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Abstract 

Study Design  Mechanical and morphological studies on cadaveric spines. 

Summary of Background Data  Disc degeneration can be initiated by damage to a vertebral 

body endplate, but it is unclear why endplate lesions, and patterns of disc degeneration, vary 

so much with spinal level and age. 

Objective  Explain how spinal level and age influence disc degeneration arising from 

endplate fracture. 

Methods  174 , from T7-8 to L5-S1 and aged 19-96 yrs, were 

subjected to controlled compressive overload to damage a vertebral body.  Stress 

intradiscal pressure (IDP), and compressive stresses in the annulus.  86 of the undamaged 

vertebral bodies were then sectioned in the mid-sagittal plane, and the thickness of the central 

bony endplate was measured from microradiographs.  Regression analysis was used to 

compare the relative influences of spinal level, age, disc degeneration and gender on results 

obtained. 

Results  Compressive overload caused endplate fracture at an average force of 3.4 kN, and 

reduced vertebral body height by an average 1.88 mm.  Pressure loss in the adjacent nucleus 

pulposus decreased from 93% at T8-9 to 38% at L4-5 (R2 = 22%, P<0.001), and increased 

with age (R2 = 19%, P<0.001) especially in male specimens.  Stress concentrations in the 

posterior annulus increased following endplate fracture, with the effect being greatest at 

upper spinal levels (R2 = 7%, P<0.001).  Endplate thickness increased by approximately 50% 

between T11 and L5 (R2 = 21%, P<0.001). 
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Conclusion  Endplate fracture creates abnormal stress distributions in the adjacent 

intervertebral disc, increasing the risk of internal disruption and degeneration.  Effects are 

greatly reduced in the lower lumbar spine, and in young specimens, primarily because of 

differences in nucleus volume, and materials properties, respectively.  Disc degeneration 

between L4 and S1 may often be unrelated to endplate fracture. 
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Key Points 

1. Disc degeneration can be initiated by damage to a vertebral endplate, but why should disc 

and endplate lesions vary so greatly with spinal level and age? 

2. Experiments on 174 cadaveric motion segments (aged 19-96 yrs, from T7-8 to L5-S1) 

showed that compressive overload always damaged a vertebral body endplate and 

decompressed the adjacent intervertebral disc.  

3. The severity of disc decompression depended primarily on spinal level, decreasing 

linearly from 93% at T8-9 to 38% at L4-5 (R2 = 22%, P<0.001), and was lower in young 

male specimens.  Variations appeared to depend on systematic differences in nucleus 

volume and endplate thickness. 

4. Results suggest that disc degeneration at L4-5 and L5-S1 may often be unrelated to 

endplate fracture.  
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Précis  

Experiments on cadaveric spines showed that endplate fracture always decompresses the 

adjacent nucleus pulposus, and concentrates compressive stress in the posterior annulus 

fibrosus.  Effects are much reduced in the lower lumbar spine, and in young specimens, as a 

result of increased nucleus volume and thicker endplates.  Disc degeneration between L4 and 

S1 may often be unrelated to endplate fracture. 
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Introduction 

Recent population studies show a strong dose-response relationship between intervertebral 

disc degeneration and chronic low back pain.1-3  However, the relationship is weak if 

degeneration is defined in terms of age-related water loss,4-5 and strong if degeneration  

involves structural features such as radial fissures,6-7 posterior herniation,8 endplate defects,9 

and reinnervation10-11. 

This disagreement highlights 

features, each with its own risk factors, and opportunities for intervention.  Only when the 

disc finally collapses can the process be likened to a single disease, and by then it may be too 

late for effective intervention apart from surgery.  Clearly there is a need to distinguish 

process, so that 

distinct pathological processes can be treated or prevented more effectively. 

