
VLDB Journal, 4, 287-317 (1995), Nathan Goodman, Editor

QVLDB

287

InterViso: Dealing With the Complexity of Federated

Database Access

Marjorie Templeton, Herbert Henley, Edward Maroe, and

Darrel J. Van Buer

Received April, 1993; revised version received, April, 1994; June, 1994.

Abstract. Connectivity products are finally available to provide the "highways"

between computers containing data. IBM has provided strong validation of the

concept with their "Information Warehouse." DBMS vendors are providing gate-

ways into their products, and SQL is being retrofitted on many older DBMSs to

make it easier to access data from standard 4GL products and application devel-

opment systems. The next step needed for data integration is to provide (1) a

common data dictionary with a conceptual schema across the data to mask the

many differences that occur when databases are developed independently and (2)

a server that can access and integrate the databases using information from the

data dictionary. In this article, we discuss InterViso, one of the first commercial

federated database products. InterViso is based on Mermaid, which was devel-

oped at SDC and Unisys (Templeton et al., 1987b). It provides a value added layer

above connectivity products to handle views across databases, schema translation,

and transaction management.

Key Words. Federated database, database integration, data warehouse.

1. Introduction

InterViso is a D B M S front end that allows a user to access data that are managed by

existing DBMSs. The individual databases may have been independent ly designed

and may be managed by different DBMSs. InterViso provides a s tandardized view

across all of the databases, which masks the structural differences and provides

location transparency. With InterViso, existing applications can cont inue to access

data as they currently exist, and the new applications can gather and integrate data

Marjorie Templeton, B.A., is Vice President of Technology, margie@diL com" Herbert Henley, B.S., is Senior

Technical Staffmember, herb@dii.com; Edward Maros, B.S, is Technical Staffmember edward@dii.com; and

Darrel J. Van Buer, Ph.D., is Senior Technologist, darrel@dii.com; Data Integration, Inc., 11965 Venice

Blvd., Suite 305, Los Angeles, CA 90066.

288

from the existing databases, as required, to meet new and changing goals of an

organization.

The user or application programmer sees the enterprise data as one single

database and initiates a single query or update. InterViso determines how to answer

that query or perform the update by breaking it down into parallel components.

InterViso automatically locates the data, opens connections to the existing computers

and databases (using whatever connectivity products are available), issues queries to

the DBMSs in their query language (SQL or other), and integrates the returned data

from the multiple sources. The integration may require translation and resolution

of data types, fields and values, all of which is done automatically by InterViso.

The user receives the answer to the single query in an integrated form.

InterViso is the culmination of many years of research at System Development

Corporation (SDC) which was merged into Unisys. The prototype at SDC was

called Mermaid (Templeton et al., 1987b; Thomas et al., 1990). The design of

Mermaid was the result of an analysis, done in 1982, of Department of Defense

(DoD) requirements for the next generation of data management systems. The

requirements have been refined through the years, although the basic needs still exist.

InterViso has been applied commercially, which has walidated the basic requirements

and demonstrated that commercial requirements are similar to DoD requirements,

although commercial need may lag by a few years.

Each research prototype in the general area of federated databases has tended to

emphasize different aspects of the general federated database problem (Elmagarmid

and Du, 1990; Litwin et al., 1990; Ahmed et al., 1991; Perrizo et al., 1991; Breitbart

et al., 1992a; Veijalainen and Wolski, 1992). InterViso has bridged the gap between

theory and practice. Many pragmatic decisions have been made to satisfy conflicting

requirements.

The basic design criteria for Mermaid and InterViso are:

1. Conform to industry standards: Mermaid and InterViso have tended to

be implemented ahead of open systems standards, which means frequent

modification. InterViso has a modular design to support replacement of

parts as the standards change.

2. Local autonomy of existing databases: The types of autonomy include design

autonomy, execution autonomy, and communication autonomy (Breitbart et

al., 1992b).

3. Requirement for high availability: InterViso will continue to run in spite of

node failures.

4. Minimal impact on the local system by external users: InterViso users have

no priority and cannot hold locks that will lock out local users.

5. Tight access control: Databases are locally owned and permission is granted

to individual users of InterViso.

6. Need for data and schema translation: Independent designs of the databases

mean that names and data types for the same data elements may not be the

same in different databases.

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 289

7. Replicated and fragmented relations: Similar data and similar schema may

exist for different data in independent databases.

8. Primary use for decision support: It is expected that most users will be

submitting ad hoc queries. Some organizations do not want users to submit

any updates, but other users require update capability.

9. Distributed control: Users may run on many different servers across a large

network.

The query portion of InterViso, called "IVQuery," is a direct descendent of

Mermaid but with added capability. The differences between Mermaid and InterViso

are in the supporting utility programs, the level of documentation, and the level of

testing. Mermaid was a research prototype and lacked the utilities and documentation

necessary for a commercial product. The data dictionary (DD/D) that contains the

federated view across the existing databases had to be built by the Mermaid staff

rather than by the end user organization. InterViso includes an interactive DD/D

development program that comes with extensive documentation to guide a developer

through the process. This program ensures internal consistency of the dictionary

and includes tools to simplify repetitive tasks. It also includes an interactive program

to maintain access lists and passwords, a program to copy data dictionaries between

hosts and DBMSs, and a program to recover from update failures.

Some of the capabilities that were added to InterViso are: updates to underlying

databases, more types of schema translation, improved error handling, extensive

logging of activity and errors, and an application program interface that conforms

to the Microsoft ODBC standard for call level interfaces.

Mermaid was an early prototype of a "federated database" system. Now, 12

years later, the commercial market is beginning to recognize the need for federated

databases. However, there is still confusion between connectivity products, data

warehouse products, and federated database products.

Many vendors have developed gateways from PCs and Unix servers to legacy

DBMSs on mainframes. The leading gateway vendor is Information Builders with the

EDA/SQL product. It offers access to 55 DBMSs on many types of platforms from

many types of platforms. All RDBMS vendors and most application development

tool vendors also offer gateways.

Gateway products connect the client side, where the application program is

running, to the server side, where the data resides. The gateway offers language

translation, data model translation (from the relational user view to the way that

the DBMS stores the data), transparent log-in to the server host and DBMS, and

some name mapping to rename data elements.

Gateway products do not offer a view across databases. They do not handle

the transformation from a standardized, federated view to the way that data are

stored. They do not manage the transformations necessary to combine data from

different databases, and they do not manage replicated or fragmented table updates.

Using an application development tool directly with the gateway product requires

290

that these capabilities be coded into each program. InterViso therefore offers an

important component between the gateway and the application program.

InterViso is an integration product rather than a connectivity product. It includes

gateways to relational DBMS products on Unix computers such as Oracle, Sybase,

and Ingres, and language translators to other DBIdSs using SQL such as DB2 and

Informix. InterViso also works with gateway products from many vendors to provide

the connection to non-Unix computers and non-relational databases.

Data warehouse products download and transform data from legacy databases

to a relational DBMS. Transformed snapshots of the legacy databases are taken

periodically. Retrieval for decision support is done against the snapshots in the

relational DBMS. Updates continue to be made 1:o the legacy databases through

the existing application programs. The data warehouse solution requires that all

data needed by the decision support application be stored in the warehouse. There

is no way to reach through the warehouse to the underlying databases. This means

that large amounts of data may have to be stored in the warehouse or that data

must be summarized, which means losing the detail.

InterViso goes beyond the capabilities of a data warehouse, because it allows

dynamic access to the changing database in conjunction with access to snapshots.

Only the frequently accessed and seldom updated data need to be moved to the

warehouse. Data may be collected for the warehouse in a batch job, as warehouse

products do, or with a dynamic interactive query. Regularly used warehouse snapshots

can be taken periodically, as with warehouse products. In addition, interactive users

may dynamically develop snapshots that cover data of immediate interest. InterViso

then supports joins between the warehoused data and the underlying data sources.

In the following sections, we discuss the implementation of InterViso. In

Section 2, we present the system architecture. Section 3 discusses the development

of the DD/D. Successful operation of InterViso depends upon complete descriptions

of the existing databases and the environment. Section 4 describes the InterViso

server, which does query optimization and transaction management across databases.

