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Abstract

Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior

parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that

FGF4 is another crucial factor for intestinal development. The aim of this study was to define

the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for

differentiation of human pluripotent stem cells (hPSC) into posterior endoderm (hindgut)

and further to self-renewing intestinal-like organoids. The most prominent induction of the

well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive

endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to

hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an

early role in repressing development towards the hepatic lineage. When hindgut stage cells

were further cultured in 3D, they formed self-renewing organoid structures containing all

major intestinal cell types even without exogenous R-spondin1 (RSPO1), a crucial factor for

the culture of epithelial organoids derived from adult intestine. This may be explained by the

presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of

WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived

organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-

like organoids. Similar hindgut and organoid cultures were established from human induced

pluripotent stem cells, implying that this approach can be used to create patient-specific

intestinal tissue models for disease modeling in vitro.
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Introduction

During early development of the mammalian embryo, the three germ layers, ectoderm, endo-

derm and mesoderm, are formed upon gastrulation. In humans, the development of internal

organs from the endoderm begins during the third week of gestation. The endoderm becomes

patterned by molecular cues from the microenvironment, such as retinoid acid (RA) [1], fibro-

blast growth factors (FGFs) [2] andWnt ligands [3]. The crosstalk between the endoderm and

mesoderm has a major role in guiding the formation of the gut-tube structure [4], which

becomes further patterned by the expression of different fate-specifying transcription factors,

such as Sox2 andHhex in the anterior endoderm (foregut) and Cdx2 in the posterior endoderm

(hindgut). The posterior endoderm will eventually give rise to the small and large intestine.

Several studies have described successful methods for the differentiation of human pluripo-

tent stem cells (hPSC) into definitive endoderm (DE) [5–7] and foregut derivatives such as the

liver [8, 9] or pancreas [10–12]. Only few studies have reported attempts to differentiate

human pluripotent stem cells into intestinal direction [13–17]. High concentration of WNT3A

together with FGF4 induced hindgut development from hESC-derived endoderm, character-

ized by the expression of the Caudal-related homeobox CDX2 and leading to the formation of

hindgut spheroids consisting of developing epithelium surrounded by mesenchyme [17]. The

synergistic action of FGF4 and WNT3A was found to be essential for hindgut specification

[17]. In another study, Wnt signaling activation by GSK3β inhibitor XV was used to activate

small and large intestinal gene signatures in mouse and human PSC-derived definitive endo-

derm [3].

The biology of adult intestinal epithelium has been extensively studied. The intestinal multi-

potent stem cells reside at the bottom of the epithelial crypts interspersed with Paneth cells and

express leucine-rich repeat containing G protein-coupled receptor 5 (LGR5) [18]. The Paneth

cells together with adjacent mesenchymal cells establish the proper intestinal stem cell niche

partly by secreting Wnts [19]. Small intestinal epithelium forms crypt-villus structures in vitro

in 3D-matrix [20]. These so-called organoids are dependent on the Lgr5-ligand R-spondin1

(RSPO1), which acts as an agonist of Wnt signaling [19, 21]. Wnt signaling is needed for the

homeostasis of the normal intestinal epithelium and redundancy between Wnt signals from

different sources has been described, since addition of Wnt ligands allowed organoid culture

without Paneth cells [22].

In the pioneering study by Spence et. al (2011), hindgut stage spheroids derived from

human ES cells were cultured in similar 3D conditions as used for mouse small intestinal

organoids. The spheroids developed further to form organoids containing all the four major

cell types found in the adult intestinal epithelium (enterocytes, Paneth cells, goblet cells and

enteroendocrine cells) [17]. In contrast to adult human intestinal organoids [19, 23], the hESC-

derived organoids contained also mesenchymal cells [17]. More recently, these organoids were

shown to undergo significant maturation after engraftment in immunodeficient mice [24].

In another recent study, intestinal organogenesis was observed within hPSC-derived terato-

mas and organoid cultures were established from sorted LGR5+ cells [25]. However, these

organoids had a cystic morphology, similar to organoids derived from either human embryonic

intestine [26] or from adult colon [27].

In the present study, we have further investigated the process of intestinal differentiation

from hPSCs, focusing first in determining the importance of FGF4 and Wnt on the initial

intestinal commitment at hindgut stage, and then in testing the effects of different culture

conditions on the maturation of 3D-organoids. We show that effective hindgut commitment

can be obtained with GSK3β inhibitor without the WNT3A ligand. Furthermore, FGF4 is dis-

pensable in intestinal differentiation of hPSC and inhibits the formation and maturation of
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intestinal-like organoid-structures. However, FGF4 has an early role in repressing differentia-

tion towards hepatic lineage. Finally, we show that, unlike the adult intestine-derived orga-

noids, hPSC-derived hindgut progenitors can mature to organoids containing intestinal cell

types, even without exogenous Wnt signaling agonists, like R-spondin1.