With this in mind, we recently contrasted -  -  disc 

degeneration.12  The former is characterised by an endplate fracture, inwards collapse of the 

annulus, high heritability, and a distribution predominantly in the upper lumbar and thoracic 

spine.  nnulus-driven  degeneration is characterised by a radial fissure and/or 

disc prolapse, low heritability, and a distribution predominantly in the lower lumbar spine 

(L4-S1).  The distinction is simplistic (endplates can be damaged at L4 and L5, and upper 

lumbar discs can herniate) but it is consistent with a diverse range of evidence, and it 

suggests why spinal level should exert such a strong influence on spinal pathology.13-15  One 

experimental finding in particular -

loading is more likely to create radial fissures and herniation in lower lumbar discs than in 

upper lumbar discs.16-17  However, there is no corresponding evidence that upper lumbar and 
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thoracic discs are more vulnerable to endplate fracture, and its sequellae, than are lower 

lumbar discs. 

We hypothesise that endplate damage arising from excessive spinal compression causes 

major decompression of thoracic and upper lumbar discs, but only minor decompression of 

lower lumbar discs.  Nucleus decompression following endplate fracture has been shown to 

cause progressive internal disruption in cadaveric discs,18 leading to realistic disc 

degeneration in an animal model.19 

Materials and Methods 

Cadaveric material  Thoracolumbar spines from donated cadavers were stored at -200 C 

before being dissected into 

vertebrae.20-23  Details of the 174 tested discs are summarised in Table 1. 

Stress profilometry  Each motion segment was mounted in plaster (Figure 1) and loaded on a 

materials testing machine.20  During testing, specimens were wrapped in plastic film to 

minimise water loss. A moderate compressive force (typically 1 kN) was applied for 1-2 

hours in order to dehydrate the disc by an amount similar to that seen in-vivo during 

activity,24  hence ensuring that disc hydration was well within the normal physiological 

range.  After the creep loading period, a pressure transducer (side-mounted in a 1.3 mm-

diameter needle) was inserted into the disc and pulled across its mid-sagittal diameter to 

measure t . 25  These stress profiles  were usually 

obtained at a compressive load of 1kN with the specimen positioned either in the neutral 

position (0o) or in 2o of extension, to simulate typical erect postures in life.  Vertical and 

horizontal stress was measured in successive tests by rotating the transducer needle about its 

axis.  Intradiscal pressure (IDP) in the nucleus, and peak compressive stresses in the annulus 

(over and above nucleus pressure), were then .22  For some 
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specimens, the compressive force during creep loading and stress profilometry was changed 

to 0.5 kN or 2 kN, depending on specimen size and age, but all intradiscal measurements 

were subsequently scaled to an applied load of 1 kN for comparison.  Stress profilometry has 

been validated26-28 and linearity  applied load has been 

demonstrated.29 

Compressive overload  With the specimen positioned in moderate flexion (to simulate the flat 

back of a weight-lifter30) the compressive force was increased by moving the ram of the 

testing machine upwards at 3mm/s.  Loading was removed at a pre-determined maximum 

displacement which depended on specimen size and age, and the force-deformation graph 

was inspected for evidence that the yield point had been exceeded.20  If not, the specimen was 

loaded to a higher maximum displacement.  Eventually, the first sign of injury was revealed 

by a reduction in gradient of the force-deformation graph.  Endplate damage was confirmed 

by radiographs,31 and quantified by repeating the loading cycle up to the failure load, and 

noting the extent to which it was shifted along the X (displacement) axis.20  The X-shift (in 

mm), recorded at a load of 1 kN, indicated motion segment height loss. 