Section 5 reviews the issues in connecting to existing DBMS products and existing

databases. Section 6 discusses access control. Section 7 discusses the interaction

with standards, and Section 8 discusses lessons learned in turning a prototype into

a product. Conclusions are made in Section 9.

2. InterViso Architecture

InterViso runs most processes and all database access, using the identity of the user so

that all system access controls will continue to operate. Each user has a user interface

process that controls either an interactive interface or application program; one

"controller" that performs query optimization and transaction control; one process

that reads the DD/D; and one Database Management System Interface (DBMSI)

VLDB Journal 4 (2) Templeton: InterViso--Federated Database Access 291

Figure 1. InterViso Architecture

InterViso
Client
Interface

Batch
Interface

~!~ i ~ ~.~pp:.ca~

Query
Validator

Window User I Application
Interface I Program

on Pr0gram Interface (API)?~i~ ~i~,ii!~,~,l

User I Report
Commands Generator

InterViso
Server I Optimizer

Controller DBMSI

~--Federated

DD/D ~ I S c h e m a
DBMS

LAN/WAN

InterViso
Data
Interface

DBMSSubr. J [3rd Party
library Gateway

I I
Intermix DB2 IMS
Ingres IDMS M204
Oracle RDB RM$
Sybase Teradata
DB2 + others

I ~APr~;~ Jl Object ;~I~ raM, ~Retrieve

I I
Program Blob Files from:

GIS Database
Image Database

I Document file
Data Files

Each box with a double line may reside on a different computer.

for each active database. The only shared InterViso process is a communications

daemon on each host. Figure 1 shows the InterViso system architecture.

InterViso may have several types of user interfaces. Two Application Program

Interfaces (API) are supplied. The Mermaid system had no API that was available

to programmers. InterViso originally incorporated an API based on the Sybase

API. In 1994, a second API was developed that conforms to the Microsoft ODBC

standard, which is based on a draft of the SQL Access Group draft CLI (Call Level

Interface; SQL Access Group, 1992; Microsoft, 1993).

Data Integration, Inc. (DII) supplies three interfaces that are "applications"

built on the API: an X windows interactive interface, an ASCII terminal interactive

interface, and a batch job stream interface. Programmers can develop their own

interactive or batch interfaces for specific applications using the C language or any

application development toolkit that can call ODBC compliant data sources.

The controller provides query optimization, access control, process control, and

update replication control. Details will be supplied in several sections below.

One or more copies of the DD/D exist on the network at a node which runs

Ingres, Oracle, or Sybase. The DD/D is a large database that needs to be managed

reliably and with high performance, so InterViso uses a commercial relational DBMS

292

to manage the DD/D. Development of the DD/D is key to the successful operation

of InterViso (Section 3).

Each DBMSI runs on the computer with the database or on the computer hosting

the database gateway to the data to be accessed. The DBMSI performs DBMS-

specific translation of queries, makes DBMS specific calls, and does local transaction

management (Section 5). It also handles database specific schema translation. The

relational DBMSs on Unix systems are accessed through DII-developed gateways.

Other DBMSs are accessed through third party gateways.

Each set of InterViso processes for one-user runs with no knowledge of other

InterViso users that may be running. There could be many different copies of the

DD/D and many different computers where user interface and controller programs

are running. Each controller process handles transaction management for one user

only. The processes for different users could be on different nodes of a wide area

network. Transaction management between users; is left to the individual local

DBMS, however InterViso does use timeouts to resolve potential deadlocks.

3. Data Dictionary Development

Before InterViso can run, it needs a definition of the: "local schemas" for the existing

databases, and the "federated schema," defining a view across the databases. These

definitions and the mappings between them are stored in the DD/D database.

Many of the types of problems that must be addressed when developing a federated

schema have been discussed (Templeton, 1989; Collet et al., 1991; Kim and Seo,

1991; Sheth and Larson, 1991). These problems include naming differences, both

different names for like data and unrelated data under the same name, missing

data, extra data, different precision, different repres.entation, and different grouping

of similar data, both at the table and field level. In addition, the data for a single

federated table may be spread across several sites, possibly with overlapping copies

or mixed in with unrelated data.

Some of the development process can be automated, but many decisions must

be made by a human designer who understands the content of the existing databases,

the standards that a specific organization has for databases, the requirements for

access control, and the application views of the data. This may be a major task,

but it is necessary for control over existing databases. Once the existing database

elements are cataloged in InterViso's DD/D, all programmers and users can refer

to the DD/D. Without a central catalog, every application or query developer needs

to find out what data are available and write the transformations that are needed

to view the data in a common report.

The DD/D Builder program (called "IVBuild"), which is used to develop and

maintain the DD/D, is a significant difference between Mermaid and InterViso.

Before DII developed this program, building the DD/D required knowledge of the

DD/D structure. IVBuild manages internal details and provides a number of tools

for aiding the development process.

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 293

IVBuild differs from other data modeling tools in being primarily bottom up;

thus the description of the individual databases is input rather than output. The

DataBase Administrator starts by describing the schemas of the existing databases,

often by reading in existing data definition language that describes them and then

develops a federated schema or schemas that encompass all or parts of the local

schemas. One federated schema is developed for each application or group of users

who share a common view of the databases and who have similar access permission

to view the local databases.

IVBuild is an editor/browser for DD/Ds. Much of its user interface resembles

an X-windows 4GL providing reports and edit windows for many of the basic

components of a DD/D. It also incorporates a number of features designed to

speed up many of the steps in building an application. To capture existing data

definition language, IVBuild can read a number of different formats defining existing

databases. After loading the data definition language, the DataBase Administrator

uses a series of data entry windows to add information about the contents of each

local database. This step requires the DataBase Administrator to understand the

contents of the current databases and to formulate the appropriate semantic labeling

of the contents. Building a federated definition identical to one local site can be

done in a single operation, though some follow-up editing is usually required to make

it follow design rules and reach a form compatible with the other local databases.

Other tools help speed the connection to the remaining sites by identifying possible

matches between federated and local entities, and by storing idioms which are

likely to recur later in the editing process. IVBuild can also produce a number

of reports on the status of the process showing what has been done or remains

to be done. Finally, IVBuild contains considerable checking and repair of the

internal consistency of a DD/D, was well as logging and recovery of DD/D updates

to minimize the problems caused by system failure during the development of an

application.

Each DD/D consists of the directory and one database per federated schema.

The "directory" contains global and administrative information about the users, the

hosts, the network, the capabilities of each DBMS where the databases are stored,

and a catalog of federated schemas. The directory information is independent of

a specific federated schema, and is used to connect to the hosts and DBMSs.

Rather than using one dictionary to store all federated schemas and mappings,

Mermaid and InterViso use a separate data dictionary for each independent federated

schema. Multiple federated schemas may exist across the same underlying "local"

databases to provide different views. A "local" database is an existing database

where some or all of the data will be shared with users of InterViso. To a user of

InterViso, the federated schema will appear to be a database with a schema, but

all of the data are actually managed by the several local DBMSs. Many different

federated databases can be built on different subsets of the same local databases.

The different federated databases provide a way to meet the needs of different

applications and user communities and control or limit access to data as needed.

294

Figure 2. Two local schemas

Local relation in database "SATVIEW"

TABLE satrpt(

shiptype CHAR(15),/* code assigned by photo interpreters*/

lat CHAR(7), /* latitude DDDMMM +direction */

lng CHAR(7), /* longitude DDDMMM +direction */

time INT) /* month/day/hour/minute */

Local relation in database "SHIPRPT"

TABLE shiprpt(

shiptype CHAR(15),/*

shipname CHAR(20),/*

country INT, /*

lat CHAR(7), /*

lng CHAR(7), /*

month CHAR(4), /*

day INT, /*

year INT) /*

code of type seen */

name of ship */

country code */

latitude DDDMMM +direction */

longitude DDDMMM +direction */

month name abbreviation */

day */

year */

For example, some data may be seen by intelligence analysts using names and types

that are familiar to analysts. Another federated schema could be defined for the

Navy headquarters staff with a different view of the data.