Materials andmethods

Cell lines

Human embryonic stem cell (hESC) line H9 [28] was used in all experiments for the optimiza-

tion of the differentiation protocols. Human iPS cell (hiPSC) line HEL11.4, retrovirally gener-

ated from the fibroblasts of a healthy 83-year-old male [29], was used for validation of the

results (S6 Fig).

Stem cell culture and differentiation

The undifferentiated cells were cultured on Matrigel (BD Biosciences) coated plates in StemPro

medium (Invitrogen) and passaged with 1 x Collagenase IV (Invitrogen). The differentiation

experiments were initiated at 80% confluency. DE differentiation was started by replacing

StemPro medium with RPMI 1640 (Invitrogen) supplemented with 2% B27 (Invitrogen), 1mM

sodium butyrate (NaB), 75 ng/ml WNT3A and 100 ng/ml Activin A (ActA). WNT3A was con-

centrated with Amicon Ultra-15 Centrifugal Filter Units according to the manufacturer’s

instructions (Millipore Merck KGaA, Darmstadt, Germany) from conditioned medium (CM)

produced as described elsewhere [30]. The following day the medium was changed to general

DE medium where the concentration of NaB was reduced to 0.5 mM. Differentiation to DE

was continued for 4 days and medium was changed every day.

The differentiation was continued with hindgut induction for 4 days in DMEM/F12 con-

taining 2% defined FBS (HyClone) with varying concentrations of rhFGF4 (R&D Systems),

rhWNT3A (R&D Systems) and CHIR99021 (Stemgent), depending on the combinations tested

in each experiment.

For 3D organoid formation, about 2.5x105 cells were collected at day 9 and seeded into

4x50 μl drops of Matrigel. Medium was DMEM/F12 with 1% B27 (Invitrogen), supplemented

with 1% N2, 1mMN-Acetylcysteine, 100ng/ml Noggin, 50 ng/ml EGF (Invitrogen), and

depending on tested conditions 500 ng/ml R-spondin1, 500 ng/ml rhFGF4 (R&D Systems) or

100ng/ml WNT3A was added. Medium was changed every 4 days and organoids were pas-

saged mechanically every 7–10 days. Organoid cultures were analyzed after 33 days in Matrigel

(d42 from hPSC), unless otherwise indicated.

Production of recombinant proteins

Human noggin and R-spondin1 recombinant proteins were produced locally. NOG (NP_

005441) and RSPO1 (NP_001033722.1) cDNA sequences were modified to incorporate suit-

able restriction sites for cloning, synthetized (GenScript, Hong Kong) and subcloned into

pEFIRES-Fc vector to generate Fc-tagged constructs. Protein production in chinese hamster

ovary (CHO) cells and purification was done as described elsewhere [31].

Immunocytochemistry

Immunocytochemical staining and analysis of cells at day 5 and day 9 was performed as

described earlier [7]. Organoids for immunohistochemistry were collected manually,

fixed with 4% PFA and centrifuged in liquid agar. Pellets containing organoids and agar

were embedded in paraffin, processed and sectioned with routine methods. Sections were
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deparaffinized, rehydrated and treated with 1mM EDTA buffer (pH 8) in a microwave oven to

reveal antigenic sites. Sections were incubated with UltraVision Protein Block (Thermo Scien-

tific) for 10 min in RT before overnight incubation at +4°C with the desired primary antibodies

(S1 Table). The following day, sections were incubated for 30 min with appropriate secondary

AlexaFluor antibodies (Invitrogen) (S2 Table.). Vectashield with DAPI (Vector Laboratories)

was used for the nuclear staining of sections. The images were acquired and analyzed by using

a Zeiss Axioplan 2 microscope and Axiovision software.

Whole mount immunocytochemistry of organoids

Organoids were grown in 4-well chamber slides for whole-mount staining. The chambers were

washed with PBS, fixed with 4% PFA and incubated for 1 h at RT with blocking/permeabilizing

buffer (5% non-immunogenic donkey serum, 0.2% BSA, 0.3% Triton X100 in PBS). Primary

antibodies for E-CAD, LYZ or VIM (S1 Table) were diluted in blocking/permeabilizing buffer

and incubation was done at +4°C overnight. The following day, the chambers were washed sev-

eral times with 0.3% Triton/PBS at RT. Secondary antibodies were diluted 1:500 in blocking/

permeabilizing buffer and incubation was done at +4°C overnight. On the last day, the cham-

bers were washed with 0.3% Triton/PBS several times at RT and nuclear staining was per-

formed by using vectashield with DAPI (Vector Laboratories). Images were acquired with

Zeiss LSM 5 Duo confocal microscope. Z-stacks of images were combined using ImageJ (NIH)

software. The numbers of LYZ- and VIM-positive organoids were counted manually.