Optical measurements of vertebral body deformation  To help interpret the Dartec-based 

measurements of motion segment height loss, a single-camera MacReflex system was used to 

measure deformation of the damaged vertebral body independently of deformation of the 

disc, the non-damaged vertebral body, and the apparatus23.  This technique can be subject to 

large errors if vertebral damage disturbs the reflective markers, which is more likely to occur 

in smaller thoracic vertebrae.  Therefore, these measurements were obtained in 15 specimens 

from T11-12 to L4-5.  In these specimens, three pairs of reflective markers were attached to 

the lateral cortex of each vertebral body tested (Figure 1) so that anterior, middle and 

posterior vertebral body heights could be measured,23 to an accuracy of 10µm.32  Height 
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measurements were compared before and after compressive damage in order to calculate 

cortical height loss in mm.23   

Specimen morphology  After testing, each specimen was dissected and photographed to 

confirm the site(s) of fracture. The macroscopic appearance of each disc, and its height on 

pre-fracture radiographs, were used to grade disc degeneration from 1 to 4, using the first 

four points on a scale described previously.33 

Endplate thickness  86 of the non-damaged vertebral bodies, sampled so that all age groups 

and spinal levels were represented, were sectioned in the sagittal plane.  Subsequent 

microradiographs of 2mm-thick slices were analysed to measure the thickness of the cranial 

and caudal bony endplates at 10 equidistant sites along the mid-sagittal section.  Because 

fracture primarily affects the central endplate, thickness was averaged across sites 4, 5, 6 and 

7, which lie adjacent to the inner annulus and nucleus.34 

Statistical analyses  Linear regression was used to determine which variable factors had the 

greatest influence on disc decompression and vertebral damage (height loss). 

Results 

Initial measurements on 174 undamaged specimens showed that IDP averaged 0.88 MPa (for 

a reference compressive force of 1kN) and decreased from 0.98 MPa 

discs (Table 2, column 4).  IDP also decreased 

with spinal level, from 1.56 MPa at T7-8, to 0.73 MPa at L5-S1. 

Compressive overload always damaged a bony endplate, although some specimens showed 

additional vertebral damage to the anterior cortex and/or trabeculae.  The compressive force 

at the initiation of damage averaged 3.4 kN (range 0.9 - 11.6 kN).  Motion segment height 

loss averaged 1.88 mm and was greatest in old female specimens and in those with 

degenerated discs (Table 2, column 5).  Height loss averaged 2.27 mm at T7-8, but was less 
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in the lumbar spine, falling to 0.46 mm at L5-S1.  Optical measurements showed that height 

loss averaged 17%, 11% and 4% in the anterior, middle and posterior regions of the lateral 

vertebral body cortex of the damaged vertebra, indicating slight anterior wedging. 

Vertebral damage reduced IDP in the adjacent disc, by an average 0.54 MPa, which is 

equivalent to a 62% loss.  In contrast, maximum compressive stress in the posterior annulus 

(over and above nucleus pressure) increased by 0.74 MPa.  Nucleus decompression varied 

greatly with spinal level, from 1.28 MPa at T7-8 to 0.24 MPa at L4-5 (Table 2, column 7).  

The influence of spinal level did not depend much on whether the discs were degenerated 

(grades 3 and 4) or not (grades 1 and 2), as shown in Figure 2, or on whether decompression 

was measured in absolute (MPa) or relative (%) terms (Table 2).  Nucleus decompression 

also increased linearly with age in male specimens, whereas nearly all female specimens over 

the age of 40 yrs were substantially decompressed (Figure 3).  Similar age-related trends 

were present if decompression was quantified in absolute or relative terms. 

Univariate regression analysis (Table 3) showed that the greatest influence on the extent of 

vertebral damage was spinal level, which explained 20% of variance in all specimens, and 

34% in specimens with non-degenerated discs (Table 3, row 3).  Vertebral damage also 

increased with age (Table 3, row 1) and with female gender (Table 2, column 5).  Damage 

was in turn a major influence in disc decompression, explaining 20% of the fall in IDP in all 

specimens, and 47% in specimens with non-degenerated discs (Table 3, row 14).  Age 

explained 19% of the variance in % disc decompression.  However, absolute changes in 

intradiscal stresses (MPa) following vertebral damage depended less on age than on initial 

IDP (Table 3, rows 13 & 18) which itself decreased with age and disc degeneration (Table 2, 

column 4).  Peak compressive stress in the posterior annulus (relative to IDP) increased in 

proportion to the fall in IDP (Table 3, row 20), and increased most when initial IDP was high 
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(Table 3, row 18).  Changes in peak compressive stresses in the anterior annulus (not shown) 

were variable, and unrelated to other variables in Table 3. 

