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Abstract

For over 150 years, bronchoscopy, especially flexible bronchoscopy, has been a mainstay for 

airway inspection, the diagnosis of airway lesions, therapeutic aspiration of airway secretions 

and transbronchial biopsy to diagnose parenchymal lung disorders. Its utility for the diagnosis of 

peripheral pulmonary nodules and therapeutic treatments besides aspiration of airway 

secretions, however, has been limited. Challenges to the wider use of flexible bronchoscopy 

have included difficulty in navigating to the lung periphery, the avoidance of vasculature 

structures when performing diagnostic biopsies and the ability to biopsy a lesion under direct 

visualization. The last 10-15 years has seen major advances in thoracic imaging, navigational 

platforms to direct the bronchoscopist to lung lesions and the ability to visualize lesions during 

biopsy. Moreover, multiple new techniques have either become recently available, or are 

currently being investigated to treat a broad range of airway and lung parenchymal diseases 

such as asthma, emphysema, chronic bronchitis or to alleviate recurrent exacerbations. New 

bronchoscopic therapies are also being investigated to not only diagnose, but possibly treat 

malignant peripheral lung nodules. As a result, flexible bronchoscopy is now able to provide a 

new and expanding armamentarium of diagnostic and therapeutic tools to treat patients with a 

variety of lung diseases. This state-of-the-art review succinctly reviews these techniques and 

provides clinicians an organized approach to their role in the diagnosis and treatment of a range 

of lung diseases.
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Introduction

For over 150 years, bronchoscopy has been instrumental in the inspection and diagnosis of 

airway and parenchymal lung diseases.(1) Recently, the capabilities of bronchoscopy to 

diagnose and treat a variety of lung diseases has expanded. Bronchoscope designs with 

enhanced optics, greater resolution, flexibility and smaller size but with functional working 

channels are key to these advances. 

High-resolution chest CT (HRCT) imaging provides enhanced structural detail of lung lesions 

and coupled with navigational technology provides endoscopic roadmaps to small distal lesions. 

HRCT imaging can construct pulmonary vasculature maps and provide virtual avascular paths 

to lesions that lack a leading bronchus. Incorporation of real-time imaging during bronchoscopy 

can provide precision location of difficult to reach targets. 

Simultaneously, advances in endobronchial ultrasound coupled with instruments that can 

aspirate, biopsy, cut, brush, freeze, ablate, and vaporize tissue provides an array of modalities 

to diagnose and treat many lung diseases. (Table 1)

Bronchoscopic interventions in selected patients with asthma and emphysema provides new 

treatment options. Current research focused on treating chronic bronchitis, fixed airflow 

obstruction and lung cancer offer the possibility of less invasive, but effective therapies. (Table 

2)

Herein, we review recent advances in the diagnostic and therapeutic applications of 

bronchoscopy. 
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Interventional bronchoscopy for lung cancer diagnosis and treatment 

Modalities that enhance imaging and provide bronchoscopic navigation to lung lesions

Several imaging modalities can improve access to peripheral lesions. Some modalities provide 

real-time imaging during navigation (convex endobronchial ultrasound (EBUS), radial 

endobronchial ultrasound (rEBUS), fluoroscopy and CT imaging modalities); others use 

planning HRCTs to create navigational paths. A patient’s condition during planning HRCT is 

different compared to the procedure; spontaneous respiration vs. intubation plus mechanical 

ventilation, anesthesia and paralysis, and higher inspired O2, respectively. The latter results in 

atelectasis and creates CT-to-body divergence. CT-to-body divergence describes differences in 

targeted lesion locations identified pre-procedurally by HRCT and its location during 

bronchoscopy. CT-to-body divergence is more important than nodule size in adversely affecting 

diagnostic yield and a crucial barrier to ablation.(2) The following modalities have been 

developed to address this obstacle, however, it none of the technologies have been directly 

compared for diagnostic yields or cost-effectiveness.

Imaging techniques

Radial EBUS (rEBUS)

Launched in 1999, rEBUS (Olympus Cooperation, Tokyo, Japan) uses a flexible catheter and 

rotating ultrasound transducer to produce 360° ultrasound images, it was first used to guide 

transbronchial lung biopsy (TBLB) (3). During bronchoscopy, the 20-MHz mechanical probe is 

inserted through a guide sheath into the lung periphery. Figure 1 shows a typical ultrasonographic 

image. 
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rEBUS is the most commonly used real-time technique to confirm a lesion during diagnosis and 

probe placement during therapeutic interventions. However, discordance has been reported for 

diagnostic yields amongst studies. 

Steinfort (4) evaluated > 1,400 patients with rEBUS guided transbronchial biopsy and showed a 

specificity of 1.00 and sensitivity of 0.73 for lung cancer diagnoses. Variations in diagnostic 

sensitivities were attributed to the prevalence of malignancy, lesion size, probe position and use 

of fluoroscopy. In a multicentered controlled trial, the diagnostic yield of thin bronchoscope (TB) 

plus rEBUS  was compared with standard bronchoscopy and fluoroscopy (SB-F); average lesion 

size was 31.2 + 10.8 mm.(5) Diagnostic yield was higher with TB-rEBUS compared to SB-F (49% 

vs 37) but was not statistically significant.

Several reasons may explain differences in diagnostic yield bedside lesion characteristics. rEBUS 

probes are not steerable; navigation support might be useful especially in lesions < 2 cm. 

Eberhardt (6) reported that EBUS with electromagnetic navigational bronchoscopy (ENB) 

beneficially combines real-time imaging with steerability. Diagnostic yields of the combined 

procedure are greater than rEBUS or ENB alone. Others have confirmed this finding. (7). An 

opportunity exists to improve rEBUS imaging, especially semisolid lesions, to enhance diagnostic 

accuracy.(8)

Navigational techniques

ENB (electromagnetic navigational bronchoscopy)

ENB systems (Medtronic, Inc., Minneapolis, USA) assist placing biopsy tools into lesions. It uses 

low-frequency electromagnetic waves emitted from an electromagnetic board placed under the 

patient. A sensor probe is mounted on a cable tip and a flexible catheter provides biopsy tool 

access (9). 
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Meta-analyses report diagnostic accuracies of 70-75%.(10-12).  Lesion location, nodule size, an 

existing bronchus sign, procedural error and biopsy technique all affect diagnostic yield. a A 

prospective multicenter study (NAVIGATE) evaluated ENB using the superDimension 

navigation system (Medtronic, Minneapolis, MN) in patients with median nodule size 20 mm.(13) 

In 1,157 patients that underwent ENB, 94% had navigation completed; diagnostic yield was 

73%. The system recently added tomosynthesis (serial x-rays images during c-arm rotation) to 

to improve real-time fluoroscopic evaluation and address CT-to body divergence.

The SPiN® Thoracic Navigation System (Veran Medical Technologies, Inc., St. Louis, USA) is 

an ENB platform that uses respiratory gating technology to track moving nodules during 

endoscopic or transthoracic lung nodule biopsy. (14)  Biopsy instruments have electromagnetic 

sensors that guide and track the path to the target and also addresses CT-to-body divergence.

VBN (Virtual bronchoscopic navigation) and Augmented Fluoroscopy

Virtual bronchoscopic images of the bronchial path to a peripheral lesion are generated by 

software using HRCT data. During bronchoscopy, the virtual navigational image is projected on 

a display screen and compared to real-time images. Eberhardt (15)  reported a 80% diagnostic 

yield in patients with solitary pulmonary nodules.  Diagnostic yield with VBN depended upon lesion 

size, lobar location and bronchus sign presence.

 Visual guidance to targeted lesion is superimposed onto the endoscopic image (LungPoint 

(Broncus Medical, Mountain View, California, USA). An image-based registration technique aligns 

virtual images with live bronchoscopic video. Once near the target, the lesion shape is overlaid 

onto the airway wall to provide biopsy guidance (Figure 2). Lesion shape is overlaid onto live 

fluoroscopic images (e.g., fused fluoroscopy or augmented fluoroscopy). 
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Another system uses  real-time endobronchial augmented fluoroscopic navigation (BodyVision 

Medical LtD., Israel).  This system enables lesion tracking during breathing movement and may 

improve lesion localization and diagnostic yield. (16)

Others report that VBN-guided ( Olympus Medical Systems, Tokyo, Japan) rEBUS-

transbronchial diagnosis without fluoroscopy has equivalent diagnostic yield to fluoroscopy in 

nodules with a bronchus sign.(17) Comparative evaluation of these techniques is required.