The next section shows an example of two local database relations and a possible

federated view of the relations. This is followed by a more complete discussion of

the possible field and relation mappings.

3.1 Example

To illustrate some of the decisions that must be made when defining a federated

schema, assume that there are two relations in two different databases containing

the sightings of ships. One database contains satellite reports and the other contains

visual reports. The same ships are being sighted, but the content of the reports

is different. The satellite reports have more precision in the report time, have

more sightings, and cover more ships, but the visual sighting reports collect more

information about the individual ships. The two local relations are shown in Figure

2.

There is no single "correct" federated schema. Several different federated

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 295

Figure 3. Federated database SHIPS

/* fragmented, map to satrpt and shiprpt */

TABLE sighting(

shiptype CHAR(15),/* connect to satrpt.shiptype

or shiprpt.shiptype */

lat CHAR(7), /* latitude DDDMMM +direction */

lng CHAR(7), /* longitude DDDMMM +direction */

date CHAR(5)) /* MM-DD */

/* single site map to satrpt */

TABLE sat_rpt(

shiptype CHAR(15),/* code assigned by photo interpreter*/

lat CHAR(7), /* latitude DDDMMM +direction */

lng CHAR(7), /* longitude DDDMMM +direction */

date CHAR(l l) /* MM-DD-HH-MM */

/* single site map to shiprpt */

TABLE ship_rpt(

shiptype CHAR(15),

shipname CHAR(20),

country CHAR(30),

lat CHAR(7),

lng CHAR(7),

date CHAR(5),

year CHAR(4))

/* code of type seen */

/* name of ship */

/* country name */

/* latitude DDDMMM +direction */

/* longitude DDDMMM +direction */

/* MM-DD */

/* year */

schemas could be developed for different sets of users and/or applications. An

example of one possible federated schema is shown in Figure 3.

Figure 3 shows one fragmented relation, "sighting," to view all of the sightings

as a single relation. The relation would contain the fields in common in a standard

form and would use the precision in days, the lowest precision database. The

relation is fragmented because each database contains different information. Some

ships may be sighted about the same time by both another ship and a satellite, but

the user must get data from both databases to see all of the sighting data.

Two other federated relations could be defined to view the individual types of

sightings. Some conversion is done on the output to put it into a more standard

form. The country code is converted to a name. The dates are converted into a

character form with dashes between the components, and months expressed as a
number rather than a name.

296

The sa t_rp t relation maps directly to the satrpt relation in the SATVIEW

database. The ship_rpt relation maps to the shiprpt relation in the SHIPRPT

database. The sighting relation maps to the union of the satrpt and shiprpt relations,

although not all fields are included in the federated view.

3.2 Field Definition

3.2.1 Domain and Units. The first step in developing a DD/D is to understand the

meaning of every data element. Figure 2 shows comment meaning, which is turned

into a more formal labeling with the domain and the unit. If an organization has

defined standards for data element representation, data element standards are also

collected and attached to the data elements. The data element standard influences

the definition of the federated view of a field.

The field name, data type, and length describe the data element storage form

but do little to describe the contents or its semantics. The domain is the semantic

meaning of the data element (e.g., time). One local field containing time data may

be called "time" and another may be called "HourMin," but both contain the same

type of data, so they both belong to the same or related domains. One database

may have the time stored in a single field, while another stores the date, hour, and

minutes in different fields. One database may store time in minutes, while another

has it in days (Figure 2).

The data element standard might specify that all fields with date and time data

be called "date" and have the data represented as "MM-DD-HH-MM." This would

be the preferred representation in the federated schema.

The unit of a field describes the way that quantities are represented, such as

inches or miles for distance, and pounds or kilograms for weight. If a field in one

local database contains the distance between ports in miles, and the corresponding

field in another local database contains the distance between ports in kilometers,

these fields would share the common domain "distance," but use different units.

At the federated level, fields must use the same domain and unit if they will be

joined or compared. When data element standards are used, the standard for the

distance domain specifies which unit should be seen in the federated schema, and

both local fields are converted to the unit of the federated schema as needed.

Units often apply to numeric quantities, but InterViso extends the unit concept

to any data with multiple representations for the same value. For example, the unit

label may be used to describe alphabetic formats such as two versions of a date

in strings in the forms "YYMMDD," or a Julian date "YY-DDD." Fields of these

types could store data from the sighting-date domain using the same precision. In

general, when two data fields have the same domain but use different units, it means

that some data transformation is needed.

3.2.2 Field Mappings. The federated relation (the federated view of the local re-

lations) is composed of federated fields which draw data values from one or more

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 297

fields in one or more corresponding local relations. These field mappings may

consist of combinations of the following:

• rename the field;

• change the length of the field;

• convert the data type;

• convert the case of a character field from lower to upper, upper to lower,

or mixed to upper or lower;

• specify field composition of a federated field by concatenating and/or sub-

setting one or more local fields;

• perform arithmetic operations on one or more local fields;

• perform character pattern operations on one or more local fields;

• translate the values of a character or integer field using a table lookup to

get the new value;

• return a constant which may have a value dependent upon which local database

and relation is accessed;

• translate the values of a field using a function written in C programming

language. This case is seldom needed, but provides for almost any computable

transformation.

All of the field translations must be defined for both directions, federated to

local and local to federated, because values from the database are translated for

reporting and values in the query are translated for qualification or update. The

transformations are stored in the DD/D.

3.3 Relation Definition

3.3.1 Relation Mapping. Each federated relation is a view of one or more local

relations. One federated relation may map

• to one local relation with the same or a modified schema;

• to a selection of records in a local relation to eliminate some records f rom

the federated schema (a "horizontal partition");

• to a projection of fields of one local relation to eliminate some fields from

the federated relation;

• to two or more local relations that must be joined to create the federated

relation (a "vertical partition");

• to two or more local relations in different databases that must be unioned

to present all of the records ("fragmentation");

• to two or more local relations in different databases that contain the same

records ("replications") but which may have schema differences;

• to relations combining the above cases.

298

3.3.2 Replicated and Fragmented Relations. Management of replicated and frag-

mented relations causes most of the complexity in the development of the DD/D

and the query optimizer and the transaction manager.

Replicated relations have fields of the same domain, and records that are the

same in all copies. They exist when there are redundant data in the local databases.

Fragmented relations have fields of the same domain, but their records are disjoint

subsets. They exist when different organizations collect the same information about

different entities such as ships in different fleets. It is not possible to determine

whether relations are fragmented or replicated by looking at the field names, data

types, or domains; the determination depends solely upon the data.

Data are not always cleanly replicated or fragmented. Data may be collected in

one location and then copied to another periodically so that the original site is more

current. Data may be collected in several locations and then be processed before

being combined centrally. Since replication and fragmentation are logical concepts

in the federated schema, it is possible to view the data differently for different users

or applications. If the application that will use the federated schema needs the most

recent data at all times and updates do not occur through InterViso, then perhaps

only the most recent copy should be mapped to the federated relation, and other

copies should be excluded. If the application needs the most recent at some times

but should update both copies if an update is made, then the relations should be

declared "replicated" with the most recent one being declared the primary copy.

The user of InterViso can specify in a query that the primary copy is to be retrieved

if that is important.

There may be a case where two relations in different databases share most'

of the same fields and do have the same information in the common fields, but

have other fields peculiar to a particular database. This may require the DataBase

Administrator to define more than one federated table view of the data--one that

incorporates only the lowest common denominator of the data elements, which is

usable everywhere, and others which give access to data with limited availability.

For example, assume that there are two databases where database i contains R1

with fields {A,B,C,E} and database 2 contains R2 with fields {A,C,D,E}. The

DataBase Administrator can declare that the common fields belong to a replicated

relation and that the other fields belong to single-location federated relations, or

that the other fields are not part of the federated sclhema. Assuming that A is the

key, three federated relations might be defined: Rrepl {A,C,E}, Rlsingle {A,B},

and R2single {A,D}. The DataBase Adminstrator might also decide that field D

does not need to be seen in the federated view, and omit R2single.