Multiple linear regression revealed the greatest influences on disc decompression.  If the 

three independent variables (age, gender and spinal level) were forced into the analysis, they 

explained 38% of the variance in Fall in IDP (MPa) .  However, 

-  to the model enabled it to explain 71% 

of the variance in disc decompression (Table 4).  Additional multivariate analyses revealed 

that 

of importance) but the influence of disc degeneration was marginal. 

Thickness of the bony endplate is compared at various spinal levels (Figure 4).  Values in 

Figure 4  represent the average thickness (of both endplates of each vertebral body) in the 

central region, adjacent to the nucleus and inner annulus, because this is where fracture 

generally occurs34.  Thickness increased by approximately 50% between T11 and L5 (R2 = 

21%, P<0.001).  Endplate thickness was measured on 86 undamaged vertebrae, and so was 

not compared directly with failure characteristics such as specimen strength. 

Discussion 

Summary of findings  Compressive overload always damaged a vertebral body endplate and 

decompressed the adjacent nucleus pulposus.  Decompression was greatest in old specimens, 

in those with degenerated discs, and in the upper lumbar and thoracic spine.  Thickness of the 

bony endplates increased between T11 and L5. 

Strengths and weaknesses of the investigation.  Many specimens were tested so that 

influences such as age and spinal level might be distinguished.  All techniques have been 

validated, as discussed above.  Vertebral endplate fractures were obtained by compressing 

them via the adjacent disc, and their radiographic appearance (which included some anterior 
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wedging) was similar to fractures seen clinically.31  The use of cadaveric tissues introduces 

little artefact,35 and measurements of intradiscal pressure (IDP) are similar to those made in-

vivo,36-38 showing similar variation with degeneration.39  

Working with dead tissues ensures that long-term consequences of endplate damage can only 

be estimated.  Also, specimens were not distributed evenly between spinal levels and age 

groups, with relatively few specimens from L5-S1, and few young specimens from thoracic 

levels (Table 1).  Measurements of vertebral damage would have been influenced by the 

loading protocol, but their dependence on age and gender (Table 3) accurately reflects the 

fact that, in life, vertebral collapse is greatest in old female vertebrae. 

Relationship to previous studies.  Compressive overload has been shown primarily to damage 

the vertebral endplate40-42 and its supporting trabeculae.43  Spinal flexion and endplate 

fracture both transfer load-bearing to the anterior vertebral cortex,23, 44 explaining why 

anterior cortical damage was substantial in the present experiments.  Endplate damage 

decompresses the adjacent disc,45-46 leading to internal collapse of the inner annulus,18 and 

increased radial bulging of the outer annulus,43 both of which are common features of disc 

degeneration in-vivo.47-48  The novelty of the present experiment is to show how disc 

decompression varies with factors such as spinal level and age. 

Explanation of findings  Damaged endplates bulge more into the vertebral body43 allowing 

more space for the disc nucleus.  This reduces nucleus pressure, which is sensitive to small % 

changes in volume.49  Greater damage causes greater nucleus decompression, and 

correspondingly greater peak stresses in the annulus, as load-bearing is shifted from nucleus 

to annulus, and to the neural arch.22  The following discussion suggests why this mechanism 

depends primarily on spinal level, age/degeneration and gender, and secondarily on factors 

such as which themselves depend on the primary variables. 
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 8 

