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Abstract

Interventional cardiovascular magnetic resonance (iCMR) promises to enable radiation-free 

catheterization procedures and to enhance contemporary image guidance for structural heart and 

electrophysiological interventions. However, clinical translation of exciting pre-clinical 

interventions has been limited by availability of devices that are safe to use in the magnetic 

resonance (MR) environment. We discuss challenges and solutions for clinical translation, 

including MR-conditional and MR-safe device design, and how to configure an interventional 

suite. We review the recent advances that have already enabled diagnostic MR right heart 

catheterization and simple electrophysiologic ablation to be performed in humans and explore 

future clinical applications.
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Introduction

Minimally invasive transcatheter therapies are targeting increasingly complex pathologies, 

but X-ray fluoroscopic guidance alone is insufficient. Through necessity, the twenty-first 

century interventional cardiologist has embraced multimodality imaging, for example 

intravascular ultrasound or optical coherence tomography to guide coronary stent 

deployment or transesophageal echocardiography for transcatheter aortic valve replacement 

or mitral valve repair.

Soft tissues only appear as shadows on X-ray fluoroscopy. The operator relies on knowledge 

of anatomy and experience of how a catheter should move to navigate through the 
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vasculature. Contrast lumenography is the only way to actually “see” vessels and cardiac 

chambers. Ultrasound is limited by field of view, contrast, and available imaging windows 

and so is not useful to navigate through the vasculature or to monitor for remote 

complications. Though the spatial resolution and tissue characterization of CT are excellent, 

ionizing radiation doses for a lengthy cardiovascular intervention are currently prohibitive. 

In contrast, real-time magnetic resonance (MR) imaging combines the advantages of 

excellent soft tissue characterization, unconstrained imaging planes, and good image 

contrast—all without ionizing radiation.

In this review, we explore past pre-clinical and present-day clinical interventional 

cardiovascular MR (“iCMR”) applications. We review how to configure an iCMR suite and 

discuss the technical challenges and solutions to future translation of more complex 

procedures.

X-Ray Fused with MRI or “XFM”

As an interim step to performing cardiovascular interventions from start to finish in the MRI 

scanner, pre-acquired MR images can be “fused” with X-ray fluoroscopy. External fiduciary 

markers [1] or internal anatomic structures [2] are used to co-register MR overlays of chosen 

3D structures onto the fluoroscopic images. In the field of electrophysiology, co-registration 

of CT or MRI images with electroanatomic maps to improve catheter navigation in three 

dimensions has been applied for many years. The major advantage of MRI over CT for this 

type of fusion imaging is the ability to incorporate cardiac and respiratory motion, rather 

than static overlays [3]. Software moves the overlays automatically as the X-ray image 

intensifier is moved around the patient to maintain correct orientation at all times. Specific 

targets can be highlighted, eliminating the need for repeated angiograms (Fig. 1). Early 

experience suggests that XFM can reduce procedure time, iodinated contrast use, and 

ionizing radiation dose [4]. Importantly, aside from additional software, which is currently 

investigational, no new hardware is required. This means that XFM can be used in any 

cardiac catheterization laboratory using images pre-acquired on any diagnostic MRI scanner. 

However, by definition, XFM overlays are obtained from data acquired before the 

intervention so cannot accommodate for anatomical distortion caused by devices (e.g., stiff 

guidewires) or by the intervention itself.

Why Should I Do iCMR?

Because It Can Improve Existing Interventions

Neurosurgery guided by intra-operative MRI increases the likelihood of complete tumor 

resection [5]. Performing cardiac catheterization using MR guidance requires comparable 

procedure time to traditional X-ray guidance [6•], avoids iodinated contrast, and can provide 

incremental physiological information [7]. Pre-clinical studies suggest that MR-guided 

electrophysiology studies may provide more accurate disease localization and be less likely 

to miss small but important abnormalities compared with present-day electroanatomic 

mapping [8]. Challenging catheter maneuvers become simple because the operator can 

actually see the anatomical structures. Real-time MRI using workhorse steady-state free 

precession pulse sequences can support imaging frame rates of between 5–10 images per 
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second with acceptable spatial resolution and contrast [9]. Image acquisition can be 

accelerated with parallel acquisition schemes such as SENSE [10, 11] or GRAPPA [12], and 

although it still has lower frame rate than X-ray, real-time MRI is comparably information-

rich.