There also may be cases where some of the records are replicated and others are

not. For example, one database may have military and commercial ships in the same

relation, while another database has only commercial ships. Two federated relations

might be defined as "MilShip" for a single site, and "ComShip" for a replicated

relation. The mapping for MilShip and ComShip at the site where information on

both types of ship is stored in the same relation wouh:i map to a horizontal partition

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 299

of the relation by defining a predicate to select only one type of ship at a time for

the federated view.

Fragmented relations are similar to replicated relations except that each record

is stored in only one copy. If some of the fields are not included in all copies of the

fragments, the remaining fields can be seen through a different federated relation

or be eliminated from the federated schema. Some records may also be eliminated

as some sites to make the data consistent. For example, if the SATVIEW database

in Figure 2 contains reports for 3 months and the SHIPRPT contains a 12-month

history, then the DataBase Administrator may define a predicate to eliminate the

older reports from the second database. The federated relation "sighting" would

then retrieve a three-month history from both databases. The single site federated

relation ship_rp ' t could be used to retrieve the entire history. From the logical,

federated schema view, these are two different relations, although both retrieve

data from the same local database relation.

Fragmented relations may have an explicit or implicit predicate for location.

This predicate is an equality or range check on the value of some field that will

determine the location of a record. For example, if each fleet maintains its own

ship location database, the fleet number would determine the local database. The

example in Figure 2 does not have an explicit predicate, but the presence of a record

in a database carries the information that the report was collected by satellite or

by visual sighting. A virtual field Stype could be added to the federated relation

with a constant value SAT or VISUAL. If the user enters:

INSERT INTO sighting (shiptype, lat, ing, date, Stype)

VALUES ('CG17', '045010N', '050000E', '0407', 'VISUAL')

then the value VISUAL will specify into which database the record will be inserted.

Several fragmented relations may be located in a specific database as a fragment
group. For example, each database may have several relations containing information

about ships. All information on any given ship is in the same database. Fragment

groups have a master relation that locates the group. The other relations in the

group, called dependent fragments, are located with the master relation. In the ship

example, the fleet field in the master record determines which database contains

the records for the ship. The master record might contain the characteristics of the

ship such as the name, data commissioned, flag, etc. Other ship records such as the

sighting history may not have a fleet field so their location is dependent upon the

ship master. Again, this is a logical concept when developing the federated schema.

There may be cases where it is not clear whether relations are fragmented or

replicated. For example, some records may be in multiple databases but not in all

databases. Updating then becomes extremely difficult. The DataBase Administrator

must define predicates that can generate a cleanly replicated or fragmented relation.

If this is not possible, it may be necessary to treat each local relation as an independent

federated relation, or else to select some subset of the local relations to include in

300

the federated schema. The DD/D can also specify that updates are not allowed on

the federated relation.

3.3.3 Vertical Partition Joins. In some cases, two or more relations in one local

database contain the same information that another local database stores in a

single relation. For example, one database may have two ship records per ship,

one containing the ship characteristics information and the other administrative

information while a second database stores all ship information in one record.

There are two alternatives for defining federated relations. One federated relation

could map to the join of the two relations in one database and directly to the local

relation in the other database. Alternately, two federated relations could map to

the two relations in one database and map to two projections of the single local

relation in the other database. At a minimum, the key field must be mapped to

both federated relations.

3.4 Integrity

InterViso is designed primarily for retrieval rather than for database maintenance.

Therefore, little has been done with integrity constraints. Each federated field is

labeled with rules:

• Insert rule: field is required, optional (may be NULL), or excluded (used

when there are multiple views of the same field).

• Update rule: update allowed or forbidden. It must be forbidden if the

underlying DBMS forbids update. This flag is also set on by IVBuild for

fields that cannot be updated because (1) the field locates the record and a

change would involve moving the record to a different database, or (2) the

field maps to only part of an underlying field and InterViso cannot update

part of a field.

• Qualification rule: the field cannot be used in qualification due to limitations

in the data source. This is used for non-relational data sources.

Values may be checked on update by adding a function or translate table to

the field. InterViso does not keep a list of valid values or ranges for a domain.

3.5 Model Limitations

The InterViso DD/D format provides modeling to handle all of the above problems,

but there are limits in both the model itself and the tools in the schema translator

component of the DBMSI that implements the model-directed transformations.

When data are missing or of a lower precision, little restoration can be done

except when the lost values can be inferred from their location. For example, if

each data site stores data for a distinct subset of data, but only some sites explicitly

record the subset identity, InterViso can supply the value for the other sites. If

data in different databases have different precision, views across databases may have

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 301

to have the lowest precision, but other tables may be defined to show the single

database view with the full precision as was done in the example above.

There are also limitations when several local fields must be combined to realize

a federated value. Translations are needed in both directions, federated to local

and local to federated, if the field is to be updated or used in qualification. Some

combinations (e.g., addition) lose information so that mapping from federated to

local values is impossible. This is, of course, a common problem when providing

updates through views.

The model also restricts the definition of a federated field to the contents of

a single record at each site. It is not possible to base transformation of records

in one relation on the contents of another relation unless the federated relation is

defined as a join between those local relations at the same site. Query processing

would be very slow if joins of relations had to be done before any data could be

qualified, and some joins would not be possible until schema translation occurred.

So, for example, it is not possible to define a department budget as the sum of the

costs from all of the project records within a department, or as a function of values

in two tables which are joined.

When data are fragmented, the model requires each site to contain identifiable

and disjoint subsets. Depending on the way data are distributed or overlap between

sites, the model's subsetting mechanism may be unable to express the rules defining

where the data should be found. The test is restricted to a single comparison

or range of values for a single federated field at each site. In many cases, the

local values can be mapped to federated values which meet these requirements,

but not always. In the example above, the location of the same ship might seen

in both databases. If the logical view retrieves all sightings, then a fragmented

view makes sense. If the logical view is used to change characteristics of the ship,

such as changing the name of the captain, then the view must declare the tables

as replicated even though all of the data are not replicated. This causes numerous

errors on update. The only solution is to have some indicator in the data that

identifies them as redundant so that the non-replicated records can be removed

with a horizontal partition, but this is usually not available.

4. Controller

The controller process provides query optimization, process initialization, process

restart when a process fails, message retry, and transaction management. Details

of the optimizer and transaction manager are discussed in this section.

4.1 Query Optimization

Access to data in multiple databases requires careful planning to minimize the

time required to process the query. This is important in local DBMSs, especially

when data must be moved across a network. Query optimization algorithms have

302

been developed for DDBMS such as SDD-1 (Bernstein et al., 1981), distributed

INGRES (Epstein et al., 1978), Encompass, and R* (Williams et al., 1981; Lohman

et al., 1984). The Mermaid system started with ideas from SDD-1 and distributed

INGRES when developing the optimization algorithms that are currently used in

InterViso. Mermaid made extensions to the existing distributed DBMS algorithms

to support various process and network costs in a heterogeneous environment, and

to deal with fragmented relations and potential savings from exploiting replicated

relations.

The assumptions behind the optimizer design are discussed here. InterViso

must provide a query optimization algorithm that can adjust to a wide variety of

data distributions. In some environments, there may be closely coupled databases

in which a relation from one database may be replicated in another database,

or in which some relations may be fragmented with fragments stored in different

databases. In other environments, the databases may be basically disjoint, although

there must be some attributes that can be used to join relations across the databases

or there would be little reason to treat them as a federation.

It is assumed that processing costs and communication costs will not be uniform.

There will be different data management systems which will have different operational

characteristics even when running on the same hardware, and there will be different

types of computers. The network will also be nonuniform. There may be multiple

local networks, possibly different types of networks, connected by gateways. Estimates

of the cost factors for the processors and network connections are stored in the

DD/D.

The basic processing steps are:

• Flatten the query to remove nested queries and disjunction using the Kim

algorithm (Kim, 1982).

• If the query can be processed at one site, send the query to the single site.