The influence of spinal level has several likely causes, the most important of which is 

probably the greater height of lower lumbar discs.  Disc height increases substantially in the 

lower thoracic spine50 and by 100-150% between T7-8 and L5-S1,51 so nucleus volume will 

increase by at least this amount.  Decompression following endplate damage is proportional 

to nucleus volume, and so will be reduced at lower lumbar levels.  The greater height of 

lower lumbar discs leads to greater vertical deformations and radial bulging under load,51 

enhancing reducing nucleus 

decompression.  Increasing disc cross-sectional area at lower spinal levels40 may also exert an 

influence, because it will cause the 1 kN load to give rise to a lower , which in 

turn may cause a smaller pressure drop following endplate damage.  However, endplate area 

increases by only 17% between L1 and L552, whereas disc decompression across these same 

levels decreased by 59% (calculated from Table 2 column 7) so the influence of endplate area 

is not paramount.  Finally, thicker vertebral endplates in the lower lumbar spine (Figure 4) 

may minimise endplate deformations and disc pressure changes following endplate damage. 

The influence of age (Figure 3) is also complex.  Nucleus pressure decreases with age and 

disc degeneration39,25 and a lower 

following endplate damage for the same absolute pressure drop.  Age also makes vertebrae 

more brittle, so that they lose more height when damaged and cause greater disc 

decompression.  Hence, the marked gender differences shown in Figure 3 could be explained 

in terms of increasing bone fragility in women after the menopause.  Annulus tissue also 

stiffens with age as a result of non-enzymatic glycation,53 so an old stiff annulus may be 

better able to stress-shield the nucleus than the soft hydrated annulus of a young non-

degenerated disc, which can deform and equalise stress. 

The influence of age and spinal level on nucleus decompression can be compared as follows: 

age probably exerts its influence by increasing annulus stiffness and bone fragility, whereas 
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 9 

spinal level probably exerts its influence via annulus height and nucleus volume.  Although 

both influences are large, it is evident from Table 2 that only spinal level has a major 

influence on absolute pressure loss in the nucleus (in MPa) and on absolute stress increases in 

the posterior annulus.  Absolute changes in intradiscal stress may be more important than % 

changes when it comes to driving disc disruption and degeneration. 

The influence of gender can be explained in terms of increased bone fragility in women, and 

also on the reduced size and endplate area in female spines, which would increase initial disc 

pressure and lead to greater damage and subsequent pressure changes in the disc (Table 2). 

Clinical implications.  Disc decompression and i

thoracolumbar spine.47  From a biological point of view, low pressure in the nucleus and 

increased stresses in the annulus will inhibit disc cell metabolism54 and increase synthesis of 

matrix-degrading enzymes.55-56  In this way, endplate failure would initiate biological 

degenerative changes in the disc.  This mechanism of disc degeneration has been 

demonstrated in animals,19, 57 explained by organ culture56 and mathematical models,58 and 

confirmed in humans.59 

Decompression, and loss of disc height, following endplate fracture are associated with an 

increase in neutral zone and hence with instability.20 Greater decompression of thoracic and 

upper lumbar discs therefore explains why degenerative disc narrowing and osteophytes, 

which are typical in this region of the spine,50, 60 are so closely associated with large 

centrally-located .14  Some  nodes may be congenital,41 but others are related 

to loading15 and represent calcification around a vertical herniation of nucleus pulposus.  

Thoracic disc degeneration tends not to lead to severe radial bulging,50 possibly because the 

discs are inherently narrow and better stress-shielded by the neural arch, and thoracic disc 

 back pain.61 
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The situation is very different between L4 and S1, where s nodes are relatively 

uncommon15, 62 and less associated with disc degeneration.14  This can be explained by the 

present results: thicker endplates between L4 and S1 reduce the risk and size of vertical disc 

herniations, and the hence the tendency for the disc to degenerate via this mechanism.  Most 

lower lumbar endplate lesions are /

/ ,15 and are associated with inflammation in the vertebral body. 63-

64  They may reflect posterior disc herniations in which displaced annulus strips cartilage 

from the bony endplate,65-66 allowing inflammatory reactions to occur.  Many disc herniations 