Because It Is Radiation Free

Cumulative radiation exposure is potentially harmful in certain populations, particularly 

children with congenital heart disease in whom serial X-ray procedures may be required 

over many years [13]. MRI is already accepted as the best noninvasive imaging modality for 

patients with complex congenital heart disease [14], and MR-guided catheterization could 

significantly reduce cumulative radiation dose. Moreover, awareness of the potential adverse 

effects of radiation exposure on operators and catheterization laboratory staff is growing [15, 

16]. Switching from X-ray to MR guidance for complex and lengthy procedures could 

significantly reduce staff radiation exposure.

Because It Can Enable Novel Procedures

We believe that the soft tissue visualization afforded by MRI can facilitate novel procedures 

that cannot be performed using X-ray fluoroscopy, in particular interventions that violate 

vascular boundaries. These novel interventions mandate visualization of the interaction 

between the device and each tissue traversed to avoid important structures and to monitor 

for complications. Pre-clinical examples include direct closed chest beating-heart 

transthoracic access to the right and left ventricles to deliver large devices [17, 18], 

transcatheter extra-anatomic “bidirectional cavopulmonary” shunt (Ratnayaka et al. 2015, 

under review), and closed chest transthoracic VSD repair [19].

Pre-Clinical Applications and Challenges to Clinical Translation

The following MR-guided interventions have been performed in animals: aortic coarctation, 

aneurysm, and dissection repairs [20–22]; atrial septal defect, ventricular septal defect, and 

patent foramen ovale closures [23, 24, 19]; atrial trans-septal puncture and balloon 

septostomy [25]; inferior vena cava filter deployment and retrieval [26, 27]; iliac, renal, and 

carotid artery stenting [28–30]; renal and hepatic embolization [31, 32]; and transcatheter 

pulmonary artery and aortic valve implantation [33, 34]. Although coronary catheterization 

and intervention have been described in animals [35, 36], the spatial resolution of MRI 

compares unfavorably with X-ray fluoroscopy and MR-guided coronary intervention 

appears unrealistic at present.

Most diagnostic and guiding X-ray catheters and device delivery systems contain steel 

braiding to impart torquability and kink resistance. Although the most commonly used 316L 

steel is not strongly attracted by magnetic fields, it causes severe MR imaging artifacts. 

Simply removing the braiding is not a solution because this usually destroys the mechanical 

properties of the catheters or devices and has the unfortunate side effect of rendering them 

MRI invisible. It is therefore necessary to replace the steel parts with other materials, for 

example metals such as nitinol or titanium, or alternatively polymers. The issue of MR 

visibility can be resolved through “passive” or “active” tracking. “Passive” tracking relies on 
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intrinsic material properties under MRI. Markers on the device create a dark signal void 

(e.g., iron oxide paint) [37]. Although simple, this approach is limited because signals can be 

confused with anatomic structures and rely on markers being in the selected imaging plane. 

“Active” tracking by incorporating coils or antennae into devices is our preferred approach 

[38–41]. Devices are connected to the scanner hardware through appropriate circuitry and 

appear as color overlays on the real-time MR images. Conductive wires can resonate and 

heat during radiofrequency excitation for MRI [42], which is a potential challenge for both 

passive and active devices and is determined by the total length of the conductive wire, the 

inserted length within the body, and the position within the scanner bore [43]. Strategies to 

prevent device heating include incorporating coaxial chokes or transformers into the 

transmission line or using wireless resonators that do not require transmission lines [44–46].

An alternative approach is to limit heating by limiting the energy delivered by the imaging 

pulse sequence [47]. The excitation flip angle relates to heating quadratically, and 

lengthening the repetition time reduces heating proportionally [48]. Radial sampling, spiral 

sampling, and echo planar imaging use fewer excitation pulses and longer repetition times, 

and variable flip angle sequences [49] or parallel imaging can reduce the energy deposited 

per image. Each of these methods can reduce the heating with only a small penalty in image 

quality. Methods being developed to reduce SAR at high fields, such as adapted parallel 

transmission, may also be applicable to reduce heating in MRI-guided interventions [50].