• Identify data fragment groups and replicated copies of relations. Fragment

groups are fragmented relations that join only to other fragmented relations

at the same site. Replicated relations will be used at multiple sites if that

will result in reduced data movement during processing, but the query can

be processed even if some site is not available, as long as all relations can

be accessed at some site.

• Perform local reduction on individual tables o1: groups of tables at each site

in parallel. This may include select, project, and join. The result is stored

in federated form and the record count is returned to the optimizer.

• Estimate the cost of moving data together to various sites for a semijoin

or union fragment operation, choosing the least costly. Only one fragment

group may stay fragmented.

• Estimate the cost of various sites as the destination for bringing all needed

data together.

• Union some fragments (some many be unioned before processing and others

may be left completely or partially fragmented).

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 303

• Select the most beneficial joins or semijoins to perform. Perform joins within

and across sites. Perform semijoins across sites. In practice, few queries

benefit from semijoins or inter-site joins done before moving data to the

assembly site unless the data reduction saves more than one buffer of data

transfer.

• After all beneficial joins have been performed, move data to the selected

assembly site. Perform final joins and unions.

• Process a final query to combine and select results from the assembled data,

returning any results to the user or API.

• Clean up temporary tables.

During these steps, the optimizer partitions and reorganizes the original query

into a series of SQL statements which direct the operations at each data site.

The optimizer deals with all data in federated format. All data operations except

inter-site data movement are performed entirely by the local database engines (see

Chen et al., 1986; Templeton et al., 1987b for more complete details).

Since it is assumed that users will be using InterViso interactively, minimization

of response time is important. The response time includes the time to develop the

plan for answering the query as well as the time to execute it. Plans are not compiled

and saved because minor changes in the qualification of a query could change the

sites that need to be accessed and the distribution of data at the sites, substantially

altering the optimum strategy. Also, current plan heuristics are evaluated quickly

relative to the costs of most local data operations and network delays, so compiled

plans would offer limited benefits at best.

Since relational databases are becoming prevalent and relational interfaces are

being developed for many nonrelational DBMSs, InterViso has emphasized access

to relational DBMSs. InterViso assumes the existence of a local optimizer that

determines which indices to use, how to perform a join, and the order of joins if

multiple joins are required for local operations. If the access is through a gateway

product, the gateway is expected to contain some optimization to convert from the

SQL query to the local query.

A capabilities table in the DD/D specifies what operations a DBMS can do at a

site. The capabilities include the number of joins that can be done in one query and

the availability of GROUP BY, aggregates, LIKE pattern matches, string operations,

INDEX, and DISTINCT. In some cases, the optimizer will avoid a site that cannot

perform an operation. For example, if a join is to be done between two tables at

sites that cannot perform a join, the tables must be moved to a third site to perform

the join. In other cases, the schema translator will supply the missing functionality.

For example, if a site cannot do LIKE p a t t e r n and the query contains a pattern

match, the records will be read into the schema translator, which will determine

which records qualify rather than using the DBMS to qualify the records.

One SELECT statement at the federated level may involve a series of operations

in multiple databases. InterViso attempts to present a consistent read view to the

304

user even when data are retrieved from multiple databases. We avoid read locks

for performance reasons and would not use them even if a lock command were

always available. The window of inconsistency is kept small by performing parallel

queries in all databases to gather data into temporary relations before doing the

joins and unions across databases. However, local transactions or other InterViso

transactions could still make changes within this window.

We have found that this read policy is adequate for most applications. In many

applications, update schedules of the independent databases vary widely, often

hours or days. Users without federated databases must log into each database

independently, generally giving a much larger window of inconsistency. InterViso

therefore offers a solution that is significantly better than what currently exists.

When this is not adequate, other approaches, perhaps global locking, are required.

The design of InterViso assumes that few applications can afford the costs and

problems of full distributed locking in a networked eiwironment.

4.2 Transaction Processing

The transaction processing strategies designed for centralized DBMS operation

cannot be used in a heterogeneous federated database system such as InterViso for

several reasons. The key reasons are the different capabilities of the available local

DBMSs (i.e., no consistent and accessible test and control of locks); the potential

that a site is off-line; the existence of replicated and fragmented relations; and the

inability of the federated DBMS to see the local locks held and the other transactions

that might be running at the same time (Levy et al., 1991). InterViso has therefore

developed a pragmatic approach that gives up serializability for capability.

InterViso's criteria for updates are:

• Reliability. No update shall be lost, but updates are not necessarily made

concurrently.

• Performance. Updates shall have a minimal impact on the performance of

the local DBMSs.

• Availability. Updates shall be made even if all sites are not available.

• Consistency. Replicated and fragmented tables shall be kept consistent across

databases as long as the updates come through InterViso.

The InterViso update design assumes that there is no external lock or prepare

to commit command available, unlike some algorithms (Pu et al., 1991). Even if

there were a lock command, it would often have an unacceptable impact on the

performance of local systems, as it would subject them to delays caused by the

network and remote systems. When operating in a federated environment with

access to existing databases, it is very common to find fragmented and replicated

relations which add complexity to updates. Most articles on updates assume that each

relation is a single site relation so that the problem is an extension of the distributed

DBMS update problem with the added complexity of autonomous DBMSs (Breitbart

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 305

et al., 1992a, 1992b; Mehrotra et al., 1992). However, new approaches are needed

to deal with fragmented and replicated relations.

The basic design criteria (Section 1) require high availability and reliability, but

not necessarily serializable updates. Retrieval availability and performance can be

improved with replicated copies, and redundant data may exist for historical reasons

rather than by design. Relations may be fragmented when many organizations or

divisions collect information about the same entities, but the individual organizations

do not see their data as a fragment of a larger system. There could be a large

number of databases in the network, and some may be off-line at any given time. In

InterViso, if one site with a part of a fragmented relation or a secondary replicated

copy of a relation is not available, the update will be made anyway, and the update

is logged for application when access is restored. A policy of strict serializability

requires an update failure if one or more sites are not available. However, one site

could be off-line indefinitely, which could prevent any updates to a relation. This

is generally not acceptable.

InterViso places restrictions on the types of transactions that can be submitted.

In particular, only the following classes are supported:

1. One relation, no BEGIN/END, single site, replicated, or fragmented relation,

implicitly treated as a transaction.

2. Multiple single site relations, enclosed in BEGIN . . . END, all relations at the

same site.

3. Multiple relations enclosed in BEGIN . . . END, all relations single site or

replicated with all primary copies and single site copies at the same site, and

the same set of sites for replication.

4. Multiple relations, e'nclosed in BEGIN . . . END, all one fragment group with

one fragmented relation and associated dependent fragmented relations. The

transaction may n o t include a single site or replicated relation.

The reason that a transaction may not mix replicated and fragmented updates

is that the rules for commit are not the same.

Replicated relation UPDATE, INSERT, or DELETE transactions are run first at

the site of the primary copy. When the primary copy is in a prepare-to-commit

state (all parts have run successfully but no END has been sent), the transaction will

commit and will be logged in the InterViso log file. The transaction, minus single

site relations, is then sent to each secondary site and the updates are made as soon

as possible. If a site cannot be started or fails during update, updates will continue

at the other sites. The user will receive a message that the "iv recover" program

must be run when the site becomes available. The recovery program reads the

logs for all users for all federated databases and applies updates to a failed site in

timestamp order. This is shown in pseudo code in Figure 4.

A fragmented relation UPDATE or DELETE may have to be sent to every site if

there is no fragmentation predicate on the relation, or the qualification does not

include the field that determines the site. The UPDATE or DELETE will be committed

306

Figure 4. Replicated relation update

Send transaction to primary site

IF any step FAIL

ABORT

IF SUCCEED without END sent (prepared state)

Log secondary sites

Send END to primary site

IF FAIL on END

ABORT

Remove logs

IF SUCCEED (committed state)

COMMIT

Send transaction to all sites in]parallel

WHILE work pending

{

Read status as each site completes

IF SUCCEED, not end

Submit next statement in transaction

IF SUCCEED on end

Remove site from pending list and log

IF FAIL

Must run recovery

IF timeout while waiting

Treat as FAIL at site that timed out

}

as soon as one site updates at least one record. If a site does not return any status,

it is presumed to have failed. If a site returns 0 t u p l e s a f f e c t e d , the site will be

removed from the list of pending updates, but the update will not be committed

until some nonzero tuple count is received. Before the commit, the transaction will

ABORT if a site fails. As soon as one site commits, the UPDATE or DELETE will be

logged. If one or more sites fail after the commit, the iv recover program must be

run. This is shown in pseudo code in Figure 5.