involve disruption of cartilage and bone on the postero-lateral margins of the vertebral 

body.67 

These interpretations support the concept of two disc degeneration phenotypes12: endplate-

driven  degeneration in the upper lumbar and thoracic spine which is initiated by endplate 

damage as simulated in the present experiment; and annulus driven  degeneration at L4-5 

and L5-S1 which is initiated by nucleus tissue herniating through the annulus. Both of the 

initiating lesions decompress the nucleus, making it less likely that the other type of lesion 

could occur in the same disc. 

Unanswered questions and future research.  Longitudinal clinical studies are required to 

prove that different mechanisms lead to disc degeneration at L4-S1 compared to higher spinal 

levels. 

Conclusions  Even minor damage to a vertebral body endplate can decompresses the adjacent 

disc, allowing the annulus to collapse inwards.  The effect is small in young and lower 

lumbar discs, possibly because they have a larger nucleus volume, and thicker endplates.  In 

life, degeneration of L4-S1 discs may often be unrelated to endplate fracture. 
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Table 1: Details of 174 cadaveric specimens tested.  Values refer to the number of specimens in each 

sub-group. 

Number of specimens tested (total =174) 

Spinal 

Level 

n Grade of disc degeneration Age (yrs) Gender 

  1 2 3 4 <=60 >60 Male Female 

T7-8 6  4 2  2 4 2 4 

T8-9 4   4  1 3 2 2 

T9-10 9  5 3 1 3 6 3 6 

T10-11 12  5 7  3 9 6 6 

T11-12 17  8 5 4 1 16 10 7 

T12-L1 21  11 9 1 4 17 12 9 

L1-2 27  11 13 3 4 23 12 15 

L2-3 33 2 15 14 2 13 20 20 13 

L3-4 23  7 10 6 5 18 13 10 

L4-5 20 4 8 7 1 12 8 13 7 

L5-S1 2  1 1  2  2  

Sub-totals 174 6 75 75 18 50 124 95 79 
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Table 2: Summary of results for various specimen groups.  Values indicate the mean.  n = number of 
specimens in each group.  DD = grade of disc degeneration.  The fall in intradiscal pressure (IDP) 
following endplate damage is given in absolute units (MPa), and also as a % of the Initial IDP before 
damage.  PA stress rise  = absolute increase in peak compressive stress (relative to IDP) measured 
in the posterior annulus, caused by endplate damage. 

1 2 3 4 5 6 7 8 

Specimen 

groups 

n Age (yrs) Initial IDP 

(MPa) 

Damage 

(mm) 

% Fall in 

IDP 

Fall in 

IDP (MPa) 

PA stress 

rise (MPa) 

All 174 71 0.88 1.88 62 0.54 0.74 

Male 95 70 0.79 1.73 57 0.42 0.64 

Female 79 72 0.99 2.06 68 0.69 0.85 

Age<=60 50 48 1.09 1.48 46 0.54 0.73 

Age > 60 124 80 0.79 2.05 69 0.54 0.74 

DD - 1 6 24 0.98 0.81 5 0.05 0.03 

DD - 2 75 65 1.00 1.79 56 0.57 0.79 

DD - 3 75 77 0.86 1.98 68 0.60 0.71 

DD - 4 18 84 0.47 2.21 80 0.34 0.86 

T7-8 6 72 1.56 2.27 87 1.28 1.82 

T8-9 4 74 1.27 2.16 93 1.19 1.09 

T9-10 9 68 1.23 2.71 85 1.01 1.56 

T10-11 12 74 0.87 2.44 89 0.79 0.49 

T11-12 17 80 0.89 2.38 77 0.66 0.95 

T12-L1 21 74 1.00 1.94 63 0.60 0.79 

L1-2 27 77 0.85 1.89 71 0.59 0.85 

L2-3 33 68 0.83 1.58 49 0.37 0.60 

L3-4 23 71 0.64 1.92 48 0.29 0.43 

L4-5 20 56 0.74 1.09 38 0.24 0.35 

L5-S1 2 47 0.73 0.46 5 0.02 0.25 
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Table 3  Summary of univariate linear regression results.  A negative sign indicates an inverse 