Transparenchymal Nodule access (TPNA)

rEBUS, VBN, ultrathin scopes and ENB improves diagnostic yield of pulmonary nodules 

compared to standard bronchoscopy; however, diagnostic yield still depends on lesion size, 

lesion location and presence of a bronchus sign. 

Some nodules lack a bronchus sign and are so distant from a bronchus that bronchoscopic 

sampling techniques fail. For these situations, Transparenchymal Nodule Access (TPNA) was 

developed. The Archimedes Virtual Bronchoscopy Navigation System (Broncus Medical, 

Mountain View, Calif., USA) reconstructs HRCT data into a 3D model to provide virtual guidance 

of sheath placement through an airway wall and lung parenchyma into a lesion. (18, 19)

A sheath with radiopaque marker bands is used to tunnel through lung parenchyma to the nodule, 

samples are taken real-time under fused fluoroscopic guidance (Figure 3, Panel A).

Herth (20) presented a dataset at the ERS conference showing that the yield of TPNA depends 

on lesion size.  

The transbronchial access tool (TBAT; CrossCountryTM TBAT, Medtronic, Minneapolis, MN) 

biopsies peripheral lung nodules using rEBUS or ENB or rEBUS + ENB to diagnose peripheral 

lung nodules. (Figure 3, Panel B). TBAT with rEBUS and ENB plus cone beam CT may 
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increase diagnostic yield close to 100%.(21-23) Procedural time and radiation exposure is 

higher with use of CT.  More data is needed to confirm the success of this technique.

Imaging and Navigation

CT Bronchoscopy

Computed tomography (CT)-guided biopsy helps the bronchoscopist biopsy fluoroscopically 

invisible lesions. Ultrathin bronchoscopy with CT guidance has 79% and 80% diagnostic 

sensitivities when a bronchus or artery is at the center of the lesion, respectively.(24)  

Combining VBN with CT-guided biopsy using an ultrathin bronchoscope may be helpful, 

especially LUL lesions .(25) (24) Others failed to increase diagnostic yield with CT guidance 

suggesting that technical expertise may be crucial. (26) Lesion location (superior segment of 

lower lobes), more distal navigation, and a CT bronchus or artery sign affects diagnostic yields. 

(24) Cone beam CT (CBCT) imaging to diagnose lung lesions is a modification of techniques 

used in digital angiography.(27-29)  With this technique, CBCT images are obtained and the 

target is overlaid on fluoroscopic images. Real-time multiplanar confirmation of lesion location in 

relationship to biopsy tools addresses CT-to-body divergence. A drawback is radiation bursts 

used to procure images during CBCT “spins. One report using CBCT with real-time ENB with or 

without rEBUS reported navigational and diagnostic yields of 91% and 70%, respectively.(28) In 

malignant cases, diagnostic yield was 82% for lesions within 25 + 18mm of the pleura. (28) A 

study using CBCT with augmented fluoroscopy (Philips Allura Xper FD20 system with 

Oncosuite); PhilipsHealth, UK) plus ENB reported a diagnostic yield of 83.7%; there was no 

relationship between diagnostic yield and lesion size, location, fluoroscopic visibility or bronchus 

sign. (30) CBCT with ENB and hook-wire localization enhances diagnosis and resection of lung 

lesions during the same session. (27) Further investigation should compare CBCT diagnostic 

yield vs. less costly modalities with lower radiation exposures.

Page 9 of 93

 AJRCCM Articles in Press. Published February 05, 2020 as 10.1164/rccm.201907-1292SO 
 Copyright © 2020 by the American Thoracic Society 



Adjunctive bronchoscopic local imaging techniques

Lung cancer screening has precipitated a shift from central to more peripheral nodules for lung 

cancer evaluation. This has prompted development of new techniques based on sound optical, 

biochemical and physiological principles to provide greater in vivo guidance while biopsying small 

lung lesions.  The clinical value of these techniques are currently unknown but have potential to help 

diagnose peripheral lung cancers. 

Optical coherence tomography (OCT)  

OCT uses near infrared light to create high-resolution images at a ‘histology’ level with 10-15µm 

resolution and 2-3mm depth. (31) It can identify and quantify changes in airway walls  (32, 33), 

histologically examine lung parenchyma(34-36), and examine nodules and pulmonary 

vasculature. Images are captured using a 1mm probe via the bronchoscope. OCT’s clinical 

applications include identifying bronchial lesions, (37-39) airway remodeling,(40-43) subtyping 

interstitial lung diseases (ILD)(44),and assessing vascular lesions due to pulmonary arterial 

hypertension (45, 46) or thromboembolic disease.(47) 

OCT has been used with other modalities to enhance diagnostic yield. Autofluorescence 

bronchoscopy–guided OCT imaging provides in vivo imaging of preneoplastic bronchial lesions to 

study their natural history and the effects of chemopreventive intervention. In high-risk heavy 

smokers, Lam reported that dysplasia and carcinoma in situ (CIS) can be distinguished from lower-

grade lesions.(37) Polarization-sensitive OCT (PS-OCT) is another OCT imaging modality that is 

endoscope- and/or needle-compatible. It provides large volumetric views of lung tissue 

microstructure at high resolution (e.g.,10 mm) while simultaneously measuring birefringence of 

organized tissues like collagen or airway smooth muscle. In 64 lung nodule samples, PS-OCT 

accurately classified tumor regions with higher (>20%) from lower fibrosis thus yielding higher 

tumor content with PS-OCT directed biopsy.(48)
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Confocal laser endomicroscopy (CLE)

CLE uses low power laser bundles to create real-time microscopic images at a “cellular” level. 

CLE has a resolution up to 3.5µm, with a 240µm maximum depth and 600µm field of view.(47) 

Contrast can enhance visualization of different cellular/tissue components. Images are captured 

using a probe-based CLE via bronchoscope or 19-gauge needle. It may help detect lung 

cancer, (49-51)ILD(52, 53), lung allograft rejection (54)and mediastinal lymph node 

pathology.(55) 

Image enhancement

Autofluorescence bronchoscopy (AFB) utilizes green and red spectrum light to detect mucosal 

alterations. Normal mucosa presents green color, while precancerous and cancerous lesions 

absorb the green spectrum and turn magenta. Narrow band imaging (NBI) removes all 

wavelengths except two that are absorbed by hemoglobin thereby creating contrast between the 

vasculature (Cyan) and surrounding mucosa (Brown). AFB(56)and NBI (57-60)are superior to 

white light bronchoscopy in detecting dysplasia, CIS or invasive carcinoma.(61) Image 

enhancement has struggled for a role in bronchoscopy because no well-defined population 

exists for general use,(62) poor standardization of pathological dysplastic criteria and weak 

evidence for treatment of CIS.(63) It may be useful in patients with abnormal sputum cytology or 

previous dysplasia to delineate tumor margins.(64)

Thin convex probe endobronchial ultrasound (Thin-EBUS)

Convex probe endobronchial ultrasound is designed for mediastinal and hilar lymph node 

staging and has limited size and flexibility to direct biopsy of lung lesions except those centrally 

located. Development of a Thin-EBUS scope that has smaller size and greater flexibility may 

improve smaller airway access.(65) In ex-vivo human lungs, it provides superior access to 
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segmental and subsegmental bronchi.(66) Thin-EBUS could provide better access to interlobar 

lymph nodes and peripheral lung lesions.