Complexity of device engineering has limited their commercial availability and remains the 

chief hurdle to widespread adoption of iCMR and to clinical translation of more complex 

interventions. Nonetheless, some existing interventional devices such as angioplasty 

balloons and non-braided vascular introducer sheaths are inherently MR-safe and could be 

used safely if a suitable guidewire was available. Several teams have therefore sought to 

develop MR-conditional or intrinsically MR-safe guidewires as a means of facilitating 

procedures. Early attempts to develop a polymer guidewire were abandoned because of the 

difficulty of reproducing the necessary strength and torquability of a metal guidewire [51]. 

Other designs are currently being evaluated. Active conductive guidewires have been tested 

in humans, but early prototypes did not have a clearly conspicuous tip and probably heated 

[52]. Although it is possible to estimate heating patterns, it is important to ensure that these 

predictions are born out in vivo. To monitor for significant heating, we embedded a fiber-

optic temperature probe into a 0.035-in. active guidewire with similar mechanical properties 

to commercial X-ray guidewires [53]. Heating was negligible in vivo under normal 

operating conditions. The whole shaft is active, and the tip has a distinct signal which is 

critical when navigating the vasculature [54]. We plan to test this guidewire in human 

subjects once US regulatory approval is received.

iCMR Applications Today

The engineering challenge of designing devices that are safe for use in the MR environment 

has delayed clinical translation of many promising pre-clinical interventions. However, there 

have been some notable advances made in recent years. MR-conditional electroanatomic 

mapping and ablation systems are now in clinical testing, and clinicians have worked around 
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the constraints of operating in the MRI environment by using non-ferromagnetic inherently 

MR-safe catheters to perform simple procedures.

Diagnostic MRI Catheterization

Several institutions have adopted invasive cardiac catheterization under MR guidance [55, 

56, 6•]. Since we published our experience at NIH in 2012, we have performed nearly 100 

procedures and MRI catheterization has been reclassified as a standard procedure in our 

hospital. To perform MRI-guided right heart catheterization, we fill the balloon at the tip of 

a commercial non-braided balloon wedge end-hole catheter (Cook, Medtronic, Vascor, or 

Arrow) with 1 % dilute gadolinium. The balloon then appears as a white ball on the image 

and can then be navigated through the chambers of the heart with standard catheter 

maneuvers using real-time MR imaging (Fig. 2). Using saturation pre-pulses, the white ball 

can be visualized in thick-slab images easily should it move out of the selected thin plane. 

Pre-specified anatomical views are saved as “roadmaps” that can be called up as the catheter 

is manipulated from one chamber to another (e.g., bi-caval, tricuspid valve, pulmonary 

artery bifurcation). Hemodynamic parameters, such as pulmonary vascular resistance or 

pulmonary artery compliance, calculated from invasive pressures and MRI flow 

measurements are more accurate than traditional methods using thermodilution or the Fick 

principle to measure cardiac output [57•, 58]. Provocative testing with exercise or IV fluid 

challenge can be useful to unmask latent symptoms and pathologic findings [59]. By 

streamlining scanning protocols, we perform repeated invasive and MRI measurements 

under three different physiologic conditions in approximately 1 h. Additional MRI 

sequences to screen for specific pathologies can be incorporated into the protocol—e.g., 

pulmonary perfusion to assess for chronic thromboembolic disease [60] or late gadolinium 

enhancement to identify myocardial scar or fibrosis.

Electroanatomic Mapping and Ablation

X-ray fluoroscopic guidance cannot visualize important anatomic landmarks or precisely 

locate catheters in three dimensions. Neither does X-ray permit visualization of infarcted 

regions of the myocardium or ablation lesions. These limitations currently result in long 

electrophysiology procedure times, excess fluoroscopy exposure, and a high rate of 

arrhythmia recurrence. The ability to accurately position catheters in three dimensions is 

particularly attractive for complex electrophysiology interventions. Currently, maps of the 

endocardial surface are generated through electroanatomic mapping, which can be time 

consuming. Co-registration of pre-acquired volumes from CT or MRI with these maps may 

reduce fluoroscopy and procedure time. Volumes incorporating additional functional 

information such as infarct distribution from late gadolinium enhancement (LGE) MRI 

provide incremental information. Procedural success defined by arrhythmia termination 

remains relatively low for atrial fibrillation and ventricular tachycardia ablation, almost 

certainly because of incomplete ablation. The need for better ablation imaging has been 

recognized in current guidelines [61]. MRI can enable visualization of ablation lesions with 

