold-up). Following the large forecast error for hour 560, a

decision was made to intervene for Y561(167). As the road blockage clears and vehicles

start moving, the delayed vehicles (from hour 560) are expected to pass site 167, in

addition to the vehicles that arrive during hour t = 561. The expected number of

vehicles delayed from hour 560 is e560(167) = f560(167) − y560(167), where f560(167)

is the one-step forecast (at time 559) for Y560(167). Thus ht(i) in the intervention
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(a) Yt(167) without intervention (b) Yt(167) with intervention
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(e) Yt(170B) without intervention (f) Yt(170B) with intervention
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(g) Yt(169) without intervention (h) Yt(169) with intervention
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Figure 5: Plots of the one-step forecast errors (solid line) and ±1.96 forecast standard
deviations (dotted lines) obtained using the linear multiregression dynamic model
between times 500 and 580 for Yt(167), one of its children Yt(170AB), one of its
‘grandchildren’ Yt(170B) and a non-descendant Yt(169). Plots on the left are the
forecast errors obtained without intervention and those on the right are the forecast
errors following intervention for Y561(167). The observations at times 560 and 561 are
circled for each series in each plot.
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distribution (3) was set to be e560(167). The value of Ht(i) in the intervention dis-

tribution (3) was set to be 10,000. This value was fairly arbitrary: it was chosen to

be large enough to reflect increased uncertainty and to let the model adapt quickly

after intervention. (The MSE was in fact found to be fairly robust with respect to

the choice of Ht(i), provided that it is large enough, around 50% of Vt(167) in this

case.)

From Section 4.1, before Y t is observed, intervention for Yt(i) should affect the

one-step forecast for Yt(i) and its descendants, but should not affect the one-step

forecasts for any non-descendants. This is indeed the case. Intervention for Y561(167)

not only improves the one-step forecast error for Y561(167) (Figure 5(a)(b)), but it

also improves the one-step forecast error for its children (Figure 5(c)(d)), its ‘grand-

children’ (Figure 5(e)(f)) and indeed its ‘great grandchildren’ (not shown). On the

other hand, it is clearly seen that the intervention for Y561(167) has no affect on the

one-step forecast error of Y561(169) (Figure 5(g)(h)), a non-descendant of Yt(167).

In Section 4.1 it was shown that an intervention for Yt(i) will not affect any k-step

ahead forecasts before Y t is observed. In contrast, in Section 4.2 it was shown that,

after Y t is observed, the intervention does affect the k-step forecasts for Yt(i) and its

descendants, but not the k-step forecasts of any non-descendants. To demonstrate

the effect the intervention for Y561(167) has on the k-step ahead forecasts, Table 1

shows the k-step forecast means and standard deviations for some of the series at

time t = 585 (24 hours later).

Columns 2–5 of Table 1 show 25-step forecast means and standard deviations

made at time t = 560, after Y 560 has been observed and after any intervention for

Y561(167) has been done, but before observing Y 561. Columns 2–3 show the 25-step

forecast means and standard deviations when there is no intervention and columns 4–5

show the results when there is intervention. As expected from Section 4.1, the k-step
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Table 1: The 24- and 25-step forecast means and standard deviations for time 585,
with and without intervention for Y561(167). The 25-step forecasts were made at
time t = 560 after Y 560 has been observed and after any intervention has been done,
but before observing Y 561. The 24-step forecasts were made at time t = 561 after
additionally observing Y 561.

Before Y 561 observed After Y 561 observed
(25-step forecasts) (24-step forecasts)

No intervention Intervention No intervention Intervention
Series mean sd mean sd mean sd mean sd

Yt(167) 4,653 152 4,653 152 4,357 146 5,457 195
Yt(168) 326 87 326 87 399 96 470 111

Yt(170AB) 4,212 61 4,212 61 4,112 59 4,846 69
Yt(170B) 1,431 76 1,431 76 1,372 73 1,617 85

Yt(161) 1,618 302 1,618 302 1,925 337 2,060 359
Yt(169) 514 26 514 26 507 24 507 24

forecast distributions are exactly the same for all the series regardless of intervention.

Columns 6–9 of Table 1 show 24-step forecast means and standard deviations made

at time t = 561, after any intervention for Y561(167) has been done, and after observ-

ing Y 561. Columns 6–7 show the 24-step forecast means and standard deviations

when there is no intervention and columns 8–9 show the results after intervening for

Y561(167). As expected from Section 4.2, this time it is clearly evident that the inter-

vention does affect k-step forecasts as the distributions are quite different for Yt(167)

and all its descendants (even as far away as Yt(161)). Notice, that also as expected,

the k-step forecast moments for non-descendant Yt(169) are the same regardless of

whether intervention took place or not.