Technological changes in the Bronchoscope

Ultrathin bronchoscopy

The small size of the peripheral airways limits the ability of conventional bronchoscopes to 

navigate to peripheral lesions. The working channel of conventional pediatric bronchoscopes 

limits the size of tools needed to diagnose peripheral nodules. (67) Development of ultrathin 

bronchoscopes (~2.8 -3.5 mm outer diameter) allows for greater maneuverability to traverse 

small airways. Although no strict definition of ultrathin exists; most have outer dimensions < 3.2 

mm. A retrospective analysis of 209 malignant lesions biopsied with an ultrathin bronchoscope 

reported diagnostic yields of 63% in lesions < 2 cm. (68)A metanalysis  of ultrathin 

bronchoscopy reported an overall diagnostic yield of 70% when combined with other modalities 

(e.g., VBN, rEBUS and fluoroscopy). (69) A concern is that working channel size limits the size 

of collected specimens. A multicentered trial reported that ultrathin bronchoscopy was superior 

to thin bronchoscopy to diagnose peripheral lung nodules < 30 mm. (68). The ultrathin 

bronchoscope reached more distal bronchi (median fifth vs. fourth generation bronchi). 

Diagnosis of benign disorders was lower than malignant lesions despite using the ultrathin 

bronchoscope.(70) The type of image guidance (fluoroscopy vs VBN vs CT) used with the 

ultrathin bronchoscope and sampled lobe impacts diagnostic yields.(24, 25, 71)

Robotic bronchoscopy

Robotic-assisted bronchoscope systems can navigate to small peripheral airways under 

continuous visualization while maintaining a static curved position. This advantage keeps biopsy 

tools and even ablation devices locked on the targeted lesion despite flexed articulation. (72-74) 
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Initial experience has been reported in 15 patients.(73)  Biopsy samples were taken from 93% of 

subjects with lesions 2.6 mm in diameter; closest edge was 0.6 mm from the pleura. Cancer was 

confirmed in 60% of lesions; time to biopsy was 45 minutes in the first five cases and 20 minutes in 

the last nine. Another robotic device (Ion Endoluminal System (www.intuitive.com/ion) received 

FDA clearance in August 2019. (https://www.therobotreport.com/ion-lung-biopsy-intuitive-surgical-

fda/) It has Fiber Optic RealShape (FORS) technology with ultra-thin and maneuverable 

catheters that navigate to the lung peripheral with maintenance of catheter stability. Fielding 

studied 29 subjects with mean lesion size of 12.2 ± 4.2 mm; 41.4% had absent CT bronchus 

sign. In 96.6% of cases, target was reached and samples were obtained.(75) An overall 

diagnostic yield of 79.3% was reported with 88% yield for malignancy.  

Malignant Solitary Pulmonary Nodule:  Therapeutic Approaches

Solitary pulmonary nodule 

Guidelines recommend surgical resection of early stage non-small cell lung cancer (NSCLC) 

(76),but many patients are unsuitable (77). The only non-surgical non-pharmacological option is 

stereotaxic body radiation therapy (SBRT), which is highly effective but not without 

complications.(78) The need exists for other non-pharmacological options that are similarly 

effective, but with less complications.

Advances in navigational bronchoscopy enable accessing a lung tumor and treating it. Various 

bronchoscopic ablation technologies might be possible: radiofrequency ablation (RFA), 

microwave ablation (MWA), photodynamic therapy (PDT), brachytherapy, cryoablation, vapor 

thermal ablation or direct therapeutic injection. Most technologies are still in preclinical stages or 

undergoing small feasibility trials.
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Radiofrequency Ablation (RFA)

RFA uses high frequency alternating current to deliver thermal injury with an electrode inserted 

into the tumor. RFA generates a tissue destruction zone around the electrode tip; treatment zone 

and tumor death may be affected by surrounding tissue. Damage to aerated lung surrounding 

tumor is minimized by air’s insulating effect.  (79, 80) Koizumi (81) reported a local control rate of 

83 % using endoscopic RFA; median progression-free survival was 35 months and overall 5-year 

survival was 61.5%. 

Microwave Ablation (MWA)

Microwave ablation is a heat-based therapy that generates an elliptical-shaped electromagnetic 

field with microwave frequency ranges between 300 MHz to 300 GHz via a probe inserted into 

the lesion. Like RFA, microwave ablation induces coagulation necrosis by heating target tissue 

to temperatures > 60°Celsius. An endoscopically directed flexible gas-cooled microwave 

antenna has been tested in a porcine model (82).  Clinical trials with endoscopically delivered 

MWA are ongoing. (ClinicalTrials.gov Identifiers: NCT03569111; NCT04005157 and 

NCT03769129). 

Cryoablation

Cryoablation causes cell death using alternating freeze and thaw cycles. The exact lethal 

temperature threshold is unclear; some experiments suggest -20°C as a minimum threshold. 

Yamauchi reported mean local tumor progression-free interval was 69 months and median 

survival was 62 months using percutaneous cryoablation in 22 inoperable NSCLC patients (83) 

Zheng (84) recently reported animal data using a flexible probe; human data is unavailable.
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Bronchial Thermal Vapor Ablation (BTVA)

BTVA has been used in bronchoscopic lung volume reduction and may have potential to treat 

focal cancers. An advantage of water vapor is rapid energy delivery. A porcine model 

demonstrated that uniform necrosis can be bronchoscopically delivered to a focal lung region 

(85). A first-in-human trial has begun. (ClinicalTrials.gov Identifier: NCT03198468)

Brachytherapy (HDRT)

HDRT is used to palliate malignant central airway obstructions. Experience for peripheral 

brachytherapy is limited; only small case series are published (86, 87).  Most have used 5 Gy 

administered 3 times per week. The requirements for repeated applications and placement of a 

guide sheath are limitations.

Photodynamic Therapy (PDT)

PDT has been used for malignant central airway obstructions and carcinomas-in-situ. After 

administration of a photosensitizing agent with selective uptake by tumor cells, the 

photosensitizer is activated endoscopically by a specific laser light. The photosensitizer 

produces highly reactive oxygen species that cause cell death. Chen (88) treated 3 patients with 

local control at 1-year.  A newly developed parallel-type ultrasmall composite optical fiberscope 

(Laser-eYe Ultrathin fiberscope [LYU]) couples simultaneous imaging and phototherapy and 

was effective in preclinical lung cancer models.(89) This new laser device has potential to treat 

peripheral lung cancers.

Central airway obstruction (CAO)

CAO is symptomatic obstruction of the trachea, mainstem bronchi, bronchus intermedius or 

lobar bronchi.(90, 91) Tracheal obstruction causes exertional symptoms when tracheal diameter 
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is 8mm or ~ 30% cross-sectional area, rest symptoms develop < 5mm or <20% cross-sectional 

area. (92-94)

CAO can be divided into malignant or non-malignant causes. Malignant disease is usually 

related to locally advanced thoracic malignancies. At presentation approximately 10% of lung 

cancers have evidence of CAO.(95) Tracheal invasion constitutes a T4 malignancy in the 8th 

TNM classification,(96) tracheal invasion without metastasis constitutes stage 3A disease with a 

median survival of 29.3 months, nearly double compared to prior years.(97) Primary tracheal 

tumors are rare; in adults these are mostly malignant and due to squamous cell carcinoma, 

adenoid cystic carcinoma or carcinoid.(98) Primary tracheal tumors should be treated with 

resection for most patients with benign lesions, tumors of intermediate aggressiveness, and 

localized malignant tumors.(99) 

Non-malignant disease includes post-intubation, (100, 101)post-tracheostomy,(93) infection 

related;(102) transplant airway disease (102)and autoimmune conditions. 

CT imaging is essential to evaluate CAO, it provides insight into etiology, extent, morphology 

and vascular involvement. (103-106) 3D reconstructions with vascular and mediastinal anatomy 

assists with case planning and stent preparation.

Flexible bronchoscopy evaluates morphology and extent of CAO and can provide diagnostic 

specimens. (107)Manipulation of CAO with a flexible can be dangerous; even minimal 

manipulation can cause edema or hemorrhage that precipitates airway compromise.  