No SELECT is allowed inside a transaction, because it requires the return of data.

If the transaction is running from an application program, the return of data might

cause a wait for some user action before the rest of the transaction is submitted.

The InterViso user interface submits the entire transaction from BEGIN to END to

the controller as a unit. During the operation of the transaction, the controller has

no interaction with the user, so there is no possibilhy of waiting for user response.

Failures may be difficult to detect. An update sent to a site may fail for several

reasons:

• the update is rejected by the DBMS with an error message,

• the update is held or rolled back by the DBMS due to a local deadlock,

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 307

• the update message is lost due to a network or processor failure,

• the DBMS site is not available due to DBMS server shutdown or overload,

• the computer with the database is not accessible.

Figure 5. Fragmented relation update

Send transaction to all sites in parallel

WHILE work pending

{

Read status as each site completes

IF any step SUCCEED, >0 tuples

IF not yet committed

COMMIT

Log update at all sites still on list

IF SUCCEED, not end

Submit next statement in transaction

IF SUCCEED on END

Kemove from pending list

IF committed

remove log for this site

IF any step FAIL

IF COMMIT state

Must run recover

IF not yet committed

ABOKT

IF timeout while waiting

Treat as FAIL at site that timed out

}

InterViso sends a message to a site and then waits for a specified amount of t ime

for a status message. If the message comes back with a failure message, the failure

is obvious. When no status message arrives within the time period, it is assumed

that the update failed. However, it may actually have succeeded and sometimes

the status message arrives after the FAIL state is entered.

5. DBMS Interfaces

Each database is accessed through an InterViso DBMSI. A DBMSI has several

parts that are assembled into a module that is specific to a DBMS and operating

system. The functions are:

• C o m m u n i c a t i o n . Handles messages between InterViso processes. Currently

the UDP or TCP protocol is used to transport InterViso messages.

• Parser. Reads text SQL commands and generates a parse tree. This is DBMS

and OS independent.

308

• Schema translator. Transforms the parsed SQL query tree from federated

to local form. This may mean renaming re, lations and fields, joining or

splitting relations or fields, transforming field;s, or transforming the data in

the qualification of the query. The data that are returned are translated into

federated form. The DBMS capabilities are described in the DD/D so that

the schema translator can determine what flmctions can be performed in

the DBMS and what functions must be done within the translator. This is

DBMS and OS independent (see Section 5.1).

• Language translation. Generates a query in the local DBMS language from

the query tree. Even DBMSs that support S, QL require some translation,

because each one has some differences in syntax or functionality. This is

DBMS language specific.

• Runt ime interface. Interfaces with the dynamic call level interface to the

DBMS. May interact with the DBMS API library on the local host or with

the client side of a gateway product to acce:~s a remote database. This is

DBMS specific. It is built on a toolkit framework with enough flexibility to

accommodate almost any database API.

• Bulk load. Load data that are being moved from one database to another

for joins and unions across databases. Ideally it will call a DBMS bulk load

facility if one exists through the API or as a separate process. Otherwise, it

will generate an INSERT statement for each record. This is DBMS specific.

DII currently supplies DBMSI routines for relational DBMSs on Unix. Gateways

from Oracle, Ingres, Sybase, or Information Builders (,EDA/SQL) are used for access

to other types of DBMS. In the following section, details of schema translation and

the DBMS interface are discussed.

5.1 Schema Translation

Schema translation is the process of converting a query or other statement from the

federated schema to the local schema and converting the results back to the federated

schema. The DBMSI process performs schema translation on each subquery that

is sent to the database it controls. The information needed to do the schema

translation is stored in the DD/D by the DD/D Builder (Section 3).

InterViso users express all queries in SQL against the federated schema. The

query is sent to the optimizer which, depending on the complexity of the query

and data distribution, decomposes the query into one or more statements to the

DBMSI processes. Each data element is converted to the federated schema during

the first operation on it. Any intermediate results bypass schema translation as no

longer needed.

There are two parts to the translation: structural translation and data translation.

The structural changes (renaming relations and fields, joining or splitting relations,

some changing of field length, and, in some DBMSs, splitting or combining fields)

are done by modifying the query. Data translation must be done both on the data

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 309

in the qualification part of the query and on the data retrieved. When possible, data

translation of results also is done by pushing arithmetic, string and other operations

into the query to the extent supported by the local DBMS. The query translation

is guided by consulting the DD/D and then calling functions or translate relations

as necessary.

Unit, case, and data type changes and other data transformations beyond the

local DBMS capabilities require that the data be read into the schema translator

and converted into the federated form by calling functions linked into the DBMSI.

These functions include a collection of standard operations supported by InterViso,

plus locally written special purpose functions. If the data are to be moved to another

location, this adds very little overhead. If the data will be used locally, it does mean

that they must be read into the program, translated, and then stored back into a

temporary relation in the database rather than simply using the DBMS to perform

a "select into."

Data in qualification receives three possible levels of translation. In the best case,

a federated constant can be rewritten into an equivalent local constant, resulting

in the best possible performance. For this to work, a suitable federated to local

transformation must have been defined and the predicate must be equality or its

negation. In an intermediate case, the conversion of a local value to federated units

can be expressed within the query for comparison to other federated values. This

case involves more computation, but they are handled close to the data. In the

least desirable case, local data have to be passed from the DBMS to the schema

translator for evaluation of the qualification. For large relations with selective tests,

this results in transferring large amounts of unwanted data between the local DBMS

and the schema translator.

The InterViso schema translator differs from the one in Mermaid by supporting

a richer set of transformation primitives, and it pays more attention to pushing com-

putation into the local DBMS when possible. In this way it maximizes performance

where possible, while still providing a high level of functionality for all databases.

5.2 DBMSI Library Calls

One of the most difficult issues facing InterViso is how to support every DBMS

and version of DBMS that can store data. It is prohibitively expensive to own

the necessary hardware and to purchase all DBMS products. Therefore, we have

decided to support access to only relational DBMS products and commercial gateway

products accessible from Unix. On occasion, DII consulting has assisted in developing

translators to special purpose systems which are not SQL based and which can not

be accessed by commercial gateways.

Each InterViso DBMSI has two DBMS specific components: the language

translator and the subroutine call interface. The language translator was an important

part of Mermaid and several very diverse types of language were supported. However,

the evolution to standard SQL has meant that the language translator has become

a single module that has conditional compilation for variants of SQL. Every DBMS

310

and gateway product supports SQL, but there are differences in each product. The

differences include the way that transactions are submitted (e.g., BEGIN/END vs

COMMIT WORK); the use of pattern matching (LIKE); the naming of relations by user

or by database; and the way to bulk load data.

The DBMS API subroutine calls have little standardization between vendors,

although there is a movement toward standardization and newer releases of the

DBMSs are slowly converging toward the standards. InterViso uses a table driven

interface that defines the calls and parameters for each function that may be

needed. This code is supplied to end users in source form, because it sometimes

varies between releases of the same DBMS and will continue to vary as the DBMS

calls evolve toward the standard.

6. Access Control

InterViso provides at least the level of access control offered by commercial, cen-

tralized DBMSs. It also provides excellent protection of databases, but the price

is complexity in administering the access control. Access control in a distributed,

heterogeneous system is much more complex than the same level of control in a

centralized system. There are more processors and system administrators involved,

more levels of checking, and different models of access control.

Administrative complexity arises due to the necessity for local control over local

databases. In a tightly coupled, distributed system, it is possible to have a central

system administration. However, in a federated system such as InterViso, there

are data and system administrators for InterViso and for each underlying database.