T2-weighted, T1 intrinsic contrast, or LGE sequences [62–66]. If gaps in ablation lines can 

be visualized, then they can be ablated [67, 68]. There is evidence that the extent of LGE 

post-ablation correlates with procedural success defined by rate of arrhythmia recurrence 

[69].
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Electroanatomic mapping and ablation systems for use inside the MRI scanner are now 

available for clinical investigation (Imricor, MRI Interventions). Using these systems, pre-

clinical feasibility of electroanatomic mapping and ablation of the left ventricle [8], 

pulmonary veins and cavo-tricuspid isthmus [70, 71], and MR-guided cannulation of the 

coronary sinus [72] have been described. In recent years, electroanatomic mapping and 

ablation of atrial arrhythmias in humans have been reported [73–75], which represents an 

important milestone in the clinical translation of iCMR (Fig. 3).

Structural Interventions

Some structural iCMR procedures have already been performed in humans, including aortic 

co-arctation angioplasty [76], femoral and popliteal artery angio-plasty [77], and pulmonary 

valvuloplasty [51]. But widespread clinical adoption has been delayed by the unavailability 

of commercial guidewires, catheters, and devices for use in the MR environment. In the 

interim, peri-procedural MR could be used for advanced hemodynamic assessment of X-ray-

guided structural interventions, for example to measure pulmonary regurgitant fraction and 

right ventricular stroke volume after percutaneous pulmonary valve implantation in patients 

with congenital right ventricular outflow tract obstruction [78].

How Can I Do iCMR?

How to Build an iCMR Suite

To date, most existing iCMR suites have been built alongside X-ray fluoroscopy labs to 

permit “bailout” should complications arise in MRI. Options for construction include single 

room [79], moveable [80], or separate room localized systems. Placing MRI and X-ray in 

separate rooms allows both to be used independently and maximize usage. However, as 

experience grows and complications are shown to be rare and manageable within—or just 

outside—the MRI room, we anticipate this co-localization to become unnecessary. This 

means that any MRI room can be converted into an interventional suite. Analogy can be 

drawn with the first percutaneous coronary interventions, for which cardiothoracic surgical 

teams and operating rooms were kept on standby. Today, coronary interventions are 

performed in hospitals around the world without cardiothoracic surgery on site.

Incremental physical hardware requirements are surprisingly few. All major MR system 

manufacturers offer real-time imaging capability with interactive slice prescription during 

continuous scanning. At NIH, we built a dedicated platform with specialist iCMR functions 

including active device color overlays [81], but similar programs are available 

(Interventional Front End, Siemens; RTHawk, HeartVista; Cleartrace, MRI Intervention; 

iSuite, Philips). A noise-cancelling communication system is needed so that operators and 

nursing staff within the MRI room can communicate with the team outside and with the 

patient in the bore while scanning. Such systems are now commercially available from 

several manufacturers (Optoacoustics, Innovere). LCD monitors or projectors are required 

within the MRI room to display images and hemodynamics to the operator. These are also 

available commercially in the form of MR-conditional LCD monitors or radiofrequency-

shielded boxes for LCD projectors (Gaven Industries). MR-conditional hemodynamic 

monitoring systems are available (Invivo, GE, Medrad) and are sufficient for basic 
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monitoring. However, there are currently no commercial high-fidelity hemodynamic 

recording systems. Custom systems can be built for research purposes using filters to correct 

for interference from the scanner and fiber-optic cables or wireless systems to transmit 

signals out of the room, and using research acquisition hardware (National Instruments, 

ADInstruments, Biopac), but a commercial system—preferably integrated into conventional 

catheterization laboratory hemodynamic analysis systems (e.g., Siemens Sensis, GE Mac-

Lab)—remains under development (Pinmed). It is possible to manage intubated and 

ventilated patients, because MR-conditional anesthesia machines and infusion pumps are 

commercially available.

In addition to a standard catheterization laboratory team of physician operators, nurses, and 

technologists, iCMR requires one extra staff member—the MR technologist—to drive the 

scanner during procedures.