Therapeutic instruments (laser, APC, stent deployment) can be used with a flexible 

bronchoscope.(108) Endobronchial ultrasound assesses invasion depth and vascular structures 

during therapeutic bronchoscopy. (109)
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Rigid bronchoscopy is the gold standard for CAO management .(90, 110)  It allows airway 

manipulation with the ability to ventilate, suction and tamponade bleeding while debulking 

tumor.(107)  Its’ large working channel allows removal of large tumors and deployment of 

silicone stents, but can also cause airway damage. A flexible bronchoscope can be inserted via 

the rigid bronchoscope to enhance maneuverability. 

After appropriate patient selection(111, 112) therapeutic bronchoscopy for CAO can be 

performed with acceptable complications and mortality. (113, 114) Therapeutic bronchoscopy 

improves quality of life, (114-116), lung function(117) weans patients from ventilation (118), 

stabilizes patients before definitive therapy, (119) and improves survival similar to comparable 

cancer stage patients without CAO.(120, 121)

Central airway obstruction (CAO): Treatment

Therapeutic destruction

Therapy for malignant CAO includes mechanical debridement with forceps, cutting tools or 

mass coring with a rigid bronchoscope. (107) Thermal therapies with laser, APC and 

electrocautery can provide immediate relief.  Depending on the laser and its settings, it can be a 

cutting tool, or can coagulate and vaporize the tumor. There is a low rate of laser related 

complications; but hemorrhage, airway fire, and fistula have been reported.(122-125) APC is not 

ideal for large tumors but helps with mechanical debulking by coagulating the tumor and 

controlling bleeding. (126)  Electrocautery can be used but requires tissue debulking.(127) 

Thermal therapies require reduced oxygen environments which limits use in hypoxemic 

patients. 
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Photodynamic therapy (PDT)

Photodynamic therapy (PDT) is indicated for non-operable malignant CAO. (128) The effect is 

delayed and requires repeat bronchoscopy for airway clearance.  Adverse reactions include 

photosensitive skin rash and hemoptysis.(129)

Cryotherapy

Cryotherapy can be used as a spray (130) or a probe (131) for malignant and non-malignant 

CAO.  The cryoprobe requires removal from the airway between biopsies; serious hemorrhage 

has been reported. 

Microdebrider

A microdebrider is a hollow suction tube with an internal rotary blade; the tissue is macerated by 

the blade and simultaneously removed by suction. This allows field visualization and rapid 

debridement without perforation. (132, 133)

Airway dilation

Airway dilation uses high pressure catheter balloons, bougie devices or a rigid bronchoscope. 

(134) Dilation is combined with other therapies; radial incisions for focal stenosis to prevent 

mucosal tear(135), debridement of tissue, and stent placement.(136-138) Sustained airway 

patency after balloon dilation is variable(139, 140); the procedure usually needs repeating, 

surgery, or stenting for recalcitrant disease.(141) Attempts to sustain benefit with drug eluting 

balloons has been reported.(142) 
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Chemo injection

Direct injection of chemotherapeutic agents into CAO has been reported to be feasible.  (143-

145)  

Stents 

When selecting a stent to manage CAO, one must consider the disease process, radial force 

required, duration of use and insertion technique. The ideal stent should be: (1) easy to insert 

and remove, yet not migrate; (2) of sufficient strength to support the airway but flexible enough 

to promote secretion clearance; (3) biologically inert to minimize granulation tissue; and (4) 

available in multiple sizes. (90)

Silicone stents developed (146)are inserted via a rigid bronchoscope, they are inexpensive, 

easy to modify, and remove. The major issues are mucostasis (147) and migration. Silicone 

stents have reduced granulation tissue reaction,(148) the silicone Y stent is ideal for lesions at 

the carina or dynamic collapse of the distal trachea and mainstem bronchi. (91) 

Self-expandable metal stents (SEMS) are the most commonly used stents. SEMS conform to 

the airway and have favorable internal to external diameters that aids mucus clearance. 

Indications include recurrent stenosis; malignant airway obstruction(9, 149-151) and transplant 

airway stenosis. (152-154)They are used in expiratory central airway collapse to predict 

response to tracheoplasty. (155)

Balloon-expandable metal stents are malleable, they can be bent and perforated to aerate 

collateral bronchi.  Currently, their limited diameters make them most useful in lobar 

airways.(156, 157)

Page 19 of 93

 AJRCCM Articles in Press. Published February 05, 2020 as 10.1164/rccm.201907-1292SO 
 Copyright © 2020 by the American Thoracic Society 



Benign CAO patients’ survive longer than malignant patients and thus experience more 

complications. (150) Attempts to circumvent these issues have led to stents made with 

biodegradable polymers.(158)  Use of these stents is limited to reports in pediatric patients and 

transplant airway disease. (159-163)A pilot study in adults with transplant airway complications 

reported biodegradable stents to be effective but required repeated procedures(161) (158)

The tracheobronchial tree is well suited to 3D printing using multidetector CT data. 3D models 

have been used for procedure planning, stent design and assessment of flow limitation.(164-

169)

Agents may be applied to stents that could retard bacterial colonization, granulation tissue 

formation or malignant growth. (29)

Mediastinal Lymph Node Staging 

Real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) for 

lung cancer staging was introduced in 2003. (170) Since then, EBUS-TBNA has become 

essential for minimally invasive sampling of mediastinal lymph nodes for non-small cell lung 

cancer (NSCLC).(171) (172)

EBUS-TBNA is the initial modality for lung cancer staging for multiple reasons. The first is less 

than ideal assessment by staging modalities such as positron emission tomography-computed 

tomography (PET-CT).  Next is its excellent safety profile.  Complication rates from multiple 

databases reports EBUS associated complication rates at ~ 1%. Most complications are minor 

(cough, bleeding at puncture site) but more serious complications (pneumothorax, mediastinitis, 

pericarditis and death) have been reported.(173)  The diagnostic accuracy of EBUS-TBNA is 

similar to mediastinoscopy.(171-174) Compared to mediastinoscopy alone, when EBUS-TBNA 

and mediastinoscopy are used in conjunction, the sensitivity for detection of mediastinal 
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metastasis improves from 79% to 94%.(175) Follow-up data revealed similar 5yr survivals 

between endoscopic and surgical staged groups. (176) 

Standard practices for EBUS-TBNA staging involves evaluation and sampling of N3 nodal 

stations, followed by N2 and N1 stations.  Sampling all lymph nodes > 5mm in short axis is 

optimal to maximize procedure sensitivity.(177) Stations traditionally accessible by EBUS-TBNA 

include 2R/2L, 4R/4L, 7, 10R/10L and 11R/11L.  Stations 5 and 6 are inaccessible by EBUS-

TBNA, unless a transvascular approach is employed.  In place of bronchoscopic ultrasound, 

transesophageal and gastric use of the EBUS scope (EUS-B), can be performed.  EUS-B allows 

more complete staging of lung cancer patients including stations 8 and 9, and alternative access 

to stations 2L and 4L. (178)  EBUS can evaluate airway tumor infiltration better than CT 

imaging.(179)

Technical aspects of EBUS-TBNA may maximize procedural yield.  Aspiration needles come in 

19g, 21g, 22g, and 25g sizes.  Trials comparing 21g to 22g, as well as use of a 19g needle 

show improved sample volume with larger needle size, but larger needle size has not been 

shown to correlate with diagnostic yield.(180, 181) Larger needles may be considered if 

lymphoma or sarcoidosis is suspected. Use of mini-forceps via EBUS may increase sample 

volume.(182) 

In the NSCLC era of tumor molecular analysis, sample adequacy is important in lung cancer 

staging.  During  node sampling, diagnostic yield plateaus after three passes.(183) Rapid on-

site evaluation (ROSE) ensures adequate sampling and reduces needle passes.(184) EBUS-

TBNA sampling is adequate for generation molecular analysis including ALK, EGFR mutations  

and PDL1 expression.(185, 186) 

Ultrasound characteristics of lymph nodes provide insight into underlying pathology. 