Access through the InterViso system is a fight that is granted to individual users.

By having each user represented as himself (or part of a small group), existing

controls and accounting for machine and database resources can be applied locally

without knowledge of InterViso. Access to the InterViso system does not give the

user automatic access to the databases accessed by InterViso, and access to the

underlying databases does not give a user access to InterViso.

When a user does not have permission to run InterViso or to access the DD/D

and underlying databases, the system should lock out the user. Good security

demands telling the user very little about the cause of the failure, while fixing it

requires seeing which entries are missing or incorrect. InterViso attempts to give

good diagnostics without compromising security.

Several federated databases may be defined over different groups of databases

and subsets of the databases. Any single database may belong to many federated

databases. This capability is another way to control access much as views can be

used to control access in the local database. Federated databases carry the concept

of views to the federated database level. For example, some group of users may

need access to several databases containing information about commercial shipping,

while another group of users is interested in military activities. Some databases may

contain information about both and, therefore, diffe, rent subsets of the databases

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 311

may participate in different federated databases. If a field does not exist in the

federated schema, no InterViso user can access it.

The InterViso access control was described by Templeton et al. (1987a). The

first step in installing a new user is to determine which federated databases the

user will be allowed to access. The user then needs to obtain a login ID on each

computer that contains a local database or DD/D for' the federated database and on

the computer on which he will run his InterViso user interface. In addition, the user

needs a login and passwords for each DBMS that provides its own access control

and must be granted access permission to the databases as well. The user's login

name on each of these host computers and databases and an encrypted version

of the matching password is stored in the DD/D using the interactive iv admin

program.

If this level of access control and auditing is not required, some of it may be

bypassed by assigning multiple real users to the same login IDs on the remote

computers. For example, a user "mermaid" might be defined and given a login

on a remote computer. All users of InterViso who access that computer will show

"mermaid" as their login name on that computer.

The DD/D database contains an iv admin database in which all logins and

errors are recorded. The system administrator may also turn on logging of every

query that is submitted. The logs may be audited by security officers or accounting

personnel.

7. Open Systems Standards

There is a major mismatch between access to legacy systems and use of open systems

standards which were defined later. InterViso attempts to provide a standardized

view of the system and the databases even when the local database does not use

standard SQL and standard calls. At the same time, InterViso should take advantage

of standards that do exist.

Mermaid was developed before there were standards for networks, operating

systems, SQL, or DBMS calls. We made several fortunate guesses at the direction of

standards and our first implementation was on Unix (on the PDP 11) in C, accessing

Ingres using the Q U E L language and the Britton-Lee using the IDL language.

The original design assumed that there would be many front-end languages,

many DBMS query languages, and many network protocols. The modular design

has made it possible to modify the system as new standards have been adopted.

InterViso was designed after many standards were in place, so it has adopted SQL,

TCP/IP, and Unix. However, at the same time, it has remained open to operation

with non-standard systems, and it has maintained the modular design so that it can

continue to evolve to meet or use the new standards.

The SQL accepted by InterViso is ANSI SQL89 but limited to the portable

subset of the commands that InterViso can execute: SELECT, INSERT, UPDATE,

and DELETE and BEGIN/END. Two additions have been made for InterViso: INT0

312

and AT. SELECT INTO allows the user to specify a new relation into which the result

is stored. Many dialects of SQL support a similar function. The new relation can

then be used by the creator as though it were a fundamental part of the federated

database and joined to existing tables. The AT allows the user to specify the site for

an operation. In the case of SELECT INT0, it specifies the location of the result as

in:

SELECT INTO monday AT myhost * FROM sighting WHERE date='04-18'

The default for SELECT is to use any copy of a replicated relation and all copies

of a fragmented relation. The requirement for INSERT, UPDATE, and DELETE is to

reliably apply the update to all copies of a replicated relation and to one or more

copies of a fragmented relation. The AT clause may be used to override this, except

for updates to replicated relations which must affect ~tll copies. The example shows

the location for the INSERT being given with AT:

INSERT INT0 sighting AT SATVIEW (shiptype, lat, ing, date)

VALUES ('CG', '002300N','016000W', '06-12')

In the federated schema example, the same result may be achieved with the

update to the single site table s a t _ r p t , except that more precision is allowed. When

there is a difference in precision, it may be desirable to define update tables that

have a schema close to the underlying table:

INSERT INT0 sat_rpt (shiptype, lat, ing, date)

VALUES ('CG', 'O02300N','O16000W', '06-12-14-03')

InterViso's SQL excludes CREATE TABLE or GRANT. All data definition is done

through the DD/D Builder. All access control is done through an administration

utility. The limits on transactions were discussed above.

The InterViso API was developed before the SQL Access Group draft standard

DBMS Call Level Interface (CLI) was proposed (SQL Access Group, 1992). A new

API has been written that follows the 1993 Microsoft ODBC standard. It currently

runs as a layer above the original API. Our experience with ODBC reflects the

problems that software vendors have in attempting to implement standard software.

We originally started implementation following the snapshot CLI standard, but then

it appeared that the Microsoft ODBC standard was the one that the application

development vendors were following, so we decided to switch. Shortly after we

completed the API, Microsoft revised it, which meant that we had to revise our

code. At about the same time, the CLI standard was updated with significant

differences from the draft and from ODBC. We are now testing various front-end

tools with InterViso and we find variations in how calls are made and in what level

tools expect the InterViso system to implement.

Standards will eventually make it easier to as~,;emble systems from diverse

components, but the industry is not there yet. However, customer's expectations

have been raised so that they believe that little systems integration work is required.

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 313

8. Lessons Learned

The evolution from Mermaid to InterViso has been influenced by customer demands.

Many of the new features in InterViso have been discussed above. This section

reiterates some of the features in Mermaid that have proved to be important and

then summarizes the new features with a discussion about why they were added.

8.1 Mermaid Features

Mermaid was designed for change with functional layers that have well-defined

interfaces. In 1982, this was called "modular design," while today one could call

this "object oriented" programming. This has proved to be extremely important

since it has allowed the system to change over time.

Debugging features were designed in from the beginning. The development and

deployment of distributed code could not have been done without good debugging

features. Commands can be entered interactively or in configuration files to turn

debugging on to a specified level in either a process or a functional area. A functional

area is code such as network code or parser code that exists in many processes.

The debug output is written to a local file on the computer where a process runs.

The Mermaid query optimizer is an area that has changed little. Mermaid was

the first system with a query optimizer that can support replicated and fragmented

data. Support for replicated and fragmented tables at the federated level has been

critical for many applications of InterViso. When legacy databases are integrated, it

is likely that there are redundant data, because data are stored where they are used,

and many applications use the same data. Fragmented data occurs when different

organizations have common reporting requirements but collect data on different

entities.

Access control was an important component of Mermaid even as just a prototype.

Organizations absolutely require good access control for any distributed application

that retrieves data from existing, autonomous databases. While Mermaid provided

the same types of access control, there have been improvements under InterViso.

The most important changes have been the creation of administrative tools for

password management, strengthening of the encryption used to protect passwords,

and the creation of audit trails to record significant events.

A major area of contention during the design of Mermaid was whether it should

start a process per user or handle multiple user requests through a single process.

The advantage to handling multiple users in a single process is that less load is put

on the computer, and it makes some global coordination easier. The advantages

to a process per user are:
1. Access control is strengthened since it requires a login for the user and

operations may be logged by user.

2. The operating system accounting routines are used so that users may be

charged for database access.

3. The user process sends the commands to the DBMS through the API for

the DBMS, most of which will process only a single command at a time. If

314

the Mermaid code were to handle multiple users, it would have to spawn

processes for each command or else single thread the commands to the

DBMS.

Mermaid and InterViso use a process per user. This was definitely the correct

decision. Computers have become more powerful, so the extra processes have not

been a problem. The user's ability to control access and monitor access has been

critical.

8.2 InterViso Features

The first addition to InterViso was the IVBuild program to develop the DD/D.