From Figure 2, it can be seen that Y (167) does not have any parents. As a

consequence, the MDM models Yt(167) by any suitable univariate DLM. Thus the

effects of intervention for Y561(167) within the DLM are also illustrated. In particular,
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Figure 6: Plot of Yt(161) (in dark grey) and Yt(171) (on top in light grey) between
times 169 and 409 (exactly 4 days before and 2 days after the period of reduced flows).
Dotted vertical lines mark the start and end of the reduced flows.

it can be clearly seen that before Y 561 is observed, intervention for Y561(167) does not

affect the forecasts for Y585(167). However, after Y 561 is observed, intervention does

affect the forecast distributions for Y585(167).

5.2 INTERVENTION FOR TWO STATE VECTORS

The second intervention considered involves the state vectors for Yt(161.171) and

for Yt(161), denoted as θt(161.171) and θt(161), respectively. At time t, Yt(161.171)

is the number of vehicles leaving the M25 to join the A2, Yt(171) is the number of

these vehicles who travel eastbound on the A2, and Yt(161) is the number who travel

westbound.

From time 265 until time 360 (a period of four days) there was a reduction in

the number of vehicles leaving the M25 to join the A2 (Yt(161.171)) and a reduction

in the number of vehicles who travelled eastbound (Yt(171)). Traffic flow westbound

(Yt(161)) remained, however, at the same level. This can be seen on the plot of the

two series Yt(161) (in dark grey) and Yt(171) (on top in light grey) given in Figure 6.

This sort of pattern in traffic flow is consistent with the expected consequences of

roadworks eastbound on the A2, where drivers are forewarned of this on the M25 so

that fewer vehicles leave the M25 to join the A2 eastbound.
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Intervention is required in order to accommodate these reductions in flows. As

the reductions in flows are persistent over four days and not just one or two time

points, intervention for the state vectors associated with Y265(161.171) and Y265(171)

would be appropriate. However, since Yt(171) is a logical variable, the equivalent

intervention for the parameters associated with Y265(161.171) and Y265(161) will be

used instead. Thus, intervention for θ265(161.171) and θ265(161) is required.

The idea behind the intervention at time t = 265 is to scale the mean for

θ265(161.171) by some value α, for 0 < α < 1, and, because Yt(161) does not change

at time 265, to scale the mean for θ265(161) by 1/α. At time t = 361, traffic flows

return to their pre-intervention levels, so a further intervention is required scaling the

mean for θ361(161.171) by 1/α and the mean for θ361(161) by α.

When using intervention for planned roadworks at time 265, ideally expert infor-

mation should be used to estimate α. However, unfortunately no expert information

was available for these data. It is possible that a prior could be placed on α, and

α could then be estimated on-line from the data. For simplicity though, in order to

illustrate the affect of the intervention as if good expert information were available,

here the data between times 265 and 360 are used to estimate α. Using these data,

the flows for Yt(171) roughly decrease by 1/3 from time 265. So, since the traffic

flows for Yt(161) and Yt(171) are similar, this suggests an estimate for α of 5/6. Un-

certainty concerning the intervention is incorporated into the model by increasing

the variances for θ265(161.171) and θ265(161). These are regression parameters and,

as such, are not expected to vary greatly over time and so, because of the scale of

the system error variance, are only increased by 0.01 and 0.005, respectively. The

resulting intervention distributions for time t = 265 are as follows.

θ265(161.171)|(θ264(161.171), intervention)
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∼ N (5/6 × G265(161.171)θ264(161.171),W 265(161.171) + 0.01I) ,

θ265(161)|(θ264(161), intervention)

∼ N (6/5 × G265(161)θ264(161),W 265(161) + 0.005I) ,

where G265(161.171), G265(161), W 265(161.171) and W 265(161) are the pre-intervention

matrices as defined by the system equation, and I is the identity matrix. At time

t = 361, the mean for θ361(161.171) is instead scaled by 6/5, and that for θ361(161) by

5/6. The system error variances are again increased by 0.01 and 0.005, respectively.

In Section 4.1, it was shown that before Yt(i) is observed, an intervention for

θt(i) will affect the one-step forecasts for Yt(i) and its descendants, but not affect

any one-step forecasts of non-descendants. From Figure 7 it is clearly seen how

the interventions for θt(161.171) and θt(161) have affected the one step forecasts

for Yt(161.171) (plot (a)) and descendant Yt(171) (plot (c)). The one-step forecasts

for Yt(161) are also affected, but to a much lesser extent (see plot (b)). This is

because Yt(161) did not exhibit any change at the intervention period and so a change

in its forecasts and forecast errors were not actually required. As expected, these

interventions have no effect on the one-step forecasts for non-descendants.

Figure 7(d) shows a plot of the one-step prior mean for the first element of θt(161).