Independent predictors of metastasis included rounded shape, distinct margins, heterogeneous 
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echogenicity, and coagulation necrosis.(187) An aggregate scoring system that uses the 

presence of matting, non-hilar vascular pattern perfusion, absence of central hilar structure, and 

rounded shape had a sensitivity of 93%, specificity of 55%, positive predictive value of 73%, and 

negative predictive value of 82% to predict malignancy if at least two factors were present.(188) 

Elastography

Elastography has been used in breast, thyroid, and hepatic diseases to measure elastic 

properties.   It has also been used to evaluate mediastinal lymph nodes. The color map used 

with elastography includes red, yellow, green and blue corresponding respectively from least to 

most stiff.  Elastogram colormetric patterns comprise three groups: Type 1 homogeneous green 

(predominantly green with yellow and red areas), Type 2 mixed (predominantly green with focal 

blue areas), or Type 3 homogeneous blue (predominantly blue). (Figure 4) 

Current data suggests that EBUS-Elastography is safe and may provide predictive information 

regarding malignant lymph node infiltration. Whether EBUS-Elastography precludes TBNA of 

lymph nodes is uncertain.  A study using similar classification types found a sensitivity of 87%, 

specificity of 68%, positive predictive value of 80%, and negative predictive value of 77% when 

type 1 was considered benign, and type 3 malignant.(189) 

Obstructive lung diseases: Interventional bronchoscopic treatment 

Asthma

Despite a multiple inhaled therapies, patients with asthma may remain symptomatic and require 

chronic oral steroids or expensive biologics. Consequently, a need exists for other therapeutic 

options.
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Bronchial Thermoplasty

Bronchial thermoplasty is an effective bronchoscopic treatment for asthma. Smooth muscle 

hypertrophy is key in severe asthma and its reduction may alleviate symptoms and down-

regulate airway inflammation. Bronchial thermoplasty is a catheter-based therapy that utilizes 

radio-frequency energy to heat the airways. A thermocouple within the catheter detects 

temperature and algorithms within the generator allows smooth muscle temperature to reach 

65oC to induce permanent smooth muscle ablation. (190) The mechanism of action was 

demonstrated by short- and long-term canine studies and has been confirmed in humans. (191-

195)

Clinical Evidence

Two cohort and two randomized controlled trials have reported that bronchial thermoplasty is 

safe and effective in patients with mild to severe asthma. A study in mild to moderate asthma 

patients demonstrated reductions in symptoms and reduced bronchial hyper-responsiveness. 

(196)A subsequent study in moderately severe patients (AIR Trial) confirmed improvements in 

quality of life and symptom scores, but no change in pulmonary function. (197)An uncontrolled 

study in 30 patients with severe disease (RISA Study) reported benefits in asthma symptom 

scores and quality of life. (198) A 50% reduction in steroid dose has been reported following 

bronchial thermoplasty in steroid dependent patients. (198).    

A sham-controlled study was performed in symptomatic patients with moderate to severe 

asthma on high dose inhaled steroids.  (199) After bronchial thermoplasty there were significant 

improvements in asthma quality of life questionnaire measures (AQLQ) and reduced 

exacerbations, healthcare utilization and days lost from work or education. Reductions in 

exacerbations and hospitalizations were maintained long term.(200) 
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Real Life Treatment Experience

The US study (PAS2 Study, Post-FDA Approval Clinical Trial Evaluating Bronchial 

Thermoplasty in Severe Persistent Asthma) collected registry data and demonstrated similar 

benefits to AIR2.  (201)There was a 44% reduction in severe asthma exacerbations and 55% 

decrease in emergency room attendance following bronchial thermoplasty. 

Future Endoscopic Options 

Historical studies suggest a role of the parasympathetic nervous system in hypersensitivity and 

benefit with denervation. Targeted lung denervation has been studied in COPD but may also 

have a therapeutic role in severe persistent asthma. 

Bronchoscopic Treatment of Emphysema

Multiple interventional possibilities, both surgical and bronchscopic, exist for patients with 

advanced emphysema based on clinical, physiological, and radiological assessment. Figure 5 

provides an overview of treatments based on clinical assessment.

Endoscopic Valve Placement 

In patients with severe emphysema, destruction of the lung leads to both a reduction of gas 

exchange surface and static and dynamic hyperinflation. Therapeutic strategies aim to reduce air-

trapping in order to improve respiratory mechanics, physical activity and even symptoms(202, 

203).

Endoscopic valve placement via a flexible bronchoscope is a minimally invasive technique that 

mimics the benefits of lung volume reduction surgery (LVRS). Two types of one-way valves are 

commercially available: IBV (Spiration, Olympus, Tokyo, Japan) and EBV (Zephyr, Pulmonx, Inc., 

Neuchatel, Switzerland), they have different shapes but similar function. Both block inspired air 
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entry into the treated lobe while air and secretions escape during expiration. Although IBV was 

originally used for bilateral treatment with incomplete occlusion (204, 205), unilateral lobar 

occlusion of the most diseased lobe is the preferred technique for either valve(206).(Figure 6)

Valve treatment is suggested only in patients without collateral ventilation (CV)(207). Absent or 

low CV is presumed in cases with complete fissures on computed tomography (CT). However, 

CV can also be measured endoscopically with the Chartis system (Pulmonx, Inc., Neuchatel, 

Switzerland)(208). Using these criteria, RCTs show clinically meaningful improvements in 

pulmonary function testing, 6-MWD and quality of life (QoL). Mean changes in FEV1 > than +20% 

and an increase of 33m to 79m in 6-MWD were reported. Although interindividual variability in 

response is high, 60% of treated patients achieve minimal clinically important difference (MCID) 

in outcomes(209-211).

In approximately 20-30% of treated patients a postinterventional pneumothorax is expected; it 

most frequently occurs in the first three days and can be life-threatening. Pneumothorax usually 

requires chest tube placement, valve removal and rarely surgical intervention (212).

Patients who develop complete atelectasis after valve placement show improvements in lung 

function, exercise capacity, QoL and survival(213) 

Lung volume reduction coil treatment (LVRC) 

LVRC (PneumRx/BTG, CA, USA) is a bronchoscopic treatment for emphysema patients with 

severe hyperinflation (Residual Volume (RV)>200% of predicted), absence of significant airway 

pathology,(214) who are not candidates for EBV or LVRS (215). The LVRC is a shape-memory 

nitinol implant (Figure 7) of which 10 to 14 are fluoroscopically placed in the most diseased lobe 

of each lung during sequential bronchoscopic procedures.(216) LVRC reduces static 

hyperinflation by improving airway resistance, and from secondary inflammation due to 
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mechanical tissue stress.(217-220) Initial trials showed improved pulmonary function, quality of 

life and exercise performance.(219, 221-224) A larger randomized controlled trial failed to 

reproduce earlier trial results, but still showed improved lung function and quality of life.(217) 

The benefits of LVRC treatment persist for up to three years,(224) and can potentially be 

repeated, however, the benefit is not as robust as initial treatment.(225) A U.S. Food and Drug 

Administration (FDA) panel concluded that LVRC benefits did not outweigh risks and it was 

denied clinical approval.(226) A sub analysis of RENEW suggests that patients with a RV > 

200%, absence of airways disease and coil placement in the lobe with most emphysema had 

better outcomes.(214) These parameters are used for entry criteria in an ongoing trial.(227).

Thermal Vapor Ablation / Polymeric Lung Volume Reduction

Bronchoscopic Thermal Vapor Ablation (BTVA) and Polymeric Lung Volume Reduction (PLVR) 

target hyperinflation in symptomatic emphysema patients despite optimal pharmacological 

treatment. Both techniques incite inflammatory reactions to induce reduction of emphysematous 

areas. BTVA and PLVR treatments have some advantages over EBV, their efficacy does not 

depend on collateral ventilation and treatment occurs on a segmental not lobar level. Segmental 

treatment is important since many patients have intralobar heterogeneity.(228) The 

disadvantage of BTVA and PLVR  is their irreversibility.