Flow cytometry

Flow cytometry analysis for the cell surface marker CXCR4 was carried out at day 5 as

described earlier [7] using PE-conjugated antibodies listed in S3 Table. At day 9 the cells

required a somewhat longer incubation time with TrypLE (4 min) for dissociation. FACS

buffer (5% fetal calf serum (Promocell, Heidelberg, Germany) in PBS) with 1% Saponin

(Fluka) was used to permeabilize the cells for day 5 SOX17 and day 9 CDX2 nuclear stainings.

Primary antibodies (SOX17 R&D Systems; CDX2, Biogenex) were diluted 5 μl per 1 million

cells and incubation was done at RT for 3 hours. Incubation with secondary AlexaFluor anti-

bodies (S2 Table) was done on ice 30 min. Analysis with Becton-Dickinson FACS-Calibur and

CellQuestPro-software was carried out in FACS-buffer without Saponin.

Quantitative PCR analysis

RNA isolation, reverse transcription to cDNA and qPCR analysis were carried out as described

earlier [7]. 5x HOT FIREPol EvaGreen qPCR Mix Plus (Solis BioDyne) was used and each

20 μl multiplication reaction contained 4 μl of it, 5 μl mix of F/R primers (both 2 μM in mix),

1 μl cDNA template and 10 μl of PCR grade water. The following PCR program was used:

15 min enzyme activation step at 95°C, followed by 40 cycles of 95°C, 25 s; 56°C, 25 s; 72°C,

25 s, followed by a melting step. Corbett CAS-1200 liquid handling system was used to prepare

the reactions and qPCR was performed using Corbett Rotor-Gene 6000 (Corbett Life Science,

Sydney, Australia). Primers are listed in S4 Table.

We analyzed the data with ΔΔCt method [32] using Cyclophilin G as the internal house-

keeping gene and exogenous standard cDNA as calibrator. Fold changes were calculated rela-

tive to averaged day 0 undifferentiated cells expression levels. For H9 cells, all results were

calculated from at least 3 independent experiments, except for S4 Fig. Statistical testing was

done using SPSS and one-way ANOVA comparison between groups (post hoc: Tukey, Signifi-

cance: �<0,05 ��
<0,01 and ���

<0,001).
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Ethics Statement

RNA from human intestinal epithelium was isolated from intestinal biopsies taken in endos-

copy from nonaffected duodenum, ileum and transverse colon of 6–8 year old Hirschprung’s

disease patients during their follow-up visits. Donors of tissue samples and their guardians had

provided a written consent (Helsinki and Uusimaa Hospital District decision no. 296/13/03/

03/2012) for the use of the intestinal biopsy samples to generate the gene expression data for

this study. The generation of the hiPSC lines used in this study was approved by the Coordinat-

ing Ethics Committee of the Helsinki and Uusimaa Hospital District (Nro 423/13/03/00/08).

Results

Differentiation to definitive endoderm (DE)

H9 cells were differentiated using a previously optimized 5-day protocol employing Activin A,

WNT3A and sodium butyrate (Fig 1A). After 5 days of differentiation, the cells had a morphol-

ogy characteristic of DE-cells (S1 Fig) and quantitative analysis of immunocytochemistry

revealed that�96% of cells became positive for FOXA2 and�83% were positive for the more

specific DE marker SOX17 (Fig 1B). At day 5, only�2.5% of cells were still positive for OCT4

(Fig 1B), a marker of pluripotent stem cells. Importantly, cultures contained also a significant

mesenchymal VIMENTIN (VIM) positive population (�35%) (Fig 1B) (S1 Fig). VIM and

SOX17 immunoreactivities were localized mainly in separate cells, but also weakly double posi-

tive cells were identified (Fig 1B). mRNA levels of the stem cell markers OCT4 and SOX2

decreased strongly during days 3–5 (Fig 1C). Mesendodermal gene BRACHUYRY (BRA) was

transiently upregulated at day 3, suggesting that the cells go through a mesendodermal phase.

In contrast, the level of VIMENTINmRNA increased steadily (Fig 1C). The mRNA levels of

endodermal genes SOX17, FOXA2, GSC, GATA4 were strongly upregulated during days 3–5

(Fig 1D). Flow cytometry analysis confirmed that 78±8% of the day 5 cell population was

SOX17+ and 77±14% had cell surface marker CXCR4 (Fig 1E). CXCR4 is widely accepted as a

specific cell surface marker of definitive endoderm cells in pluripotent stem cell differentiation

[5, 33].

Treatment with CHIR99021 efficiently induces CDX2 expression

We tested different combinations of WNT3A, FGF4 and CHIR99021 (CHIR) for hindgut

induction using the day 5 DE-cells. CHIR activates canonical Wnt signaling pathway by inhib-

iting GSK3β and blocking the formation of the β-catenin destruction complex. WNT3A alone

or in combination with FGF4 induced upregulation of CDX2 expression, but when CHIR was

used instead of WNT3A, CDX2 levels were significantly increased (Fig 2A), peaking at day 9.