This element of θt(161) is the parameter for 00:00–01:00 each day and is only updated

every 24 hours. The effects on θt(161) of the interventions at times 265 and 361 can

be clearly seen: at time 265 the prior mean steps up to a new level which is sustained

until the intervention at time 361 returns the mean to its former level.

In contrast to intervention for Yt(i) which does not affect any k-step forecasts

before Y t is observed, but does after Y t is observed, intervention for θt(i) affects

the k-step forecasts of Yt(i) and its descendant both before and after Y t is observed.

This is demonstrated in Table 2 which shows the k-step forecast means and standard
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Figure 7: (a)–(c) One-step forecast errors both with intervention for θt(161.171) and
θt(161) (solid line) and without intervention (dotted line) for Yt(161.171), Yt(161) and
their descendant Yt(171). (d) One-step prior mean for the first element of θt(161).
On all plots, dotted vertical lines mark times 265 and 361, when intervention took
place.

deviations for Yt(161.171) and Yt(161) at time t = 289 (24 hours after the intervention

at time 265).

Columns 2–5 of Table 2 show the 25-step forecast means and standard deviations

for time 289 made at time 264 after Y264 has been observed and after any interventions

for θ265(161.171) and θ265(161) have been done, but before Y 265 is observed. Columns

6–9 of Table 2 show the 24-step forecast means and standard deviations for time 289

made at time 265 after any interventions for θ265(161.171) and θ265(161) have been

done, and after Y 265 is observed. Columns 2–3 and 6–7 show the k-step forecast means

and standard deviations when there is no intervention, and columns 4–5 and 8–9 show

the results when there is intervention. From this table, the effects of the interventions
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Table 2: The 24- and 25-step forecast means and standard deviations for time 289,
with and without intervention for θ265(161.171) and θ265(161). The 25-step forecasts
were made at time t = 264 after Y 264 has been observed and after any intervention
has been done, but before observing Y 265. The 24-step forecasts were made at time
t = 265 after additionally observing Y 265.

Before Y 265 observed After Y 265 observed
(25-step forecasts) (24-step forecasts)

No intervention Intervention No intervention Intervention
Series mean sd mean sd mean sd mean sd

Yt(161.171) 527 593 415 740 601 454 499 737
Yt(161) 318 84 447 147 294 74 372 133

on k-step forecasts both before Y 265 is observed and after Y 265 is observed are clearly

seen. Notice that the interventions will also affect the k-step forecasts both before and

after Y 265 is observed for the descendant Yt(171) as this is simply a logical function

of its parents.

6. IDENTIFICATION OF CAUSAL RELATIONSHIPS BETWEEN TIME SERIES

Because the MDM is defined to preserve the conditional independence structure

related to causality across a time series over time, the BN for the time series at

time t represents contemporaneous causal relationships between the component series.

The forecast performance of an MDM is therefore informative about these assumed

contemporaneous causal relationships.

As mentioned in Section 3, two BNs can represent the same conditional inde-

pendence statements, but have quite different conditional independence structures

related to causality, and hence quite different MDMs. Suppose that there are sev-

eral possible MDMs for Y t, each of which has the same conditional independence

structure, but each with a different conditional independence structure related to
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causality. Following the ideas of multiprocess DLMs (Harrison and Stevens, 1976),

each of these competing MDMs can be modelled simultaneously using a multiprocess

MDM. In a multiprocess MDM, each competing MDM has an associated probability

of being the ‘correct’ model, that is, the corresponding BN represents the ‘correct’

contemporaneous causal relationships. As data are observed, these probabilities are

updated, providing on-line assessments of causal relationships between time series.

As is known from BN theory, without intervention it can be extremely difficult

to identify which causal relationships are ‘correct’ from a set of competing models

with the same conditional independence structure. As a consequence, at times when

there is no intervention, there should be little difference between the various model

probabilities in a multiprocess MDM. However, this is not the case when intervention

is used. As it was shown in Section 4, intervention for Yt(i) (or θt(i)) will affect

the distributions of its descendants. Therefore any MDM which continues to provide

good forecasts for the descendants of Yt(i) is likely to be representing the ‘correct’

causal structure, and the associated probability for that model will be larger than the

others.

Explicitly, suppose there are m competing BNs for Y t with associated MDMs

M1, . . . ,Mm. Let pt−1(j) denote the prior probability that model Mj is ‘correct’

given Dt−1, for j = 1, . . . ,m. The likelihood for observing Y t = yt under model Mj

is the observed value of the one-step forecast distribution f(yt|Dt−1,Mj), which in

the MDM is the product of the observed values of individual univariate conditionals.

The posterior probability that Mj is ‘correct’ is thus given by

pt(j) ∝ pt−1(j)
n

∏

i=1

f(yt(i)|pa(yt(i)), Dt−1,Mj).