During BTVA, segmental application of 100°C heated water vapor promotes inflammation to 

induce volume reduction of emphysematous segments.(229)  A RCT confirmed the efficacy of 

BTVA in 46 patients with upper lobe predominant emphysema.(230) At 6 months following 

bilateral treatment, significant improvements in FEV1 and SGRQ occurred. BTVA is being 

evaluated for patients with homogeneous emphysema. (ClinicalTrials.gov Identifier: 

NCT03670121)
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PLVR deploys a synthetic polymer into emphysematous lung segments to induce inflammation 

and resultant volume reduction. A RCT evaluated the safety and efficacy of PLVR in 34 patients 

with upper lobe predominant emphysema and showed significant improvement in lung 

function.(231) However, the procedure had a high rate of adverse events. The results of another 

multicenter RCT are pending. (ClinicalTrials.gov Identifier: NCT00884962)

Since both techniques induce inflammatory reactions, their most common adverse events are 

COPD exacerbations, and pneumonitis/pneumonia. BTVA has limited clinical availability and 

PLVR is currently under clinical trial investigation.

Targeted Lung Denervation

Reflex signaling via pulmonary branches of the vagus nerve is involved in the pathophysiology 

of COPD (232). Airway submucosal glands are innervated by pulmonary ganglion (233) and 

stimulation of parasympathetic efferent or sensory afferent (C fibers and stretch receptors) 

fibers initiate direct (efferent) (234) or reflex (afferent) (235, 236) mucus hypersecretion. Vagal 

nerve signaling facilitates disease-related airway hyperresponsiveness, and vagotomy abolishes 

the effect (237, 238). Cholingergic hyperactivity in COPD causes airways hyperresponsiveness, 

airflow limitation, gas trapping, mucus hypersecretion, and exacerbations. Blocking 

parasympathetic efferent lung signaling may complement bronchodilator therapies for COPD.

Targeted Lung Denervation (TLD) targets parasympathetic branches of the vagus nerve that run 

alongside the mainstem bronchi (Figure 8). TLD directs radiofrequency energy to pulmonary 

branches of the vagus nerve to disrupt signaling to and from the lung. TLD uses dual-cooled 

technology to protect the airway epithelial surface while delivering heat to a targeted depth 

where pulmonary vagus nerve branches reside. A preclinical study demonstrated that TLD 

disrupts vagal fibers histologically and produces physiologic changes associated with 

sensory/motor reflex signaling (239). 
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The first-in-man clinical study of TLD,IPS-I, demonstrated that TLD provides a bronchodilator 

effect similar to anticholinergic therapy with a dose (power) dependency effect (240). TLD with 

an inhaled anticholinergic produced greater bronchodilator effect than either therapy alone 

(241).  IPS-II demonstrated the feasibility and safety of a single whole lung TLD procedure 

(242).

AIRFLOW 1 confirmed safety and feasibility with a flexible bronchoscope, reduced 

gastrointestinal side effects associated with ablation near the esophagus, and the safety of TLD 

using  a 32W dose. (243) AIRFLOW 2 demonstrated that TLD treatment produced less airway 

related adverse events and fewer COPD hospitalizations (ClinicalTrials.gov Identifier: 

NCT02058459). An international multicenter randomized sham controlled TLD trial is evaluating 

if TLD reduces COPD exacerbations. (ClinicalTrials.gov Identifier: NCT03639051)

Chronic bronchitis 

Chronic bronchitis patients have a poor quality of life, increased hospitalizations, greater lung 

function decline and increased mortality. It is characterized by excessive mucus hypersecretion 

by goblet cells predominantly located in the large airways. Treatments include smoking 

cessation, mucolytics, macrolides, anticholinergic agents, PDE-4 inhibitors, glucocorticoids, and 

chest physiotherapy; but are limited in treating symptoms or halting disease progression. (244, 

245)

Bronchial Rheoplasty

Bronchial rheoplasty (RheOx System™ (Gala Therapeutics, Menlo Park, CA) delivers non-

thermal energy to ablate airway mucosal cells and reduce goblet cell hyperplasia.  The RheOx 

catheter is inserted via a bronchoscope from the  subsegmental airways to the main carina 

while energy is delivered during electrode expansion (Figure 9). 
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In a multi-center feasibility study 25 patients with symptomatic chronic bronchitis underwent 

rheoplasty; procedure success was 100%. (13).  Two patients experienced serious device-

related adverse event (pleural effusion and mucosal scarring); four patients had 7 COPD 

hospitalizations.  Most adverse events occurred within 30 days of bronchoscopy.  Significant 

improvements in SGRQ and CAT scores were observed at 6- and 12-months. A reduction in 

goblet cell hyperplasia was observed.  A U.S. clinical study is underway. (ClinicalTrials.gov 

Identifier: NCT03631472)

Liquid Nitrogen Metered Cryospray

The Rejuvenair Liquid Nitrogen Metered Cryospray™ (CSA Medical, MA, USA) is another 

potential bronchoscopic treatment for chronic bronchitis (Figure 10). It ablates diseased airway 

epithelial using liquid nitrogen at -196°C, thereby inducing a non-scarring, non-inflammatory 

healing process.(246) The system delivers pre-determined quantities of liquid nitrogen 

depending on anatomic site and gender and is locally controlled by thermocouple feedback. 

Treatment is performed in two sequential bronchoscopic procedures of approximately 45 

minutes with intermittent airway circuit interruption to permit nitrogen gas egress. The 

Rejuvenair system was first tested in humans with sprays delivered into a resected lobe to 

demonstrate feasibility and safety.(247) It’s use for treatment of chronic bronchitis is under 

investigation (Rejuvenair® study - ClinicalTrials.gov Identifier: NCT02483637).

Parenchymal lung diseases: Diagnosis

Diagnosis of diffuse parenchymal lung diseases (DPLD) relies on multidisciplinary 

evaluation.(248) Histologic data contributes to the diagnosis.(249-251) Surgical lung biopsies, 

the historical gold standard, are performed annually in > 10,000 U.S. patients and provides 

samples of size and quality generally sufficient for a diagnosis. However surgery has increased 

risks; in-hospital mortality is 1.7% and 16% for elective and non-elective procedures, 
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respectively.(252) Accordingly, less invasive alternatives are needed. Transbronchial forceps 

biopsies have a diagnostic yield of ~ 20% in DPLD.(253-255)

Transbronchial cryobiopsies have been proposed as a possible option. They are performed via 

either flexible or rigid bronchoscopy, using a cryoprobe advanced under fluoroscopy to the lung 

periphery, approximately 1 cm from the pleura. The probe is activated, releasing compressed 

gas (carbon dioxide or nitrous oxide) to the probe tip which instantly freezes lung tissue that is 

extracted, en-bloc with the bronchoscope.(256) Biopsies typically measure 5 mm, are devoid of 

crush artifact, and have superior histopathologic quality to forceps biopsies. There are, however, 

major downsides.  Biopsy size precludes extraction through the working channel of the flexible 

bronchoscope: both must be removed together which exposes the patient to potentially severe 

endobronchial bleeding without maintaining a wedged position. Clinically significant bleeding 

occurs in 40% of patients. Cryobiopsies obtained at the lung periphery cause pneumothorax in 

12%.(257) Mortality after cryobiopsy remains substantial, estimated around 0.3%.(139)

Cryobiopsy techniques vary considerably and the role of cryobiopsy remains controversial.(258) 

Besides procedural risks, critics highlight a lower diagnostic yield of cryobiopsies compared to 

surgical lung biopsies, estimated at 80% and 95%, respectively, and the lack of direct 

comparisons.(139) Proponents of the procedure offer counter arguments: 1) cryobiopsy and 

surgical lung biopsy offer comparable data to a multidisciplinary team (259), and 2) head-to-

head comparisons only address histologic sample quality which needs to be balanced with the 

risks inherent to intervention. In that regard, cryobiopsies remain a promising alternative to the 

status quo.  Detailed recommendations on effective and safe cryobiopsy practice provide 

guidance on patient selection, the need for multidisciplinary discussion, use of an endobronchial 

blocker to mitigate bleeding, and the need for proper training and expertise.(259) 

Page 30 of 93

 AJRCCM Articles in Press. Published February 05, 2020 as 10.1164/rccm.201907-1292SO 
 Copyright © 2020 by the American Thoracic Society 



Certification Training issues 

The time-honored apprenticeship model of “see one, learn one, teach one”  is not acceptable. 