This effect was dose-dependent (Fig 2B). CHIR treatment maintained mRNA levels of the Wnt

target gene AXIN2 upregulated to the same level as in day 5 DE-cells, whereas in WNT3A-

treated hindgut stage cells AXIN2 expression dropped (Fig 2C). At this stage the cultures

became more 3-dimensional compared to earlier stages, especially in the presence of CHIR

(Fig 2E) (S2 Fig). Addition of FGF4 did not modify the CDX2 expression levels induced by

WNT3A or CHIR (Fig 2A) or the proportion of CDX2 positive cells (67–69%, Fig 2D). There-

fore, exogenous FGF4 could be considered as dispensable in intestinal commitment.

FGF4 represses the hepatic differentiation lineage at hindgut stage

We analyzed the expression of hepatic markers AFP and ALBUMIN at the hindgut stage to

identify unwanted endodermal lineages (Fig 3A). These markers were clearly upregulated in

conditions with WNT3A or CHIR alone. However, administration of FGF4 blunted the
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Fig 1. Induction of definitive endoderm (DE). A. Protocol for definitive endoderm differentiation.
ActA = Activin A; NaB = Sodium butyrate. B. Immunocytochemistry for FOXA2, OCT4, SOX17 and VIM at
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expression of hepatic markers (Fig 3A). Immunostaining for AFP confirmed the presence of

positive cells at day 9 in WNT3A and CHIR conditions and their absence in the FGF4 treated

cultures (Fig 3B). Increasing the concentration of CHIR also seemed to decrease AFP and ALB

expression (Fig 3C), while CDX2 expression was increased (Fig 2B). VIM positive cells were

also detected in the day 9 cultures (Fig 3D).

Taken together, FGF4 was not necessary for the induction of CDX2, but it increased the

specificity of the differentiation away from the hepatic lineage.

day 5 (Scale bars 100 μm). C. Gene expression of ES-cell markersOCT4, SOX2; mesendodermal marker
BRA; and mesenchymal VIM (mean ± SEM; n = 4). D. Upregulation of FOXA2, SOX17,GSC andGATA4

during differentiation (mean ± SEM; n = 4). E. Cytometry analysis of DE-specific marker SOX17 (n = 5) and
endodermal cell surface marker CXCR4 (n = 11) for day 5 cells (mean ± SD).

doi:10.1371/journal.pone.0134551.g001

Fig 2. Effective hindgut induction by CHIR. A. Upregulation of CDX2mRNA during differentiation driven by
administration of WNT3A (W), FGF4 (F) and CHIR99021 (CHIR) (mean ± SEM; n = 4–17). Numbers indicate
the concentrations used in ng/ml, CHIR concentration was 3 μM. B. Dose-dependent upregulation ofCDX2
by varying concentrations of CHIR (mean ± SEM; n = 3). C. Expression of theWnt target gene AXIN2 at d9
after differentiation with WNT3A (500 ng/ml) or CHIR (3 μM) (mean ± SEM; n = 4). D. Cytometry analysis of
CDX2+ population in day 9 cultures differentiated using either CHIR or CHIR+F500 (mean ± SD). E.
Immunocytochemistry for CDX2 at day 9 after CHIR treatment (scale bars 200 μm).

doi:10.1371/journal.pone.0134551.g002
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Fig 3. FGF4 suppresses unwanted hepatic differentiation. A. Expression of hepatic markers AFP
(n = 4–15) and ALB (n = 4–14) during hindgut differentiation induced by different concentrations (ng/ml) of
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Formation of organoids from hindgut cells is independent of R-spondin1

H9 cells at day 9 of differentiation were embedded in Matrigel for 3D-organoid culture (Fig

4A). Hereafter, the day 9 starting cell populations are referred as “CHIR” for cells induced to

day 9 by CHIR alone, and “CHIR+F” for cells induced to day 9 by CHIR + FGF4 (500 ng/ml).

During 3D-culture, organoids (S3 Fig) developed mostly from the condensed structures that

started to form at the hindgut induction stage (S2 Fig). They later formed either budding, out-

pocketing-containing (>80%) or more uniform bubble-like (<20%) structures (Fig 4B). Four

different culture conditions were tested for the organoids derived from CHIR cells: 1) Basal

medium plus EGF+ Noggin (EN), 2) EGF + Noggin + R-spondin1 (ENR), 3) EGF +Noggin

+ R-spondin1 +WNT3A (ENRW) or 4) EGF + Noggin + R-spondin1 + FGF4 (ENRF). For the

CHIR+F cells, only the EN and ENR conditions were tested.