The DD/D development tool in use with Mermaid supported only an Ingres DD/D

and it could be used only by a person who understood the Mermaid DD/D format.

IVBuild is DBMS independent so the customer cant store the DD/D in Ingres,

Oracle, or Sybase. It comes with a manual that describes the process of developing

the DD/D in enough detail that a DataBase Administrator who is familiar with

database concepts and with the underlying databases can use IVBuild, without

requiring a detailed understanding of DD/D implementation details.

Early Mermaid customers and potential customers did not want to allow updates

through any remote program. However, once customers started to use InterViso,

they found that they did want to update the underlying databases. Most updates

are still made with the existing application programs, but corrections to the data

are important.

Mermaid's user interface was either batch or Sun windows. There was no API.

The PC has become the primary desktop computer and X-windows has become the

standard for Unix workstations. InterViso's user interface options were therefore

extended to support X-windows for the interactive interface which allows the windows

to be displayed on a workstation or on a PC. The first API was written for InterViso

in 1990 before the CLI standard was published. It ran on only the Unix workstation.

InterViso now has the ODBC API that supports application programs on the PC.

The performance of InterViso has been adequate except where extensive schema

translation is required. The ability to SELECT INTO t a b l e AT s i t e was added so

that frequently accessed data can be translated once and stored as a snapshot where

it can be rapidly accessed.

InterViso's DBMSI processes were originally shipped as binary modules. This

meant linking in the DBMS subroutine library at DII. Not only did it violate DBMS

license agreements, but it made it harder to support all possible DBMS releases.

We reorganized the linking process so that the DBMSI is now partially compiled

and linked at the customer site. This has caused some new problems, because

sometimes different Unix routines are picked up at the customer site than were

used to test InterViso.

Many customers have projects to define data e.lement standards for future

development. InterViso enforces data element standards at the federated level.

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 315

The user organization specifies the standard way to view a data element including

the standard name, data type, length, units, precision and/or format. The IVBuild

program then automatically makes the federated view conform to the standards.

This means that users of InterViso start to write programs and submit queries using

the standard view even if the data are not yet standardized.

Maintenance of passwords is the most difficult part of installing InterViso.

Passwords must be maintained for each user, and for each host and DBMS. InterViso

has an interactive program for entering passwords. They are maintained centrally

and then distributed with a utility. InterViso also needs to be able to fail gracefully

and with good diagnostics when bad passwords are used.

The processing of a query makes tables in the databases hold intermediate

results. If a computer or network connection fails, the table may be left. If a

subsequent query uses the same name for a table, it will fail. Mermaid uses simple

names for intermediate tables and requires manual cleanup if a failure left an

intermediate table in the database. InterViso logs names and then has a cleanup

program that will locate and remove the intermediate tables. It also uses randomized

names to minimize the likelihood that temporary table names will collide.

9. Conclusion

InterViso has made it possible to access most types of structured data. It provides the

"glue" between the user interface and the existing databases. It has been designed

to operate with existing software so that it can provide services not supplied by other

software products, and it can take advantage of the capabilities of other products.

The strengths of InterViso are its ability to resolve differences in schema and data,

and its open, standards-based interfaces to DBMS gateway products and to user

interface products. InterViso will continue to evolve as more types of data are

accessed and as open systems standards evolve.

InterViso is based on the research prototype, Mermaid, but it has been refined

and extended to meet the demands of customers. In many cases the solutions are

more pragmatic than elegant, but the world of legacy databases is messy and very

inelegant.

We see years of improvements ahead as more types of data are brought into

the federation, as standards evolve, and as users accept the technology.

References

Ahmed, R., DeSmedt, P., Du, W., Kent, W., Ketabchi, M., Litwin, M., Rafii, A.,

and Chen, M.-C. The Pegasus heterogeneous multidatabase system. Computer,

24(12):19-27, 1991.

Bernstein, E, Goodman, N., Wong, E., Reeve, C., and Rothnie, J. Query processing

in a system for distributed databases (SDD-1). A C M Transactions on Database

316

Systems, 6(4):602-625, 1981.

Breitbart, Y., Silberschatz, A., and Thompson, G. An approach to recovery man-

agement in a multidatabase system. The VLDBJoumal, 1(1):1-39, 1992a.

Breitbart, Y., Garcia-Molina, H., and Silberschatz, A: Overview of multidatabase

transaction management. The VLDB Journal, 1(2):281-239, 1992b.

Chen, A., Brill, D., Templeton, M., and Yu, C. Distributed query processing in a

multiple database system. Proceedings of the International Computer Symposium,
Taiwan, 1986.

Collet, C., Huhns, M., and Shen, W.-M. Resource integration using a large knowledge

base in Carnot. Computer, 24(12):55-63, 1991.

Elmagarmid, A.K. and Du, W. A paradigm for concurrency control in heterogeneous

distributed database systems. Proceedings of the Sixth International Conference on

Data Engineering Los Angeles, 1990.

Epstein, R., Stonebraker, M., and Wong, E. Distributed query processing in a

relational database system. Proceedings of the ACM SIGMOD, New York, 1978.

Kim, W. On optimizing an SQL-like nested query. ACM Transactions on Database

Systems, 7(3):443-469, 1982.

Kim, W. and Seo, J. Classifying schematic and data heterogeneity in multidatabase

systems. Computer, 24(12):12-18, 1991.

Litwin, W., Mark, L., and Roussopoulos, N. Interoperability of multiple autonomous

databases. ACM Computing Surveys, 22(3):267-293, 1990.

Levy, E., Korth, H.E, and Silberschatz, A. An optimistic commit protocol for

distributed transaction management. Proceedings of the ACM SIGMOD, Denver,

1991.

Lohman, G., Mohan, C., Haas, L., Lindsay, B., Selinger, E, and Wilms, P. Query

processing in R*. IBM research report RJ 4272, April, 1984.

Mehrotra, S., Rastogi, R., Breitbart, Y., Korth, H., and Silberschatz, A. The con-

currency control problem in multidatabases: Characteristics and solutions. Pro-

ceedings of the ACM SIGMOD, San Diego, 1992.

Microsoft. Microsoft Open Database Connectivity Software Development Kit, Version

2.0, Programmer's Reference. Redmond, OR: Microsoft Press, 1993.

Perrizo, W. Rajkumar, J., and Ram, E HYDRO: A heterogeneous distributed

database system. Proceedings of the ACM SIGMOD. Denver, 1991.

Pu, C., Left, A., and Chen, S.-W. Heterogeneous and autonomous transaction

processing. Computer, 24(12):64-72, 1991.

SQL Access Group. SQL Call Level Interface, Preliminary specification, X/Open

Co., Ltd., UK, October, 1993.

Sheth, A. and Larson, J. Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACMComputing Surveys, 22(3):183-

236, 1990.

Templeton, M. Schema translation in Mermaid. Heterogeneous Database Workshop,
Chicago, 1989.

VLDB Journal 4 (2) Templeton: InterViso-Federated Database Access 317

Templeton, M., Ward, E, and Lund, E. Pragmatics of access control in Mermaid.

Quarterly Bulletin of the Computer Society of the IEEE Technical Committee on Data
Engineering, 10(3):33-38, 1987a.

Templeton, M., Brill, D., Chen, A.E, Dao, S., Lund, E., MacGregor, R., and Ward,

P. Mermaid: A front-end to distributed heterogeneous databases. Proceedings of

the IEEE, Special Issue on Distributed Database Systems, pp. 695-708, May 1987b.

Thomas, G., Thompson, G., Chung, C.-W., Barkmeyer, E., Carter, E Templeton,

M., Fox, S., and Hartman, B. Heterogeneous distributed database systems for

production use. ACM Computing Surveys, 22(3):237-266, 1990.

Veijalainen, J. and Wolski, A. Prepare and commit certification for decentralized

transaction management in rigorous heterogeneous multidatabases. Proceedings

of the Eighth International Conference on Data Engineering Tempe, AZ, 1992.

Williams, R., et al. ?? R*: An overview of the architecture. IBM Research Report
RJ3325, December, 1981.