Its flaws include training on real patients in high-stress environments, inadequate preparation for 

uncommon events, and the absence of systemic and structured feedback. (260)

For the cognitive component of procedural training, traditional tools such as books and lectures 

should be supplemented with newer approaches like interactive on-line learning and case-

based discussion. Teaching should address all procedural aspects including patient selection, 

pre-procedural, procedural, and post procedural care and communication of results to patients 

and the care team. It’s critical to educate proceduralists on when and how to decline a 

procedural request and the education of referring health care providers. (261)

Simulation is an effective tool for teaching bronchoscopy skills and available in two forms: low 

and high fidelity. (262, 263) Low fidelity simulation consists of molded models that offer realistic 

airway-like structure or silicone-based lymph nodes so learners can master anatomy and 

practice various sampling techniques. High fidelity simulation consists of computer-generated 

three-dimensional models of the airways, lymph nodes and vessels with various iterations of 

anatomy, clinical situations and even complications.  High-fidelity simulation facilitates 

acquisition of bronchoscopy skills.(262, 264) Simulation models are available for basic 

bronchoscopy and EBUS skills. Explanted animals’ lungs or cadavers are effective in training for 

higher-risk procedures (e.g., cryobiopsy, ablation therapy or stent placement). 

Measuring competency in procedural performance is critical to assure best outcomes. Earlier 

guidelines published focused on procedural volume to determine competency.(110, 265) 

However, this approach is less favorable since learners acquire skills at different volume 

thresholds.  
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Newer guidelines emphasize the need to move to skill acquisition and knowledge-based 

assessments.(266)  Checklist-based assessment tools aid assessment of the learner 

performing the procedure and scores procedural steps based on objective criteria. These tools 

are validated and reliable in discriminating skill levels. 

Optimal training in interventional bronchosopic procedures should incorporate traditional models 

(lecture, books) and newer approaches including digital media platforms, case-based interaction 

and simulation. 

Interventional bronchoscopy: The future

In the near future, new approaches for many different lung diseases should become available: 

biodegradable stents, 2nd and 3rd generation endobronchial valves, better nonpharmacological 

treatments for chronic bronchitis and airflow obstruction, and new treatments in patients with 

emphysema who exhibit collateral ventilation (267). Ablative procedures for early cancerous 

lesions will advance and clinical trials will determine their effectiveness. 

In order to access small peripheral lesions precisely, navigational methods need further 

development. The advantages and disadvantages of ultrathin bronchoscopy, thin bronchoscopy 

with guided sheath catheters and robotic assisted bronchoscopy requires comparative studies 

of diagnostic yields and cost effectiveness.(73, 75) Imaging support during the procedures must 

be improved.  Smaller EBUS bronchoscopes and rEBUS tipped biopsy catheters should be 

compared to cone-beam-CT and augmented fluoroscopy in their abilities to provide real-time 

confirmation of lesion access during diagnostic and treatment interventions (268). This is 

especially true for semi-solid lesions where rEBUS currently has limitations.

The importance of training clinicians to be well versed in bronchial and lung anatomy who 

perform bronchoscopy is paramount and must be coupled with the skills need to navigate the 
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bronchoscope. Additionally, although significant advances have been made to improve the 

technology of bronchial navigation devices and real-time imaging modalities, less impressive 

advances have been made in developing new diagnostic tools. 

To be able to improve our ability to diagnose and potential treat small peripheral malignant lung 

nodules, tools that can maneuver in the close and more angulated environment of the small 

airways must be developed. Several new needles have been developed to provide enhanced 

flexible in the smaller airways during greater degrees of articulation. The PeriView FLEX TBNA 

21 -G (Olympus) and Arc point (Medtronic) 21 and 18 G- needles are examples. The GenCut 

core biopsy system (Medtronic) is another example of a more flexible tool that may help provide 

higher diagnostic yield in the smaller airways. However, the clinical usefulness of these tools 

needs validation. Overall, our ability to treat a lesion depends on our ability to reach it, and then 

fully access it. More tools that can allow us to achieve those goals are needed.

Navigational and biopsy tools must be studied in clinical settings to determine their 

effectiveness. The AQuIRE (ACCP Quality Improvement Registry, Evaluation, and Education) 

program evaluated diagnostic yields of different types of bronchoscopy in clinical practice to 

identify factors that affect diagnostic yield.(269) They found peripheral TBNA improved 

diagnostic yield but was underused and diagnostic yields of ENB and r-EBUS were lower than 

expected. Registry data can help prompt better bronchoscopic instruction and tools for 

community pulmonologists.

Another area with clear potential for development for minimally invasive procedures in the lung 

is Natural Orifice Transluminal Endoscopic Surgery (NOTES). NOTES describes a wide 

spectrum of procedures that uses natural luminal access such as transgastric or transvaginal 

routes, but could have applicability for other organs, like the lung via the bronchoscope. (270) 

Since Phillipe Mouret of France performed the first laparoscopic cholecystectomy in 1987 (271), 

Page 33 of 93

 AJRCCM Articles in Press. Published February 05, 2020 as 10.1164/rccm.201907-1292SO 
 Copyright © 2020 by the American Thoracic Society 



NOTES has been studied in the mediastinum; predominately porcine models. Concerns 

regarding complications of transtracheal or esophageal mediastinoscopy, such as infection and 

bleeding and healing of the esophageal incision have limited progress. However, this technique 

could have potential for the diagnosis and treatment of select pulmonary lesions.  Further study 

is required as NOTES techniques evolve.

Summary

A foreign body removed by G. Killian in 1896 was the first bronchoscopy that was subsequently 

followed by Chevalier Jackson, I. Kubo and others who further advanced bronchoscopic 

techniques. In the 1960’s, S. Ikeda introduced the flexible bronchoscope as a diagnostic tool 

and in the 1970's, laser and stents fostered the growth of interventional bronchoscopy. With 

new options, new uses for interventional bronchoscopy are emerging and it’s plausible that 

interventional pulmonology has enormous potential to provide safe and effective diagnostic and 

therapeutic procedures at reduced costs for many patients with a variety of lung disorders. 
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Table 1. Overview of Bronchoscopic Diagnostic Tools with Advantages and Disadvantages

Definition of abbreviations: HRCT, high resolution chest CT; EBUS, endobronchial ultrasound; PTX, pneumothorax; OCT, Optical coherence tomography; CLE, Confocal laser endomicroscopy; 

CBCT, cone beam CT; DX, diagnostic; EMB; electromagnetic bronchoscopy, VBN, Virtual bronchoscopic navigation; TPNA, transparenchymal nodule access

Navigational Techniques Imaging Assessment of Lung lesions Accessing Lung lesions Inspection of Lymph Nodes Assessment of Mucosal lesions

Technique Pro/Con Technique Pro/Con Technique Pro/Con Technique Pro/Con Technique Pro/Con

Navigation aid Enhanced imaging Readily 

available/cost 

effective

Readily 

available/cost 

effective

In vivo cellular 

morphology

 EMB)