Safety Considerations

It is critical to ensure that no ferromagnetic objects that could become projectiles be 

accidentally moved from X-ray into the MRI room during patient transfer. At NIH, we 

require two independent staff members to perform a visual inspection of the operative field 

and table before transfer. Completing a safety checklist to ensure all ferromagnetic tools are 

clear before transfer is also advised. Hemodynamic monitoring should be continuous during 

transfer—or only suspended briefly—while transferring from one monitoring system to 

another.

It is also important to plan for emergencies. Code team members arriving from other parts of 

the hospital should be diverted away from the MRI room until the patient is safely 

transferred back to an adjacent “safe” room by the primary team. In our lab, this is the X-ray 

laboratory but could easily be a patient recovery area. Currently, available defibrillators are 

not safe for use in the MRI environment. If ventricular tachycardia or fibrillation occurs, 

then the patient must be evacuated from the magnetic field to an adjacent room for 

defibrillation. At NIH, we drill evacuations quarterly and can consistently evacuate a patient 

from the scanner and defibrillate a patient within less than 1 min. In the future, MR-

conditional defibrillators should enable defibrillation inside the MRI scanner.

Future Applications

All of the interventions performed in pre-clinical experiments to date are theoretically 

possible in humans. The limiting factor remains availability of commercially available 

guidewires, catheters, and devices. A number of institutions and commercial entities are now 

working on passive or active devices, which would represent a major leap forwards to 

facilitate increasingly complex interventions. In the future, we anticipate growing interest in 

iCMR electrophysiology studies and ablation, because the potential to reduce procedure 

time, ionizing radiation exposure, and arrhythmia recurrence is compelling.

A specific example of an intervention to which iCMR could add real value is 

endomyocardial biopsy, which has fallen out of favor in recent years, mostly because of low 

diagnostic yield [82]. This is almost certainly in part because many cardiomyopathies affect 
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the myocardium in a heterogeneous pattern. Nonetheless, biopsy remains a key tool in the 

investigation of unexplained heart failure [83]. LGE MRI is widely accepted as the best 

imaging modality to assess for fibrosis and infiltration [84], and we hypothesize that MRI-

guided targeted biopsy could greatly enhance the diagnostic yield. Several groups are 

working to develop MR-conditional bioptomes for this purpose.

Conclusions

iCMR is finally transitioning from research interest to clinical tool. We do not advocate MRI 

guidance for all cardiovascular procedures but rather for select structural heart and electro-

physiology interventions where the additional functional and anatomic information afforded 

by MRI, including real-time visualization of soft tissues and three-dimensional structures, is 

important. We recommend that new centers considering iCMR should first start with simple 

procedures such as MRI right heart catheterization to gain experience of working in the MR 

environment. We anticipate that as guidewires, catheters, electroanatomic mapping system, 

and interventional devices become commercially available, more complex and innovative 

interventions will be possible.
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Fig. 1. 
Clinical X-ray fused with MRI (XFM)-guided closure of ventricular-atrial (Gerbode) defect. 

a Four-chamber cine MRI showing defect between left ventricle and right atrium (arrow). 

Left-to-right flow is clearly seen. b XFM image in which the defect appears as a red overlay 

on the fluoroscopy (arrow). c Nitinol closure device on its delivery cable positioned across 

the defect. Both discs have been deployed. d Closure device after release. (Courtesy of 

Kanishka Ratnayaka (2014), Department of Cardiology, Children’s National Hospital 

Center, Washington DC, USA)
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Fig. 2. 
Clinical MRI right heart catheterization. The gadolinium-filled balloon at the tip of the 

catheter is visible as a white ball (arrows) in the inferior vena cava (a), superior vena cava 

(b), right ventricle (c), and right pulmonary artery (d)
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Fig. 3. 
Clinical MR-guided electroanatomic mapping and ablation. a Real-time MR imaging of the 

electroanatomic mapping and ablation catheter. The passively tracked tip (arrow) is 

positioned above the cavo-tricuspid isthmus. Post-ablation T2-weighted (b) and late 

gadolinium enhancement (c) images of the cavo-tricuspid isthmus showing the ablation 

lesion (arrows). AA ascending aorta, MV mitral valve, RA right atrium, RV right ventricle. 

(Courtesy of M. Gutberlet, M. Grothoff and G. Hindricks (2014), University of Leipzig, 

Germany)
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