Both the CHIR and CHIR+F cells formed organoids also in the EN-condition, in the

absence of RSPO1 (Fig 4) (S3 and S4 Figs). FGF4 inhibited the formation of organoids from

the CHIR cells, whereas the addition of RSPO1 andWNT3A increased it (Fig 4C). There were

no evident differences in the proportions of budding vs. bubble-like morphologies between the

tested conditions (Fig 4D). Hematoxylin-eosin stainings revealed that the organoids consisted

of both well-polarized epithelium and epithelium with weaker organization (Fig 4E). No differ-

ences were evident between test conditions. All organoid cultures matured to contain intesti-

nal-like cell types, as evidenced by KRT20, CHRA, MUC2 and LYZ positive cells (Fig 4F and

4G) (S4 Fig). The cultures contained both E-CADHERIN positive epithelium and VIM positive

mesenchyme (Fig 4F) (S4 Fig) and the organoids presented proliferative versus differentiated

regions, as evidenced by KRT20/KI67 staining (Fig 4F) (S4 Fig). The intestinal differentiation

markers CDX2, KRT20, KLF5 and IFABP2 were expressed at levels comparable to human intes-

tinal epithelium in the EN, ENR and ENRW conditions, but weakly in the ENRF-condition

(Fig 5A).

The intestinal stem cell/crypt area markers LGR5, ASCL2 and SOX9 were expressed in all

hPSC-derived organoid cultures (Fig 5B) (S5 Fig). Interestingly, LGR5 expression peaked

already at the DE stage, and in the organoids its expression remained higher than in the intesti-

nal biopsy samples. SOX9 expression was also elevated in the organoids as compared with the

intestinal epithelium. However, ASCL2mRNA levels were comparable in the organoids and in

the primary intestinal samples (Fig 5B).

Day 9 CHIR+F cells formed organoids similarly to CHIR cells, when tested in EN and ENR

conditions (S3 Fig) No evident differences were found between cell compositions of organoids

derived from these two different starting populations. (Fig 4 and Fig 5) (S4 and S5 Figs).

To validate the results with another cell line, the entire differentiation process was repeated

with the human iPSC line HEL11.4. Hindgut differentiation was induced using CHIR and the

organoids were cultured in the EN condition. (S6 Fig). There were no apparent differences

between the results obtained with H9 and HEL11.4 cells. Thus, our results clearly show that, in

contrast to the adult intestine-derived organoids, the Wnt-agonist R-Spondin1 is dispensable

for the hPSC-derived organoids.

WNT3A (W) and FGF4 (F) and 3 μMCHIR99021 (mean ± SEM). B. Double immunocytochemistry for CDX2
and AFP at day 9. C. Expression levels of AFP and ALB during differentiation with varying concentrations of
CHIR, (mean ± SEM; n = 3). D. Immunocytochemistry for VIM at day 9. Scale bars 100 μm.

doi:10.1371/journal.pone.0134551.g003
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Fig 4. HPSC-derived hindgut cells form intestinal organoids in the absence of R-spondin1. Results represent day 33 organoids (d42 from hPSC)
derived from day 9 CHIR cells. For CHIR+F cells see S4 Fig. A. Timeline representing the differentiation process B. Light microscopic images showing
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budding (left) vs. bubble-like (right) morphologies (scale bars 500 μm). C. Number of organoids in tested conditions (E, EGF; N, Noggin; R, R-Spondin1; W,
WNT3A; F, FGF4). Error bars represent SD. D. Percentages of budding and bubble-like structures in the tested conditions. E. Hematoxylin-eosin (HE)
stainings for organoid sections showing both tightly packed well-polarized structures (left panel) versus more loosely organized epithelium (righ panel). F.
Immunohistochemistry for E-CADHERIN (E-CAD), VIMENTIN (VIM), CHROMOGRANIN A (CHRA), CYTOKERATIN 20 (KRT20), KI67 and MUCIN2
(MUC2) in organoids (scale bars 50 μm). G. Whole mount confocal immunocytochemistry for E-CAD and LYZ (magnification 40 x).

doi:10.1371/journal.pone.0134551.g004

Fig 5. HPSC-derived organoids express intestinal marker genes at levels comparable to human intestinal epithelium. Results represent day 33
organoids (d42 from hPSC) derived from day 9 CHIR cells. A. Gene expression of intestinal differentiation markersCDX2, KRT20, KLF5, IFABP2 and
HOXA13. B. Expression of crypt area/intestinal stem cell markers LGR5, ASCL2 and SOX9. Data represent the mean ± SEM of 3–9 samples. (E, EGF; N,
Noggin; R, R-Spondin1; W, WNT3A; F, FGF4; 2D, initial monolayer culture; HI, human intestinal epithelium samples.)

doi:10.1371/journal.pone.0134551.g005
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Opposite effects of WNT3A and FGF4 on the cellular composition of the
organoids

Although the mesenchymal marker VIM was expressed in a subpopulation of cells at all stages

and in all organoid culture conditions, VIMmRNA levels were significantly upregulated in the

precence of FGF4 (ENRF condition, Fig 6A). When FGF4 was present, all the individual orga-

noids examined contained VIM+ cells (Fig 6B and 6C). On the contrary, the proportion of