Increased costs, 

special equipment and 

training

HRCT

increased cost and 

radiation exposure

Transbronchial Needle 

Aspirate

Insufficient DX 

tissue and 

complications of PTX 

and bleeding

EBUS

Equipment and 

disposable costs and 

training 

OCT  

Investigational, 

unclear benefit

Navigation aid Noninvasive 

Endobronchial 

Imaging

Readily 

available/cost 

effective

Greater tissue 

volume

In vivo cellular 

morphology

VBN

Increased costs, 

special equipment and 

training

Radial EBUS

Special training and 

equipment required

Transbronchial Lung 

biopsy

Insufficient DX 

tissue and 

complications of PTX 

and bleeding

EBUS with mini 

forceps

Insufficient clinical 

data, disposable 

cots and training

CLE

Investigational, 

unclear benefit

Peripheral access Real-time

visualization

Greater tissue 

volume avoids crush 

artifact

Noninvasive 

assessment of LN 

stiffness

In vivo cellular 

morphology

Thin bronchoscopy with 

guide sheath

Insufficient DX tissue, 

special disposables 

and diagnostic tools

Fused flouroscopy

Special equipment, 

increased cost and 

radiation exposure

Cryobiopsy

Insufficient DX 

tissue and 

complications of PTX 

and bleeding

Elastography

Insufficient clinical 

data, increased 

equipment costs

Image enhancement 

Investigational, 

unclear benefit

Peripheral access Real time 

visualization

Access extraluminal 

lesions

Enhanced imaging Noninvasive 

Endobronchial 

Imaging

Ultrathin bronchoscopy

Insufficient DX tissue, 

special disposables 

and diagnostic tools

CT Bronchoscopy

Limited access, 

increased cost and 

radiation exposure

TPNA

Insufficient DX 

tissue and 

complications of PTX 

and bleeding

CT Bronchoscopy

Limited access, 

increased cost and 

radiation exposure

Radial EBUS

Needs clinical data

Peripheral 

access/stability

Real-time 

visualization  

Noninvasive lung 

imaging

Interlobar LN

Real-time imaging

Noninvasive 

Endobronchial 

Imaging

Robotic bronchoscopy

Increased equipment 

costs, special 

disposables and 

diagnostic tools

CBCT +

Augmented 

flouroscopy

Limited access, 

increased cost and 

radiation exposure

Thin-EBUS

Investigational, 

unclear benefit

Thin-EBUS

Investigational, 

unclear benefit

Thin-EBUS

Investigational, 

unclear benefit
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Table 2. Overview of Advantages and Disadvantages of Current and Potential Flexible Bronchoscopy Therapeutic Tools

COPD Large Airway abnormalitiesMalignant Solitary Nodules and Lesions Emphysema Asthma

Chronic Bronchitis Exacerbation Expiratory Airway collapse

Treat 

cancerous SPN

Lung volume 

reduction

Improve 

symptoms, 

reduce 

exacerbation

Improve 

symptoms, 

reduce 

exacerbation

Improve 

symptoms, 

reduce 

exacerbations

Tracheal 

Patency

Radiofrequency 

Ablation 

Under 

investigation

Endo-

bronchial 

valves

PTX, 

exacerbation

Bronch-

ial 

Thermo-

plasty

Multiple 

procedures, 

exacerbation

,

PNA,

Rheoplasty 2

Under 

investigation

Total Lung 

Denervation 

Under 

investigation

Tracheo-

Broncho-

malacia

Granulation 

tissue and 

increased 

secretions

Treat 

cancerous SPN

Lung volume 

reduction

Improve 

symptoms, 

reduce 

exacerbation

Improve 

symptoms, 

reduce 

exacerbation

Tracheal 

patency

Microwave Ablation 

Under 

investigation

Thermal 

Vapor 

ablation 

Exacerbation

Total 

Lung 

Denerva

-tion 

Under 

investigation

Liquid 

Nitrogen 

Metered 

Cryospray 

Under 

investigation

Airway 

Stenting

Granulation 

tissue and 

increased 

secretions

Treat 

cancerous SPN

Lung volume 

reduction

Improve 

symptoms, 

reduce 

exacerbation

Thermal Vapor 

Ablation 

Under 

investigation

Lung Coils 

Under 

investigation, 

Exacerbation, 

PNA

Micro-

debrider

Under 

investigation

Treat 

cancerous SPN

Lung volume 

reduction

Cryoablation 

Under 

investigation

Polymeric 

agents 

Under 

investigation, 

Exacerbation, 

PNA

Treat 

cancerous 

lesions

Debridement (Laser, 

Electrocautery, Argon 

Plasma Coagulation, 

Microdebrider) Special 

hardware, 

disposables 

and training, 

bleeding, 

Bronchial and  

Segmental Airway Stenosis
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Definition of abbreviations: PNA, pneumonia; PTX, pneumothorax

perforation, 

airway fire

Treat 

cancerous SPN

Airway 

Patency

Brachytherapy

Need for trans 

laryngeal 

catheter 

Bronchoplasty

Need for 

repeat 

procedures

Treat 

cancerous SPN

Airway 

patency

Chemo injection

Under 

investigation

Airway 

Stenting

Granulation 

tissue and 

increased 

secretions

Treat 

cancerous 

lesions

Airway 

patency

Photodynamic Therapy 

Under 

investigation

Electrocautery

Need for 

repeat 

procedures, 

cartilaginous 

injury

Airway 

patency

Airway Stenting

Granulation 

tissue and 

increased 

secretions
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Figure 1. A radial EBUS probe in the center of a SPN.
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Figure 2. Overlaid track from the VBN navigational pathway (right side) onto the bronchoscopic 

image (left side)

Page 85 of 93

 AJRCCM Articles in Press. Published February 05, 2020 as 10.1164/rccm.201907-1292SO 
 Copyright © 2020 by the American Thoracic Society 



Figure 3, Panel A. View of Transparenchymal Nodule Access (TPNA) on an SPN in the RLL. 

Fused fluoroscopy is being used to create a fluoroscopically guided transparenchymal path to the 

superimposed target previously identified by planning HRCT. Purple dot represents virtual pleura. 

Multiple C-arm projections are used to confirm target location.

Panel B. Three-dimensional (3D) map shows the danger zones and exit point, and the target 

lesion are demonstrated. (Bowling AnnTS 2017;104: 443-339.) 
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Figure 4.  A. Type 1 elastography pattern (homogenous green) in patient with tuberculosis.  B.  

Type 2 elastography pattern (mixed color pattern) in patient with sarcoidosis C. Type 3 

elastography pattern (homogenous blue) in patient with adenocarcinoma.

A.             B.                                 C.
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Figure 5. Overview of Survival and interventional therapies for advanced emphysema. (Modified 

from Vogelmeier AJRCCM, 2017)

Surgical and Interventional Therapies in Advanced Emphysema

bullectomy

lung transplant

LVRS

BLVR

(EBV,LVRC, VA)

emphysema predominant phenotype with hyperinflation not candidate for
bullectomy,

BLVR or LVRS

heterogeneous

emphysema

homogeneous

emphysema

- CV or FI+ + CV or FI- - CV or FI+ + CV or FI_

LVRS

BLVR

(LVRC,VA)

BLVR

(EBV,LVRC, VA)

LVRS *

BLVR

(LVRC,VA)

LVRS *

large bulla no large bulla

Definition of abbreviations: CV, collateral ventilation measure by Chartis; FI + fissure integrity > 90% by HRCT; FI-, fissure integrity < 90% by HRCT; BLVR,

Bronchoscopic Lung Volume Reduction, EBV, Endobronchial Valve; VA, Vapor Ablation; LVRC, Lung Volume Reduction Coil; LVRS, Lung Volume Reduction Surgery.

Modified from Vogelmeier, AJRCCM, 2017

Note: not all therapies are clinically available in all countries. Long term BLVR outcomes or direct comparisons to LVRS are unknown.
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Figure 6.  Patient with advanced upper lobe emphysema before (A) and after endobronchial 

valve placement (B) in LUL showing total lobar occlusion and complete atelectasis. Valves are 

seen in panel C. Other EBV option (SVS, Spiration, Inc, Seattle WA.) shown in panel D. 

A.         B.

 
C.                                                                                      D.     
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Figure 7. Panel A. Nitnol lung volume reduction coil. Panel B. Coil deployed in lung.
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Figure 8.  Total Lung Denervation. Electrode positioned into the distal mainstem bronchi to 
deliver ablation treatment with thermal insulation provided to airway wall by water cooled jacket. 
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Figure 9. Rheoplasty. Expanded basket provides airway contact to deliver pulsed field energy to 
ablate airway epithelial goblet cells.  
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Figure 10. The Rejuvenair Liquid Nitrogen Metered Cryospray. Left panel: Bronchus intermedius 

with Rejuvenair catheter in situ just before treatment. Right panel: Liquid Nitrogen Metered 

Cryospray in action at the same position showing the desired circular freezing pattern.
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