relationship.  Gender was coded 0 (female) and 1 (male), and spinal levels from T7-8 to L5-S1 were 

coded from 1 to 11.  Dependent (Y) variables represent changes following endplate damage. 

Row 

no. 

Dependent 

(Y) variable 

Independent  

(X) variable 

All discs 

(n=174) 

Non-degenerated 

discs (n=81) 

   Rsq P Rsq P 

1 Damage (mm) age 17 <0.001 14 0.001 

2  gender -4 0.011 -15 <0.001 

3  spinal level - 20 <0.001 -34 <0.001 

4  initial IDP 0 NS 8 0.009 

5 % Fall in IDP age 19 <0.001 19 <0.001 

6  gender -3 0.031 -9 0.006 

7  spinal level -22 <0.001 -32 <0.001 

8  initial IDP 0 NS 1 NS 

9  damage 37 <0.001 51 <0.001 

10 Fall in IDP (MPa) age 2 NS 1 NS 

11  gender -9 <0.001 -12 0.002 

12  spinal level -33 <0.001 -35 <0.001 

13  initial IDP 49 <0.001 44 <0.001 

14  damage 20 <0.001 47 <0.001 

15 PA stress rise (MPa)  age 0 NS 0 NS 

16  gender -1 NS -4 NS 

17  spinal level -7 <0.001 -7 0.021 

18  initial IDP 25 <0.001 28 <0.001 

19  damage 4 0.007 10 0.003 

20  fall in IDP 27 <0.001 31 <0.001 
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Table 4  The best predictive model for disc decompression, obtained using multiple linear 

regression, explained 71% of the variance in Fall in IDP (MPa)

(T7-8) to 11 (L5-S1), gender was coded 0 (female) and 1 (male), and disc degeneration graded from 

1-4.  Standardised (Std) coefficients indicate the relative importance of each influence. 

indicates an inverse relationship. 

 
All discs (n=174)      R2 = 71% 

 Std coefficients P 

Initial IDP (MPa) 0.662 <0.001 

Damage (mm) 0.244 <0.001 

Spinal level (-)  0.179 <0.001 

Age (yrs) 0.138 0.016 

Gender (-)  0.066 NS 

Disc Degeneration 0.058 NS 
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Figure Captions 

Figure 1  Cadaveric thoracolumbar motion segments were secured in cups of dental plaster, 

and compressed by means of two rollers, which maintained a neutral posture without 

inhibiting any settling movements in the horizontal plane.  Black circles represent reflective 

markers that were attached to the lateral vertebral body cortex in some specimens: these 

enabled deformations to be measured optically, independent of deformations of other tissues 

and apparatus.  The distribution of compressive stress was measured within the intervertebral 

disc by pulling a miniature pressure transducer along its mid-sagittal diameter. 

Figure 2  Disc decompression (Fall in IDP) following endplate damage decreased regularly 

from T7-8 down to L5-S1, regardless of whether the disc was degenerated or not.  81 of the 

174 specimens were non-degenerated (disc grade 1 or 2).  Error bars indicate the standard 

error of the mean (SEM). 

Figure 3  Disc decompression following vertebral endplate damage increased with age, but 

only in male specimens.  In contrast, most female specimens aged over 40 yrs were 

substantially decompressed.  Error bars indicate the SEM. 

Figure 4  Average thickness of the vertebral body endplate was minimal at T11, and 

increased linearly from T11 to L5 (R2 = 21%, P<0.001).  Data refer to 80 undamaged 

vertebrae. 

  