Fig 6. Opposite effects of WNT3A and FGF4 onmesenchymal and Paneth cells. A. QPCR analysis of VIM expression during the differentiation
(mean ± SEM; n = 3–6). B. Percentages of organoids with VIM+ cells in the tested conditions (n = 2–3) C. Representative confocal Z-stack images of
organoids with and without VIM+ cells. Left panel 10x, right panel 40x magnifications. D. QPCR analysis of LYZ expression during the differentiation
(mean ± SEM; n = 3–8). E. Percentages of organoids with LYZ+ cells in the tested conditions (n = 3–6). All results represent day 33 organoids (d42 from
hPSC) derived from day 9 CHIR cells.

doi:10.1371/journal.pone.0134551.g006
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VIM-positive organoids was lowest when the exogenous WNT3A ligand was present in the

medium (ENRW condition, Fig 6B).

Lysozyme (LYZ) is a marker of the Paneth cells in the intestinal crypts. LYZ expression was

elevated in the presence of exogenous WNT3A (ENRW, Fig 6D). However, based on immuno-

cytochemistry, the presence of LYZ-containing organoids was not dependent on exogenous

WNT, since quite similar percentages were found in EN, ENR and ENRW conditions (Fig 6E

and Fig 4G). It is possible that WNT3A addition increased the number of Paneth cells in indi-

vidual organoids where they had developed, which has been shown to occur in human adult

intestinal organoids [22], but did not affect Paneth-cell negative organoids to the same extent.

Interestingly, virtually no LYZ-positive cells were found in whole mount immunocytochemis-

try of organoids grown in the presence of FGF4 (ENRF, Fig 6E and Fig 4G).

Collectively, these results indicate that FGF4 stimulated andWNT3A inhibited the forma-

tion of mesenchyme within the organoids. An opposite effect was found for the Paneth cells,

which were supported by WNT3A and virtually abolished by exogenous FGF4.

WNT3A prolongs the survival of hPSC-derived intestinal organoids

All organoid cultures were initially analyzed after 33 days of 3D-Matrigel culture (d42 from

hPSC). During this time, the cultures were split mechanically 3–4 times. In the EN, ENR and

ENRW conditions, cells were cultured for up to 99 days (d108 from hPSC). In EN and ENR

conditions, all organoid growth was arrested after approximately 70 days (S7A Fig). In the

ENRW condition, structures (S7B and S7C Fig) contained E-CAD, VIM, KRT20, CDX2,

CHRA and MUC2 positive cells (S7D Fig) still at d99. However, d99 immunohistochemistry

revealed active CASPASE3 (CASP3) positivity also in the epithelial structures (S7D Fig),

whereas at d33 CASP3+ cells were mostly localized in mesenchymal parts (S7E Fig). No differ-

ences between different test conditions were noticed. Although WNT3A addition prolonged

organoid survival to some extent, other modifications to the culture conditions would be

needed to improve their sustained growth and viability.

Discussion

Relatively few studies have been published on the in vitro derivation of intestinal-like cells

from hPSCs [13–17, 25]. Spence et al. (2011) used WNT3A and FGF4 to induce CDX2 and

hindgut development in definitive endoderm and achieved 3D organoid formation in the pre-

cence of R-spondin1 [17]. They showed that hPSC derived organoids have a mesenchymal

compartment that is likely to originate at early stages of the differentiation process. Our results

show that even more potent CDX2 upregulation can be achieved with Wnt agonist CHIR, leav-

ing FGF4 dispensable for intestinal differentiation. Also, the further formation of maturing 3D

organoids is independent of exogenous Wnt agonists, like R-spondin1. Similarly to Spence

et al., we identified a mesenchymal compartment within the cultures.

Many studies describe 3D-organoid cultures derived from isolated human and mouse intes-

tinal epithelium, allowing sustainable expansion of intestinal stem cells in vitro [20, 23, 26, 27]

These organoids (also called enteroids), consisting only of epithelial cells, fail to truly recapitu-

late the complex in vivo signaling network of the intestine, where the epithelial lining is in close

contact with the mesenchyme, central nervous system and the vascular plexus. HPSC-derived

intestinal organoids contain the mesenchymal component and have thus more potential to

mimic various aspects of intestinal complexity [34]. In the present study, we show that mesen-

chymal VIM expressing cells are generated already during the first stage of differentiation,

induction of definitive endoderm, where most of the cells acquire endodermal identity. The
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VIM+ stromal cells were found to be present at all later stages, potentially representing an

important source of endogenous growth factors, including Wnts.

Cdx2 is considered to be a reliable marker for the intestinal lineage in the context of endo-

dermal differentiation, since it becomes highly expressed in the early embryonic intestine [35].

It also antagonizes the foregut differentiation program and its conditional ablation in the

mouse endoderm results in anterior homeotic transformation and gastric metaplasia [36, 37].