The model probabilities are therefore updated over time and any decision at time

t as to which causal structure is ‘correct’ is based on the posterior probabilities
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pt(1), . . . , pt(m).

The multiprocess MDM will be illustrated for the London network. Suppose for

simplicity that there are only two competing models:

• Model M1: The MDM already used in Section 3 with BN given in Figure 2.

• Model M2: An MDM using a BN which is the same as in Figure 2 except that

the arc between Yt(167) and Yt(170AB) is reversed.

Notice that the influence diagrams for both models represent the same conditional

independence structure, but represent different conditional independences related to

causality. As there are only two possible models here, the ratio of the posterior model

probabilities, pt(1)/pt(2), is of particular interest.

In order to illustrate how the multiprocess MDM can identify causal relationships,

the ratio of the posterior model probabilities is calculated at two separate times — at

time 540 when no intervention is required, and at time 561 following the intervention

for Y561(167) as detailed in Section 5.1. Time t = 540 was chosen fairly randomly

to illustrate the value of the ratio of posterior model probabilities when the model is

performing well and no intervention is required. When using model M1, it was shown

in Section 5.1 how intervention for Y561(167) has a dramatic effect on the one-step

forecasts and resulting forecast errors of Y561(167) and its descendants (see Figure 5).

Because Yt(167) has so many descendants in the influence diagram for M1, the effects

of the intervention for Y561(167) are seen across almost the entire network. In model

M2, however, Yt(167) only has the single descendant Yt(168) and so intervention for

Y561(167) will have only a limited affect on the one-step forecasts over the network as

a whole. In particular, intervention for Y561(167) will have no effect in reducing the

large one-step forecast errors for Y561(170AB) and its descendants. So, although the

same intervention for Y561(167) should be used for M1 and M2 (after all, the same
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change is observed for Y561(167)), the effects of the intervention are quite different for

the two models and the observed likelihoods and hence the posterior probabilities,

pt(1) and pt(2), will reflect this.

The initial two weeks of data were used to estimate priors for the parameters for

both models. The models were then run (separately) and updated sequentially as

usual up to time t = 539. For fairness, at time 539 both models are assigned the

same prior probability so that p539(1) = p539(2) = 0.5. After observing Y 540 = y540,

the ratio of posterior probabilities, p540(1)/p540(2), is calculated to be 1.06. This

is approximately equal to 1 as expected, illustrating how it is difficult to identify

causality when no intervention is used. The models were then again run (separately)

and updated sequentially as usual up to time t = 560. At time t = 561, intervention

was performed for Y561(167) using the same method as presented in Section 5.1 so that

the distribution for Y561(167)|(θ561(167),Mj) was adjusted at intervention by adding

e560(167) to the mean and adding 10,000 to the variance. For fairness, at time 560

again both models are assigned the same prior probability, so that p560(1) = p560(2) =

0.5. After observing Y 561 = y561, the ratio of posterior probabilities, p561(1)/p561(2),

is this time calculated to be 1.7× 1030 providing overwhelming support for model M1

as opposed to model M2. Notice how the ratio of posterior probabilities is much larger

at the time of intervention (t = 561), than at the time of no intervention (t = 540),

thus illustrating how much easier it is to identify causal relationships at the time of an

intervention than when there is no intervention. For this particular application, the

context of the problem heuristically suggests that, under normal traffic conditions,

Yt(167) is causal for Yt(170AB), since traffic flows from site 167 to sites 170A and

170B. It is therefore reassuring that the multiprocess MDM so clearly confirms this

when intervention is used.

As mentioned in Section 1, the causal relationships between traffic flow series
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can change temporarily in response to queueing traffic. Queueing traffic in itself can

cause a change in traffic flows which can require intervention to maintain forecast

performance at the source of the problem. The multiprocess MDM is then able to

identify the ‘correct’ contemporaneous causal structure so that the ‘correct’ MDM

can be used to maintain forecast performance across the entire multivariate series.

This is, in fact, an important modelling issue when forecasting traffic flows in practice.

To accommodate changes in causal relationships, multiprocess MDMs can be used at

each time point to provide an on-line assessment of the most likely causal relationships

at each time t. Further investigation of this will be the focus of future research.

7. CONCLUDING REMARKS

This paper has shown how intervention in the MDM can be an extremely use-

ful tool for forecasting traffic flows, enabling forecast performance to be maintained

despite changes in the system. It is simple to implement since intervention is only

required for the variable(s) at the root of the problem: the effects of any intervention

is automatically passed on to other series also affected by the problem. Intervention

can also be used to identify contemporaneous causal relationships between the series,

going beyond the previous research using intervention for identifying lagged causal

relationships between series.
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