In our experiments, the highest upregulation of CDX2 was obtained using the Wnt signaling

agonist CHIR99021, outperforming high concentrations of the ligand WNT3A. CHIR also pre-

served high AXIN2 levels that were achieved already during definitive endoderm induction,

while WNT3A was less potent in activating this well-knownWnt target gene [38, 39] during

intestinal commitment. Addition of a high concentration of FGF4 did not further potentiate

the induction. However, FGF4 did efficiently repress the expression of hepatic genes AFP and

ALBUMIN at the hindgut stage. Previously, FGF4 has been shown to inhibit early foregut

development in chick embryos [2]. Our experiments are in agreement with this observation,

showing that FGF4 effectively abrogated the differentiation of hPSCs to the hepatic lineage.

This implies that FGF4 has some potential to increase the specificity of the lineage determina-

tion, even though our results show that it is dispensable in intestinal differentiation.

After the successful derivation of hindgut cells, we wanted to develop optimal conditions for

their further propagation into self-renewing intestinal organoids. Based on previous studies, we

decided that EGF and Noggin are essential components for this. Keeping these factors constant,

we went on to study the roles of RSPO1, WNT3A and FGF4 in subsequent 3D-organoid cul-

tures. Since we found out that FGF4 was not necessary for the intestinal commitment, we

chose to use the d9 CHIR cells for the comparison of EN, ENR, ENRW and ENRF conditions.

To validate that R-spondin1 was dispensable in organoid culture, we then tested EN and ENR

conditions also with d9 CHIR+F cells. In all of the tested conditions, markers of intestinal cells

became upregulated at the organoid stage, but to lesser extent upon FGF4 addition. Genes

characteristic for absorptive enterocytes, such as IFABP2 and KRT20 [40] were expressed in

the organoids at levels comparable to human intestinal epithelium. The continued expression

of CDX2 was expected because it is also expressed by adult enterocytes [41], while LYZ was

indicative of Paneth cells and MUC2 of intestinal goblet cells.

KLF5 [42, 43] and SOX9 [44] are expressed in crypt areas in adult intestine and expression

of LGR5 [18] and ASCL2 [45] is restricted to intestinal stem cells at the crypt base. LGR5 was

already highly upregulated at the DE stage of differentiation and its mRNA levels were higher

in the organoids than in primary intestinal samples. We hypothesize that at the DE stage LGR5

may be expressed in all endodermal cells, but in the organoids its expression becomes limited

to a subpopulation of stem cells, possibly representing the ASCL2 positive intestinal stem cells,

that are giving rise to the various other intestinal cell types. In accordance with this, ASCL2

expression was only detected after the hindgut specification stage.

HOXA13 is the most posterior marker of the HOX genes, important in the regional specifi-

cation of the intestine [46]. As expected,HOXA13 was only found to be expressed in the

human colonic epithelial samples and not in duodenum or ileum. The cultured organoids are

likely to represent a mixture of anterior and posterior identities, since HOXA13 was expressed

in the organoids but at a low level compared to the colonic samples. Colonic crypts do not con-

tain Paneth cells and thus LYZ is usually absent in colon. We found organoids with and with-

out LYZ positive cells in EN, ENR and ENRW conditions. This also points to the possibility

that the hPSC-derived organoids represent variable regional specificity, including both small

intestinal and colonic fates. Interestingly, FGF4 inhibited the generation of LYZ-positive orga-

noids. However, it is unlikely to be due to any posteriorizing effect of FGF4, since all the differ-

entiation markers including HOXA13 were also expressed at lower levels in this condition.
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Overall, exogenous FGF4 appeared to inhibit the growth and maturation of intestinal epi-

thelial structures. This is an apparent discrepancy with the observation that VIM expression

was enhanced in organoids cultured in the presence of FGF4 (ENRF condition), which should

reflect an increased mesenchymal compartment as a source of beneficial growth factors. There

are several possible explanations to this. The direct negative effects of FGF4 on the epithelial

cells may overrule the positive effect on mesenchyme. It is also likely that the stage-specific

effects of mesenchymal signals vary depending on the added growth factors. A deeper analysis

of the mesenchymal-epithelial interactions and the effects of FGF4 in this context would be

needed to thoroughly address this issue.

Remarkably, all the intestinal-like cell types that were identified in organoids cultured in the

presence of RSPO1 (ENR-condition) were present also in organoids that had been cultured

without RSPO1 (EN-condition). This may indicate that the initial Wnt signaling activation

until day 9 was sufficient to enable self-sufficient development and maturation of the hPSC-

derived organoids. It is likely that both the mesenchymal cells and LYZ+ cells within the cul-

tures secrete Wnt proteins or other Wnt agonists, since Wnt signaling is known to be essential

for intestinal development and differentiation [3, 47–49]. In fact, the organoids cultured with

both exogenous RSPO1 and WNT3A (ENRW condition) had less mesenchymal VIM+ cells

and more LYZ+ cells. This is in line with previous observations, showing that Wnt from redun-

dant sources supports the maintenance of intestinal epithelium and the level of Wnt signaling

controls the number of Paneth cells in adult intestinal organoids [22]. Even modest changes in

Wnt signaling activity can lead to significant increases or decreases in Paneth cell number with-

out affecting the proliferation of crypt cells [50]. After one month in 3D-culture, the organoids

displayed zones of proliferation versus differentiation, evidenced by KI67/KRT20 staining.

However, the LYZ-positive cells did not clearly localize to crypt-like areas, indicating that

mature crypts had not yet developed. At this stage apoptosis was not detected in the epithelial

parts, but after propagation of the culture up to 3 months also epithelium stained positive for

active CASP3.

In summary, our results provide insights into the process of intestinal development through

the directed differentiation of hPSCs. We show that FGF4 is dispensable in intestinal differenti-

ation in vitro, but has a minor role in repressing the hepatic lineage, while strong Wnt activa-

tion is essential and sufficient for the induction of the intestinal fate. We also show that LGR5

is highly expressed already at the early definitive endoderm stage, limiting its reliability to serve

as a marker unique of intestinal stem cells in hPSC-based applications. Furthermore, we suc-

cessfully derived self-renewing 3D-organoids from hindgut cells that matured to contain all

major intestinal cell types even without exogenous Wnt agonists. This highlights the remark-

able level of self-organization achieved in epithelial-mesenchymal 3D cultures of stem cell

derived committed progenitors. The iPSC-derived intestinal organoids provide a platform for

modeling of a wide range of diseases, ranging from developmental defects to colon cancer.

Supporting Information

S1 Fig. Cell morphology and immunocytochemistry for SOX17/SOX2 and SOX17/VIM

during definitive endoderm differentiation. Scale bars 100 μm.

(TIF)

S2 Fig. Morphology of d9 (hindgut) cells differentiated with the tested protocols. Scale bars

500 μm. WNT3A (W), FGF4 (F) and CHIR99021 (CHIR). Numbers indicate the concentra-

tions used in ng/ml. CHIR concentration was 3 μM.

(TIF)
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S3 Fig. Organoid morphology in different test conditions. Note that the mesenchymal cells

are in close contact to the growing epithelial budding structures. Images were taken after 33

days in organoid culture (d42 from the start of the differentiation process.) Scale bars 100 μm

or 500 μm. (E, EGF; N, Noggin; R, R-Spondin1; W, WNT3A; F, FGF4)

(TIF)

S4 Fig. R-spondin1 does not affect the composition of organoids derived from CHIR+F

treated day 9 cells. Immunofluorescent images of organoids cultured for 33 days without (EN)

or with R-Spondin1 (ENR). Scale bars 50 μM.

(TIF)

S5 Fig. Gene expression levels in organoids derived from CHIR+F treated d9 cells (qPCR).

Experimental setup is similar to that presented in Fig 5.

(TIF)

S6 Fig. Differentiation of the hiPSC cell line HEL11.4 to DE, hindgut (CHIR) and orga-

noids (EN). A. Day 5 cells stained with OCT4/FOXA2. Scale bar 100 μm. B. CDX2 positive

spheroids formed at day 9. Scale bar 200 μm. C. Representative histogram of flow cytometric

analysis of the endodermal cell surface marker CXCR4 at day 5. D. Representarive histogram

of flow cytometry for CDX2 at day 9. E. Representative light microscopic images of the orga-

noids. F. qPCR analysis during the differentiation process (n = 1). G. Immunohistochemistry

for organoid sections. Scale bars 50 μm.

(TIF)

S7 Fig. hPSC-derived organoids have a limited life span in 3D culture. Survival of organoids

in 3D-culture in EN, ENR and ENRW conditions (mean ± SEM; n = 2–5). (Data were com-

bined from CHIR and CHIR+F derived organoids of H9 cells) B. Light microscope image of

d99 organoids cultured in ENRW condition (d9 CHIR). Scale bar 500 μm. Notice the poor

appearance compared to d33 organoids (S3 Fig). C. HE stainings for d99 organoids cultured in

the ENRW condition. D. d99 ENRW organoids immunohistochemistry for E-CAD, VIM,

CHRA, KRT20, KI67, MUC2, CDX2 and CASPASE3 (CASP3) E. d33 organoids immunohis-

tochemistry for CASP3 showing that at this stage positive cells are mostly located in the

non-epithelial parts in contrast to d99 (above). Scale bars 50 μm. (E, EGF; N, Noggin; R,

R-Spondin1; W, WNT3A). d99 in 3D organoid culture = d108 from the start of the whole

differentiation process.

(TIF)

S1 Table. Primary antibodies.

(DOCX)

S2 Table. Secondary Antibodies—Alexa Fluor.

(DOCX)

S3 Table. Antibodies for flow cytometric analysis with CXCR4.

(DOCX)

S4 Table. Primers for qPCR.

(DOCX)
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